
SUPPLEMENTARY MATERIALS

1 A schematic model for remapping from color

to location

In the experiment of Sugrue et al. (2004) the rewarding value (baiting prob-
ability) of each target is determined by the target color (red and green) and
not its location. Moreover, the location of red and green targets were as-
signed randomly in each trial. On the other hand, LIP neurons are selective
to target location. So in order for LIP neurons to receive the information
about the rewarding value of each target, a remapping from color to location
should take place in each trial. Here we describe the scheme of a model en-
dowed with a remapping circuit (Fig. 1A). Furthermore, we show how this
model can be reduced to the simple model which we have used in the paper
(Fig. 1B).

The detailed model consists of three layers of neurons (Fig. 1A). The
first layer consists of two populations of neurons which are selective to target
color and receive sensory inputs through some plastic synapses. The second
(intermediate) layer of neurons is responsible for the remapping from color
to location. It consists of two color selective populations of neurons, each
one consisting of two subpopulations which receive input about the location
of each target. Hence, there are four neural subpopulations selective for
combinations of the target color and position. The two populations in the
intermediate layer effectively inhibit each other through an inhibitory popu-
lation of inter-neurons. The third layer of neurons is the spatially selective
decision-making network which has been described in the paper.

Upon the presentation of the two targets, neurons in the first layer receive
color specific sensory inputs through plastic synapses which undergo reward-
dependent learning. As a result, the activity of these neurons is modulated
by the synaptic strengths of the input plastic synapses. The activity of these
neurons consequently influences the activity of neurons in the intermediate
layer. In addition to the inputs from the first layer, neurons in the inter-
mediate layer receive inputs about the location of each target. For example,
if the green target appears on the left side (and the red target on the right
side), then only the red-right and green-left subpopulations in the interme-
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Figure 1: Scheme of the detailed (A) and simplified (B) models. (A)The
detailed model contains three layers of neurons. The first layer consists of
two populations of neurons which are selective to the red and green targets.
These neurons receive sensory information through some plastic synapses
which undergo reward-dependent plasticity. The second layer consists of two
populations selective to target color and each of these populations contains
two subpopulations which receive input about the location of each target.
The two population in the intermediate layer effectively inhibit each other
through an inhibitory population of inter-neurons. The third layer is the
decision-making network which has been described in the paper. There is
reciprocal connections between neurons in the first and second layers, and
between the second and third layers. (B) The simplified model contains two
populations of neurons which are selective to the two targets and receive
direct sensory inputs through some plastic synapses.
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diate layer are activated. These neurons project to corresponding spatially
selective decision-making neurons (Fig. 1A). In this way, the rewarding infor-
mation of each target, stored in the input plastic synapses to the first layer,
are correctly transferred to the left and right populations.

At the end of each trial, the decision is made when one of the selective
populations (say, Right) in the decision-making network reaches a high level
of activity. The high level of activity in the selective population Right in the
decision-making network increase the level of activity in one of the already
active subpopulations, namely red-right, in the intermediate layer (through
reciprocal connection). This in turn suppresses the activity in the two sub-
populations selective to the other color, green, because of mutual inhibition
in the intermediate layer. Backprojection from the intermediate to the first
layer leads to a large increase in the firing rates in one of the two color-
selective neural populations (green). As a result, at the end of each trial
only one of the populations in the first layer becomes highly active. After
the choice is made and at the time of reward delivery, synapses projecting to
the chosen color target which has a high level of activity are modified.

For the sake of computational efficiency and due to lack of enough ex-
perimental information on the remapping from color to location, we use a
simplified version of the detailed model (Fig. 1B). The simplified model con-
sists of a general decision-making network which includes two populations of
neurons selective to target options, and receive inputs via plastic synapses.
In this way we do not specifically address the important issue of color-to-
location remapping in the present work.

2 A variant of learning rule leads to an income-

based decision model

Here we consider a less biophysically plausible learning rule in which both sets
of plastic synapses undergo modification in each trial. One possible scenario
is that in the rewarded trials synapses projecting to the chosen population are
potentiated (with learning rate qr) and synapses projecting to the unchosen
population are depressed (with the same learning rate qr). In the unrewarded
trials both sets of plastic synapses are depressed (with learning rate qn). We
show that for this learning rule the steady state of synaptic strengths of the
two sets of plastic synapses are approximately equal to the income from the
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two choices (This approximation holds while the learning is slow, i.e. when
qr and qn are small).

The probability of obtaining a reward on target i (i = A or B) is equal
to income from the same target ,Ii. If the probability of choosing target i is
Pi, then the average change in the synaptic strength, ci, in each trial is given
by

∆ci = qr(1 − ci)Ii − qrciIk − qnci(Pi − Ii) − qnci(1 − Pi − Ik) (k 6= i)

The first term is the change due to potentiation in a rewarded trial (which
occurs with the probability of Ii) The second term is the change due to
depression in a trial in which target k (k 6= i) is rewarded (which occurs
with the probability of Ik) . The third and forth terms are changes due to
depression in trials with no reward (which occurs with the probability of
Pi − Ii for target i and 1 − Pi − Ik for target k).

In the steady state, ∆ci should be zero which results in

css

i
=

qrIi

(qr − qn)(Ii − Ik) + qn

(1)

In the special case for which qr = qn, the steady state of ci is equal to the
income from the same target, Ii. If qr and qn are different, ci is roughly a
linear function of the income, css

i
≃ (qr/qn)Ii, as long as |qr − qn|(Ii − Ik) is

much smaller than qn. The latter inequality generally holds when the income
is significantly smaller than 1 and qr is not much larger than qn. These re-
sults are confirmed by simulations of the matching task experiment (Fig. 2).
As shown in Fig. 2 the average synaptic strengths is a linear function of the
income in each block of the experiment.

The income-based model described here is fairly similar to the model used
in Corrado et al. (2005) except that in our model the integration of past re-
wards is performed by the plastic synapses, while it was done by a presumed
filter in Corrado et al. (2005).

The income-based model is not as robust as the return-based model pre-
sented in the paper. To show this point we plot the average measures of the
choice behavior of the income-based model in the matching task experiment
(Fig. 3). First of all, the performance of this model changes more drastically
as a function of the model parameters (Fig. 3A). Secondly, the deviation
from matching is comparable to the return-based model but this is mostly
achieved by long stays on each choice (see Fig. 3C). As shown in Fig. 3D
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Figure 2: Plastic synapses approximately compute the income from each
choice. Block-averaged synaptic strengths are plotted vs. the obtained in-
comes in the same block. Two colors represent two different choices (red for
A and green for B). (A) The average synaptic strength is equal to the income
from each choice, when the two learning rates are equal (qr = qn = 0.06).
(B) If the learning rate in rewarded trials is larger than in unrewarded trials
(qr = 0.06, qn = 0.03), the average synaptic strength is larger than the in-
come (upper points); whereas, if the learning rate in rewarded trials is smaller
than in unrewarded trials (qr = 0.03, qn = 0.06), then the synaptic strength
is smaller than the income (lower points). These data points are obtained
from 25 simulated sessions of the matching task in which all possible baiting
probability ratios are used (see Methods) and the length of each block is set
to 200 trials. For all simulations σ is set to 10%.
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Figure 3: Model shows matching behavior over a narrow range of param-
eters. (A) The model’s performance Itot/λtot, defined as the ratio of the
average reward rate to the overall baiting probability, changes significantly
with learning rates. (B) The ‘deviation from matching’, computed as the
average of absolute difference between choice and reward fractions on each
block, is small over a wide range of learning rates. (C) The switching prob-
ability (expressed in percentage), the total number of switches between the
two choices divided by the total number of trials, is strongly dependent on
the learning rates. For large values of qn, the switching probability is high
but a large value of qr reduces the switching probability. (D) The range
of parameters for which the model shows an adequate matching behavior is
plotted in red, that is when Itot/λtot > 0.74, and the deviation from match-
ing is less than 0.1. For each set of model parameters all average values are
obtained from 1000 simulated sessions of the experiment. The length of each
block is set to 200 trials and σ = 5%.
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sets of model parameters for which a reasonable matching is achieved are re-
stricted to a much smaller area than the return-based model presented in the
paper. These results show that a less biophysically plausible income-based
model requires more fine-tuning than the return-based model.
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