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A Biophysically Based Neural Model of Matching Law
Behavior: Melioration by Stochastic Synapses
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In experiments designed to uncover the neural basis of adaptive decision making in a foraging environment, neuroscientists have
reported single-cell activities in the lateral intraparietal cortex (LIP) that are correlated with choice options and their subjective values. To
investigate the underlying synaptic mechanism, we considered a spiking neuron model of decision making endowed with synaptic
plasticity that follows a reward-dependent stochastic Hebbian learning rule. This general model is tested in a matching task in which
rewards on two targets are scheduled randomly with different rates. Our main results are threefold. First, we show that plastic synapses
provide a natural way to integrate past rewards and estimate the local (in time) “return” of a choice. Second, our model reproduces the
matching behavior (i.e., the proportional allocation of choices matches the relative reinforcement obtained on those choices, which is
achieved through melioration in individual trials). Our model also explains the observed “undermatching” phenomenon and points to
biophysical constraints (such as finite learning rate and stochastic neuronal firing) that set the limits to matching behavior. Third,
although our decision model is an attractor network exhibiting winner-take-all competition, it captures graded neural spiking activities
observed in LIP, when the latter were sorted according to the choices and the difference in the returns for the two targets. These results
suggest that neurons in LIP are involved in selecting the oculomotor responses, whereas rewards are integrated and stored elsewhere,
possibly by plastic synapses and in the form of the return rather than income of choice options.
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Introduction
In natural behavior, what often matters is how we make a series of
choices over time, rather than an isolated decision. For example,
the success in foraging for nourishment depends on the temporal
pattern of food gathering; one’s diet is determined by how fre-
quently one selects food alternatives over a period of time. For
decades, psychologists have studied individuals’ allocation of re-
peated responses to a set of choices in laboratory experiments
using foraging-type tasks. In these tasks, the environment is un-
certain and the same choice can lead to different outcomes (no
reward, or reward of varying magnitude); thus, decision making
is inherently probabilistic. These studies have led to Herrnstein’s
“matching law,” which states that a subject allocates her or his
choices in a proportion that matches the relative reinforcement
obtained on these choices (Herrnstein, 1961; Williams, 1988;
Herrnstein et al., 1997). The matching law has been shown to be
valid in a variety of task paradigms, and across species (e.g., pi-
geons, rats, monkeys, humans) (de Villiers and Herrnstein, 1976;
Williams, 1988; Gallistel, 1994; Anderson et al., 2002).

Matching law is about an individual’s choice, hence ultimately

should be explained in terms of neural processes of decision mak-
ing in the brain. Recently, neurobiologists have embarked on this
quest and have begun to identify single neuronal activities in the
primate brain that are correlated with matching behavior. In par-
ticular, several studies have used oculomotor tasks, in which typ-
ically two visual targets for saccadic eye movements are associated
with different probabilities and/or magnitudes of rewards (Platt
and Glimcher, 1999; Sugrue et al., 2004a; Lau and Glimcher,
2005b). Platt and Glimcher (1999) found that spike firing of sin-
gle cells in the lateral intraparietal cortex (LIP) (a cortical area
critical to oculomotor behavior) varies with the relative gain that
an animal expects from each response, as well as with the proba-
bility of obtaining such a reward. Therefore, it was suggested that
the LIP activity is modulated by relative profitability (expected
gain times reward frequency). Sugrue et al. (2004a) used concur-
rent variable-interval schedules similar to the original Herrnstein
experiment, and found that activities of some LIP neurons were
correlated with a representation of value that the authors defined
as fractional income. This study along with other studies (Platt
and Glimcher, 1999; Dorris and Glimcher, 2004) indicates that
LIP neurons reflect the values of possible actions, although these
values are likely to be computed elsewhere in the brain [LIP neu-
rons are selective to the spatial location of a visual target, whereas
in this experiment the value (baiting probability) is associated
with target color rather than its location]. Moreover, phenome-
nological models, in which the local (response by response) de-
cision is based on time integration of past rewards (Sugrue et al.,
2004a; Corrado et al., 2005b) or both past rewards and choices
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(Lau and Glimcher, 2005b) have been shown to reproduce mon-
keys’ matching behavior. These and other models (Williams,
1988; Gallistel et al., 2001), however, do not address the question
of what cellular and circuit mechanisms, at the biophysical level,
underlie the matching behavior, which is the subject of the
present work.

Our starting point is a biophysically based spiking neuron
model of decision making (Wang, 2002) that has been shown to
capture psychological behavior and corresponding LIP neural
activities in perceptual (visual motion) discrimination tasks
(Shadlen and Newsome, 1996, 2001; Roitman and Shadlen, 2002).
In that model, two groups of neurons (tuned to different targets)
integrate inputs over time, and the choice is selected according to
which of the two neural groups wins the competition.

In the present study, we incorporated reward-dependent syn-
aptic plasticity into our neuronal decision-making model. Spe-
cifically, we used binary synapses that undergo a stochastic Heb-
bian learning rule (Amit and Fusi, 1994; Fusi, 2002), with the
additional condition that coactivation of presynaptic and
postsynaptic neurons leads to potentiation only if the choice is
rewarded, and depression otherwise. This was inspired by the
suggestion that the presence or absence of dopamine signal mod-
ulates the synaptic plasticity at corticostriatal and prefrontal syn-
apses (Reynolds et al., 2001; Reynolds and Wickens, 2002; Jay,
2003; Otani et al., 2003; Huang et al., 2004). Our working hypoth-
esis is that input synapses onto a decision circuit (like LIP) are
updated at the end of each trial according to such a reward-
dependent Hebbian learning rule. As a result of synaptic modifi-
cations, the difference in the input strengths for the two compet-
ing neural groups of the decision network varies from trial to
trial, which leads to adaptive dynamics of choice behavior.

Our model endowed with plastic synapses is a general one, not
designed specifically for a particular behavioral task. In this pa-
per, we report model simulations in which the two competing
choices were rewarded stochastically at different rates, like in a
matching task (Sugrue et al., 2004a; Lau and Glimcher, 2005b).
We found that the model reproduces the neurophysiological as
well as behavioral observations from the monkey experiment
(Sugrue et al., 2004a). We show that plastic synapses provide a
natural mechanism for computing local returns (local time aver-
age of reward per choice). Moreover, the model operates in single
trials according to the so-called melioration principle (i.e., in
each trial, the decision is biased toward the choice with a higher
return) (Herrnstein and Vaughan, 1980; Vaughan, 1981; Herrn-
stein and Prelec, 1991), which ultimately gives rise to the global
matching behavior. Some preliminary results have been reported
in abstract form (Soltani and Wang, 2004).

Materials and Methods
Decision-making network. The decision-making network model used
here is the same as the one in the study by Wang (2002); all of the model
details can be found therein (see also Brunel and Wang, 2001). Briefly,
the model consists of 2000 integrate-and-fire (1600 excitatory and 400
inhibitory) neurons, which are organized into three populations of exci-
tatory neurons (two selective for competing targets, A and B, whereas the
third one is nonselective) and one single population of inhibitory neu-
rons. Recurrent synaptic currents are modeled by realistic kinetics, me-
diated by AMPA and NMDA receptors for excitation and by GABAA

receptors for inhibition. In addition to recurrent synaptic inputs from
other neurons in the network, every neuron receives independent back-
ground and afferent excitatory inputs (mediated by AMPA receptors)
from 800 presynaptic neurons outside the network. The background
presynaptic neurons fire constantly at 3 Hz, and these external spikes are
generated with Poisson statistics.

With the presentation of visual targets, neurons in both selective pop-
ulations receive a combination of two inputs (mediated by AMPA recep-
tors). The first one, through a feedforward sensory pathway, codes the
target appearance, whereas the second one codes the target color via an
indirect pathway. Specifically, the first input (identical for both targets) is
mediated by some afferent neurons (eight presynaptic neurons for each
neuron in the selective populations), which after the appearance of the
two targets, increase their firing rates from 3 to 55 Hz. Moreover, these
neurons exhibit spike-frequency adaptation with a time constant of 120
ms and a steady-state firing rate of 8 Hz. In this way, neurons in the two
selective populations display an initial peaked response followed by a
decay to a lower steady-state response, similar to the response of LIP
neurons after the onset of two targets (Sugrue et al., 2004a). The second
input is mediated by some other afferent neurons (four presynaptic neu-
rons for each neuron in the selective populations), which increase their
firing rates from 1 to 10 Hz during the target presentation. Because in the
experiment of Sugrue et al. (2004a), rewards were associated with the
choice about color (red and green), we assume that synapses of the sec-
ond pathway are endowed with reward-dependent plasticity. Because the
second input is presumed to arrive through an indirect pathway passing
several synapses, we added a latency of 50 ms between the onset of the
first and second inputs (Schmolesky et al., 1998).

In the experiment of Sugrue et al. (2004a), the target color (red and
green) encodes the rewarding value of each target, but the location of red
and green targets was randomized from trial to trial. So in order for
spatially selective LIP neurons to receive the correct information about
the rewarding value of the leftward and rightward targets, a remapping
from color to location should take place in each trial. The model pre-
sented in this paper does not explicitly address the issue of remapping
from color to location (because we do not have enough experimental
information yet on which to build a realistic model), but in the supple-
mental material (available at www.jneurosci.org), we describe a sche-
matic circuit that is potentially able to perform such a remapping. Re-
gardless of the details of implementation, what is essential for our model is
the assumption that competing neural populations in the decision-making
network are selective to target options (A or B) and receive inputs that con-
vey information about the associated rewards via plastic synapses.

For the sake of simplicity, we did not model an additional network that
reads out the decision choice. Instead, we assumed that 1.2 s after the
target onset, if the difference between the average firing rates of the two
(A and B) selective populations exceeded a fixed threshold of 8 Hz (for an
interval which lasts �50 ms), then the choice of the network was the
population with a higher firing rate. In the rare situation when this cri-
terion was not met until 1.5 s after the trial onset, the threshold for
making a decision was lowered to 4 Hz. After the decision is made, a
decrease in the input firing rates brings the network to a regime that only
one of the selective populations can stay at a high level of activity, so at the
time of reward delivery the activity in only one of the selective popula-
tions is high.

Reward-dependent plasticity rule. The plastic synapses of the second
input pathway are assumed to be binary (Petersen et al., 1998; O’Connor
et al., 2005), with two discrete states: a potentiated “Up” state with peak
conductance of g� � 5.5 nS, and a depressed “Down” state with peak
conductance of g� � 0.5 nS. At any moment, a fraction c of these syn-
apses are in the Up state, whereas the remaining fraction, 1 � c, are in the
Down state. Plasticity is implemented by activity-dependent modifica-
tions of cA and cB for the two selective and competing neural populations.

The learning rule we use has three characteristics (Fusi et al., 2005a).
First, it is Hebbian, depending on the firing rates of presynaptic (target-
coding) and postsynaptic (decision) neurons. Second, an all-or-none
reward signal (depending on the outcome of a target selection) can re-
verse the direction of plasticity (potentiation if reward is harvested, de-
pression otherwise). Third, when the Hebbian condition is met, synaptic
modification occurs probabilistically (Amit and Fusi, 1994; Fusi, 2002;
Fusi et al., 2005b). In potentiation instances, each synapse in the Down
state has a probability q� to be switched to the Up state. Similarly, in
depression instances, each synapse in the Up state has a probability q� to
be switched to the Down state.
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Based on these rules, the fraction of synapses in the Up state, ci, is
updated at the end of each trial as follows:

ci�n � 1� � ci�n� � q��r; �i��1 � ci�n�� in the case of LTP

(1)

ci�n � 1� � ci�n� � q��r; �i�ci�n� in the case of LTD, (2)

where i � A or B, and q�(r; �i) and q�(r; �i) are the potentiation and
depression rates, respectively (termed together as learning rates). The
second term in Equation 1 describes the change attributable to the tran-
sition of synapses in the Down state, because a fraction 1 � ci of synapses
are potentiated with probability q�(r; �i). Similarly, the second term in
Equation 2 describes the change attributable to the transition of synapses
in the Up state, because a fraction ci of synapses are depressed with
probability q�(r; �i). The learning rates depend on the firing rate �i, of the
postsynaptic decision neurons at the end of each trial, and on the out-
come of the decision r, which is either rewarded or unrewarded. The
firing rate �i is low for the neurons selective to the unchosen target, and it
is high for the neurons selective to the chosen target. For most of the
results presented in this paper, unless stated otherwise, we assume that
the depression and potentiation rates are constant and nonzero if �i is
high, so synaptic plasticity only happens to the set of synapses projecting
to the winning neural population. In this case, the learning rule simplifies
to the following:

ci�n � 1� � ci�n� � q��1 � ci�n�� target i is selected and rewarded

ci�n � 1� � ci�n� � q�ci�n� target i is selected but not rewarded.

(3)

Matching task simulation. An oculomotor matching task paradigm sim-
ilar to that of Sugrue et al. (2004a) was simulated. In this task, a monkey
was trained to choose between two visual targets with different colors
(red and green). A selection of each target is rewarded independently and
stochastically at a certain rate (with Poisson statistics). Reward in this
task was persistent in the sense that, if a reward was assigned to a target, it
stayed there until it was harvested. To discourage the monkey from
switching between the two targets, a change-over-delay (COD) penalty
was imposed, so if the monkey switched from one target to the other, it
should choose the new target for the second time to harvest any baited
reward on it. The probability of baiting rewards on the two targets (reward
schedule) changed between blocks of trials without any warning to the mon-
key. The baiting probability ratios were randomly chosen from the ratios
[1:1, 1:3, 1:6, 1:8], whereas the overall baiting probability was fixed.

In our study, we use a discrete version of the same task so in each trial
if a target was not baited with a reward, the computer assigned a reward
to that target with some probability, independently of the other target.
The overall baiting probability is set to 0.3 rewards per trial to match the
reward rate in the experiment of Sugrue et al. (2004a). A sequence of
blocks with different baiting probability ratios is called a “session.” In
most of the simulations, the model encountered a session of the match-
ing task with baiting probability ratios [1:1, 1:3, 3:1, 1:1, 3:1, 1:3, 1:1, 1:6,
6:1, 1:1, 6:1, 1:6, 1:1, 1:8, 8:1, 1:1, 8:1, 1:8, 1:1], which were presented in a
sequence of blocks of trials. This reward schedule was usually fixed when
the performance of the model was assessed with a range of parameter
values. In this way, the model has been tested with the most drastic
changes in the reward schedule. The average choice behavior of the
model is then computed using all blocks of trials. As observed in the
experiment, monkeys obey the COD constraint so most of the time they
stay on the new selected target after a switch. In our modeling, we impose
the COD by requiring the model to choose the same target after any
switch. Similar to other trials, in the trials after switches, plastic synapses
undergo changes according to the same learning rule. In one simulation
(see Fig. 6), we relax the COD constraint so in that case there is no
mandatory movement after a switch and the model freely chooses be-
tween the two targets in each trial.

It is important to define the following terms that we use throughout
the paper. If from the total number of N trials, NA of them were choices

for target A and NB were choices for target B, then the probability of
choosing A, PA, is equal to NA/N. At the same time, if the total MA and MB

rewards have been harvested on target A and B, then the incomes from
target A and B, IA and IB, are equal to MA/N and MB/N, respectively.
Furthermore, returns from target A and B, RA and RB, are equal to
MA/NA and MB/NB, respectively.

Results
Behavior of the decision-making network and emergence of
graded activity
The behavior of our model results from an interplay between the
decision process and synaptic plasticity. In any trial, given the
synaptic strengths cA and cB, the network integrates inputs and
makes a choice. At the end of each trial, depending on the choice
and whether it is rewarded, cA or cB is updated, which in turn
influences the decision process in the subsequent trial. We first
quantify the decision process of the network as a function of fixed cA

and cB values. Then we will consider trial-to-trial modifications of cA

and cB and the resulting dynamic decision making over time.
In our simulation of the experiment of Sugrue et al. (2004a), it

is reasonable to assume that the two visual targets lead to identical
firing rates of presynaptic sensory neurons that project to our
decision network. Therefore, the only difference in the inputs to
the two competing neural populations is attributable to the effi-
cacies of the plastic synapses. The average synaptic conductance
of input plastic synapses is a function of multiple factors, includ-
ing the number of plastic synapses, the presynaptic firing rate,
and the peak conductance of the potentiated and depressed
states, and can be written as follows:

G � Np fst�cg� � �1 � c�g���syn, (4)

where Np is the number of plastic synapses onto each neuron, fst

is the firing rate of the presynaptic neurons, g� and g� are the
peak conductance of the synapses in the Up and Down states, respec-
tively, and �syn is the decay time of AMPA currents. Thus, the differ-
ence in the average synaptic conductances of neurons in the two
selective populations, can be quantified as a function of the synaptic
strengths (fraction of synapses in the potentiated state) cA and cB.

GA � GB � �cA � cB�N pfst�g� � g���syn. (5)

As we show later, the choice behavior of the network is a function
of the difference in synaptic strengths cA � cB (or equivalently
GA � GB), so the multiplicative factor Np fst( g� � g�) can change
the sensitivity (which we will call �) of the choice behavior to the
difference in synaptic strengths.

The behavior of the network in 10 sample trials, with fixed
cA � 0.33 and cB � 0.27, is illustrated in Figure 1. As is evident, at
the onset of the targets, the firing rates of the two neural popula-
tions initially increase together for a few hundred milliseconds,
and then start to diverge so that firing rate of one population (e.g.,
A) keeps increasing while the firing rate of the other population
(e.g., B) decreases gradually.

This “winner-take-all” competition process is attributable to
effective mutual inhibition (through the shared interneuron
pool) between neural populations A and B. Consequently, at the
end of a trial, a categorical choice can be read out according to
which of the two neural populations has a higher firing rate. In
the model, the high level of activity in the winning population can
be self-sustained, even after the removal of the stimulus, because
of recurrent reverberation. Hence, in principle, the choice can
still be read out after a memory delay period (Wang, 2002).

If the difference between cA and cB is not too large, the decision
of the network is probabilistic, because neural spike discharges
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are intrinsically stochastic (note the trial-by-trial variability of
population firing rates in Fig. 1). For example, with cA � 0.33 and
cB � 0.27, the network chooses A in 78% of trials and B in 22% of
trials (sample trials are shown in Fig. 1). A comparison between
the left and right panels in Figure 1 reveals that a few hundred
milliseconds after the onset of the targets, the firing rate of the
winning population is somewhat lower when its synaptic
strength is smaller. Moreover, the time it takes for the two neural
populations to diverge (hence the “decision time”) is longer and
more variable.

The trial-averaged population activities are shown in Figure
2A for which the average activity in the two selective populations are
sorted according to the choice of the network in each trial. It is
apparent that a few hundred milliseconds after the onset of the tar-
gets, the activity of neurons is significantly higher when the chosen
target is the preferred target (red) than when it is the nonpreferred
target (blue). Furthermore, there is a graded change of activity levels
between the cases in which the synaptic strength for the winning
population is larger (thick curves) or smaller (thin curves) than that
for the losing population.

These characteristics are robust in our model, as long as the
overall synaptic strength (cA � cB) is reasonably low, which favors
winner-take-all competition. As shown in Figure 2, B and C, with
the same value for the difference cA � cB � 0.06 but a higher value
for cA � cB (1 and 1.4 instead of 0.6), the winning and losing
neural populations still exhibit some differences that are no
longer of a categorical character. This is because the external drive
is now large for both neural populations and becomes predomi-
nant over the winner-take-all recurrent network dynamics, so the
activity of the losing population is larger and closer to that of the
winning population. In this case, the choice is determined in
simulations by the neural population with a higher firing rate at
the end of each trial (see Materials and Methods).

Interestingly, for all three cases in Figure 2 with cA � cB � 0.06,
the choice probability turns out to be approximately the same
(PA � 0.78, 0.81, and 0.77, for cA � cB � 0.6, 1, and 1.4, respec-
tively). This holds true for other cA � cB values. As shown in
Figure 3, the choice probability as a function of cA � cB is not
sensitive to the overall synaptic strength cA � cB. We fitted the
probability of choosing target A by a sigmoid function of cA � cB.

PA �
1

1 � exp��
cA � cB

� � (6)

Note that the � value, which determines
the randomness in the choice behavior of
the network, depends on factors that can
change the difference in the overall synap-
tic currents through the plastic synapses
(Eq. 5).

As a result, the value of � can be ad-
justed by the number of the plastic syn-
apses, by the firing rates of presynaptic
neurons projecting to the decision net-
work, and by the peak conductance of
plastic synapses (Eq. 5). For model param-
eters used in our simulations, we obtained
� equal to 4.84% (if cA � cB is expressed as
percentage).

It is an important feature of our model
that the choice behavior is only a function
of the difference (cA � cB), which we will

refer to as “differential input.” In Figure 4, the average population
activities are sorted according to the choice of the network and
the differential input value in each trial when a range of differen-
tial input values are used in different trials. The overall synaptic
strength (cA � cB) in these simulations varies from 0.4 to 1.6.
Similar to what is shown in Figure 2, a graded activity emerges,
which is a direct result of competition in the decision-making
network and difference in synaptic strengths of inputs to the two
populations.

The activity of neurons, in trials in which they win the com-
petition (the chosen target is their preferred one), is higher when
the difference in the synaptic strength in their favor is greater
(compare the red curves). In contrast, in trials in which they lose
the competition (the chosen target is the nonpreferred one), the
activity of neurons is higher when the difference in the synaptic
strength in their disfavor is smaller (compare the blue curves).

Therefore, by sorting neural firing rates across trials according
to the differential input graded activities emerge in our model.
This plot (Fig. 4) is similar to Figure 5 in the study by Sugrue et al.

Figure 1. Neuronal activity of two selective populations of decision-making network model,
in sample trials. The population firing rate of neurons is shown separately for trials in which the
choice of the network is the preferred (red) or nonpreferred (blue) target of the neurons. Raster
plots show spike trains for two selected neurons in populations A and B. The left panels show
activity in trials in which target A is the choice of the network, and the right panels show activity
in trials in which target B is the choice of the network. Activity is aligned at the onset of the visual
targets. A few hundred milliseconds after the input onset, the average firing rates in the two
populations start to diverge. Spiking activity is higher when the chosen target is preferred for
the neuron (compare red with blue traces) and when its input is larger (compare red traces in
the left and right panels). Moreover, firing activity is higher when the chosen target is nonpre-
ferred for the neuron that receives a larger input (compare blue traces in the left and right
panels). In these simulations, the synaptic strengths are cA � 0.33 and cB � 0.27.

Figure 2. Average activity of the two selective populations sorted according to the choice of the network in each trial. Average
activity is shown for three different sets of synaptic strengths: cA � 0.33, cB � 0.27 (A); cA � 0.53, cB � 0.47 (B); and cA � 0.73,
cB � 0.67 (C). Note that, in these three cases, the differential input is the same (cA � cB � 0.06), but the overall inputs are
different (cA � cB � 0.6, 1.0, and 1.4, respectively). The average activity of neurons in the two selective populations are sorted
based on the choice of the network in each trial and then averaged (over 400 trials for each set of synaptic strengths). Red (blue),
The choice of the network is the preferred (nonpreferred) target for the neural population. Thick (thin), The neural population
selective for the chosen target receives a larger (smaller) input than its competitor. Regardless of whether the chosen target is
preferred (red curves) or nonpreferred (blue curves), the average population activity is higher when the neurons receive a stronger
input (compare thick and thin curves).
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(2004a), in which LIP neural activities are sorted according to the
fractional income of the chosen target, which according to the
model used in that study is identical to the choice probability.
Therefore, our model semiquantitatively reproduces the LIP
neural spike activities reported in the matching task (Sugrue et
al., 2004a). Because the choice probability PA (the probability of
choosing target A) is a sigmoid function of differential input (Eq.
6), the same kind of graded activities are expected when the neu-
ral activities are sorted according to PA (results are not shown).

We shall come back to possible implications of this result to the
interpretation of the observed LIP neural activities in Discussion.

The disparate timescales of the neural firing dynamics (milli-
seconds) and synaptic plasticity (many trials) made it difficult to
simulate the full large-scale network model of spiking neurons
(which requires a time resolution of 0.1 ms) sequentially across
thousands of trials. To avoid this computational hindrance, from
now on we use the function PA(cA � cB) (Eq. 6) instead of the full
spiking neural network for decision computations. Namely, in
each trial, knowing cA and cB, we use PA(cA � cB) to flip a biased
coin; the outcome of the coin toss determines the choice of the
network in that trial (A or B). At the end of each trial, depending
on the choice of the model and the presence or absence of reward,
plastic synapses undergo stochastic strengthening or weakening
according to Equation 3.

Learning rule and the steady state of plastic synapses
In the last section, we quantified the choice behavior of the
decision-making network as a function of the differential input,
cA � cB, to the two competing neural populations. Now, we con-
sider the learning process in which cA and cB undergo changes
depending on the decision of the network and the outcome of
that decision (rewarded or unrewarded) at each trial. We first
asked the question: for a given and fixed PA (and PB � 1 � PA),
how do cA and cB behave according to the learning rule? In par-
ticular, what are the steady-state values of cA and cB? In this study,
we have used a simple learning rule that assumes that, at the end
of each trial, only synapses projecting to the chosen population
undergo stochastic strengthening (if the choice is rewarded) or
weakening (otherwise).

In general, the modification rates of potentiation (q�) and
depression (q�) can be different. In the special case in which these
two learning rates are equal, the steady state of synaptic strengths
of the two sets of plastic synapses are approximately equal to the
returns from the two choices [this approximation holds while the
learning is slow (i.e., when q� and q� are small)]. This can be
shown by a simple calculation (Brunel et al., 1998). The proba-
bility of obtaining a reward on target i � A or B, is equal to the
number of rewards on that target divided by the total number of
trials, which by definition is equal to the income from target i (Ii).
If the probability of choosing target i is Pi then the average change
in ci in each trial is given by the following:

	ci � q��1 � ci�Ii � q�ci�Pi � Ii�.

The first term is the change attributable to potentiation in a re-
warded trial (which occurs with the probability of Ii) and the
second term is the change attributable to depression in a trial in
which target i is chosen, but it is not accompanied by reward
(which occurs with the probability of Pi � Ii). In the steady state,
	ci should be zero which results in the following:

ci
ss �

q�Ii

�q� � q��Ii � q�Pi
�

q�Ri

�q� � q��Ri � q�
, (7)

where Ri � Ii/Pi is the return from choice i (i.e., the total number
of reward obtained on choice i divided by the total number of
choices for i).

It is thus clear that the steady state of ci is a function of the
return, Ri, from the choice i. In the special case in which q� � q�,
the steady state of ci is equal to Ri. Even when q� and q� are
different, ci is approximately a linear function of the return,
ci

ss � (q�/q�) Ri , as long as �q� � q��Ri is much smaller than q�.
The latter inequality generally holds when the return is signifi-

Figure 3. Choice behavior of the decision-making network for different sets of synaptic strengths.
The probability of choosing target A is only a function of the difference between the two synaptic
strengths, and it can be fitted by a sigmoid function. The solid curve shows the fitting by a sigmoid
function (��4.84%). The choice probability for each set of synaptic strengths is obtained from 400
simulated trials. For each set of synaptic strengths with equal overall synaptic strengths, differential
inputs are set to 0.01, 0.02, 0.03, 0.04, 0.06, 0.08, 0.1, and 0.14.

Figure 4. Graded activity of neurons in the two selective populations. The activity of decision
neurons shows a graded pattern if single-trial firing rates are sorted and averaged according to
the choice of the network and the difference between synaptic strengths. Activity is aligned by
the onset of two targets, and it is shown separately for the choice that is the preferred (red) or
nonpreferred (blue) target of the neurons. In addition, trials are subdivided into four groups
according to the difference between the strength of synapses onto the two competing neural
populations [cA � cB � �0.05 to �0.14 (dashed), 0 to �0.05 (thin), 0 – 0.05 (normal),
0.05– 0.14 (thick)]. The overall synaptic strength, cA � cB , varies from 0.40 to 1.6. For these
simulations, 56 different sets of synaptic strengths are used (the same values used for Fig. 3),
and for each set of synaptic strengths the average activity is obtained from 400 simulated trials.
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cantly smaller than 1 (which is the case in
the simulated experiment) and q� is not
much larger than q�.

Matching through
probabilistic melioration
We have seen that, in our model, the re-
turn from each choice is represented in the
synaptic strength of plastic synapses. The
difference between synaptic strengths,
cA � cB, determines the choice probability,
which in turn modifies the returns. This
interplay between the synaptic strengths
(or equivalently returns) and the choice
probability underlies dynamic decision of
our model. Here, we show how this inter-
action can result in matching behavior.
We shall first analyze an ideal situation to
gain an intuitive understanding, and then
consider more realistic simulations in the
next subsection.

For simplicity, we focus on a discrete
version of the concurrent variable-interval
schedule (VI–VI), without imposing a
change-over-delay penalty (see Materials
and Methods). In the following, we shall
begin by assuming that the model selects
between the two targets with a given (cur-
rent) choice probability. Based on the cur-
rent value of choice probability, we then
compute the returns (hence the synaptic
strengths) and use Equation 6 to calculate
the “predicted” choice probability from
the model. We assess whether matching is
achieved in the steady state when the pre-
dicted and current choice probabilities are
equal (self-consistent). Specifically, for a
given (current) choice probability, say for
target A, PA, the return from each target
(RA and RB) can be computed easily (Hey-
man and Luce, 1979; Houston and Su-
mida, 1987). In Figure 5A, these returns
are plotted (red and green curves) as a
function of PA, for given baiting probabilities. On the same plot,
the total income from the two targets, PARA � PBRB � IA � IB �
Itot, is plotted (blue curve).

When the returns from the two targets are equal, the total
income is maximal (at PA � 0.782). Therefore, in this task,
matching corresponds to optimal behavior (Staddon and Moth-
eral, 1978).

Now, in our model, the choice probability is a function of the
difference between synaptic strengths, cA � cB (Eq. 6). Assuming
that the synaptic strengths are equal to the returns (red and green
curves), the choice probability predicted by the model can be
calculated according to Equation 6. This is plotted in Figure 5, B
and C (black curve), for two different values of �. At the intersec-
tion of the red and green curves (PA � 0.782) where the returns
from the two targets are equal, and hence cA � cB, the predicted
choice probability by the model is equal to 0.5. If the return from
target A is larger than the return from target B (for PA 
 0.782),
the predicted choice probability is biased toward target A (�0.5)
and when the return from target B is larger than the return from
target A (for PA � 0.782), the predicted choice probability is

biased toward target B. In this sense, our model acts according to
the melioration principle (Herrnstein and Vaughan, 1980;
Vaughan, 1981; Herrnstein and Prelec, 1991), which states that
the choice behavior should be biased toward the option with the
higher return. However, decision is not deterministic in our
model; the target with the higher return is chosen simply with
some probability larger than 0.5.

Because of the probabilistic nature of our decision-making
model, there is always a limit for approaching perfect matching.
This concept is illustrated in Figure 5B. If the predicted choice
probability computed by the model is greater than the current
value of choice probability, PA, then the model has a tendency to
increase the probability of choosing target A. If the predicted
choice probability is smaller than the current value of choice
probability, then the model has a tendency to decrease the prob-
ability of choosing target A. The final state of the model (steady
state) is the point at which the current and predicted choice prob-
abilities are equal, that is, the intersection of the black curve and
the diagonal line in Figure 5B (PA � 0.7). This mechanism makes
the model reach a choice probability that is generally smaller but

Figure 6. Time course of the choice behavior of the model in a matching task without COD penalty. The probability of choosing
target A as function of time is plotted for different random initial values of cA and cB. The baiting probability ratio is similar to Figure
5 (3:1 in favor of target A). A, The model reaches the steady-state choice behavior over a long time when the learning rates are very
small (q�� q�� 0.0006). B, For more realistic values of learning rates (q�� q�� 0.06), the model reaches the steady state
quickly, but the fluctuations in the choice behavior are large. The dashed line shows the prediction by perfect matching (PA �
0.782), and for both simulations � is set to 5%.

Figure 5. Mechanism of melioration and the limit for achieving perfect matching. A, For a given choice probability, the return
from each target (red for A and green for B) is computed and is plotted as a function of the probability of choosing target A (in all
panels). The baiting probability on target A is three times the baiting probability on target B, and the overall baiting probability is
equal to 0.3. Matching happens at a choice probability (PA � 0.782) for which the returns from the two targets are equal. At this
choice probability, the total income is optimal (blue curve) showing that, in this task, matching is optimal. B, The choice proba-
bility for target A, predicted by the model (using Eq. 6) is shown in black for � � 10%. The steady state of the model is the point
at which the predicted and current choice probabilities are equal, which is given by the intersection of the black curve with the
diagonal line. The location of the steady state falls short of the prediction of matching, a phenomenon called undermatching. C,
For a smaller value of � � 5%, the steady state is closer to the prediction of matching (compare B, C).
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close to that according to the matching law (0.782), a phenome-
non called “undermatching.” The extent of undermatching de-
pends on the value of �, so that, for a smaller value of �, the steady
state of the model is closer to the prediction of matching (PA �
0.73 in Fig. 5C instead of PA � 0.7 in Fig. 5B).

We found that this steady state of the model is stable, that is,
the final state of the model is the same independent of the initial
condition. Examples of the model choice behavior as a function
of time are shown in Figure 6A, for which the learning rates are
set to very small values. If the learning rates are large, the choice
probability converges to a steady state fast, but fluctuations
around the steady state are large (Fig. 6B).

So far, we have discussed the case in which the potentiation
and depression rates are the same, so the synaptic strengths are
equal to the returns. What happens if the rates of potentiation
and depression are not equal? As we mentioned, if the overall
baiting probability is small and q� is not much larger than q�, cA

and cB are still linear functions of returns from the two choices.
For given Ri values, if q� � q�, the differential input (cA � cB) is
larger than the difference between returns (because the slope of ci

values as a function of return is �1). Because the choice proba-
bility PA is a function of the ratio of the differential input to � (Eq.
6), a larger differential input is equivalent to an effectively smaller
value of �, which results in better matching. If q� 
 q�, the
differential input is smaller than the difference in returns, which
is equivalent to a larger value of �; thus, the model shows more
undermatching (data not shown).

Choice behavior of the model in a dynamic environment
In the previous subsection, we established that in a stationary
environment for which the baiting probabilities stay constant,
our model is able to reach a choice behavior close to matching.
Now, we investigate whether this holds true in a dynamic envi-
ronment, especially when the baiting probability ratio changes
frequently between blocks of trials.

We simulate a matching task experiment in which the baiting
probability ratio changes between blocks of 200 trials, similar to
the task used by Sugrue et al. (2004a). An example of the choice
behavior of the model in one simulated session of the experiment
is shown in Figure 7A.

In each block of trials, the choice ratio, which is the slope of the
cumulative choice plot, approximately matches the baiting prob-
ability ratio (Fig. 7A, black straight lines). Moreover, the instan-
taneous choice fraction closely follows the instantaneous reward
fraction (Fig. 7C), an indication that matching is achieved dy-
namically in our model. The systematic trial-to-trial change in
the choice behavior is determined by the ongoing changes in the
synaptic strengths. To show these changes, synaptic strengths and
choice probability are plotted during the same simulation (Fig.
7D). In each trial, only the synaptic strength that corresponds to
the selected target undergoes small modification, and this modi-
fication is enough to alter the choice probability in each trial. In
contrast, in each block of trials, the synaptic strengths fluctuate
around different average values depending on the baiting proba-
bilities in that block. In the example shown, these average values
are the returns from each target. To demonstrate this point more
clearly, we plot the average synaptic strengths in each block of
trials versus the return from the corresponding choice in the same
block (Fig. 8A).

Similar to the analytical prediction, if the two learning rates
are equal, the averaged value of synaptic strengths in each block,
�cA
 and �cB
, are close to the returns from choice A and B, respec-
tively. In the cases in which the learning rates are not equal (Fig.

8B), average synaptic strength is still approximately a linear func-
tion of the return.

To show the global choice behavior of the model, in Figure 7B,
we plot the blockwise choice fraction (proportion of choice on
target A in a block) versus the blockwise reward fraction (propor-
tion of reward obtained from target A). The model shows good

Figure 7. Model shows matching in a dynamic environment. A, For one session of the sim-
ulated matching experiment, the cumulative choice on target A is plotted versus the cumulative
choice on target B. The black straight lines show the baiting probability ratio in each block. The
slope of the cumulative plot is equal to the choice ratio and is approximately equal to the baiting
probability ratio. In this session the following baiting probability ratios are used in sequence
[1:1, 1:3, 3:1, 1:1, 1:6, 6:1]. B, Each point shows the blockwise choice fraction as a function of the
blockwise reward fraction for a block of trials on which the baiting probabilities are held con-
stant. The baiting probability ratios are selected from all possible ratios (see Materials and
Methods). Most of the points fall close to the diagonal line (perfect matching), but the choice
fraction is slightly lower than the reward fraction when the latter is larger than 1⁄2 (a phenom-
enon called undermatching). C, The instantaneous choice (blue) and reward (black) fractions as
a function of time computed for the same session shown in A. The dashed lines show average
choice and reward fractions for each block (in blue and black, respectively). To compute the
instantaneous fractions, the choice and reward fraction are smoothed with a causal half-
Gaussian filter with SD of six trials. The model is able to follow changes in the reward schedule.
D, The synaptic strengths, cA (red) and cB (green), and the choice probability (blue) as a function
of time for the same data shown in A and C. The thin black line indicates the baiting probability
ratio in each block. In each block, the synaptic strengths fluctuate around the value of returns
from the two choices. The model parameters for these simulations are q� � 0.06, q� � 0.06,
and � � 5%; and the length of each block is set to 200 trials.
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matching, that is, the choice fraction in each block of trials is
approximately equal to the reward fraction in that block. More-
over, in blocks in which target A is richer (reward fraction �0.5)
the choice fraction is usually smaller than the reward fraction.
This general tendency of the model, called undermatching, has
also been observed in matching task experiments in monkeys
(Anderson et al., 2002; Sugrue et al., 2004a; Lau and Glimcher,
2005b).

In the previous section, we showed that, in a stationary envi-
ronment, the probabilistic nature of decision making in our
model results in undermatching. In a dynamic environment, un-
dermatching becomes even more prominent, because after a
change in the reward schedule, it takes a few trials for the choice
behavior to be shifted according to the new reward schedule. To
illustrate how fast the model is able to shift its choice behavior
between blocks of trials, following the same method (with a slight
modification) used by Corrado et al. (2005), we plot the normal-
ized shift (which is the shift per trial normalized by the pro-
grammed reward fraction shift) in choice and reward fractions
after each block transition (Fig. 9).

Similar to the monkey experiment, it takes �30 – 40 trials for
the model to completely shift its choice behavior after a block
transition (Corrado et al., 2005). Furthermore, the relative values
of the learning rates affect how quickly shifts can take place. For
example, if q� � q�, the shift is slower at the beginning of a block
transition but reaches a higher asymptotic value later on. This
happens because in this case the difference between the average
value of synaptic strengths is large, and with a slow depression
rate it takes more time to reverse this difference in the new block
(in which the more rewarding choice is different from the last
block).

Stay length and switch probability
A few behavioral studies of matching tasks in pigeons and rats
have shown that switching between choices is approximately a
stochastic process that only depends on the reinforcement rate on
those choices (Heyman and Luce, 1979; Gallistel et al., 2001).
This means that the probability that the animal switches from one
choice to the other is almost independent of the time that it has

spent on the current choice. Based on these results, it has been
claimed that matching cannot be generated by a mechanism that
involves feedback (Heyman, 1979; Gallistel et al., 2001).

We assessed the statistics of choice behavior separately for
each block of trials with different baiting probability ratios. Note
that for all analyses presented in this section, the mandatory
movements after switches are removed because in these trials the
choice behavior follows a deterministic rule. In Figure 10A, the
distribution of stay lengths (number of consecutive choices on
one target) is plotted for the two targets in different blocks of the
experiment. In addition, each stay length histogram is fitted with
an exponential distribution (black curves).

Consistent with the experimental observation (Corrado et al.,
2005), the distribution of stay lengths on each target is approxi-
mately exponential, although a small deviation can be seen
clearly. Moreover, for the target with a larger baiting probability
the stay length distribution has a larger mean.

If switching between the two targets is a completely stochastic
process with a rate determined by the baiting probability, one
expects that probability of staying longer than a given stay length
(survival probability) is an exponentially decreasing function of
the stay length. As shown in Figure 10B, the probability of staying
longer than a given stay length is approximately a linear function
of the stay length in a semilog plot. The negative of the slope in
this plot is approximately equal to the probability of switching to
the other target (Gallistel et al., 2001). We also have computed the
probability of switching as a function of the stay length (Fig. 10C).
If the survival probability is perfectly monoexponential, then the
switching probability should be independent of the stay length.
We found that this is only approximately true, for long stays.

Figure 8. Plastic synapses approximately compute the return from each choice (or a linear
function of it). Block-averaged synaptic strengths are plotted versus the obtained returns in the
same block. Two colors represent two different choices (red for A; green for B). A, The average
synaptic strength is equal to the return from each choice, when the two learning rates are equal
(q� � q� � 0.06). B, If the potentiation rate is greater than the depression rate (q� � 0.06;
q�� 0.03), the average synaptic strength is larger than the return (top points), whereas, if the
depression rate is greater than the potentiation rate (q� � 0.03; q� � 0.06), then the syn-
aptic strength is smaller than the return (bottom points). These data points are obtained from
15 simulated sessions of the matching task in which all possible baiting probability ratios are
used (see Materials and Methods), and the length of each block is set to 200 trials. For all
simulations, � is set to 5%.

Figure 9. Adaptation to change in the reward schedule. The average time course of adjust-
ment for the choice (blue) and reward (red) fractions in a new block of trials are plotted for three
different values of learning rates: q� � q� � 0.06 (solid curves); q� � 0.06, q� � 0.03
(dashed curves); and q� � 0.03, q� � 0.06 (dot-dashed curves). The choice and reward
fractions are normalized, so 0% shift indicates the same fraction as the fractional baiting prob-
ability in the previous block, and 100% shift indicates the same fraction as the fractional baiting
probability in the current block. The instantaneous choice and reward fractions are computed
using a causal half-Gaussian filter (SD � 6 trials). The shift in the reward fractions happens in
the span of 10 –15 trials, and it is approximately independent of the learning rates. The shift in
the choice fraction reaches an asymptotic value after 30 – 40 trials, which is dependent on the
learning rates. If q�� q�, the shift in choice behavior is slower right after the block transition,
but its reaches a higher value later on. These results are obtained from 500 simulated sessions of
matching task with all possible baiting probability ratios (see Materials and Methods). The
length of each block is set to 200 trials, and � is set to 5% in all simulations.
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Indeed, the probability of switching is a decreasing function of
the stay length, and it reaches a steady state after �10 –15 trials.
Note that the exact value of switch probability and its steady state
depends on the model parameters, but its qualitative form is the
same. Furthermore, the probability of switching is a function of
baiting probability, so it is larger for the target with a smaller
baiting probability (Fig. 10C).

In our model, staying on a choice or switching to another
choice is a stochastic process with a probability that is determined
by the state of plastic synapses in each trial (except for the man-
datory movement after a switch). Note that the probability that
the model stays on a target for a large number of trials is very
small (especially when the baiting probability is low), and be-
cause of the stochastic nature of our model a long stay requires
harvesting of a few rewards on that target. As a result, the prob-
ability of switching after a few stays decreases as a function of the
stay length. Our results demonstrate that in a model based on
feedback, like our model, the probability of switching is deter-
mined by the baiting probability. In addition, the slow change of
the probability of switching as a function of the stay length may

not be incompatible with the experimental
observation of approximately constant
switch probability.

Robustness of the model
Although in the previous simulations a
specific set of parameters is used, matching
behavior can be achieved over a wide range
of parameters. The behavior of the model
is quantified, using a sequence of blocks of
trials with different baiting probability ra-
tios, when the learning rates, q� and q�,
are varied in a broad range (with fixed �
for the noise level). We quantify the per-
formance of the model by the ratio of the
average reward rate to the overall baiting
probability, as in the monkey experiment.
The performance of the model is assessed
with a sequence of blocks with different
baiting probability ratios (see Materials
and Methods) and is plotted in Figure
11A. For most of the potentiation and de-
pression rates, the performance of the
model is high compared with the monkeys’
performance [�72% in the study by Sugrue
et al. (2004a)] and does not vary significantly
over the range of the parameters.

The performance is relatively low in
two cases. In the first case, the potentiation
rate, q�, is much larger than the depres-
sion rate, q� (for moderate values of q�).
This condition results in long stays on the
richer target in each block (see the switch-
ing probability in Fig. 11C), so the model is
slow in shifting its behavior between
blocks of trials and loses some of the re-
wards. In the second case, the depression
rate is much larger than the potentiation
rate so any unrewarded trial gives rise to a
strong reset of the synaptic strength for the
chosen target. As a result, the model alter-
nates frequently between the two choices
(Fig. 11C). For small values of q�, the per-

formance of the model is high, because in these cases both syn-
aptic strengths saturate and reach a value close to 1, and as a result
the choice behavior becomes more random.

We define the “deviation from matching” as the average ab-
solute difference between choice and reward fractions on each
block. This quantity is more strongly dependent on the learning
rates, although for most of the parameter space its value is small
(Fig. 11B). Similar to the results for the choice behavior in a
stationary environment, generally better matching can be
achieved with a potentiation rate larger than the depression rate.

As we mention for this task when the baiting probabilities are
constant, matching is optimal. However, if the baiting probability
changes between blocks of trials, this statement no longer holds.
In a stationary environment, good matching can be achieved
when the potentiation rate is higher than the depression rate and
there are not many switches between the two choices. But with
these conditions, in a dynamic environment the choice behavior
cannot be shifted quickly, and as a result the performance will
deteriorate. So in a dynamic environment, the model parameters
that result in the best matching behavior do not correspond to

Figure 10. Statistics of the stay length and switch probability. A, The distribution of stay lengths in each block (with fixed baiting
probabilities) isapproximatelyanexponentialanddependsonthebaitingprobability.Thebaitingprobabilityratioineachblockisreported
on each plot (in the favor of target B). For the 1:1, 1:3, and 1:6 schedule, the mean stay length for target A (red histograms) is 2.65, 1.63,
1.38,andfortargetB(greenhistograms)is2.65,5.71,9.66,respectively.Theblackcurvesshowthefittingwithanexponentialdistribution.
B, Log cumulative probability of staying longer than a given stay length (survival probability) is plotted separately for different targets in
blocks of trials with different baiting probability ratios. Red and green curves, The survival probabilities for the targets A and B, respectively.
The baiting probability ratio for each block is shown in the inset. The negative of the slope in this plot is equal to the probability of switching
to the other target. C, The probability of switching as a function of the stay length. These statistics are obtained from 5000 simulated
sessions in which the baiting probability ratio is [1:1, 1:3, 1:6] and the overall baiting probability is fixed to 0.3 (block length is equal to 2000
trials). The model parameters are q�� q�� 0.06 and �� 5%.
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optimal performance. There is an intermediate range of learning
rates that results in a large reward rate and also reasonable match-
ing behavior. We define a set of the model parameters as suitable,
if for such a set of parameters the performance of the model is
�74% and the deviation from matching is 
0.1. These sets of
parameters are shown in Figure 11D in red. Note that suitable
behavior can be achieved for a wide range of the learning rates, so
that in order for the model to perform the matching task, fine-
tuning of the learning parameters is not necessary.

Dependence of the choice on the past rewards
To quantify the dependence of choice in each trial on the past
history of reward, we follow Sugrue et al. (2004a) (Corrado et al.,
2005) to calculate what they termed as the “choice-triggered-
average of rewards (CTA).” This quantity measures how choice
in the current trial is influenced by the harvested rewards in the
past trials. Here, we are mainly interested in how the form of
CTA, extracted from the model choice behavior, is influenced by
external factors such as the length of blocks in which the baiting
reward rate is constant, and the overall baiting probability in the
experiment.

In general, the form of CTA in our model can vary, depending
on the learning rates and the noise level �. Interestingly, we find
that the shape of CTA is independent of the length of the blocks,
consistent with the observation of Sugrue et al. (2004a) that CTA

is the same no matter which part of the block is used for analysis.
To compare our results with the Sugrue et al. (2004a) experiment,
we choose a set of the model parameters that results in a CTA
close to the CTA extracted from one of the monkeys in their exper-
iment. Using the same parameters, we allow the model to play the
same task with different overall baiting probabilities (�tot).

The CTA for three different values of overall baiting probabil-
ities is shown in Figure 12A. When the overall baiting probability
is high, the dependence of the choice on the recent harvested
rewards is stronger, but this dependence decreases more rapidly
with time (in unit of trial).

In contrast, when the overall baiting probability is low, the
choice is influenced by past rewards over a longer time. To quan-
tify this dependence, the CTA obtained from the behavior of the
model is fitted with the sum of two exponentials as follows:

CTA�t� � �Nse
�

t

�s � �1 � ��Nle
�

t

�l , (8)

where t is the trial number, Ns and Nl are the normalization
factors for each exponential, � is the weighting factor, and �s and
�l are the short and long time constants, respectively. The sum of
two exponentials provides a good fit for the CTA extracted from
the monkeys’ data (Corrado et al., 2005). The results of fitting
show that, when the overall baiting probability increases, the
longer time constant, �l, and its relative weight, 1 � �, decrease
(data not shown). To simplify the comparison, we define an ef-
fective time constant, �eff � ��s � (1 � �)�l. The effective time
constant displays the approximate timescale over which the inte-

Figure 11. Modelshowsmatchingbehavioroverawiderangeofparameters.A,Theperformance
of the model, defined as the ratio of the average reward rate to the overall baiting probability Itot/�tot,
is generally high and does not change significantly with learning rates (only a few percent change). B,
The “deviation from matching,” computed as the average of absolute difference between choice and
reward fractions on each block, is small over a wide range of learning rates. This indicates that, for a
wide range of learning rates, a choice behavior close to matching can be achieved. C, The switching
probability (expressed in percentage), the total number of switches between the two choices divided
by the total number of trials, is strongly dependent on the learning rates. For large values of q�, the
switchingprobability ishigh,butalargevalueofq� reducestheswitchingprobability.D,Therangeof
parameters for which the model shows an adequate matching behavior is plotted in red, that is, when
Itot/�tot � 0.74 [this quantity is �0.72 for the monkeys (Sugrue et al., 2004a)] and the deviation
from matching is
0.1. For each set of model parameters, all average values are obtained from 1000
simulated sessions of the experiment (see Materials and Methods). The length of each block is set to
200 trials and �� 5%.

Figure 12. Time integration of past rewards and its dependence on the overall baiting
probability. A, The choice-triggered average of rewards, extracted from the model choice be-
havior, is plotted for three different values of overall baiting probability (for a fixed set of the
model parameters; q�� 0.15, q�� 0.05, �� 25%). As the overall baiting probability, �tot,
increases, recent rewards have a stronger effect, but the effect of past rewards decays more
quickly. B, The effective time constant of CTA, defined as the weighted sum of the two extracted
time constants, is plotted as a function of the overall baiting probability. As the total reward rate
increases, the effective time constant decreases. C, For a different set of model parameters (q�

� 0.06; q� � 0.06; � � 5%), CTA extracted from the model choice behavior is plotted for
three different values of overall baiting probability. D, The effective time constant of CTA ex-
tracted from the choice behavior of the model for the same set of parameters as in C.
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gration of past rewards is performed. As shown in Figure 12B, the
effective time constant decreases as the overall baiting probability
increases.

For the set of model parameters used in most of the simula-
tions (q� � 0.06; q� � 0.06; � � 5%), the extracted form of CTA
is different from the experimental observation (Fig. 12C,D),
namely, in this case the relative weight of the shorter time con-
stant is small. Additional study shows that generally a more biex-
ponential CTA can be achieved if the choice behavior of the
model is more random (larger value of �), which results in more
undermatching. Although generally the quality of matching in
monkeys is poorer than the model, these results may indicate that
there are other factors that influence the monkey’s choice behav-
ior, such as past choices of the monkey, which are not included in
the present model.

Discussion
Recent neurophysiological studies of nonhuman primates per-
forming probabilistic decision making tasks showed that single-
cell activities in certain brain areas are modulated by the subjec-
tive values of choice options (Kawagoe et al., 1998; Leon and
Shadlen, 1999; Platt and Glimcher, 1999; Lauwereyns et al., 2002;
Montague and Berns, 2002; Shidara and Richmond, 2002; Barra-
clough et al., 2004; Sugrue et al., 2004a, 2005; Samejima et al.,
2005; Hikosaka et al., 2006). In this study, we addressed the ques-
tion of how these subjective values may be computed mechanis-
tically and used to generate choice behavior. We showed that
plastic synapses that undergo stochastic reward-dependent mod-
ification can integrate past rewards within a finite time window.
This is because synapses have a limited number of discrete states,
so reward history in the remote past is forgotten, resulting in a
finite integration time. The strengths of these synapses influence
the choice behavior in any given trial, and in turn they are mod-
ified depending on the choice made and the resulting outcome in
that trial. This two-way interplay between synaptic plasticity and
the decision process gives rise to trial-by-trial adaptive choice
behavior in a dynamic and stochastic environment. In this work,
we applied our model to a matching task paradigm and showed
that, under certain conditions, the average strength of plastic
synapses onto a choice-selective neural population is equal to the
return from that choice. Therefore, we propose that subjective
values can be computed dynamically, in the form of return, at the
synaptic level. Furthermore, decision neurons that receive inputs
from these plastic synapses exhibit graded levels of activity. The
latter is modulated by the choice of the network and the differ-
ence in the average synaptic inputs to the competing neural pop-
ulations. In this way, the subjective values computed at a synaptic
level become observable in the spike firing neural activities of a
decision-making network.

Learning rule
Learning that depends on reinforcement feedback signals (Sutton
and Barto, 1998) is believed to underlie many adaptive behaviors
in a natural environment. Evidence suggests that dopamine in the
brain acts as a common currency for a reward signal (Schultz,
2000, 2006), and modulates synaptic plasticity (Jay, 2003). For
instance, at the corticostriatal synapses onto the medium spiny
projection neurons in striatum, long-term plasticity depends on
stimulations of dopamine neurons (Reynolds et al., 2001; Reyn-
olds and Wickens, 2002) (but see Fino et al., 2005). Based on these
observations, Reynolds and Wickens (2002) proposed a three-
factor synaptic plasticity rule, in which synaptic modifications
depend on presynaptic and postsynaptic neural activities as well

as a dopamine signal. Other studies indicate that, in the rat pre-
frontal cortex, the induction of long-term depression and long-term
potentiation at glutamatergic synapses is modulated by dopamine
(Otani et al., 2003), and that D1 receptors play a key role in such
bidirectional modulation of plasticity (Huang et al., 2004).

In this work, we sought to implement such a three-factor
learning rule in a biophysically plausible manner (Fusi et al.,
2005a). Our learning rule is Hebbian and depends on the coacti-
vation of presynaptic and postsynaptic neurons. Moreover, indi-
vidual synapses have two discrete states (Petersen et al., 1998;
O’Connor et al., 2005), and plasticity occurs as a stochastic pro-
cess (Amit and Fusi, 1994; Fusi, 2002). The fact that synapses are
bounded is important, because in this way the number of avail-
able synaptic states are limited and this enables the model to
forget the past outcomes naturally. The stochastic nature of plas-
ticity implies that modifications occur at every single trial, which
form the basis of adaptive decision process; yet the average syn-
aptic changes take place over many trials (determined by the
learning rates), over a timescale compatible with that of experi-
mental protocols for the induction of long-term synaptic poten-
tiation or depression (Malenka and Nicoll, 1999; Bi and Poo,
2001). Finally, the direction of modification (potentiation versus
depression) is reversed by the presence/absence of reward (see
below for variants of this learning rule). Seung (2003) also con-
sidered a reward-dependent synaptic plasticity rule and proposed
an algorithm based on a reward signal that modulates the prob-
ability of stochastic release of transmitters. By design, Seung’s
algorithm maximizes rewards under general conditions, whereas
this is not guaranteed with our model. In contrast, Seung’s model
performs better if an all-or-none reward signal, like dopamine, is
delivered every time a presynaptic spike is fired; how this may be
accomplished biologically remains unclear. Delivery of reward
signal with a delay, requires an integration of eligibility trace over
a timescale of seconds during the decision process and makes the
learning process very slow. In contrast, in our model, plasticity
occurs only once in a trial, rather than continuously, at the time
of potential reward delivery.

We focused on a specific learning rule in which plasticity takes
place only when the postsynaptic neurons fire spikes at a high
rate, in other words, only for plastic synapses projecting to the
neural population that has won the competition in a given trial.
As we have shown, our model exhibits satisfactory matching be-
havior comparable with observations in the experiment of Sug-
rue et al. (2004a), robustly for a wide range of learning rates for
potentiation and depression, respectively. The only condition is
that the potentiation rate should be similar to or larger than the
depression rate. We also explored other variants of learning rules.
For example, plasticity could take place without requiring high
firing activity of postsynaptic neurons. Thus, in each trial both
sets of plastic synapses onto the two competing neural popula-
tions are modified. In this situation, the synaptic strength is not a
function of return. Instead, it is a function of income (for a more
detailed description of such a model and its behavior, see supple-
mental material, available at www.jneurosci.org).

Moreover, if the decision criterion is given by the fractional
income [i.e., PA � IA/(IA � IB) (like in the model of Sugrue et al.,
2004a)] instead of a sigmoid function of the differential income,
the choice behavior may become unstable. The instability hap-
pens in the income-based model for the following reason: if one
of the targets is consecutively chosen, although few rewards are
obtained, the income on the chosen target fluctuates around
some level while the income on the unchosen target goes to zero.
This further decreases the probability of selecting the unchosen
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target and results in repeated selection of one of the targets. In
contrast, the return changes for the selected target only, hence
such instability does not occur in a return-based decision model.

If the rule is such that, in a rewarded trial, not only synapses
are strengthened with high postsynaptic activity (of neurons se-
lective to the chosen target), but also weakened with low postsyn-
aptic activity (of neurons selective for the unchosen target), then
the model tends to select the target with a higher baiting proba-
bility excessively, a phenomenon called “overmatching.” One
could argue that overmatching may be avoided using a learning
rule according to which, in an unrewarded trial, potentiation
occurs with low postsynaptic firing rates (for those synapses pro-
jecting to neurons selective for the unchosen target). This plas-
ticity rule seems biophysically implausible. Moreover, this rule
typically leads to more undermatching than the rule presented in
this paper does, and is thus functionally undesirable (large devi-
ation from matching). The general conclusion is that the most
suitable and robust learning rule for the matching task is the one
in which only plastic synapses related to the selected choice un-
dergo plasticity, and this rule is qualitatively in agreement with
the available experimental evidence for reward-dependent syn-
aptic plasticity.

Mechanisms of matching behavior
Although matching behavior has been observed in many differ-
ent experimental paradigms, how it is achieved by a local (trial-
to-trial) decision process is still not fully understood. In one sce-
nario, Gallistel et al. (2001) proposed that a local mechanism
based on ideal detectors of changes in reward rates can account
for matching behavior. Another proposal relies on the idea that
matching is a manifestation of reward maximization (Staddon
and Motheral, 1978; Baum, 1981). A third theory, called “meliora-
tion” (Herrnstein and Vaughan, 1980; Williams, 1988; Herrnstein
and Prelec, 1991), posits a decision dynamics in which the subject
chooses the behavioral alternative that provides the higher local re-
inforcement rate (or return) at that time. In the special case of the
concurrent variable-interval schedule, this local mechanism pro-
duces global matching behavior, because an increase (decrease) in
the selection of one option decreases (increases) the return from that
option. Therefore, an equilibrium is reached when the returns from
the two alternatives are equal. However, in general, melioration can
result in a behavior different from matching. In fact, in experiments
in which melioration, matching, and maximization give different
predictions, behavioral data were consistent with the melioration
theory (Vaughan, 1981).

Two key issues have been left unresolved in the melioration
theory. First, as stated by Williams (1988): “the most fundamen-
tal problem faced by melioration theory is the specification of the
method by which local reinforcement rates are calculated.” Sec-
ond, melioration has often been taken to mean “choose the op-
tion with the highest return among all possible alternatives.” Al-
though this deterministic rule yields matching as the steady state,
the stability of that behavior is not guaranteed. The neural model
reported in this paper sheds insights into both issues.

Our model proposes a neurobiological implementation of
melioration. First, in our model, a local estimate of return (or a
function of return) on each choice is computed by synapses that
undergo reward-gated stochastic plasticity. We found that there
is a tradeoff between the accuracy of the estimated return and the
flexibility of choice behavior. If the learning rates are low, syn-
apses can integrate rewards over a long period of time and the
estimation of return would be accurate. However, this means that
the system cannot adapt quickly when the reward schedule

changes frequently in an uncertain environment. In contrast, if
the learning rates are higher, the behavior is more flexible, but the
reward integration is more local in time and the estimated return
is noisier. This raises the interesting question of whether learning
rates themselves should be plastic (meta-learning) and adjustable
according to behavioral demands (Doya, 2002; Schweighofer and
Doya, 2003). We intend to address this question elsewhere.

Second, in our model, decision making is not deterministic
even if the returns of options are known. Instead, we showed that,
in a recurrent circuit of spiking neurons, the choice probability is
a softmax (sigmoid) function of the difference in the returns
(coded by the strengths of synapses to the two competing neural
populations). This stochasticity is attributable to irregular spike
discharges, a characteristic feature of cortical neurons (Softky
and Koch, 1993; Shadlen and Newsome, 1994; van Vreeswijk and
Sompolinsky, 1996; Compte et al., 2003). The more variable the
neuronal firing activity, the less steep is the softmax function
(with a larger �). Thus, too much noise would mean a very graded
softmax decision criterion; the choice behavior would be essen-
tially random and far from matching. In contrast, with negligible
noise (small � value), the system has a tendency to only choose
the target with a higher return, and this may result in instability of
the choice behavior. To avoid this kind of instability, the network
should be able to make decisions probabilistically. We also
showed that probabilistic decision making imposes a limit on how
close matching can be achieved. Therefore, our model provides a
possible explanation, in terms of neural network constraints, for
undermatching, a phenomenon widely observed across different
species (Baum, 1974, 1979; Davison and Baum, 2000; Anderson et
al., 2002; Sugrue et al., 2004a; Lau and Glimcher, 2005b).

Our model has similarities to, as well as differences with, other
recently proposed models for matching behavior. For example,
the model of Sugrue et al. (2004a) assumes that local incomes on
two options are computed by a leaky integrator and then these
quantities are used to compute the local fractional income. If the
instantaneous probability of choice is equal to the local fractional
income, the model obeys the matching law locally. This model
provides a good account of monkeys’ behavioral data but leaves
open mechanistic questions, such as how integration over the
income is done, how the time constant for the integration is
determined in the circuit, how local fractional income is calcu-
lated (which requires two additional computations, addition and
division), and how it can be translated to choice probability. In a
revision of this model, Corrado et al. (2005) replaced the decision
rule according to fractional income, by a softmax function of the
difference in local incomes. Our model represents a biophysical
instantiation of that scenario, except that it uses return rather
than income.

Furthermore, our work suggests a synaptic mechanism for the
linear filter (called CTA) that has been deduced from behavioral
data and hypothesized to subserve reward integration (Sugrue et
al., 2004a; Corrado et al., 2005; Lau and Glimcher, 2005b). In our
model, the time constants of CTA are determined by the model
parameters. Hence, the experimentally observed CTAs can be
associated with biophysical quantities like potentiation and de-
pression rates at the synaptic level. Importantly, we showed that
the overall baiting probability influences the form of CTA, so that
the integration times are stretched or contracted depending on
how abundant rewards are in the environment. Specifically, we
showed that, when the overall baiting probability is lower
(higher), because synaptic modifications depend on reward fre-
quency, the effective integration time becomes larger (smaller) so
that rewards are integrated over a longer (shorter) timescale,
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which makes sense functionally. This prediction of our model can
be readily tested by varying the overall reward rate in matching
task experiments. Finally, our model semiquantitatively repro-
duces electrophysiological data recorded from behaving mon-
keys, whereas previous models (Sugrue et al., 2004a; Corrado et
al., 2005; Lau and Glimcher, 2005b) were mostly focused on be-
havioral data.

LIP neurons: representation of decision or value?
Neurons in the LIP area of the posterior parietal cortex show
activity that is believed to be important for guiding saccadic eye
movements. In experimental studies of the matching task, it has
been shown that these neurons carry information about the im-
pending movements and the subjective value of those move-
ments. Platt and Glimcher (1999) showed that the activity of
some LIP neurons is modulated by the gain of the choice into the
response field (RF) of the neuron. Sugrue et al. (2004a) showed
that activity of LIP neurons is modulated by the impending
choice and the fractional income for that choice. Importantly in a
given trial, the activity of a neuron is higher if the monkey’s
choice is into the RF of the neuron than if the monkey’s choice is
out of the RF of the neuron. In addition, for a fixed choice, the
activity of a neuron is higher when the local fractional income of
the RF target of the neuron is higher. In a later paper, Corrado et
al. (2005) showed that, in fact, their neural data were better described
as being correlated with the difference between the local incomes
from the two targets, rather than with the fractional income.

Although the graded activity of neurons in area LIP carries
information about the value for each choice, there is evidence
that the valuation is not computed in LIP. Indeed, LIP neurons
are spatially selective and not color selective, whereas in this task
the rewarding value of each target is coded by the target color and
not by its location. Moreover, the time course of neural activity
becomes differentiated according to the income level of a given
target, at least 100–200 ms after the stimulus onset, indicating that
the value-related information originates from somewhere else.

Our working hypothesis is that the primary role of LIP neu-
rons is to generate a decision about saccadic eye movement, based
on an integration of two types of inputs: spatial target and its
rewarding value. According to this view, for a given neuron (and
a selected target), the firing activity depends parametrically on its
overall input. Thus, graded activity emerges whenever the trials
are sorted according to different levels of the overall input of the
neuron, regardless of whether it is a sensory or reward signal, or a
combination of both. This interpretation is consistent with the
observation that graded LIP neural activities, similar to those in
the study by Sugrue et al. (2004a), were also found in a visual
motion direction discrimination task in which the differentiating
factor is motion coherence (sensory information) rather than
rewarding value (Shadlen and Newsome, 2001; Roitman and
Shadlen, 2002). It is also in line with the finding that, when the
two choices about motion direction are associated with different
amounts of reward, the subject’s psychometric function is shifted
in such a way as if reward magnitude provided an extra signal that
is additive to the sensory information about the motion direction
(Rorie and Newsome, 2004).

Here, we showed that a model based on this idea reproduces
graded neural activities observed in LIP. In our model, neurons
are responsible for making decisions, hence the spiking activities
are correlated with and give rise to choices. In addition, because
input synapses to these neurons encode reward history, neuronal
firing rates naturally reflect the target rewarding values. Because
the choice probability and returns are directly related to each

other (via the softmax function), it is impossible to dissociate the
two. Similarly, in a physiological experiment, correlations between
neural activity and the subjective value of choice options do not
necessarily imply that the recorded neurons (like LIP cells) are pri-
marily involved with valuation rather than decision making.

It is worth noting that, as our results here demonstrate, graded
activities are compatible with the attractor dynamics of our
model. Indeed, although an attractor network displays stable ac-
tivity states in the absence of direct stimulation (e.g., during a
delay period of working memory), it is readily configurable by
external inputs and can depend on input strength in a graded
manner. Moreover, the other aspect of the observed graded LIP
activity, namely the divergence over time of firing activities cor-
responding to two alternative choices, is explained in our model
by effective mutual inhibition between the two selective popula-
tions. Because of this competition, when the firing rate of one
selective population is high, that of the other selective population
goes down. This is similar to what has been observed in the ex-
periment of Sugrue et al. (2004a). In their experiment, if the left
choice has the highest local fractional income and it is selected,
then neurons with RF on the left target have the highest level of
activity and neurons with RF on the right target have the lowest
level of activity. If we assume that neurons with RF on the left and
right target belong to two different pools of neurons in LIP, then
the most plausible explanation for the above observation is the
existence of competition between these two pools of neurons.
This, again, is consistent with the suggestion that the LIP neurons
behave like decision makers, or have an important role in the
decision-making processes.

In this paper, we focus on a microcircuit model endowed with
synaptic plasticity. In all likelihood, this model will need to be
expanded, and the following alternative scenarios should be con-
sidered in future studies. First, if integration of past rewards is
performed by plastic synapses, it is an open question as to the
precise locus (or loci) of such plasticity. In addition to LIP, other
candidate sites include corticostriatal synapses in basal ganglia, or
synaptic connections in the orbitofrontal cortex (Schultz, 2000).
For example, a new study showed that postsaccadic activity of
caudate neurons encodes the preceding saccade and/or reward
delivery in a matching task experiment (Lau and Glimcher,
2005a). Therefore, a large-scale network with multiple interact-
ing brain areas should be investigated. Secondly, it is conceivable
that past rewards can be integrated by cellular mechanisms in single
neurons, instead of plastic synapses. There is evidence that neural
activity in the dorsolateral prefrontal cortex (Barraclough et al.,
2004) and orbitofrontal cortex (Sugrue et al., 2004b) is modulated by
reward signals across trials. However, it remains an open question
whether these reward-modulated neural activities are generated by a
cellular or synaptic mechanism. Additional experimental and com-
putational work will shed light on this fundamental question about
the neurobiological basis of choice behavior.
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