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Abstract

Previous studies have shown that non-human primates can generate highly stochastic choice behaviour, especially when this is required during
a competitive interaction with another agent. To understand the neural mechanism of such dynamic choice behaviour, we propose a biologically
plausible model of decision making endowed with synaptic plasticity that follows a reward-dependent stochastic Hebbian learning rule. This model
constitutes a biophysical implementation of reinforcement learning, and it reproduces salient features of behavioural data from an experiment
with monkeys playing a matching pennies game. Due to interaction with an opponent and learning dynamics, the model generates quasi-random
behaviour robustly in spite of intrinsic biases. Furthermore, non-random choice behaviour can also emerge when the model plays against a non-
interactive opponent, as observed in the monkey experiment. Finally, when combined with a meta-learning algorithm, our model accounts for the
slow drift in the animal’s strategy based on a process of reward maximization.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Decision making has been studied using a variety of
paradigms in multiple disciplines. For example, economists
have often employed tasks based on multiple gambles or lot-
teries to investigate how decisions are influenced by the deci-
sion maker’s attitude towards uncertainty (Kahneman & Tver-
sky, 1979). Behavioural ecologists have approached the prob-
lem of decision making in the context of foraging (Stephens
& Krebs, 1986), whereas psychologists have frequently investi-
gated the choice behaviour using a concurrent schedule of rein-
forcement (Herrnstein, Rachlin, & Laibson, 1997). All of these
paradigms, however, are designed to investigate the process of
decision making in a socially isolated individual. In contrast,
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decision making in a socially interactive context introduces a
new principle of optimality (von Neumann & Morgenstern,
1944), since the outcome of one’s decision can be influenced
by the decisions of others in the same group.

Recently, neuroscientists have begun to investigate the
neural basis of decision making using the behavioural
paradigms rooted in these various disciplines (see Lee (2006)).
In some cases, these studies were carried out in non-human
primates, allowing the investigators to examine the activity of
individual neurons during various types of decision making.
For example, Sugrue, Corrado, and Newsome (2004) found
that activity of neurons in intraparietal cortex reflects the
relative income from the target in their receptive fields during
an oculomotor foraging task based on a concurrent variable-
interval schedule. Using an approach based on a standard
economic choice theory, McCoy and Platt (2005) found that
neurons in posterior cingulate cortex modulate their activity
according to the uncertainty of reward expected from a
particular target. Barraclough, Conroy, and Lee (2004) and
Dorris and Glimcher (2004) have examined the pattern of
neural activity in dorsolateral prefrontal cortex and posterior
parietal cortex, while the animal interacted competitively with
a computer opponent.
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In the present study, we focus on the choice behaviour of
monkeys playing a simple competitive game, known as the
matching pennies (Barraclough et al., 2004). During this task,
monkeys were required to choose one of two visual targets in
an oculomotor free-choice task, and they obtained a reward
only if they chose the same target as the computer opponent
in a given trial. The optimal strategy during this game is to
choose the two targets randomly and with equal probability,
and therefore requires random sequences of choices. Some
studies have shown that in general people are relatively poor
in generating a random sequence of choices (Bar-Hillel &
Wagenaar, 1991; Camerer, 2003), but with feedback they can
learn to generate sequences that can pass standard randomness
tests (Neuringer, 1986). More interestingly, it has been found
that people can generate more random sequences of choices, if
they are engaged in a competitive game (Rapoport & Budescu,
1992). Nevertheless, the neural mechanisms responsible for
the generation of such a high level of stochastic behaviour is
unknown.

Consistent with these behavioural findings obtained in hu-
man subjects, the results from the previous study (Barraclough
et al., 2004) showed that monkeys can learn to generate nearly
random sequences of choices when they receive reward feed-
back regarding their performance. In addition, the degree of
randomness in the animal’s choice behaviour varied according
to the amount of information utilized by the computer opponent
to predict the animal’s choice (Lee, Conroy, McGreevy, & Barr-
aclough, 2004). In other words, the animal’s behaviour became
more random, when the computer utilized additional informa-
tion about the animal’s previous choices and their outcomes.
Furthermore, a simple reinforcement learning model was pro-
posed to account for the fact that the animal’s choice was sys-
tematically influenced by the computer’s choices in previous
trials (Lee et al., 2004).

Here, we show that a biophysically-plausible network model
of decision making endowed with plastic synapses can not
only generate random sequences of choices, but also capture
other important features of animal’s choice behaviour during
the matching pennies task. First, monkeys displayed a bias in
their choice behaviour when playing against a non-responsive
computer opponent selecting its target randomly, regardless of
the animal’s behaviour. To understand the nature of such a
bias, we analyze the steady-state behaviour of the reinforcement
learning model described in Lee et al. (2004) and that of
our model, and derive the conditions under which a biased
and non-random choice behaviour can emerge. Second, when
the computer opponent was partially exploitive and used only
the information about the animal’s previous choices but not
their outcomes, the animal’s choice strategy displayed a slow
drift over the period of many days. We implement a meta-
learning algorithm (Schweighofer & Doya, 2003) in our model,
and show that it can account for the gradual change in
the animal’s strategy. To our knowledge, this study is the
first to propose a possible explanation for the slow, gradual
behavioural change on the timescale of many days observed
experimentally.
Fig. 1. Spatial layout and temporal sequence of the free-choice task.

2. Choice behaviour of monkeys in the matching pennies
game

2.1. Experimental methods

A detailed description of the experimental methods used to
collect the behavioural data during a matching pennies task has
been published previously (Lee et al., 2004). In the following,
the behavioural task used in this study is only briefly described.
Three rhesus monkeys (C, E, and F) were trained to perform
in an oculomotor free-choice task according to the rule of the
matching pennies game (Fig. 1).

The animal began each trial by fixating a small yellow square
at the centre of the computer screen. After a 0.5 s fore-period,
two identical green disks were presented along the horizontal
meridian. After a delay period of 0.5 s, the central square
was extinguished and the monkey was required to make a
saccadic eye movement towards one of the targets within 1 s,
and maintain its fixation for a 0.5 s hold period. At the end
of the hold period, a red circle was displayed for 0.2 s around
the target that the computer had selected. The monkey was
rewarded with a drop of fruit juice if it selected the same target
as the computer.

The strategy or algorithm used by the computer opponent
during this matching pennies game increased its complexity
through three successive stages. In the first stage, referred
to as algorithm 0, the computer selected one of the two
targets randomly, each with 50% probability, and therefore, the
animal’s expected payoff was not influenced by its own choice
behaviour. The computer’s strategy in algorithm 0 corresponds
to the Nash equilibrium of the matching pennies game. In the
next stage (algorithm 1), the computer used the entire sequence
of the animal’s previous choices in a given day to predict
the monkey’s next choice by testing a set of hypotheses. The
conditional probability that the monkey would choose each
target given the monkey’s choices in the preceding N trials
(N = 0 to 4) was calculated and tested against a null hypothesis
that this probability is 0.5 (binomial test, p < 0.05). If none of
these hypotheses was rejected, the computer selected its target
randomly as in algorithm 0. If one or more hypotheses were
rejected, then the computer biased its target selection using the
conditional probability with the largest deviation from 0.5 that
was statistically significant. If the conditional probability of
choosing a given target that was selected by this procedure was
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Fig. 2. Instability in monkeys’ choice behaviour in algorithm 0. The cumulative choices of the leftward target is plotted against the cumulative choices of the
rightward target in three different monkeys (in the last 2 days of algorithm 0). (A) Choice behaviour in monkey C was the most stable but it was biased toward
the rightward target. (B) Monkey E showed very unstable choice behaviour, such that at the end it chose only the rightward target. (C) In monkey F, the choice
behaviour was biased toward the leftward target. There are switches between the two targets but lengths of consecutive choices on the leftward target are larger. The
black line corresponds to the choices made with equal probabilities.
p, the computer selected the same target with the probability
of 1 − p. Therefore, in order for the monkey to obtain the
maximum reward in algorithm 1, the two targets should be
selected with equal probabilities and independently from the
animal’s previous choices. In the final stage (algorithm 2),
the computer used the entire history of the animal’s choice
and reward in a given session to predict the monkey’s choice
in the next trial. Thus, in algorithm 2, a set of conditional
probabilities that the monkey would choose a given target given
the monkey’s choices and their payoffs in the preceding N
trials (N = 1 to 4) were calculated and tested, as well as the
conditional probabilities tested in algorithm 1. If none of these
hypotheses deviated significantly from 0.5, then the computer
selected each target randomly with equal probability (50%).
Otherwise, the computer biased its target selection according
to the same rule used in algorithm 1. In algorithm 2, therefore,
the monkey was required to select its targets not only with equal
probabilities and independently from its previous choices, but
also independently from the combination of its previous choices
and their outcomes.

2.2. Summary of animal’s choice behaviour

The choice behaviour of monkeys during the matching
pennies game has been described previously (Barraclough
et al., 2004; Lee et al., 2004). Here, the results that are
particularly relevant to the behaviour of our biophysical
network model are briefly summarized. First, each of the
animals tested in this experiment displayed a bias to choose one
of the targets more frequently during algorithm 0 in which the
computer opponent passively selected both targets with equal
probabilities without exploiting the statistical biases displayed
by the animal (Fig. 2).

When the computer started to exploit the animal’s preference
for one of the targets in algorithm 1, such biases rapidly
diminished. However, these biases were not entirely removed.
The probability of choosing the rightward target in algorithm
1 was 0.489, 0.511, and 0.490, for monkeys C, E, and F,
respectively, and they were all significantly different from
0.5(p < 0.01). The probability of choosing each target in
algorithm 2 was also close to 0.5, although it was significantly
different from 0.5. In addition to the bias to choose one of the
targets more frequently, animals also displayed a tendency to
choose the same targets in two consecutive trials or alternate
between the two targets (Lee et al., 2004).

During the matching pennies game, the animals also
displayed the bias to choose the same target chosen by the
computer in the previous trial. This is equivalent to choosing
the target that was rewarded or would have been rewarded
in the previous trial, and is referred to as a win-stay-lose-
switch (WSLS) strategy. The probability that the monkey would
choose its target according to this strategy was significantly
larger than 0.5 (p < 10−10) for all monkeys and for all
algorithms, except for algorithm 0 in monkey E (Table 1). The
probability of WSLS strategy was especially high in algorithm
1, because in this algorithm the computer did not examine the
reward history and monkeys were therefore not penalized for
frequently using WSLS strategy. Interestingly, the probability
of WSLS strategy increased gradually during algorithm 1, and
this trend was statistically significant in all monkeys (Fig. 3).
Following the introduction of algorithm 2, the probability of
WSLS strategy declined towards 0.5 in all monkeys although
this bias remained statistically significant even in algorithm 2
for all monkeys (Table 1).

The change in monkeys’ choice behaviour over the course
of the experiment has been previously quantified using
entropy (Lee et al., 2004). In particular, entropy which was
computed based on the bivariate sequence consisting of the
animal’s choices and computer’s choices, decreased during
algorithm 1 mirroring the gradual increase in the use of WSLS
strategy, and increased after the introduction of algorithm 2.
In summary, these results show that animals learned to adopt
new strategies over the course of the experiment in order to
maximize their reward.
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Table 1
Probabilities of choice, reward, and a few simple strategies for monkeys’ choice behaviour in the experiment of matching pennies

Algorithm Monkey P (Right) P (Reward) Pind(Same) P (Same) P (WSLS)

0 C 0.7002* 0.4969 0.5802 0.5726 0.6674*
E 0.9017* 0.4985 0.8228 0.9808* 0.5081
F 0.3320* 0.4892 0.5565 0.6727* 0.5718*

1 C 0.4886* 0.4894* 0.5003 0.5202* 0.6462*
E 0.5110* 0.4911* 0.5002 0.4963 0.7314*
F 0.4899* 0.4951* 0.5002 0.5043 0.6333*

2 C 0.4857* 0.4766* 0.5004 0.5137* 0.5478*
E 0.4911* 0.4695* 0.5002 0.4878* 0.5345*
F 0.4717* 0.4778* 0.5016 0.4693* 0.5650*

P (Right), probability of choosing the right-hand target. P (Reward), probability of reward. Pind(Same), probability of choosing the same target as in the previous
trial estimated from P (Right); (Pind(Same) = P2

R + (1 − PR)2). P (Same), actual probability of choosing the same target as in the previous trial. P (WSLS),
probability of using the win-stay-lose-switch strategy. The asterisk indicates that the deviation from the null hypothesis is significant at the level of p = 0.01. The
null hypothesis was p = 0.5 in all cases, except that for P (Same), it was Pind(Same).
3. Stability of equilibrium strategy

In algorithm 0, the computer chose the two targets randomly
with an equal probability, independent of the monkey’s choice,
which corresponds to the Nash equilibrium in the matching
pennies game. Thus, in this condition, the animal’s choice
was always rewarded with 50% probability for both targets.
Nevertheless, each animal displayed a significant bias for
choosing one of the two targets (Figs. 2 and 3), indicating
that they deviated from the Nash equilibrium. This bias was
extreme for monkey E, but it was statistically significant in all
three animals. The deviation of the animal’s choice behaviour
from the Nash equilibrium in algorithm 0 is consistent with the
observation that human subjects do not adopt an equilibrium
strategy if the computer opponent plays according to the Nash
equilibrium (Liberman, 1962; Messick, 1967). Similarly, for a
matching pennies game played repeatedly between two human
subjects, if one subject approaches the equilibrium, the other
subject often deviates from it (Mookherjee & Sopher, 1994).
These observations have been interpreted as lack of incentive
for the subject to adopt the equilibrium strategy. Another
possible explanation is that the underlying learning mechanism
makes the equilibrium strategy unstable. We examined this
possibility using the framework of the reinforcement learning
model, which has been used to model the choice behaviour in
the matching pennies game (Barraclough et al., 2004; Lee et al.,
2004).

In the framework of reinforcement learning (Sutton &
Barto, 1998), the choice behaviour in a matching pennies
game can be determined probabilistically by two value
functions corresponding to the two alternative targets. The
value functions provide estimates for the reward expectation
for each choice in a given trial, and are updated after each trial
according to its outcome as follows

Vi (t + 1) = αVi (t) +1i (t) (1)

where α is a decay factor (0 ≤ α ≤ 1), and 1i (t) refers to the
change in the value function for the choice i at time t . Here, it
is assumed that the initial values for Vi are zero, 1i (t) = ∆1 if
the target i is selected and rewarded, 1i (t) = ∆2 if the target i
is selected and not rewarded, and 1i (t) = 0 if the target i is not
selected. The probability of choosing the rightward target at a
given time is equal to

PR =
1

1 + exp(−(VR − VL))
. (2)

The difference between this model and more standard
reinforcement learning models like Q-learning is that in this
model both value functions are updated in each trial. Because
the choice probability depends only on the difference between
the two value functions, this two-dimensional model can be
reduced to a model with one dynamical variable. If we define
U ≡ VR − VL , then U is updated by:

U (t + 1) = αU (t) ± ∆1 (or ±∆2 in unrewarded trials) (3)

where the plus (minus) sign corresponds to the case where
the rightward (leftward) target is selected. If the computer
opponent selects between the two targets randomly with the
same probabilities, then on average the update rule for U can
be described as

U (t + 1) = αU (t) + (PR − 0.5)∆ (4)

where ∆ ≡ ∆1 + ∆2. This dynamical system reaches a steady
state when U (t + 1) = U (t), and the steady-state value of U is
given by

Uss =
(PR − 0.5)∆

(1 − α)
. (5)

This equation shows how the steady state of U depends on the
choice probability which itself is a function of U (see Eq. (2)).
So, in order to determine the steady-state choice behaviour of
the model, the last equation should be solved for PR .

First, if ∆ = 0, then the only solution for the Eq. (3) is
Uss = 0 which is equivalent to PR = 0.5. This solution
is a stable steady-state for the choice behaviour dynamics, so
under this condition the model selects the two choices with
equal probability. If ∆ is positive, Eq. (3) always has one trivial
solution at PR = 0.5 and this solution is a stable steady-state if
(1−α)

∆ ≥ 0.25 (Fig. 4A). On the other hand, if (1−α)
∆ < 0.25,

then PR = 0.5 solution becomes an unstable steady-state
and two new stable steady-states emerge (Fig. 4B). So, under
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Fig. 3. Slow change in monkeys’ choice behaviour over the course of the
experiment. In each panel the average probability of choosing the same target
as in the previous trial, Psame, probability of using WSLS strategy, Pwsls,
and probability of harvesting reward, Prew, are plotted for each monkey; (A):
monkey C, (B) monkey E, (C) monkey F. The gradual change in Pwsls is present
in all monkeys’ choice behaviour but it is most prominent in the behaviour
of monkey E. Each probability is computed over a block of 500 trials. To
distinguish the behaviour in three different algorithms, blocks in algorithm 1
are shaded.

this condition, the choice behaviour is biased toward one of
the targets with a choice probability determined by the value
of (1−α)

∆ . If ∆ is negative, Eq. (3) has only one steady-state

solution at PR = 0.5 and this solution is stable if (1+α)
|∆|

≥ 0.25
and unstable otherwise (Fig. 4C and D). Notice that in this case,
an unstable steady-state at PR = 0.5 can be achieved only if the
value for |∆2| is large enough (∆2 < 0). This means that in a
trial with no reward, the value function for the chosen target
will be reduced sufficiently so it is more likely that the model
chooses the other target in the next trial.
Table 2
Maximum log likelihood estimates of reinforcement learning model parameters
for monkeys’ choice behaviour in algorithm 0

Monkey ∆1 ∆2 α 1−α
∆1+∆2

C 0.0308* 0.0030 0.9921* 0.2337
E 2.0227* 1.1515* 0.6843* 0.0995
F 0.8684* 0.1409* 0.7704* 0.2275

The parameter values were obtained using data from the last 2 days of algorithm
0. The asterisks indicate the estimated model parameters that were significantly
different from zero (p < 0.01).

To determine whether this analysis can account for the
biased choice behaviour seen in algorithm 0, the model
parameters for the above reinforcement learning model were
examined (see Lee et al. (2004) and Table 2). We found that
for the model parameters estimated for the choice behaviour
in algorithm 0, ∆ is positive and (1−α)

∆ < 0.25, and this was
true for all animals. These results suggest that a biased choice
behaviour observed in algorithm 0 can emerge under certain
conditions as a result of learning dynamics.

4. A biophysical model for probabilistic decision making

4.1. Description of network model

Details about the architecture of our network model can
be found in Wang (2002) (see also Brunel and Wang
(2001)). Briefly, the decision-making network consists of 2000
integrate-and-fire neurons (1600 excitatory, and 400 inhibitory)
which are grouped into three populations of excitatory neurons
and a single population of inhibitory neurons (Fig. 5).
Two of the excitatory populations (240 neurons each) are
selective to the leftward and rightward targets and the third
excitatory population (1120 neurons) is nonselective. Each
neuron receives input and sends output through realistic AMPA,
NMDA, and GABA receptors (Wang, 2002). In addition to the
recurrent synaptic currents, all neurons receive a background
input from 800 afferent neurons that are external to the
decision network and have background firing rate of 3 Hz.
In this network, the two populations of excitatory neurons
compete against each other through the population of inhibitory
neurons. This inhibition produces the so-called winner-take-all
property, so that a few hundred milliseconds after the onset of
sensory stimulus, the activity in one population increases and
suppresses the activity in the other population. Consequently,
the network’s choice in each trial can be read out according to
which neural population has a higher firing rate.

In the simulation of this network’s behaviour during the
matching pennies game, neurons in the two selective popu-
lations receive an additional input following the presentation
of the two choice targets. This input is mediated by 0.625%
of afferent neurons that increase their firing rates from 3 to
12 Hz. Synapses between these afferent neurons and the exci-
tatory neurons are assumed to be plastic and binary (O’Connor,
Wittenberg, & Wang, 2005; Petersen, Malenka, Nicoll, & Hop-
field, 1998), with two discrete states, potentiated state with peak
conductance of g+ = 3.0 nS and a depressed state with peak
conductance of g− = 2.1 nS.
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Fig. 4. Stability analysis of the reinforcement learning model in algorithm 0. A steady state is given by the intersection of the update rule (blue curve) and the
identity line (block line). For a fixed value of α, as the absolute value of ∆ becomes larger, choice behaviour at PR = 0.5, or equivalently at U (t) = 0, becomes
unstable. As shown in the top panels, if ∆ is positive, as ∆ increases the stable steady-state at U (t) = 0 (A) becomes unstable and two new stable steady-states
emerge (B). Bottom panels (C and D) show the case in which ∆ is negative. In this case a more negative value of ∆ results in instability at U (t) = 0 (D). This
instability results in alternation between the two targets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
At a given moment, for a set of synapses associated with a
particular population i of excitatory neurons, a fraction of such
synapses ci are in the potentiated state, whereas the remaining
fraction 1 − ci are in the depressed state. This parameter ci is
called the ‘synaptic strength’ and it determines the overall input
to neurons in selective population i . We assume that firing rates
of the input neurons to both selective populations of excitatory
neurons are similar, so the difference in the overall inputs to
the two populations depends only on the states of their plastic
synapses. In the present study, we do not model a read-out
network for decision making explicitly. Instead, we assume that
at the time when the difference between the average firing rates
of the two selective populations exceeds a fixed threshold of
10 Hz (for an interval of at least 50 ms), the population with a
higher firing rate determines the choice of the network.

4.2. Neural activity and choice behaviour of model network

Due to the winner-take-all dynamics, the model network
is capable of making a binary decision, even when the
strengths of plastic synapses are relatively similar for the two
populations of excitatory neurons. This is demonstrated by the
examples shown in Fig. 6, for the case when the synaptic
strength for the population of neurons selective to the rightward
target is slightly larger. Because neural spike discharges are
Fig. 5. Schematic model architecture. The core of the model consists of
two populations of excitatory neurons which are selective to the two target
stimuli and compete against each other through feedback inhibition. Upon the
presentation of stimuli, neurons in the two selective populations receive similar
inputs through plastic synapses. At the end of each trial these plastic synapses
undergo a stochastic Hebbian learning rule which is gated by the all-or-none
reward signal.

intrinsically stochastic, the network’s choice can change from
trial to trial but it is more frequently biased towards the target
with a stronger input. In this example, the right population
wins the competition and determines the network’s choice in
approximately 55% of the trials.
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Fig. 6. Examples of neural activity in the decision-making network in 20 simulated trials. The left panels show the population activity of the neurons, and the spike
trains of example neurons in the two selective populations in trials in which the right population (red traces) wins the competition. Similarly the right panels show
the activity in trials in which the left population (blue traces) wins the competition. In these simulations the synaptic strength onto the right populations is set to
cR = 52%, and synaptic strength onto the left populations is set to cL = 48%.
We further quantified the probabilistic choice behaviour of
the network by computing the choice probability as a function
of different synaptic strengths, cR and cL . We found that
the choice probability is approximately only a function of
the difference between the synaptic strengths. This is shown
in Fig. 7, which shows, for three different overall synaptic
strengths, the probability of choosing the rightward target as
a function of the difference between the two synaptic strengths,
cR−cL . The choice probability as a function of the difference in
synaptic strengths can be fitted by a sigmoid (softmax) function.

PR =
1

1 + exp
(
−

cR−cL
σ

) (6)

where PR is the probability of choosing the rightward target.
This is interesting because many models in reinforcement
learning (Sutton & Barto, 1998) and game theory (Camerer,
2003) assume such a decision criterion to map valuation to
action, and our model represents a neuronal instantiation of it.

The value of σ in Eq. (6) indicates the randomness of the
network’s choice behaviour, that is a larger value of σ denotes
a network with more random choice behaviour. In the model,
the value of σ is determined by the structure of the network
and the range of the actual difference in the overall currents
passing through the plastic synapses for the two populations of
excitatory neurons. For example, if the difference in the overall
synaptic currents fluctuates within a small range, then σ would
Fig. 7. Choice behaviour of the decision-making network as a function of the
difference in synaptic strengths. The choice probability is extracted from the
full network simulations (400 trials for each set of synaptic strengths). Different
symbols represent different sets of synaptic strengths with different overall
synaptic strength cR + cL = 60% (plus), 100% (square), 140% (circle). The
red curve shows a sigmoid function fit to all data points (Eq. (6), σ = 21%).
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

be large and the model behaves stochastically. The overall
synaptic conductance (and similarly current) to each neuron is



1082 A. Soltani et al. / Neural Networks 19 (2006) 1075–1090
a function of multiple factors, including the presynaptic firing
rate, the peak conductance of the potentiated and depressed
states, and the total number of plastic synapses and can be
described by:

G = Np fst (cg+ + (1 − c)g−)τsyn (7)

where Np is the number of plastic synapses onto each neuron,
fst is the firing rate of the presynaptic neurons, g+ and g− are
the peak conductance of the synapses in the potentiated and
depressed states respectively, and τsyn is the time constant of
the AMPA receptors. Thus the difference in the overall synaptic
conductance can be written as:

G R − GL = (cR − cL)Np fst (g+ − g−)τsyn. (8)

As a result, any of the factors in the right side of Eq. (8) can
affect the difference in the overall synaptic currents to neurons
in selective populations and so it can change the value of σ . For
the parameters we used here the value of σ is equal to 21%,
but its value can be increased or decreased if any of the factors
mentioned above change. For example, the value of σ can be
reduced if the firing rates of input neurons increase.

To avoid time-consuming network simulations for individual
trials of the experiment, we use the extracted sigmoid function
(Eq. (6)) to compute the choice probability for a given set of
cR and cL values. We then used this choice probability to flip
a biased coin and determine the choice of the network in that
trial. At the end of each trial, the synaptic strengths are modified
according to the outcome of that trial (rewarded or unrewarded)
and the learning rule which is presented in the next section.

4.3. Stochastic learning rule gated by reward

Many different types of learning in a natural environment
is driven by reward or punishment (Thorndike, 1911). Such
information must be translated into an internal signal in the
brain to affect the learning process. Accordingly, the regulation
of synaptic plasticity by a hetero-synaptic modulatory signal
related to reward or punishment is required for any learning
rule that can be used to optimize the overall gain of reward.
Indeed, dopamine may act as a common currency for such a
reward signal in the brain (Schultz, 2000, 2006) and modulate
synaptic plasticity (Jay, 2003).

The modulatory effect of dopamine has been studied in
different brain areas including the striatum, the hippocampus
and the prefrontal cortex (Jay, 2003; Otani, Daniel, Roisin,
& Crepel, 2003; Reynolds & Wickens, 2002). In particular,
afferents from the cerebral cortex and dopamine inputs arising
in the substantia nigra pars compacta converge in the striatum,
and corticostriatal synapses undergo plasticity according to
the activity of dopamine neurons (Reynolds, Hyland, &
Wickens, 2001; Reynolds & Wickens, 2002). Furthermore,
in the rat prefrontal cortex, the induction and direction of
long-term depression (LTD) and long-term potentiation (LTP)
is modulated by dopamine (Huang, Simpson, Kellendonk, &
Kandel, 2004; Otani et al., 2003).

In our model, synaptic plasticity is Hebbian and gated by a
reward signal. The Hebbian component implies that plasticity
is dependent on correlation between pre-synaptic and post-
synaptic activity. In addition, the absence of the reward signal
can reverse the direction of plasticity. This reward signal is
assumed to be binary, indicating whether a reward has been
harvested or not. In our simulation, the pre-synaptic side of
plastic synapses is always active, because stimuli are presented
throughout the trial, so the direction and magnitude of synaptic
plasticity is determined entirely by the postsynaptic activity and
reward signal.

We also assume that synaptic plasticity is stochastic. In
other words, when the condition for plasticity is met, plastic
synapses undergo changes with some probability (Amit & Fusi,
1994; Fusi, 2002; Fusi, Drew, & Abbott, 2005). Specifically,
for the condition that requires synaptic potentiation, depressed
synapses are potentiated with probability q+. Similarly, for
the condition that requires synaptic depression, the potentiated
synapses are depressed with probability q−. As we mentioned
before, the impact of the sensory input on each population
of excitatory neurons is determined by the synaptic strengths,
cL and cR , each defined as the fraction of synapses in the
potentiated state in a given selective population. Updating rule
for these synaptic strengths can therefore be written as:

ci (t + 1) = ci (t) + q+(r; νi )(1 − ci (t)) − q−(r; νi )ci (t) (9)

where i = R or L; q+(r; νi ) and q−(r; νi ) are the potentiation
and depression rates, respectively. The second term describes
the change due to the transition of depressed synapses (fraction
1 − ci of synapses are potentiated with probability q+(r; νi ))
and the third term describes the change due to the transition
of potentiated synapses (fraction ci of synapses are depressed
with probability q−(r; νi )). The learning parameters, q+(r; νi )

and q−(r; νi ), depend on the firing rates of a postsynaptic
neuron at the end of a trial νi , and the outcome r (rewarded
or unrewarded). As we showed in the last section, the firing
rate, νi , of neurons selective to the chosen (unchosen) target is
high (low) at the end of a trial, so we assume only two possible
states for the firing rate of postsynaptic neurons, high and low.
As a result, each of the four possible outcomes of the decision
making (whether the firing rate of the neurons is high or low,
and whether a reward is delivered or not) requires two separate
learning rates. Thus, in theory, many different learning rules are
possible. In the following, we consider two important examples
of this learning rule and their connections to the reinforcement
learning model (Lee et al., 2004).

4.4. Choice-specific learning rule

The above learning rule can be simplified if one assumes
that synapses projecting to inactive neurons are not modified.
This means that in each trial, only the synapses projecting
to the population of excitatory neurons corresponding to the
chosen target are modified. Accordingly, we refer to this rule
as a ‘choice-specific’ learning rule. We also assume that in each
trial only one form of plasticity (i.e. potentiation or depression)
occurs and the direction of plasticity is determined by the
presence or absence of reward. In other words, if the choice in a
given trial is rewarded, then synapses are potentiated (i.e. LTP),
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Fig. 8. Performance of the model with different learning rules in algorithm 1. (A) In the model with choice-specific learning rule, the probability of choosing the
same target in two consecutive trials, Psame, mostly increases as the probability of WSLS strategy, Pwsls, increases. In addition there is a limit for Pwsls in this
model. (B) In the model with belief-dependent learning rule, Psame decreases as the Pwsls increase, and Pwsls can reach to value close to 1. If σ value is large, Pwsls
can vary over a large range while Psame is close to 0.5, consistent with the monkeys’ choice behaviour. For these simulations q+ (or qr ) is fixed at 0.1 while q− (or
qn ) is varied in the range of [0.025, 0.825]. The value of σ is set to 5% (solid), 10% (dash), and 20% (dot–dash).
and if the choice is not rewarded, they are depressed (LTD).
This reduces the number of learning parameters to two and the
updating rule can be written as:

Right is selected and rewarded:{
cR(t + 1) = cR(t) + (1 − cR(t))q+

cL(t + 1) = cL(t).
(10)

Right is selected but not rewarded:{
cR(t + 1) = cR(t) − cR(t)q−

cL(t + 1) = cL(t).

The learning rule for trials in which the leftward target is
selected can be obtained by switching the L and R indices. Note
that in the framework of reinforcement learning models, this
learning rule is equivalent to the state-less Q-learning (Sutton
& Barto, 1998).

Although this choice-specific learning rule is based on
a plausible mechanism for synaptic plasticity, there is an
important discrepancy between the behaviour of the model
driven by this learning rule and the animal’s behaviour during
algorithm 1 of the matching pennies game. According to this
learning rule, the model is more likely to choose the same target
after a rewarded trial (i.e. win-stay). However, the probability
that the model would switch to the other target after an
unrewarded trial (i.e. lose-switch) is smaller than the probably
of win-stay. This is because at the time of choice, the strength
of plastic synapses for the chosen target, ci would be on average
larger than the synaptic strength for the unchosen target. If the
choice is rewarded, ci for the chosen target would increase, and
consequently the probability of choosing the same target in the
next target would increase further. In contrast, if the choice
is not rewarded, then ci for that target would decrease, but it
may still remain larger than the strength of plastic synapses
for the unchosen target. Accordingly, the overall probability
that the model selects the same target in the two successive
trials would be larger than 0.5. In fact, for the choice-specific
learning rule, the overall probability of choosing the same target
in two consecutive trials (Psame) increases with the probability
of WSLS strategy (Fig. 8A).
In contrast, the monkeys tested in the matching pennies task
displayed approximately the same amount of win-stay and lose-
switch behaviours. Moreover, the probabilities of win-stay and
lose-switch were both high during algorithm 1, and yet Psame
was quite close to 0.5. We therefore conclude that the choice-
specific learning rule cannot account for the choice behaviour
of animals during algorithm 1.

4.5. Belief-dependent learning rule

The choice-specific learning rule described above utilizes
only two model parameters, q+ and q−, and allow only the
synapses for the population of neurons related to the chosen
target to be modified. Alternatively, the general learning rule
described by Eq. (9) can be simplified by assuming that
synapses for the population of neurons related to the unchosen
target, and therefore, synapses leading to the inactive neurons,
are also modified with the same probability as the synapses
of the population for the chosen target, but in the opposite
direction. In game theory, the type of learning rules which
modify indiscriminately the value functions for chosen and
unchosen actions are known as belief learning (Camerer, 2003;
Lee, McGreevy, & Barraclough, 2005). Thus, we refer to our
second example of update rule as ‘belief-dependent learning
rule’, since this modifies the plastic synapses projecting to both
choices at the end of each trial. By assuming that the learning
rates in a given trial are similar for both sets of synapses,
but differ for rewarded and unrewarded trials, we obtain the
following learning rule:

Right is selected and rewarded:{
cR(t + 1) = cR(t) + (1 − cR(t))qr
cL(t + 1) = cL(t) − cL(t)qr .

(11)

Right is selected but not rewarded:{
cR(t + 1) = cR(t) − cR(t)qn
cL(t + 1) = cL(t) + (1 − cL(t))qn

where qr and qn are the learning rates in the rewarded and
unrewarded trials, respectively.
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Fig. 9. Examples of different model’s choice behaviour in algorithm 0. The model shows different choice behaviours depending on the learning parameters (for
fixed σ = 10%). (A) For model parameters of qr = 0.035, qn = 0.03, the condition for a stable steady-state at PR = 0.5 is met so the two targets are chosen with
equal probability. (B) For qr = 0.09, qn = 0.03 the condition for the stable steady-state at PR = 0.5 is not fulfilled and two new stable steady-states emerge. As a
result, the model randomly shows a strong bias for one of the choices (in this example for the leftward choice). (C) If qr = 0.1, qn = 0.7 the only steady state at
PR = 0.5 is unstable and the model mostly alternates between the two choices. The black line shows the unity line.
We now show that this learning rule is closely related to the
reinforcement learning model used in Lee et al. (2004). First,
we define a new variable c which is equal to the difference
between cR and cL . The update rule for c in rewarded trials
can then be written as:

c(t + 1) = c(t)(1 − qr ) ± qr (12)

where the plus (minus) sign applies to the trials in which the
rightward (leftward) target is chosen. Similarly, for unrewarded
trials, the update rule is

c(t + 1) = c(t)(1 − qn) ∓ qn (13)

where the minus (plus) sign applies to the trials in which
the rightward (leftward) target is chosen. Comparing the last
two equations with the reinforcement learning model in Eq.
(3) shows that this learning rule is equivalent to the learning
rule in a reinforcement learning model with two decay factors
(1 − qr ) and (1 − qn) for the rewarded and unrewarded trials,
respectively. Furthermore the equivalent changes in the value
function, ∆1 and ∆2, are equal to qr and −qn respectively, but
these values are dependent on the decay factors.

Due to these similarities, choice behaviour of the model
with the belief-dependent learning rule is quite similar to that
of the reinforcement learning model described in Eq. (3).
More importantly, the abstract parameters in the reinforcement
learning model are grounded to the learning rates at the
synaptic level. This implies that value functions of alternative
actions can be stored in plastic synapses, and that the decay
factor in the reinforcement learning model is equivalent to
the probability that plastic synapses are not modified. The
dependence of the decay factor on the amount of change in each
trial results directly from the fact that the number of available
synapses (and the number of possible synaptic states) is limited.
This biophysical constraint causes the representation of value
function to be limited. At the same time, however, the amount
of noise in the decision-making network, measured by σ , can
amplify the limited difference between the synaptic strengths
and influence the randomness of choice behaviour.
5. Model’s behaviour in the game of matching pennies

As described in the previous section, our model with the
belief-dependent learning rule at the synaptic level behaves
similarly compared to the reinforcement learning model, and
the synaptic strength of this model can represent the value
function for each choice. In this section, the choice behaviour
of our model is characterized further, focusing on the behaviour
during algorithm 0 and the robustness of the model.

5.1. Stability of model’s behaviour in algorithm 0

In Section 3, we examined the conditions in which
the reinforcement learning model shows an unstable choice
behaviour during algorithm 0. In this section, we identify
conditions in which our network model shows similar
behaviour, and illustrate the unstable choice behaviour of
the model. Based on the calculations in Section 3 and the
comparison between the network model and the reinforcement
learning model presented in Section 4.5, one can show that the
steady-state value for c (≡ cR − cL) is given by

css =
2(qr − qn)(PR − 0.5)

qr + qn
. (14)

Note that in our network model, the choice probability is
affected by the value of σ (PR =

1
1+exp(− c

σ
)
), so the dynamics

of the choice behaviour in algorithm 0 falls into three regimes.
If (qr −qn) is positive, Eq. (14) always has one solution at PR =

0.5 and this solution is a stable steady-state if σ(qr +qn)
2(qr −qn)

≥ 0.25.
An example of this choice behaviour is shown in Fig. 9A.
Although model chooses the two targets with equal probability,
it may locally show some preference for one of the targets. If
instead σ(qr +qn)

2(qr −qn)
< 0.25 then PR = 0.5 solution becomes an

unstable steady-state and instead two other stable steady-states
emerge. As shown in Fig. 9B, the model then shows a clear bias
toward one of the targets (which can be any of the two targets).
This means that if the difference between the learning rates in
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Fig. 10. Choice probability and performance of the model with an intrinsic bias. (A) The black curve shows the probability of choosing the rightward target for a
given intrinsic bias, when the plastic synapses are not modified (or there is no feedback). The blue curve shows the probability of choosing the rightward target for
the same model which plays against the computer in algorithm 1 and plastic synapses are modified. The bias in the model is drastically reduced, due to feedback
and learning dynamics. (B) Performance of the model with an intrinsic bias. The probability of obtaining reward is plotted for different intrinsic biases while the
model plays against the computer opponent in algorithm 1 (blue curve). The black curve shows the harvesting rate if the synapses are not modified and only the
intrinsic bias determines the choice probability. For each value of the bias (from −50 to 50 with intervals of 1) the average in each condition is computed over 400
days (each day consists of 1000 ± 200 trials) of the experiment and the model parameters are set to qr = 0.1, qn = 0.2, and σ = 10%. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
the rewarded and unrewarded trials is positive and large, the
choice behaviour can be biased towards one of the targets. This
regime may correspond to monkeys’ choice behaviour in the
Barraclough et al. (2004) experiment during algorithm 0.

If the learning rates in unrewarded trials is greater than those
in rewarded trials (qr − qn ≤ 0), there is only one steady-
state at PR = 0.5 for Eq. (14). This steady state is stable if
σ(2−qr −qn)

2(qn−qr )
≥ 0.25 and unstable otherwise. This instability at

PR = 0.5 results in the alternation between the two targets
(Fig. 9C), and is therefore qualitatively different from the
instability resulting when qr − qn ≥ 0. Because the choice
behaviour is binary and stochastic, a stable steady-state biased
toward one of the targets may not be easily distinguishable from
a stable choice behaviour at PR = 0.5. If the choice is slightly
biased, only the average choice probability would depart from
PR = 0.5 over a long sequence of trials. Overall, these
results demonstrate that our model can produce an intrinsically
probabilistic choice behaviour. In addition, a biased and non-
random choice behaviour can also emerge from the same
model. This biased choice behaviour does not necessarily
reflect the insensitivity of the model to the reinforcement or
feedback, but instead may result from the learning mechanism
of the model.

5.2. Intrinsic bias and model robustness

Stability analysis described in the previous section was
based on the assumption that the choice behaviour is not
intrinsically biased toward one of the choices. However, the
decision-making network may have an intrinsic bias, if there
is asymmetry in the constant inputs to different populations.
If so, one of the targets would be preferred over the other
target, and the fixed point or steady state of choice behaviour
at PR = 0.5 will be shifted to another point. For the animal’s
choice behaviour in algorithm 0, it is not possible to distinguish
such an intrinsic bias from a bias resulting from the dynamics
of learning. If the bias is due to the dynamics of learning
mechanism, one can expect that it would resolve once the
computer begins to punish such a biased choice behaviour.
The question remains as to whether an intrinsic bias in the
network can be remedied by the presence of plastic synapses
which undergo our learning rule. In the following, we consider
this issue for the animal’s choice behaviour in algorithm 1
that penalizes a biased choice behaviour and rewards a random
sequence of choices. On the one hand, a stochastic behaviour in
the reinforcement learning model requires a relatively slow rate
of learning, because a large learning rate produces a predictable
behaviour, such as win-stay or lose-switch. On the other hand,
the slow rate of learning may interfere with the network’s
ability to reach the unbiased choice behaviour. Here, we try to
address this question by studying our model choice behaviour in
algorithm 1 (similar results can be obtained in algorithm 2). The
intrinsic bias was implemented by adding a constant term to the
c value, which is equivalent to a constant current injected to one
of the selective populations in the decision-making network.

If the model does not receive any feedback (or similarly if
plastic synapses are not modified), the choice selection is biased
toward the choice which receives an additional input. This is
shown in Fig. 10. If the model receives feedback and synapses
are modified according to our belief-dependent update rule, the
intrinsic bias is compensated by synaptic changes and the bias
in the choice behaviour is dramatically reduced (blue curve in
Fig. 10A). This compensation leads to a high overall reward rate
(Fig. 10B). This compensation takes place because the plastic
synapses related to the population with additional input tend
to be depressed as the same population frequently wins the
competition and determines the target choice without reward.
As a result, the average value of synaptic strength projecting
to this population would be lower than the synaptic strength
related to the other population. This is illustrated in Fig. 11.

5.3. Comparison with the animal’s behaviour

Previously, Lee et al. (2004) fit the choice behaviour of each
animal in different algorithms with a reinforcement learning
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Fig. 11. Intrinsic bias can be compensated by plastic synapses. (A) Time course of the average synaptic strengths, cR and cL , in algorithm 1. Within about 10
trials the difference between the two synaptic strengths increases to compensate for the intrinsic bias. In this simulation the rightward choice receives an additional
constant input which is equivalent to 40% difference in synaptic strengths. The average is computed over 1000 sessions. (B) The average synaptic strengths for
different values of intrinsic bias. As the intrinsic bias increases the difference in synaptic strengths also increases. The averages are computed over 1000 sessions
for each intrinsic bias. The model parameters are set to qr = 0.1, qn = 0.2, and σ = 10%.
model. Although this model captured some key features of
the animal’s behaviour, the animal’s choice behaviour was not
stationary throughout the course of the experiment. Instead, the
behaviour changed during and across different algorithms, as
shown in Section 2.2. Here, we used our model with belief-
dependent learning rule to fit the animal’s choice behaviour
for each day of the experiment separately. In this analysis, the
value of σ value was fixed at 50%, since this made it easier to
compare the learning rates across multiple days.

The resultant maximum likelihood estimates (Burnham &
Anderson, 2002) of the learning rates are plotted for each
day of experiment in Fig. 12. These estimates give some
insight into the choice behaviour in different algorithms. For
example, for monkey E in algorithm 0, qr is substantially
larger than qn , which is in line with the results in Section 5.1
regarding the instability of the choice behaviour around PR =

0.5. Furthermore, the value of learning rates changes from
day to day, especially during algorithm 1 in monkey E. In
this case, as the animal increased the use of WSLS strategy
gradually, the learning rates also increased. When the algorithm
2 was introduced, the learning rates decreased, suggesting that
random choice behaviour might result from adaptation of the
learning rates to small values (slow learning). These results
indicate that in order to provide a full account of the behaviour,
an additional mechanism is required to adjust the learning
rates. In the next section, we consider how this might be
accomplished through an algorithm that modifies the learning
rate in order to maximize the reward rate.

6. Meta-learning

The behavioural data and the estimates of learning rates
described above suggest that in addition to the trial-to-trial
dynamics of the choice behaviour, there is a much slower
change in the behaviour which takes place across multiple days
during the course of the experiment. This slow change was most
noticeable, when the computer opponent switched to algorithm
2 (see Figs. 3 and 12). During this experiment, animals were
not explicitly cued for the transitions in the algorithms used by
the computer. Nevertheless, after algorithm 2 was introduced,
they all experienced a transient reduction in the reward rate.
Therefore, change in their choice behaviour might result from
steps taken to restore the previous level of reward rate. In order
to check this hypothesis we implemented a modified version
of the meta-learning algorithm proposed by Schweighofer and
Doya (2003), which is an extension of the stochastic real value
units algorithm (Gullapalli, 1990).

6.1. Meta-learning algorithm

The goal of a meta-learning model is to maximize the
long-term average of rewards, by using stochastic units and
comparison between the medium-term and long-term running

averages of the reward rate, denoted by r(t) and r(t),
respectively. Our model has three parameters which can be
adjusted by this meta-learning algorithm (qr , qn , and σ ). It is
possible that signals related to these running average reward
rate are encoded by the firing of neurons in specific brain
areas. However, in our simulation, we do not explicitly model
such neurons, since little is known about the candidate neural
mechanism for such signals. Instead, we simply assume that
learning rates of the plastic synapses, qr and qn , are controlled
by the activity in two different sets of neurons. Similarly, we
assume that the sensitivity of the network, σ , is controlled by
another set of neurons. With these assumptions, we examine the
effect of meta-learning on the model parameters directly.

During meta-learning, all model parameters (say Λ) are
perturbed after every n trials (n � 1) as follows.

Λ′(t) = Λb + δλ(t) (15)

where Λb is the mean value of the parameter Λ, and δλ is
the amount of perturbation which is drawn from a Gaussian
distribution with a zero mean and variance ελ. These new
parameters are then used to generate the choice behaviour. After
a few hundred trials, the activity of modulating neurons are
modified according to the difference between the mid-term and
long-term averages of reward rate and as a result the mean value
of model parameters (say Λ) are updated according to:

Λ′

b = Λb + νλ(r(t) − r(t))δλ(t) (16)
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Fig. 12. Maximum likelihood estimate of the model parameters. These
parameters are obtained from fitting the choice behaviour of three monkeys
in each day of the experiment; (A) monkey C, (B) monkey E, (C) monkey F.
The gradual change in the learning parameters during the experiment is another
indication that monkeys changed their strategies continuously. Consistent with
the results obtained in Section 5.1, qr is larger than qn in algorithm 0 which
explains the observed unstable choice behaviour around PR = 0.5. During
algorithm 1, in all monkeys both learning rates increase which result in increase
in the use of WSLS strategy. During algorithm 2 the learning rates decrease
which shows that the only possible way to play randomly is to have slow
learning. For these fittings, the value of σ is fixed at 50%.

where νλ is a meta-learning rate, and r(t) and r(t) are the
mid-term and long-term running averages of reward rate,
respectively. The mid-term and long-term running average of
reward rate are computed according to the following update
rule.

1r(t) =
1
τ1

(−r(t) + r(t))

1r(t) =
1
τ2

(−r(t) + r(t))

where τ1 and τ2 are the time constants for averaging the
past rewards. Based on this algorithm if after a perturbation,

r(t) becomes larger (smaller) than r(t) (which means the
perturbation was good (bad)) the mean learning parameter
will be changed in the direction (in opposite direction) of the
perturbation. In the next subsection, we show how this model
Fig. 13. An example of the model’s average choice behaviour in 200 days of the
experiment. When the meta-learning is active the model’s choice behaviour is
adjusted according to the algorithm used by the computer opponent. (A) Time
courses of different measures of the model’s choice behaviour (average over
blocks of 500 trials). Blocks during algorithm 1 are shaded. (B) The model
parameters are adjusted in each 200 trials according to meta-learning algorithm.
The initial values for the model parameters are qr = qn = 0.1 and σ = 10%
and meta- learning parameters used for updating the learning rates (qr and qn )
are νq = 2, and εq = 0.002, and for updating the noise level σ , νs = 5,
εs = 0.005. The time constants for averaging reward are set to τ1 = 100 and
τ2 = 400 trials.

can qualitatively replicate the gradual changes in the animal’s
choice behaviour over the course of the experiment.

6.2. Choice behaviour with meta-learning

We simulated the behaviour of the model with the above
meta-learning algorithm during the matching pennies game
against the computer opponent for 200 days of experiment (9
days in algorithm 0, 100 days in algorithm 1 and 91 days in
algorithm 2). Each day of experiment consisted of 1000 ± 200
trials and the model parameters were modified according to
the meta-learning algorithm every 200 trials. We assumed that
learning rates are not very small, so the minimum value for
both learning rates (qr and qn) was set to 0.025. In addition,
the maximum value for σ is set to 25%. These limits set the
minimum change in the choice probability after any trial to be
2.5%.

An example of the model’s choice behaviour over the
course of the experiment is shown in Fig. 13. In Fig. 13A,
averages of three quantities related to model’s behaviour are
plotted (Pwsls, Psame, Prew). This plot shows that following the
introduction of algorithm 2, the model obtained the maximum
reward rate by exploring different parameters. Notice that
sometimes fluctuations in the reward rate caused changes in the
model parameters without influencing the reward rate (e.g. in
algorithm 0). This example is qualitatively similar to the choice
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Fig. 14. Another example of the model’s average choice behaviour in 200 days
of the experiment. The model parameters are similar to those used in Fig. 13.

behaviour of monkey E, in that there was a gradual increase
in the probability of WSLS strategy during algorithm 1, which
diminished soon after the introduction of algorithm 2. During
this simulated experiment, the model parameters changed
from block to block, while maintaining the reward probability
close to the maximum level (Fig. 13B). The learning rate for
rewarded trials, qr , was small and fluctuated around a relatively
small value, whereas the learning rate for the unrewarded trials,
qn , increased during the course of algorithm 1. A value of qn
larger than qr results in more use of WSLS strategy which
can be seen from Fig. 13A. An interesting finding from this
simulation is that during algorithm 1 the noise level does not
need to be large, in order to obtain the maximum overall reward.
This strategy is not viable during algorithm 2, as reflected in
a transient reduction in reward rate following the introduction
of algorithm 2. Consequently, qn decreased quickly while σ

increased.
In most of the results obtained without meta-learning

algorithm, we fixed the value of σ which determines the noise
level in the decision making process. A large value for σ

gives rise to a random choice behaviour, but the behaviour
resulting from a large σ is different from the experimental
observation (e.g. Pwsls in all monkeys is significantly larger
than 0.5). For this reason, we set a limit for σ value in order
to prevent the model from adopting a trivial solution. For the
model with meta-learning algorithm, it was important that both
learning rates decreased and level of noise (σ ) increased in
order to obtain the maximum rate of reward during algorithm
2. In addition, the model with meta-learning produced a
diverse pattern of results. If we rerun the same simulation
with similar initial condition, we can observe other possible
patterns of choice behaviour. The second example, shown in
Fig. 14, is more similar to the choice behaviour of monkey C.
Overall, these results show different possibilities for generating
random choice behaviour. Not only the initial condition and
meta-learning parameters, but also the probabilistic nature of
this task can shape the time course of the choice behaviour.
Therefore, the stochastic nature of meta-learning rule can be
an underlying mechanism for generating a diverse repertoire of
choice behaviour observed in various competitive games.

7. Discussion

One of the most important and influential models of decision
making is reinforcement learning (Sutton & Barto, 1998).
In this framework, desirability of each action is represented
by a value function that estimates the expected amount
of reward resulting from a particular action. Consequently,
actions with high value functions are chosen more frequently.
The outcome of each action is then compared to the
previously expected outcome, and the resulting error is
used to update value functions appropriately. Although the
reinforcement model is plausible, its applicability to the
brain remains to be firmly established in neurobiology. In
particular, the detailed network and cellular mechanisms of
reinforcement learning are still poorly understood and are
currently the topic of active research (Lee, 2006; Sugrue,
Corrado, & Newsome, 2005). In this paper, we proposed
a biophysical implementation of a reinforcement learning
algorithm based on reward-dependent stochastic Hebbian
synaptic plasticity. Combined with a probabilistic decision-
making network described previously (Wang, 2002), our model
successfully accounted for several important features of the
choice behaviour displayed by monkeys during a competitive
game (for application of this model to another task see Soltani
and Wang (2006)). The choice behaviour of our network
model is determined by a softmax (i.e. logistic) function of
the difference in the synaptic strengths, and accordingly the
stochastic choice behaviour of our model results from ongoing
fluctuation in neuronal activity and attractor dynamics of the
decision-making network. Importantly, the plastic synapses
in this model can temporally integrate information about the
past rewards, such that the overall strengths of these synapses
store information about value functions. This representation
is bounded because the synaptic strengths can only take
values between zero and one. Nevertheless, this bounded
representation does not necessarily limit the ability of the
model to generate a desired pattern of behavioural choices,
such as a deterministic sequence of actions for problem solving
or unbiased random behaviour during a competitive game.
For example, to generate a deterministic behaviour with a
relatively small synaptic strength, the input firing rates of
presynaptic neurons can be increased, so that the difference in
the overall currents injected to different neuronal populations
in the network is large enough to introduce a strong bias in
the choice behaviour of the network. In contrast, if the model
is required to generate highly stochastic choice behaviour, as
in the matching pennies game, the plastic synapses can be
modified according to a specific learning rule to restore the
network back to the probabilistic regime.

In our model, it is assumed that the plastic synapses
determine the strengths of inputs to the neurons in the decision-
making network. These plastic synapses must be modified
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according to the chosen action and its outcome. The anatomical
location of such plastic synapses, however, is not known. The
decision-making network in our model was originally proposed
as a simplified model for the lateral intraparietal cortex (LIP,
a cortical area critical to controlling oculomotor behaviour
(Wang, 2002)).

Although almost all areas of the primate cortex, including
LIP, receive dopaminergic innervation (Lewis et al., 2001) and
therefore in principle have access to the reward signals, it is not
known whether plastic synapses modelled in our network are
indeed localized in the LIP. It also has been proposed that basal
ganglia provides a candidate circuit for action selection (Houk,
Davis, & Beiser, 1995; Redgrave, Prescott, & Gurney, 1999;
Reynolds & Wickens, 2002). In contrast to our model in which
action selection is performed by competition through feedback
inhibition, action selection in basal ganglia has been assumed
to happen through multiple inhibitory pathways (Berns &
Sejnowski, 1998) although the underlying neural mechanism
for such action selection has not been fully understood. A recent
study has shown that some neurons in the striatum indeed
encode information about the value functions of different
actions (Samejima, Ueda, Doya, & Kimura, 2005). It is also
possible that the type of plastic synapses utilized in our model
is widespread in a broad network of cortical and subcortical
areas, including multiple regions of the prefrontal cortex.

We have showed that the model captures behavioural
data from the matching pennies task of Barraclough et al.
(2004), using a ‘belief-dependent learning rule’, which updates
synapses onto neurons selective for both chosen and unchosen
targets, in contrast to a ‘choice-specific learning rule’,
according to which only those synapses onto neurons selective
for the chosen target are modified. However, the belief-
dependent learning rule we have used in the present study
assumes that, in an unrewarded trial, synapses onto inactive
neurons (those selective for the unchosen target) undergo
potentiation, which may not be biologically plausible. In future
studies it would be worth exploring variants of belief-dependent
learning rules without this feature. Other kinds of mechanisms,
perhaps involving a large network of multiple brain areas, are
also conceivable.

A typical reinforcement learning algorithm only explains
the change in choice behaviour that takes places according
to the outcome of individual actions. In contrast, the choice
behaviour of monkeys during the matching pennies displayed
slow, gradual changes over a period of many days. Our
model provides a biophysically plausible account of such
behavioural changes by combining the learning rule operating
on a trial-by-trial basis with an additional meta-learning
algorithm. In reinforcement learning, meta-learning algorithms
are commonly evoked to adjust parameters, such as the learning
rate for updating value functions and the rate of temporal
discounting for delayed rewards (Doya, 2002; Schweighofer
& Doya, 2003). In contrast, a meta-learning algorithm in our
model was used to set the learning rates for plastic synapses and
the sensitivity of the network that controlled its randomness.
We found that the model with a meta-learning algorithm
reproduced several interesting features of the animal’s choice
behaviour during the matching pennies game, such as a
gradual increase in the win-stay-lose-switch strategy against a
partially exploitive opponent. These results suggest that even
in a relatively simple dynamic decision-making task, such as
matching pennies, animals continuously attempted to optimize
their rate of reward on multiple timescales.
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