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15.1 Introduction
In cortical neural circuits, the biophysics of neurons and synapses and the collective
network dynamics produce spatiotemporal spike patterns that presumably are opti-
mized for the functional specialization of the system, be it sensory, motor or memory.
Therefore, different systems might use different codes. For example, the ‘spike tim-
ing code’ or ‘correlation code’ that relies on precise spike timing is critical for the
computation of coincidence detection in the brainstem auditory pathways, and may
also contribute to information processing in other neural systems. A ‘burst code’ is
prevalent in central pattern generators of the motor systems, where rhythmicity is
produced by oscillatory repetition of brief clusters of spikes (bursts). Neurons can
also signal information using a ‘rate code’, by virtue of the frequency at which the
spikes are discharged. The idea of rate coding originated from the work of [3], who
discovered that a stimulus feature (such as intensity) could be accurately read out
from the firing rate of a sensory neuron. Since then, many studies have shown that
firing rates convey a large amount of stimulus-related information in neurons.

In a small neural network, such as the visual system of flies or the electrosensory
system of electric fish, there are a few synaptic connections per cell and each spike
has a large impact on the post-synaptic cell. Hence spike timing is expected to be im-
portant. Moreover, a reliable estimate of the firing rate of one or a few pre-synaptic
inputs requires a long-time average of spike counts and is, hence, not adequate to
subserve fast perceptual or motor behaviors in these systems at fast time scales (∼
100 milliseconds). The situation, however, is drastically different in a cortical cir-
cuit, where a huge number of neurons are available and organized into columns of
functionally similar neurons [84]. A typical cortical neuron receives thousands of
synapses, most of them from neighboring neurons [4, 76]; the impact of a single pre-
synaptic spike onto a post-synaptic cell is relatively small. Moreover, spike trains of
cortical neurons are highly stochastic and irregular (see e.g., [30, 108, 110], but see
[59]), hence there is a lot of noise in spike timing. This fact raised the question of
whether the observed spike train irregularity conveyed information or was rather a
reflection of the various sources of noise present at the cellular and network levels
[105]. Even if the spike times from single cells are noisy, information can still be
conveyed in the average activity of pools of weakly correlated neurons. Suppose
that a neuron receives connections from Ccell other neurons in a column. Being from
the same column, the average activity of these inputs is similar, but since their spike
trains are irregular the number Ni(Dt) of spikes emitted by each cell i in the time
interval [t,t + Dt] is random. The total input to the post-synaptic neuron

f (t) ∼
Ccell

Â
i

Ni(Dt)

provides an estimate of the average activity across the population. Since Ccell is large
(100-1000) [17], and neurons are only weakly correlated [14, 31, 74, 130], noise can
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be largely (though not completely) averaged out [105, 106], and the estimate of the
average activity of the pre-synaptic pool can be quite accurate even with a small Dt.
In other words, the population firing rate can be defined (almost) instantaneously
in real time. Moreover, such a rate code can be readily decoded by a post-synaptic
cell: the summation of thousands of synaptic inputs provides a means to readout the
population firing rate at any time.

Population firing rate models were introduced in the early 1970s and have since
become widely popular in theoretical neuroscience. These models are described as
non-linear differential equations, to which tools of mathematical analysis are appli-
cable. Thus, concepts like attractor dynamics, pattern formation, synchronous net-
work oscillations, etc, have been introduced in the field of neurobiology (See [37]
for a review and references). Early models, such as associative memory models,
were formulated in terms of firing-rates [27, 64]. Broadly speaking, two different
approaches can be used to construct a firing-rate model. A rate model can be built
heuristically: for example, a unit is assumed to have a threshold-linear or sigmoid
input-output relation [5, 125, 126]. This class of rate models is valuable for its sim-
plicity; important insights can be gained by detailed analysis of such models. The
drawback is that these models tend to be not detailed enough to be directly related to
electrophysiology. For example, the baseline and range of firing rates are arbitrarily
defined so they cannot be compared with those of real neurons. It is therefore dif-
ficult to use the available data to constrain the form of such models. On the other
hand, a firing-rate model can also be derived, either rigorously or approximately,
from a spiking neuron model. To do that, the dynamics of spiking neurons must
be well understood. The analytical study of the dynamics of spiking neuron mod-
els was pioneered by [68], and has witnessed an exponential growth in recent years.
Up to date, most of the work was done with the leaky-integrate-and-fire (LIF) neu-
ron model [1, 8, 11, 18, 19, 21, 24, 51, 68, 77, 88, 114, 120]. The LIF model is
a simple spiking model that incorporates basic electrophysiological properties of a
neuron: a stable resting potential, sub-threshold integration, and spikes. A network
model can be constructed with LIF neurons coupled by realistic synaptic interac-
tions. Such models have been developed and studied for many problems, such as
synchronization dynamics, sensory information processing, or working memory. In
some instances, firing-rate dynamics can be derived from the underlying spiking
neuron models [26, 36, 40, 109]. These firing rate models provide a more compact
description that can be studied in a systematical way.

Analytical studies of networks of neurons are usually performed in the context of
‘mean-field’ theories. In such theories, the synaptic input of a neuron in the network
is traditionally only described by its average: the ‘mean-field’. This first class of
models is applicable to networks in which neurons are weakly coupled and fire in a
regular fashion. More recently, mean-field theories have been introduced in which
the synaptic inputs are described not only by their mean, but also by the fluctuations
of their synaptic inputs, which come potentially both from outside the network, and
from the recurrent inputs. This second class of models is applicable to strongly
coupled networks in which neurons fire irregularly [11, 118, 119].

The objective of this chapter is to provide a pedagogical summary of this latter
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type of mean-field theory in its current state. We will introduce the theory in several
steps, from single neurons, to self-consistent theory of a recurrent network with sim-
ple synapses, to realistic synaptic models. The chapter is organized into two parts,
which address the two general ingredients of a mean-field theory for network mod-
els based on biophysics. First, a method is needed for the analytical description of
a neuron’s output in response to a large number of highly noisy pre-synaptic inputs,
including realistic synaptic interactions (time course, voltage dependence) which are
critical in determining the network behavior. This will be described in Section 15.2.
Second, in a recurrent circuit, any neuron both receives inputs from, and sends output
to, other neurons in the same network. Therefore, the pre-synaptic and post-synaptic
firing rates are related to each other. The mean-field theory provides a procedure
to calculate the neural firing rate in a self-consistent manner, in the steady-state. It
also can also be extended to a description of the temporal dynamics of the neural
firing rate. This will be discussed in Section 15.3. The self-consistent theory is then
applied to a strongly recurrent network model of working memory which displays
multi-stability between a resting state and memory-related persistent activity states.

15.2 Firing-rate and variability of a spiking neuron
with noisy input

The first part of the present paper is devoted to the firing properties of a leaky
integrate-and-fire (LIF) neuron in response to stochastic synaptic inputs. After the
introduction of the LIF neuron, we proceed as follows: First, the statistical properties
of the input current will be described, given certain assumptions about the stochastic
activity of the pre-synaptic inputs to the neuron. Second, we will discuss the con-
ditions under which the dynamics of the depolarization can be approximated by a
diffusion equation. Third, we will show how to calculate the output mean firing rate
and coefficient of variation (CV) of the cell given our assumptions. Next the effect of
finite synaptic time constants will be explained. Finally, we provide a discussion on
how realistic synaptic transmission, including voltage-dependent conductances and
non-linear summation of inputs, can be incorporated into this framework.

15.2.1 The leaky integrate-and-fire neuron

In the LIF model, the voltage difference V (t) across the membrane changes in re-
sponse to an injected current I(t) according to

Cm
dV (t)

dt
= −gL(V (t)−VL)+ I(t), (15.1)

where Cm = 0.2 nF is the total membrane capacitance, gL = 20 nS is the leak conduc-
tance and VL = −70 mV is the leak, or resting potential of the cell in the absence of
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input (see e.g., [69]). According to this equation, the membrane is seen as a simple
RC circuit, with a time constant tm given by

tm =
Cm

gL
= 10 ms. (15.2)

Spiking is implemented in the model by defining a threshold voltage Vth such that
the neuron is said to emit a spike at time tspk whenever V (t = tspk) = Vth = −50
mV. Refractoriness is taken into account by clamping the voltage to a reset value
Vr = −60 mV for a time tre f = 2 ms after each spike, i.e., if V (t = tspk) = Vth, then
V (t ′) = Vr for t ′ ∈ (t+spk,tspk + tre f ). When the neuron is inserted in a network, I(t)
represents the total synaptic current, which is assumed to be a linear sum of the
contributions from each individual pre-synaptic cell.

15.2.2 Temporal structure of the afferent synaptic current

We will start with the simplest description of the interaction between the pre- and
post-synaptic neurons. It amounts to assuming that each pre-synaptic spike causes
an instantaneous change in post-synaptic voltage which is independent of the current
value of this voltage, and depends only on a parameter J measuring the strength of the
synapse (more precisely, J is the amount of positive charge entering the membrane
due to the spike). If C neurons synapse onto this cell, each with an efficacy Ji (i =
1, . . . ,C), then the current into the cell can be represented as

I(t) =
C

Â
i=1

Ji Â
j

d (t − ti
j), (15.3)

where ti
j is the time of the jth spike from the ith pre-synaptic neuron. If the neuron

is initially at rest, and a pre-synaptic cell fires a single spike at time t = 0, then by
integrating Equation (15.1) one obtains

V (t) = VL +
Ji

Cm
exp

(
− t

tm

)
Q(t), (15.4)

where Q(t) is the Heaviside function, Q(t) = 0 if t < 0 and 1 if t > 0. Thus, the
post-synaptic potential (PSP) produced by each pre-synaptic spike consists of an
instantaneous “kick” of size J̄i = Ji/Cm followed by an exponential decay with time
constant tm. For example, if the unitary charge is Ji = 0.04 pC, and Cm = 0.2 nF,
then the kick size is J̄i = 0.04/0.2 = 0.2 mV.

We consider a neuron receiving synaptic input from a large pool of CE excitatory
and CI inhibitory cells. We make two important assumptions regarding the activity
of these inputs: first, that each of them fires spikes according to a stationary Poisson
process, i.e., with a constant probability of emitting a spike per unit time. Second,
that these Poisson processes are independent from cell to cell, i.e., the occurrence of
a spike from any given cell does not give any information about the firing probability
of any other neuron. These assumptions will need to be verified at the network level
for the theory to be self-consistent (see Section 15.3).
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We denote the average firing rate of each excitatory (inhibitory) input j = 1,
. . . , CE,I , as nE j (nIj ), and the efficacy of the corresponding excitatory (inhibitory)
synapse as JE j (JIj ). For simplicity, we first assume that all the rates and synapse
from each pre-synaptic population are identical, i.e., nE j = nE and JE j = JE for all j,
and similarly for the inhibitory population.

In this simple situation, the temporal average of the total current is constant in
time and given by

< I(t) > ≡ mC =
CE

Â
j=1

JE j nE j −
CI

Â
i=1

JIi nIi = CEJE nE −CIJI nI . (15.5)

For a Poisson process s(t) of rate n , < (s(t)−n)(s(t ′)−n) >= n d (t − t ′). Thus,
using the fact that the inputs are Poisson and independent, the connected two point
correlation function of the total current is given by

< (I(t)− < I >)(I(t ′)− < I >) > =

[
CE

Â
j

J2
E j

nE j +
CI

Â
i

J2
Ii nIi

]
d (t − t ′)

= (CE J2
E nE +CIJ

2
I nI)d (t − t ′)

≡ s 2
Cd (t − t ′). (15.6)

15.2.3 The diffusion approximation

In principle, the next step would be to solve the dynamics of the depolarization as
described in Equation (15.1) in the presence of the stochastic current I(t). As it is,
this task is still too difficult, so we will make one further approximation, namely to
replace the point process I(t), by a process Ī(t) with the same mean and two-point
correlation function as I(t), such that the voltage response V (t) to Ī(t) becomes con-
tinuous (instead of discrete as a result of the synaptic kicks) in time. The idea is
to make the size of the voltage kicks J̄E,I ≡ JE,I/Cm small, while at the same time
increasing their overall frequency by increasing CE,I (notice that since the sum of
two Poisson processes is another Poisson process, I(t) can be considered the differ-
ence of two Poisson processes of rates CE nE and CI nI respectively). For a cortical
neuron, since it receives a large number of pre-synaptic contacts, each of which con-
tributes only to a small fraction of the voltage distance between rest and threshold,
one expects this approximation to be plausible and give accurate results.

Since the inputs to our cell are assumed to be stochastic, the temporal evolution of
V (t) is probabilistic. The fundamental object for the description of the dynamics of
the membrane potential is the probability density r(V, t|V0, t0) for V (t) ∈ [V,V +dV ]
given that V (t0) = V0. If we consider our averages to be carried out over an en-
semble of identical neurons, each with a different realization of the stochasticity,
r(V,t|V0,t0) can be considered a “population” density, so that r(V, t|V0, t0)dV is the
fraction of neurons among the ensemble with membrane potentials in [V,V + dV ]
given that all neurons were at V0 at t = t0. In the Appendix, we present an intu-
itive derivation of a differential equation which governs the temporal evolution of
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r(V,t|V0,t0) in the presence of the stochastic input I(t) (see e.g., [49, 54, 97, 99] for
more details). Such equation reads

∂
∂ t

r(V,t|V0,t0) =
•

Â
n=1

(−1)n

n!
∂ n

∂V n [An r(V, t|V0, t0)], (15.7)

where

A1(V ) = − (V −VL)
tm

+(J̄ECE nE − J̄ICI nI) =

= − (V −VL)
tm

+
mC

Cm
≡− (V −Vss)

tm

A2 = (J̄E
2CE nE + J̄I

2CI nI) = (
sC

Cm
)2 ≡ s 2

V

tm

An = (J̄E
nCE nE +(−1)nJ̄I

nCI nI) n = 3,4, . . . (15.8)

where An are the infinitesimal moments of the stochastic process. The infinitesi-
mal moments completely specify the dynamics of r(V, t|V0, t0). The drift coeffi-
cient A1 captures the deterministic component of the temporal evolution of V (t);
Vss = VL + mC/gL is the steady-state voltage in the absence of stochasticity. The dif-
fusion coefficient A2 measures the fluctuations of V (t). In the absence of threshold,
the variance of the depolarization is s 2

V /2 = s 2
Ctm/(2C2

m).
In what is referred to as the diffusion approximation, An for n > 2 are assumed

to be negligible and set to zero [97, 117]. Looking at Equations (15.8), one can see
under which conditions this will be a valid approximation. Since the infinitesimal
moments depend on powers of the kick size times their overall rate, one expects the
approximation to be appropriate if the kick size is very small but the overall rate is
very large, in such a way that the size of all moments of order higher than two be-
come negligible in comparison with the drift and diffusion coefficients. In particular,
in the next sections we show how, in the limit of infinitely large networks, if the
synaptic efficacies are scaled appropriately with the network size, the approximation
can become exact.

We will for now take it for granted, and focus on the properties of Equation (15.7)
when only the first two infinitesimal moments are non-zero. The resulting equation
is called the Fokker-Planck equation for r(V, t|V0, t0), and reads

∂
∂ t

r(V,t|V0,t0) =
∂
∂V

[
(V −Vss)

tm
r(V, t|V0, t0)]+

s 2
V

2tm

∂ 2

∂V 2 [r(V, t|V0, t0)]. (15.9)

The process described by this equation, characterized by a constant diffusion co-
efficient D = s 2

V /(2tm) and a linear drift, is called the Ornstein-Uhlenbeck (O-U)
process (see e.g., [123]). It describes the temporal evolution of V (t) when the input
to the neuron is no longer I(t), but

Ī(t) ≡ mC + sCh(t), (15.10)
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where h(t) is called a white noise process. It can be defined heuristically as a random
variable taking values

h(t) = lim
dt→0

N(0,
1√
dt

) (15.11)

for all t independently, where we have defined N(a ,b ) is a Gaussian random vari-
able of mean a and variance b 2. The mean and two-point correlation function of
the white noise process are therefore, < h(t) >= 0 and < h(t)h(t ′) >= d (t − t ′)
respectively. In effect, we are now replacing Equation (15.1) by

Cm
dV (t)

dt
= −gL(V (t)−VL)+ mC + sCh(t), (15.12)

or

tm
dV (t)

dt
= −(V (t)−Vss)+ sV

√
tmh(t). (15.13)

This is called the white-noise form of the Langevin equation of the process V (t).
It has the appeal that it is written as a conventional differential equation so that the
dynamics of V (t) is described in terms of its sample paths, rather than in terms of the
temporal evolution of its probability distribution, as in the Fokker-Planck Equation
(15.9). In general, the practical use of the Langevin equation is that it provides a
recipe for the numerical simulation of the sample paths of the associated process.
Developing Equation (15.13) to first order one obtains

V (t + dt) = (1− dt
tm

)V (t)+Vss
dt
tm

+ sV

√
dt
tm

N(0,1). (15.14)

Assuming that dt/tm is small but finite, Equation (15.14) provides an iterative pro-
cedure which gives an approximate description of the temporal evolution of V (t).
This scheme is general and can be used for any diffusion process. For the O-U pro-
cess in particular, in the absence of threshold Equation (15.9) can be solved exactly.
The population density of this process is a Gaussian random variable with a time-
dependent mean and variance [97, 123], so that

r(V,t|V0,t0) = N
(

Vss +(V0 −Vss)exp(− t−t0
tm

), sV√
2[

1− exp(− 2(t−t0)
tm

)
]1/2

)
.

(15.15)

Using this result one can find an exact iterative procedure for the numerical simula-
tion of the process. Assuming V0 is the value of the depolarization in the sample path
at time t, e.g., V0 = V (t), the depolarization at a latter time t + Dt will be

V (t + Dt) = Vss +(V(t)−Vss)exp(− Dt
tm

)

+ sV√
2

[
1− exp(− 2Dt

tm
)
]1/2

N(0,1).
(15.16)

This update rule is exact for all Dt [54].
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In Figure 15.1, sample paths of V (t) in the presence of the original input current
I(t) obtained by numerical integration of Equation (15.1) are compared with sample
paths in the presence of the effective input Ī(t), obtained using Equation (15.16). As
illustrated in Figure 15.1, tre f = 2 ms after emitting a spike, V (t) begins to integrate
its inputs again starting from Vr until it reaches Vth. The first time V (t) reaches
Vth is called the ‘first-passage time’ (denoted by Tf p). Taking the refractory period
into account, the whole interval between consecutive spikes is called the inter-spike
interval (ISI). Therefore, the statistics of ISIs can be analyzed using the theory of
first-passage times of the Ornstein-Uhlenbeck process [97, 117].

15.2.4 Computation of the mean firing rate and CV

The Fokker-Planck Equation (15.9) can be rewritten as a continuity equation by
defining

S(V,t|V0,t0) ≡− (V −Vss)
tm

r(V, t|V0, t0)− s 2
V

2tm

∂
∂V

r(V, t|V0, t0)], (15.17)

so that Equation (15.9) becomes

∂
∂ t

r(V,t|V0, t0) = − ∂
∂V

S(V, t|V0, t0). (15.18)

Thus, S(V,t|V0,t0) is the flux of probability (or probability current) crossing V at
time t. To proceed, a set of boundary conditions on t and V has to be specified for
r(V,t|V0,t0). First one notices that, if a threshold exists, then the voltage can only
be below threshold and can only cross it from below (the threshold is said to be
an absorbing barrier). The probability current at threshold gives, by definition, the
average firing rate of the cell. Since r(V > Vth, t|V0, t0) = 0, the probability density
must be zero at V = Vth, otherwise the derivative would be infinite at V = Vth and
so would be the firing rate according to Equation (15.17). Therefore, we have the
following boundary conditions

r(Vth,t|V0,t0) = 0 and
∂
∂V

r(Vth, t|V0, t0) = −2n(t)tm

s 2
V

, (15.19)

for all t. The conditions at V = −• ensure that the probability density vanishes fast
enough to be integrable, i.e.,

lim
V→−•

r(V,t|V0,t0) = 0 and lim
V→−•

V r(V, t|V0, t0) = 0. (15.20)

Since the threshold is an absorbing boundary, a finite probability mass is con-
stantly leaving the interval (−•,Vth). Under this condition, there is no stationary
distribution for the voltage, i.e., r(V, t|V0, t0) → 0 as t → •. In order to study the
steady-state of the process, one can keep track of the probability mass leaving the
integration interval at t, and re-inject it at the reset potential at t +tre f . This injection
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Figure 15.1

Leaky integrate-and-fire neuron model in response to stochastic inputs. (A). Sample
paths of the membrane potential V (t) in response to a stochastic current I(t) obeying
Equation (15.3) with Poisson spike trains, with J̄E = J̄I = 0.2 mV, CE = CI = 1000,
nE = 9 Hz, nI = 0.5 Hz. The resulting steady-state voltage is Vss = −53 mV (thin
solid line) with a standard deviation of s 2

V /2 = 1.38 mV (thin dotted line). Three
sample paths (different colors) are shown from the moment when the neuron starts to
integrate its inputs (tre f = 2 ms after the previous spike) until V (t) reaches threshold
for the first time. The time it takes for this to happen is called the first passage time
and the total time in between two consecutive spikes is the inter-spike interval (ISI).
Threshold (Vth = −50 mV) is shown as a thick dashed line (Continued).
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Figure 15.1

Inset: Snapshot of the blue sample path from 323 to 326 ms shows the 0.2 mV
discontinuities in V (t) due to the synaptic inputs. (B) Current in top panel averaged
over 1 ms time bins. Each point represents the average current into the neuron in the
previous millisecond. For clarity of presentation, consecutive points are joined by
lines. Right. Histogram of currents from left panel. The smooth blue line represents
the distribution of (1/Dt)

∫ t+Dt
t Ī(t ′)dt ′, where Ī(t) is the current into the cell in the

diffusion approximation, Equation (15.10), and Dt = 1 ms. (C) Same as A, but with
inputs now described by the diffusion approximation. The macroscopic structure of
the sample paths is very similar. The differences between the Poisson input and the
diffusion approximation can only be appreciated by looking at the inset.

of probability represents an extra probability current Sreset(V, t), that adds to the cur-
rent S(V,t|V0,t0) associated to the sub-threshold dynamics of V (t). Taking this into
account, one can rewrite the Fokker-Planck equation like

∂
∂ t

r(V,t|V0,t0) = − ∂
∂V

[S(V, t|V0, t0)+ Sreset(V, t)]. (15.21)

Since this injection only results in a change of probability mass in V = Vreset , the new
current is given by

Sreset(V,t) = n(t − tre f )Q(V −Vreset). (15.22)

To find the solution for the steady-state distribution rss(V ), we insert expression
(15.22) into the Fokker-Planck equation (15.21), and look for time independent so-
lutions by setting the left hand side of this equation to zero,

∂
∂V

[
(V −Vss)

tm
rss(V )]+

s 2
V

2tm

∂ 2

∂V 2 rss(V ) = −n d (V −Vreset). (15.23)

Solving this equation with the boundary conditions (15.19-15.20), one obtains the
following expression for the steady-state distribution [24]

rss(V ) =
2n tm

sV
exp

(
− (V −Vss)2

s 2
V

)∫ Vth−Vss
sV

V−Vss
sV

Q(x− Vr −Vss

sV
)ex2

dx. (15.24)

The function rss(V ) gives the fraction of cells in a non-refractory state with depo-
larizations in (V,V + dV ) in the steady state. Taking into account also the fraction
n tre f of neurons in a refractory state, the steady state firing rate n can be found by
the normalization condition∫ Vth

−•
rss(V )dV + n tre f = 1. (15.25)

Plugging expression (15.24) into this equation and solving for n one gets

1
n

= tre f + tm
√

p
∫ Vth−Vss

sV

Vr−Vss
sV

ex2
(1 + erf(x))dx, (15.26)
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Figure 15.2

Firing rate (A) and CV (B) of the LIF neuron as a function of the mean current mC for
three values of the effective standard deviation in the voltage sV = 0.1 mV (solid),
1 mV (dashed) and 4 mV (dot-dashed). (C) CV as a function of the mean firing
rate when mC is varied as in the three curves in A-B. The parameters of the cell are
Cm = 0.2 nF, gL = 20 nS (tm = 10 ms), tre f = 2 ms, VL = −70 mV, Vth = −50 mV
and Vr = −60 mV.

where erf(x) = 2/
√

p
∫ x

0 eu2
du.

Once the firing rate is known, the following recursive relationship between the
moments of the first-passage time distribution of the Ornstein-Uhlenbeck process
(see e.g., [117]) can be used to find < T 2

f p >

s 2
V

2

d2 < T k
p f >

dx2 +(Vss− x)
d < T k

f p >

dx
= −k < T k−1

f p >, (15.27)

where x = Vr. Given that < Tf p >= 1/n in Equation (15.26), the CV of the ISI is
given by [19]

CV 2 ≡ < T 2
f p > − < Tf p >2

< Tf p >2 = 2p n 2
∫ Vth−Vss

sV

Vr−Vss
sV

dxex2
∫ x

−•
dyey2

(1+ erf(y)). (15.28)

In Figures 15.2A-B we plot the mean firing rate and CV of the LIF neuron as given
by Equations (15.26,15.28), as a function of the mean current mC for various values
of the effective standard deviation in the voltage sV . The firing rate (Figure 15.2A)
is a monotonic increasing function of the average current. Qualitatively, it starts
to rise when the average current comes within a standard deviation of the current
threshold, defined as Ith ≡ gL(Vth−VL), and shown as a vertical dashed line in Figure
15.2A. It increases supra-linearly with mC for sub-threshold mean currents, and sub-
linearly when the mean current is above threshold, eventually saturating at 1/tre f .
Therefore, for a wide range of values of sV , mC ∼ Ith is close to the point where the
curvature of n(mC) changes sign. The deterministic current threshold Ith also marks



Mean-Field Theory of Recurrent Neural Networks 443

the transition between two different behaviors of the CV (Figure 15.2B). When the
mean input is sub-threshold (mC < Ith), spike discharge is triggered by fluctuations in
the current, and spike trains are irregular. Therefore, in this regime, the CV is high,
close to one. For supra-threshold mean current (mC > Ith), the CV decays to zero
and spiking becomes regular. The sharpness of this transition depends on sV . When
the fluctuations are small, the transition is very sharp, so as soon as the neuron starts
firing, it does so in a regular fashion. For large values of sV the transition is smooth
(and if sV is large enough the CV can first increase noticeably from one for mC < Ith,
not shown), so the neuron fires initially irregularly and becomes progressively more
regular as mC becomes much larger than Ith. In Figure 15.2C, the CV is plotted as
a function of the firing rate for three values of sV as mC is increased gradually. In
general, when the firing rate increases as a result of an increase in the mean current,
the CV decreases. This decrease is faster with smaller fluctuations.

15.2.5 Effect of synaptic time constants

So far, we have assumed that the post-synaptic currents (PSPCs) are delta-functions,
without any duration or temporal kinetics. In reality, synaptic currents rise and decay
with time constants that range from 1 ms to several hundred ms. To incorporate a fi-
nite time constant of post-synaptic currents into the theoretical framework described
in the previous section, we consider a variable I(t) which, upon arrival of a spike at
tspk, evolves according to

tsyn
dI(t)

dt
= −I(t)+ Jd (t− tspk). (15.29)

For non-zero tsyn, it is now I(t) that has a discontinuous jump of size J/tsyn when a
pre-synaptic spike arrives. For t > tspk, I(t) decays exponentially back to zero with
a time constant tsyn. Importantly, the total area under this PSC is J independently
of the value of tsyn. The previous scheme can therefore be recovered continuously
by letting tsyn → 0. Now, instead of injecting an instantaneous charge J for every
spike, we spread this same amount of charge over a time tsyn. The effect of this on
the voltage is to smoothen the rise of the PSP. Now the PSP is continuous and given
by

V (t) = VL +
(

J
Cm

)
tm

tm − tsyn

[
exp(− t

tm
)− exp(− t

tsyn
)
]

Q(t − tspk), (15.30)

with a rise time tsyn and a decay time tm. If the membrane and the synaptic time
constants are equal, the PSP has the shape of an a-function

V (t) = VL +
(

J
Cm

)
t

tm
exp(− t

tm
)Q(t − tspk). (15.31)

The most important effect of a non-zero synaptic constant on the Fokker-Planck
scheme presented above is the appearance of temporal correlations in the afferent
current. The total synaptic input becomes a process with mean < I >= mC, and an
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exponential two-point correlation function CC(t,t ′) ≡< (I(t)− < I >)(I(t ′)−
< I >) > given by

CC(t,t ′) = (s 2
C/2tsyn)exp(−|t − t ′|/tsyn). (15.32)

Using once again the diffusion approximation to replace the input to I(t) by a Gaus-
sian process with the same mean and correlation function, and defining d I(t) =
I(t)− mC, the Langevin equations of the process now read

tm
dV (t)

dt
= −(V(t)−Vss)+

d I(t)
gL

(15.33)

tsyn
d
dt

d I(t) = −d I(t)+ sCh(t). (15.34)

Although V (t) is not Markovian anymore (knowledge of I(t), in addition to V (t),
is needed to determineV (t +dt) probabilistically),V (t) and I(t) together constitute a
bi-variate Markov process [54, 99]. From Equations (15.33, 15.34) one can therefore
derive a Fokker-Planck equation characterizing the evolution in time of the joint
probability of V and I. However, the presence of temporal correlations in I(t) makes
the calculation of the firing rate much more involved than for the simple Ornstein-
Uhlenbeck case and, indeed, the mean first-passage time can only be obtained in the
case where tsyn � tm, using perturbation theory on the parameter k ≡√tsyn/tm � 1
[23, 34, 40, 61, 67]. We present here only the final result: the firing rate is given by

nsyn(k) = n + ka sV

(
∂n
∂Vth

+
∂n
∂Vr

)
+ O(k2), (15.35)

where n is the firing rate of the white noise case, Equation (15.26),

a = −z (1/2)/
√

2 ∼ 1.03

and z is the Riemann zeta function [2]. Note that the firing rate calculated in [23]
does not include the term proportional to ∂n/∂Vr, because of the approximation
made in that paper, namely the neuron was assumed to be in the sub-threshold
regime, in which the dependency of the mean firing rate on the reset potential is
very weak.

Another way to write Equation (15.35) is to replace the threshold Vth and Vr in the
expression for the mean first-passage time obtained for a white noise current (15.26),
by the following effective k-dependent expressions

V e f f
th = Vth + sV ak (15.36)

V e f f
r = Vr + sV ak. (15.37)

This first order correction is in good agreement with the results from numerical
simulations for tsyn < 0.1 tm. To extend the validity of the result to larger values
of tsyn, a second order correction can be added to the effective threshold, with co-
efficients determined by a fit to numerical simulations with values of tsyn up to tm
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[23]. A finite synaptic time constant leads to synaptic filtering of the pre-synaptic
inputs which, in general, leads to a reduction in post-synaptic firing rates [23]. This
effect is more pronounced for sub-threshold mean currents, since in this regime the
neuronal firing results from the fluctuations in the current which can be filtered out
by the synapse. Note that the effect of increasing tsyn is to spread out in time the
same amount of charge influx into the cell. Since charge is constantly leaking out
of the cell membrane, the longer tsyn, the lower the overall magnitude of the voltage
fluctuations.

Finally, one can also compute perturbatively the firing rate in the large synaptic
time constant limit [83]. An interpolation between the two limits gives rather accu-
rate results in the whole range of all synaptic time constants. A similar approach has
been used to compute the firing rate of another simple spiking neuron, the quadratic
neuron [22].

15.2.6 Approximate treatment of realistic synaptic dynamics

Real synaptic currents can depart in at least three ways from the currents consid-
ered until now: (i) individual post-synaptic currents can in some circumstances sum
non-linearly, due to receptor saturation; (ii) post-synaptic currents are voltage depen-
dent, because synaptic activation occurs as conductance change rather than current
increase, and because the maximal conductance can itself be voltage-dependent; (iii)
multiple synaptic time scales are present, due to the different kinetics of the AMPA,
GABAA, and NMDA receptors. We first describe the standard biophysical model for
describing post-synaptic currents (see also e.g., [33, 120]), and then discuss sepa-
rately how the three issues can be dealt with using approximate treatments.

15.2.6.1 Biophysical models of post-synaptic currents

Synaptic activation opens ion channels in the post-synaptic cell. The amount of
current flowing through these channels is proportional to the product of the number
of open channels times the driving force of the synaptic current:

Isyn(t) = gsyn(V ) s(t)(V (t)−Vsyn), (15.38)

where gsyn(V ) is the (possibly voltage-dependent) maximal conductance, s(t) is a
gating variable measuring the fraction of open channels at the synapse and Vsyn is the
synaptic reversal potential. The term V −Vsyn is the driving force of the synapse, and
it determines its polarity, i.e., whether a synaptic current is depolarizing (V −Vsyn <
0) or hyper-polarizing (V −Vsyn > 0). In the presence of a driving force term, all
synaptic inputs are voltage-dependent.

We consider two types of kinetic schemes for the gating variable s(t). If the un-
derlying dynamics of the synaptic channels is fast compared with the typical firing
rates of the spike trains at the synapse, the synapse is usually far from saturation and
a linear kinetic scheme is appropriate. Additionally, in this situation the rise time of
the post-synaptic currents (PSCs) is so fast that it can be considered instantaneous,
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so that the kinetics can also be approximated by a first order system, i.e.,

ds(t)
dt

= − s(t)
ts

+ Â
k

d (t − tk), (15.39)

where Âk d (t − tk) represents the pre-synaptic spike train arriving at the synapse.
The average fraction of open channels is linear in the firing rate n across the synapse
s̄ = tsn . Since s(t) is a fraction, i.e., necessarily less than one, this description is
appropriate as long as n � 1/ts. We will use it for the description of GABAAR- and
AMPAR-mediated transmission, which have synaptic time constants of tGABAA = 10
ms, and tAMPA = 2 ms [13, 15, 58, 72, 127, 129]. This approximation is reasonable if
n < 1/tGABAA = 100 Hz.

If the underlying channel dynamics is of the order of, or slower, than the typical
inter-spike intervals of the spike trains crossing the synapse (which is the case for
the NMDAR-mediated PSPcs, with a time constant of 50− 100 ms), the channels
decay slowly in between spikes, and a few spikes in a train at hight frequencies can
recruit a fraction of open channels close to unity. In this case, the effect of subsequent
spikes is bounded by the saturation of all post-synaptic receptors, hence spikes sum
non-linearly. Also, for slow channel dynamics, the PSC rise times are on the order
of the fastest time-scales of the system (a few milliseconds), and can no longer be
neglected. A non-linear, second order scheme, provides an accurate description of
the kinetics of the gating variable s(t) in these conditions:

ds(t)
dt

= − s(t)
t decay + ax(t)(1− s(t)) (15.40)

dx(t)
dt

= − x(t)
t rise + Â

k

d (t − tk). (15.41)

For slow synaptic dynamics, the average gating variable is no longer a linear function
of the pre-synaptic rate unless the firing rate is only a few Hz.

15.2.6.2 Average gating variable vs. rate in the non-linear model

An immediate consequence of this non-linear summation is that the average value
of the gating variable becomes a non-linear function of the average firing rate of the
spike train through the synapse. This function depends on the statistics of the spike
train. If the spike train is regular, an approximation can be obtained by replacing
Âk d (t − tk) by the mean firing rate n of the spike train in Equation (15.41). In this
case the average of the gating variable becomes

s̄ =
t n

1 + t n
, (15.42)

where the effective time constant is equal to t = triset decaya .
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Figure 15.3

Average fraction of open NMDA channels as a function of the pre-synaptic firing
rate. The solid (dashed) line, calculated with Equation (15.43) (Equation (15.42)),
corresponds to the case when the spike train at the synapse is Poisson (periodic).

If the spike train is Poisson, the expression for s̄ is [25]

s̄ =
n t

1 + n t

(
1 +

1
1 + n

•

Â
n=1

(−a trise)nTn

(n + 1)!

)
≡ y(n)

Tn =
n

Â
k=0

(−1)k
(

n
k

)
t rise(1 + n t)

t rise(1 + n t)+ ktdecay . (15.43)

We will use this description for NMDAR-mediated transmission, with parameters
t decay

NMDA = 100 ms, t rise
NMDA = 2 ms, and a = 0.5 KHz. The effective NMDA time

constant is thus tNMDA = 100 ms. In Figure 15.3, the average gating variable of an
NMDA synapse is plotted as a function of the average pre-synaptic firing rate n , for
the case of a regular and a Poisson input spike train. Note that, due to the saturation
term on the right of Equation (15.40), the gating variable starts to saturate when the
pre-synaptic rate becomes larger than ∼ 1/tNMDA ∼ 10 Hz.

15.2.6.3 Voltage-dependence of the post-synaptic currents

A post-synaptic current is voltage-dependent because of its driving force; in addition
the maximal conductance can also be voltage-dependent, as in the case of the NMDA
channels [87].

In general, even if the maximal conductance does not depend on the voltage, the
voltage dependence induced by the driving force term in the unitary synaptic current
(15.38) modifies the previous framework for calculating the output firing rate of the
cell in several ways.

Let us separate the time course of the gating variable into a deterministic compo-
nent, associated to its temporal average (we assume stationary inputs, in which case
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the average of the gating variable is constant), and a fluctuating component due to
the stochastic nature of the spike trains in our model, i.e., ssyn(t) = s̄syn + d ssyn(t).
The unitary synaptic current, Equation (15.38), now becomes

Isyn(t) = gsyns̄syn(V (t)−Vsyn)+ gsynd ssyn(t)(V (t)−Vsyn). (15.44)

The main complication due to the driving force is that now the fluctuating compo-
nent of the synaptic current (second term in the right-hand side of Equation (15.44))
becomes voltage dependent. This multiplicative dependence of the fluctuations on
the membrane potential renders a rigorous treatment of the fluctuations in the current
difficult. To avoid this complication, we replace the voltage by its average V̄ in the
driving force for the fluctuating component of the synaptic current, so that

Isyn(t) ∼ gsyns̄syn(V (t)−Vsyn)+ gsynd ssyn(t)(V̄ −Vsyn). (15.45)

The deterministic part of the current gsyns̄syn(V (t)−Vsyn) can be dealt with easily
by noting that gsyns̄syn can be absorbed in the leak conductance, and gsyns̄synVsyn can
be absorbed in the resting membrane potential VL.

The resulting effect on neuronal properties is an increase in the total effective leak
conductance of the cell

gL → gL + gsyns̄syn, (15.46)

which is equivalent to a decrease of the membrane time constant from tm = Cm/gL,
to t e f f

m = Cm/(gL + gsyns̄syn) = tm/atm . Thus, the synaptic input makes the neuron
leakier by a factor equal to the relative increase in conductance due to synaptic input
(atm = 1 + s̄syngsyn/gL). The resting (or steady-state) membrane potential is also
re-normalized

VL → gLVL + gsyns̄synVsyn

gL + gsyns̄syn
, (15.47)

and becomes a weighted average of the different reversal potentials of the vari-
ous synaptic currents, where each current contributes proportionally to the relative
amount of conductance it carries.

Voltage-dependence of NMDA channels. For NMDA channels to open, bind-
ing of neurotransmitter released by the pre-synaptic spike is not enough. The post-
synaptic cell must also be sufficiently depolarized to remove their blockade by mag-
nesium. It is conventional to model this using a voltage-dependent maximal conduc-
tance [66]:

gNMDA(V ) =
gNMDA

(1 +([Mg2+]/g)exp(−bV (t))
≡ gNMDA

1
J(V (t))

, (15.48)

with [Mg2+] = 1 mM, g = 3.57 and b = 0.062. To be able to incorporate this ef-
fect into the framework described in the previous sections, we linearize the voltage
dependence of the NMDA current around the average voltage V̄ , obtaining

V (t)−VE

J(V (t))
∼ V (t)−VE

J(V̄ )
+ (V (t)− V̄)

J(V̄ )−b (V̄ −VE)(1− J(V̄))
J2(V̄ )

+ O((V (t)− V̄)2)+ . . . (15.49)
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This linear approximation is very accurate for the range of values of V (t) between
reset and threshold [25]. Using it, the non-linear voltage-dependent NMDA current
can be emulated by a linear current with a renormalized maximal conductance and
reversal potential. Defining

INMDA(t) ≡ ge f f
NMDAsNMDA(V (t)−V e f f

E ), (15.50)

the renormalized parameters read

ge f f
NMDA = gNMDA

J(V̄ )−b (V̄ −VE)(1− J(V̄))
J2(V̄ )

V e f f
E = V̄ − gNMDA

ge f f
NMDA

(
V̄ −VE

J(V̄ )

)
. (15.51)

To give a qualitative idea of the properties of the linearized NMDA current, using
VE = 0 mV and V̄ = −55 mV, one obtains ge f f

NMDA ∼ −0.22gNMDA and V e f f
E ∼ −81.8

mV. Since the slope of the I −V plot for the original current is negative at voltages
near the average depolarization of the neuron, the effective NMDA conductance is
negative. However, since the effective reversal potential is lower than the cell’s typi-
cal depolarization, the total effect of the effective NMDA current is depolarizing, as
it should.

Calculation of the average voltage V̄ . To complete our discussion of the voltage-
dependence, we need to compute the average voltage V̄ , that enters in Equation (15.45)
and Equations (15.51). This can easily be done using Equation (15.24). The result is

V̄ =
∫ Vth

−•
V [rss(V )+ n tre f d (V −Vr)]dV =

= Vss − (Vth −Vr)n te f f
m − (Vss−Vr)n tre f . (15.52)

15.2.6.4 Fluctuations in the synaptic current in the case of multiple synaptic
time scales

The results of Section 15.2.5 can be applied when a single time scale is present in
synaptic currents. This is obviously not the case when fluctuations are due to AMPA,
GABAA and NMDA currents. In the absence of rigorous results for fluctuations with
multiple time scales, one has to resort to an approximation. The approximation is
based on the fact that the longer the synaptic time constant, the more the fluctuations
of the gating variable will be filtered out (see Section 15.2.5). Therefore, we ex-
pect the fluctuations in the GABAA and NMDA currents to be smaller in magnitude
than those associated to the AMPA currents. We thus neglect their contribution and
assume that d sNMDA(t) = d sGABA(t) ∼ 0.

15.2.6.5 Summary: firing statistics of a neuron with realistic AMPA, GABAA

and NMDA synaptic inputs

Here, we summarize the description of a LIF neuron that receives CE excitatory
synaptic inputs and CI inhibitory synaptic inputs (Figure 15.1), with synapses de-
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scribed by individual conductances g jAMPA and g jNMDA , j = 1,2, ...,CE ; g jGABA, j =
1,2, ...CI). In the presence of these inputs, Equation (15.1) now reads

Cm
dV (t)

dt
= − gL(V (t)−VL)−

−
[

CE

Â
j=1

g jAMPA s jAMPA(t)+
g jNMDA s jNMDA(t)

J(V (t))

]
(V (t)−VE)−

−
[

CI

Â
j=1

g jGABAs jGABA(t)

]
(V (t)−VI). (15.53)

For simplicity, we again assume that the synaptic conductances and the firing rates
of all pre-synaptic inputs from the same sub-population are identical. Using the
approximations described in the previous sections, this equation becomes

Cm
dV (t)

dt
= − gL(V (t)−VL)−

− CE [gAMPAs̄AMPA] (V (t)−VE)−
− CE

[
ge f f

NMDAs̄NMDA

]
(V (t)−V e f f

E )−
− CI [gGABAs̄GABA] (V (t)−VI)+ d I(t), (15.54)

where s̄AMPA = nE tAMPA, s̄GABAA = nI tGABA and s̄NMDA = y(nE) where the function y is
defined in Equation (15.43), and the fluctuations are described by

tAMPA

d
dt

d I(t) = −d I(t)+ se f f h(t) (15.55)

s 2
e f f = g2

AMPA(V̄ −VE)2CE s̄AMPAtAMPA. (15.56)

Since all the deterministic components of the current are now linear in the voltage,
the equations describing the membrane potential dynamics can be expressed as

t e f f
m

dV (t)
dt

= −(V (t)−Vss)+
d I(t)

ge f f
L

(15.57)

tAMPA

d
dt

d I(t) = −d I(t)+ se f f h(t). (15.58)

The effective membrane time constant is

t e f f
m =

Cm

ge f f
L

= tm
gL

ge f f
L

, (15.59)

and the effective leak conductance of the cell is the sum of the passive leak conduc-
tance plus the increase in the conductances associated to all the synaptic inputs to
the cell

ge f f
L = gL + gAMPACE s̄AMPA + ge f f

NMDACEs̄NMDA + gGABACIs̄GABA. (15.60)
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In in vivo experiments, it was estimated that, even when neurons fire at low rates
(a few hertz), ge f f

L is at least 3-5 times larger than gL [32], therefore t e f f
m is 3− 5

shorter than tm. For example, if tm = 10 ms, then t e f f
m � 2− 3 ms. When neurons

fire at higher rates (leading to larger synaptic conductances), the value of ge f f
L would

be significantly larger and t e f f
m would be even smaller.

The steady-state voltage Vss now becomes

Vss = [ gLVL + (CEgAMPAs̄AMPA)VE +(CEge f f
NMDAs̄NMDA)V

e f f
E

+ (CIgGABAs̄GABA)VI ]/ge f f
L . (15.61)

Note that the steady state potential Vss is bounded between the highest and the low-
est reversal potentials of the four currents to the neuron. In particular, it can never
become lower than VI . Thus, no matter how strong inhibition is, in this model the
average membrane potential will fluctuate around a value not lower than the reversal
potential of the inhibitory synaptic current, e.g., at approximately −70 mV.

Since Equations (15.57) and (15.58) can be mapped identically to Equations (15.33)
and (15.34), one can now use equation (15.26) to compute the firing rate of a neuron,

npost =

⎡
⎣tre f + t e f f

m

√
p
∫ V

e f f
th −Vss

se f f

V
e f f
r −Vss

se f f

ex2
(1 + erf(x))

⎤
⎦
−1

. (15.62)

where t e f f
m and Vss are given by Equations (15.59-15.61); V e f f

th and V e f f
r are given

by Equations (15.36-15.37). Note that now, the average voltage in the steady state
V̄ plays a role in determining the firing rate, through both Vss and se f f . Since V̄ is
related linearly to the firing rate (Equation (15.52)), the firing rate is not an explicit
function of the synaptic input. Even if the inputs are entirely external (feedforward),
and all the synaptic conductances are fixed, V̄ still depends on the post-synaptic firing
rate n itself. Therefore, n must be determined self-consistently.

Equation (15.62) constitutes a non-linear input-output relationship between the
firing rate of our post-synaptic neuron and the average firing rates nE and nI of the
pre-synaptic excitatory and inhibitory neural populations. This input-output func-
tion is conceptually equivalent to the simple threshold-linear or sigmoid input-output
functions routinely used in firing-rate models. What we have gained from all these
efforts is a firing-rate model that captures many of the underlying biophysics of the
real spiking neurons. This makes it possible to quantitatively compare the derived
firing-rate model with detailed numerical simulations of the irregularly firing spiking
neurons, an important step to relate the theory with neurophysiological data.
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15.3 Self-consistent theory of recurrent cortical
circuits

A cortical microcircuit receives afferent inputs and sends efferent outputs down-
stream, thereby information processing is carried out in a ‘feedforward’ fashion.
At the same time, interesting computations may be accomplished by horizontal or
recurrent synaptic connections within the local network. The relative importance
of feedforward versus recurrent processing is likely to be different for each specific
task, and vary from one cortical area to another. In the primary visual cortex (V1),
recurrent synaptic connections are quite abundant [76]; their functional importance
(such as to the generation of orientation selectivity) has been the subject of intense
debate [39, 111]. Recently, there is growing interest in the recurrent networks of
association cortical areas, such as the parietal cortex or prefrontal cortex. This in-
terest was primarily motivated by the observation of ‘working memory neurons’ in
these cortices. In experiments when an animal is required to remember a transient
stimulus cue across a delay period of a few seconds, between the cue presentation
and behavioral response, neurons in association areas display stimulus-selective, el-
evated persistent activity across the delay period [44, 55]. Since the elevated neural
activity can be triggered by a brief input but outlast it for many seconds, persistent
activity cannot be explained by a feedforward mechanism. It has been hypothesized
that persistent activity can be self-sustained by synaptic ‘reverberations’ within a
strongly recurrent local network (see for a review [6, 121]).

We will now discuss how a recurrent network of neurons can be described by
mean-field theory. We will first consider how stationary states of such networks can
be obtained in a self-consistent way. Next we discuss dynamical approaches which
allow an assessment of the stability of the stationary states. Then, an example from
an one-population network of excitatory cells is analyzed in detail, introducing the
concept of bistability by means of a graphical analysis, and relating it to the phe-
nomenon of persistent neural activity in working memory. A more detailed model of
a network for object working memory is then described. Finally, we discuss the pos-
sibility of multi-stability in cortical networks in which both excitation and inhibition
are strong, but roughly cancel each other out.

15.3.1 Self-consistent steady-state solutions in large unstructured net-
works

In a recurrent network, the post-synaptic neuron and its pre-synaptic inputs are part
of the same network, and hence, if the activity in the network is not changing, their
firing activity must, in a statistical sense, be the same. If, as we discussed in Section
15.2, the output firing rate only depends on the average rate of the inputs, then equal-
izing pre- and post-synaptic activity will yield an equation that determines the firing
rates in the possible stationary states of the network. This is a very general necessary
condition that has to be met in any steady-state solution of the network dynamics.
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However, in order for us to be able use the input-output relationship found in
Section 15.2, the dynamics of the network should be such that the network properties
in this stationary states are consistent with the assumptions we made in Section 15.2.
Thus, these assumptions impose several additional conditions that the steady-states
should obey to be truly self-consistent:

• The fluctuations in the inputs must be approximately independent from neuron
to neuron. This condition will be trivially satisfied when the major part of
the noise comes from external independent sources. It will also be satisfied
when the network is sparsely connected, i.e., when the connection probability
between any pair of neurons is weak. In this case, the ‘noise’ term coming
from the recurrent network itself becomes uncorrelated from neuron to neuron
[19, 24, 118, 119].

• The probability of a spike being emitted in the network at any moment must
be constant in time. Thus, the steady state must be stable with respect to
any instability that leads to non-stationary global network activity, such as
synchronized oscillations.

• The neurons must emit approximately as Poisson processes for the input-
output relationship to be valid. This is in general expected to be true when
the average total input to the neurons is sub-threshold, which will be the situ-
ation of interest in our discussion.

Several types of local network connectivity and synaptic structure are conceivable.
They differ mainly in the source of the fluctuations in the synaptic current to the
neurons. One approach is to investigate the behavior of the network as a function of
its size N and of the number of connections per cell C. The strategy is to scale the PSP
size J̄ ≡ J/Cm (a measure of the synaptic strength) with C, and study the behavior of
the network as C → •. An advantage of this procedure is that a) the behavior of the
network is much simpler and easier to analyze in the C = • limit, and b) network
behaviors which are only quantitatively different for finite C, become qualitatively
different as C becomes infinite. Additionally several of the technical assumptions we
had to make in Section 15.2 become exact in this limit.

Alternatively, one can assume that N and C are large but finite. In this case one
does not assume any specific scaling of the PSP size with C, but rather uses the for-
mulas for arbitrary values of these parameters (as in the previous sections) and stud-
ies the behavior of the resulting equations when they take realistic values informed
by the available experimental data. Some of the hypothesis made in the calculations
will only be verified approximately, but the theory will be more directly comparable
to experiments, where C and J/Cm are finite.

In the following subsections we describe the self-consistency equations obtained
in each of these scenarios. For ease of exposition, our discussion will be carried out
in the simplest case of neurons connected through instantaneous synapses, unless
specified otherwise.
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15.3.1.1 Fully connected networks; External noise

In a fully connected network C = N. In such a network, all neurons see essentially
the same recurrent input. In order to obtain a finite mean synaptic input (the ‘mean-
field’) the PSPs are usually assumed to scale as 1/N. In this case, the total synaptic
input has a mean of order 1, and noise of order 1/

√
N. This is apparent in the equa-

tions for the moments of the diffusion process (15.8), where it is clear that in this case
only the first moment remains non-zero as N → •. Thus, the recurrent component of
the synaptic current becomes deterministic. In this framework, noise is assumed to
come from unspecified external sources, and is assumed to be independent for each
neuron.

Let us consider the simple case of a single neural population. We express the input-
output relationship of the cell, Equation (15.62), as npost = f(m(npre),s), making
explicit the dependency of the rate of the post-synaptic cell on the rate of its pre-
synaptic inputs through the mean m and standard deviation s of the fluctuations in
the total afferent current. In the steady-state npost = npre ≡ n , so the self-consistent
relationship can be written as

n = f(m(n),s), (15.63)

where the mean input current m(n) = mext + mrec is the sum of an external tonic cur-
rent mext and of a mean recurrent synaptic current mrec(n). The noise component of
the current comes exclusively from outside the network, i.e., s = sext . The solution
of Equation (15.63) can be obtained graphically by plotting f(m(n),s) vs. n and by
looking at its intersections with the diagonal line [8, 11, 120]. Alternatively, one can
plot the f-I curve n = f(m ,s) vs. m and look at its intersections with n = m−1(m)
vs. m [20]. An example of this kind of analysis is given below. When several popula-
tions are present, the framework is extended by adding one self-consistency equation
per population (again see specific example below).

A general feature of an all-to-all network is that the level of noise is independent
of the activity in the recurrent network. Thus the activity of the neurons is modu-
lated by changes in the mean current they receive. As we shall see below, this has
consequences on the statistics of their spike trains, a consequence that can be tested
experimentally.

15.3.1.2 The balanced state

The all-to-all network architecture with 1/N couplings, though simple, is not very
realistic. In the cortex, synaptic couplings are much stronger than 1/N and neurons
are not fully connected. This motivates the study of networks which are sparsely con-
nected, and with stronger coupling. Let us consider a network in which each neuron
receives C random connections from a total of N neurons. If the network is very
sparse, i.e., if N 	C, the probability that two neurons receive a substantial fraction
of common inputs becomes very small, so the recurrent inputs in this network will
be effectively uncorrelated between any pair of post-synaptic cells. Since the second
infinitesimal moment of the diffusion process, which measures the fluctuations in the
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synaptic current, scales as CJ̄2 (see Equation (15.8)), to keep the fluctuations finite as
C → •, one should scale the synaptic couplings as J̄ ∼ 1/

√
C. On the other hand, the

mean synaptic input scales as J̄C ∼√
C and diverges to plus or minus infinity (if the

coupling is excitatory or inhibitory, respectively). Thus, one immediately sees that if
the network is composed of a single excitatory population, the neuron will either be
at saturation or totally silent for large C. To obtain plausible levels of activity in this
framework, one needs, therefore, to introduce an inhibitory population.

Let us write CE = cEC, CI = cIC, where cE and cI are finite. As already antici-
pated, in order to keep the diffusion coefficient A2 finite, the scaling J̄E,I = jE,I/

√
C

must be used. The infinitesimal moments of the stochastic process become

A1(V ) = − (V −Vss)
tm

+
√

C [ jE cE nE − jIcI nI ]

A2 = j2
E cE nE + j2

I cI nI

An = C1− n
2 [ jn

EcE nE +(−1)n jn
I cI nI ] n = 3, . . . (15.64)

In this case, as C → •, all terms of order n > 2 vanish, and Equation (15.7) becomes
identical to the Fokker-Planck Equation (15.9). Therefore, in this case the diffusion
approximation becomes exact. The second term in the drift coefficient A1, which
gives the mean current into the cell, diverges as

√
C. Thus, unless the excitatory

and the inhibitory drives into the cell balance each other to within 1/
√

C, the result-
ing massive excitatory or inhibitory drive will drive the neuron towards saturation,
or total silence. [118] showed, in a recurrent network of binary neurons, that this
balanced state can arise as a dynamically stable state in a very robust way. Using
that neuronal model, a complete description of the temporal fluctuations of activity,
beyond the Poisson assumption that we have been using, can be performed. As we
shall now see, the equations which determine the average firing rate of the excitatory
and inhibitory populations in the balanced state are very general, and applicable to
any single neuron model that assumes that the different synaptic inputs to the cell are
summed linearly.

Let us consider the two population network in which each population receives
Cext

E,I = cext
E,IC excitatory Poisson inputs of rate n ext through synapses of strength J̄ext

E,I =
jext
E,I/

√
C from outside the network. We know that the fluctuating component of the

current will be of order one and the mean inputs will be

mE

Cm
=

√
C [ jEE cEE nE − jEIcEI nI + jext

E cext
E n ext ]

mI

Cm
=

√
C [ jIE cIE nE − jIIcII nI + jext

I cext
I n ext ]. (15.65)

Following the arguments presented in the previous sections, one can now impose that
mE,I be order one, and see whether there is a stable self-consistent solution arising
from this constraint. The simplest case is when C = •, which one expects to be also
qualitatively correct for large but finite networks. In this case, a finite mean current
can only be obtained if the balance is perfect, i.e., if the total excitation and inhibition
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cancel each other precisely. This means that the terms in square brackets in Equation
(15.65) have to vanish identically, leading to a set of two coupled linear equations
[118]

jEE cEE nE − jEIcEI nI + jext
E cext

E n ext = 0

jIE cIE nE − jIIcII nI + jext
I cext

I n ext = 0, (15.66)

which implies that the self-consistent rates of the two populations become a linear
function of the external input

nE = kE n ext + O

(
1√
C

)
; nI = kI n ext + O

(
1√
C

)
. (15.67)

In contrast to a fully connected network, a balanced network dynamics is an intrin-
sic source of noise. In fact, even if the network is purely deterministic (with constant
inputs instead of stochastic Poisson trains), and the external afferents are assumed
to be regular, the balanced network can give rise to chaotic network dynamics and
highly irregular neural activities [118, 119]. The firing rates in this network can,
therefore, be determined self-consistently without making any assumptions about
the specific single neuron model as long as the synaptic currents from different in-
puts are summed linearly. Although this is a quite remarkable result, the linearity of
the self-consistent rates on the external input raises a fundamental problem from a
computational perspective: does this mean that a balanced network cannot subserve
non-linear behaviors such as bistability? Put it differently, can a network be both
bistable and generate its own noise? We will come back to this issue below.

The arguments presented above are valid for synapses modeled as voltage-indepen-
dent synaptic currents. With conductance-based synaptic currents, the situation is
quite different, since in the large C limit, the total synaptic conductance diverges to
infinity, hence effective neuronal time constant tends to zero. In this limit, the mem-
brane potential is slaved to an effective ‘steady-state’ potential that stays finite in that
limit [107]. Thus, there is no more ‘balance’ condition to be fulfilled in this situa-
tion, unless additional hypothesis are used. In any case, the simple balanced network
picture is useful as a metaphor for networks with strong coupling and highly irregu-
lar firing of its constituent neurons. We will use the term ‘balanced network’ in this
loose sense in the following.

15.3.1.3 Large but finite sparse networks

We again assume a large sparse network (N 	 C) so that the recurrent inputs to
different neurons can still be assumed independent, but we now assume that the
number of connections per neuron C is large (C 	 1) but finite, and the coupling
strength to be small (the unitary PSP size J/Cm � (Vth −VL)) but finite [11]. For
example, N ∼ 10,000 and C ∼ 1,000; J/Cm ∼ 0.1− 0.3 mV whereas (Vth −VL) ∼
10− 15 mV. Thus, in this case, both the mean synaptic input and the fluctuations
around it depend on the firing rate of the pre-synaptic neurons. For the case of a
single population the self-consistent equation becomes

n = f(m(n),s(n)) (15.68)
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where the mean and variance of the current are given respectively by

m(n) = mext +CJn (15.69)

s 2(n) = s 2
ext +CJ2n . (15.70)

In this ‘extended’ mean-field theory, not only the mean inputs are included in the
description, but also the fluctuations around the ‘mean-field’ are relevant. As em-
phasized above, this approach is only applicable to network states in which neurons
fire in an approximately Poissonian way, and when the low connection probability
makes the emission processes of neurons essentially uncorrelated. Moreover, since
J and C are finite, this approach is only approximate. However, simulations show it
gives very accurate results when Cn tm is large (several hundreds) and J/(CmVth) is
small (less than several percent), as seem to be the case in cortex [10, 24, 19]. Equa-
tion (15.68) can again be solved graphically to obtain the self-consistent, steady-state
firing rates in the network (see below).

It is straightforward to extend this description to a two population network of
excitatory and inhibitory neurons. The equations are, for finite CE , CI , (E-to-E) JEE ,
(I-to-E) JEI , (E-to-I) JIE , and (I-to-I) JII :

nE = f(mE ,sE) (15.71)

nI = f(mI ,sI) (15.72)

mE = mextE +[CEJEE nE −CIJEI nI ]
mI = mextI +[CE JIE nE −CIJII nI ]

s 2
E = s 2

extE +
[
CEJ2

EE nE +CIJ
2
EI nI

]
s 2

I = s 2
extI +

[
CE J2

IE nE +CIJ
2
II nI
]
. (15.73)

The stationary states of these two population networks and their stability properties
have been studied extensively [11, 19]. Since the number of connections per neu-
ron in these networks is large, they behave qualitatively like the balanced networks
discussed in the previous section.

15.3.1.4 Spatial distribution of activity in finite heterogeneous networks

Mean-field equations have been derived for heterogeneous networks of binary neu-
rons [119] and for heterogeneous networks of noisy LIF neurons [10]. Consider a
network of N neurons in which the probability that two neurons are connected is
C/N � 1. Each neuron will receive C connections on average, and the cell-to-cell
fluctuations in the number of afferents will be order

√
C. In principle, when C is

large, the fluctuations in the number of connections are small compared to the mean.
However, since networks of excitatory and inhibitory cells settle down in a balanced
state in which excitation and inhibition cancel each other out to within 1/

√
C (see

above), the effective average input to the neurons becomes of the same order as its
fluctuations, and this is reflected in wide distributions of firing rates in the steady
states. To calculate this distributions self-consistently one proceeds as follows: The
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temporal average currents can be written as

mE = JEE

NE

Â
j=1

c jn E
j − JEI

NI

Â
j=1

c jn I
j

mI = JIE

NE

Â
j=1

c jn E
j − JII

NI

Â
j=1

c jn I
j , (15.74)

where c j is a binary random variable such that Prob(c j = 1) = CE,I/NE,I ≡ e , and
where we have assumed for simplicity that the excitatory (inhibitory) synaptic effi-
cacies are uniform for each type of connections (JEE , JEI , JIE , JII). The temporal
averages of the current mE,I are now random variables due to the randomness in the
connectivity. Their spatial averages are equal to

m̄E = e [JEENE n̄E − JEINI n̄I ]
m̄I = e [JIE NE n̄E − JIINI n̄I ], (15.75)

where n̄E,I are the average excitatory and inhibitory rates across the population. The
variance of mE,I across the population is

s 2
mE

= e
[
(1− e)

(
J2

EENE n̄ 2
E + J2

EINI n̄ 2
I

)
+ J2

EENE s 2
nE

+ J2
EINI s 2

nI

]
s 2

mI
= e

[
(1− e)

(
J2

IE NE n̄ 2
E + J2

IINI n̄ 2
I

)
+ J2

IENE s 2
nE

+ J2
IINI s 2

nI

]
, (15.76)

with s 2
nE,I

equal to the variance of the spatial distribution of rates across the network.
Since mE,I are the sum of many independent contributions, their distribution will be
approximately Gaussian, so we can write

mE,I(z) = m̄E,I + smE,I z, (15.77)

where z = N(0,1). Rigorously speaking, the randomness in the connectivity will
also induce cell-to-cell variability in the temporal fluctuations in the synaptic current.
However, this effect is weak compared to the effect on the mean, so one can neglect
it and still get very accurate results [10]. We will therefore assume that they are
constant across the population, and close the self-consistency loop by writing the
rates as a function of the mean and variance of the synaptic current

nE,I(z) = f(mE,I(z),sE,I). (15.78)

To estimate the spatial distribution of rates across the network rE,I(n), we thus write

rE,I(n) =
∫

r(z)rE,I(n |z)dz =
∫

r(z)d (n −f(mE,I(z),sE,I))dz. (15.79)

The firing rate distributions obtained in this way agree very well with the results from
numerical simulations [10] and are also qualitatively similar to the wide distributions
of firing rates seen in cortex [70].
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15.3.2 Stability and dynamics

Are the states in which rates are solutions of equations (15.63), (15.68) or (15.71)
and (15.72) stable? In order to answer rigorously this question, one must come back
to the Fokker-Planck approach of Section 15.2.3, and write down the correspond-
ing equation for the distribution of membrane potentials of neurons in the network,
r(V,t|V0,t0), coupled to the average firing rate n(t) through the boundary conditions
[1, 24]. A brief sketch of this approach is provided in the Appendix. Although this is
the rigorous way to assess the stability of the steady-state solutions within the strong
noise framework, analytical investigations of the Fokker-Planck equations are rather
involved, and their numerical resolutions are also complicated [88]. Furthermore,
their generalization to noisy situations with realistic synaptic dynamics is even more
involved [21, 40]. Thus, it is of interest to investigate the possibility of approximat-
ing the dynamics by simpler dynamical equations, such as the Wilson-Cowan-type
equations [126]. It is important to emphasize, however, that each dynamical descrip-
tion is suitable only for certain types of instabilities. For instance, an approximate
dynamics in terms of firing rates cannot predict the instabilities of the network to a
state where neurons are synchronized ‘spike-to-spike’. Once a particular dynamical
description is selected, the stability of the steady states against perturbations which
comply with the assumptions of the chosen dynamical picture can be assessed.

Approximate firing rate dynamics have been found in some situations. For exam-
ple, in weakly coupled networks with long synaptic time constants, one can derive an
equation for the synaptic gating variable s(t) [36, 37]. Let us write Equation (15.62)
as n = f(mV ,sV ), where mV = Vss−VL = m ext

V +CJ̄s(t). We consider a single popu-
lation, fully connected network, with sV = s ext

C
√

tm/Cm = 5 mV. The dynamics for
s(t) reads

ds(t)
dt

= − s(t)
tsyn

+ n(t)

n(t) = f(m ext
V +CJ̄s(t),sV ), (15.80)

where m ext
V = J̄extCext sext is the contribution of the external input to the steady state

voltage. According to this scheme, the firing rate is always at its steady state value
given the input, whereas the synaptic gating variable only follows the rate with its
characteristic time constant tsyn. This approximation is justified for the LIF model,
since it has been shown that the population firing rate follows the synaptic input
instantaneously [21, 40], provided that there is sufficient input noise, and that the
synaptic time constant is comparable to, or longer than, the effective membrane
time constant t e f f

m . To what extent this approximation holds true for the Hodgkin-
Huxley neuron model, or for real neurons, remains to be established. Qualitatively,
the reason is that when there is enough input noise, there is always a significant
fraction of the neurons across the population close enough to threshold and ‘ready’
to respond immediately to a change in current. Thus, it is appropriate to use the
steady-state relationship n = f(mV ,sV ) even if the inputs are not stationary, e.g.,
n(t) = f(mV (t),sV ) = f(m ext

V +CJ̄s(t),sV ), as in Equation (15.80).
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The fixed point of this system is

sss = tsynf(m ext
V +CJ̄sss,sV ). (15.81)

To check the stability of the fixed points of this network, the standard procedure is to
consider a small perturbation of a steady state

s = sss + d sexp(l t), (15.82)

where d s is a small perturbation that grows at a rate l . Stability of the steady state
implies Re(l ) < 0 for all possible perturbations. Inserting Equation (15.82) in Equa-
tion (15.80), we get

l = − 1
tsyn

+
df(mV (s),sV )

ds

∣∣∣∣
s=sss

. (15.83)

Thus, the stability condition l < 0 is

df(mV (s),sV )
ds

∣∣∣∣
s=sss

<
1

tsyn
. (15.84)

Equation (15.84) is a condition on the slope of the input-output function f at the
value of the input current given by sss. Since it is more intuitive to work with firing
rates, we can express it as a condition on the slope of f as a funcion of n if we note
that we only need the value of this slope at the steady state. In general

df
dn

=
(

df
ds

)(
ds
dn

)
. (15.85)

Since the output rate is an instantaneous function of s, we can calculate the first term
on the right hand side for all s(t). The second term we do not know in principle, but
on the steady state sss = tsynnss. Thus

df
ds

∣∣∣∣
s=sss

=
1

tsyn

df
dn

∣∣∣∣
n=nss

, (15.86)

so that the stability condition becomes

df(mV (n),sV )
dn

∣∣∣∣
n=nss

< 1. (15.87)

Thus, for a fixed point to be stable, the slope of the output rate as a function of the
input rate, should be less than one at the fixed point. This is shown graphically in
Figure 15.4, where f(mV (n),sV ) is plotted as a function of n , both for an excitatory
network (J̄ = 0.5 mV) and an inhibitory network (J̄ =−0.5 mV). The external inputs
are adjusted so that there is an intersection with the diagonal at 1 Hz in both cases.
When the network is excitatory (Figure 15.4A; in this case we use m ext

V = 0 mV), the
function f(mV (n),sV ) raises very fast from zero rates to saturation. Thus, the slope
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Figure 15.4

Self-consistent solution of Equation (15.80) and its stability properties. The output
firing rate f(mV (n),sV ) is plotted versus n in two situations. (A) Excitatory network
with m ext

V = 0 mV, J̄ = 0.5 mV. (B) Inhibitory network with m ext
V = 20.4 mV, J̄ =−0.5

mV. Other parameters are: C = 1000, tm = tsyn = 20 ms (Cm = 0.5 nF, gL = 25 nS),
tre f = 2 ms, Vth = −50 mV, Vr = −60 mV, sV = 5 mV. For both types of networks,
there is a self-consistent solution around 1Hz. In the excitatory network, this self-
consistent solution is highly unstable, because the slope of f(mV (n),sV ) vs. n is
much larger than one; in the inhibitory network, the self-consistent solution is highly
stable because of the large negative slope. In a balanced network where inhibition
strongly dominates the recurrent circuit, the slope becomes infinite negative. Note
that in the excitatory network, there are two other solutions: one at zero rate, and one
close to saturation rates (about 500 Hz).
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of f(mV (n),sV ) is much larger than one at the self-consistent rate nss and this steady
state is, thus, unstable. The conclusion here is that low firing rates are expected to be
hard to achieve in purely excitatory networks unless they are weakly coupled.

On the other hand, when the network is inhibitory (Figure 15.4B; m ext
V = 20.4 mV),

a supra-threshold external input is required to obtain an active network. The function
f now decreases as a function of n (due to the fact that the mean decreases with
n). Equation (15.87) is now trivially satisfied when the coupling is predominantly
inhibitory, J̄ < 0. Hence, a network state at this rate is stable. In the balanced
network of Section 15.3.1.2, inhibition strongly dominates recurrence because it has
to compensate for the external inputs. In this limit, the slope becomes infinitely
negative. Note, however, that this strong stability of the purely inhibitory network is
peculiar to synaptic couplings without latency. In presence of a latency, oscillatory
instabilities appear even in strongly noisy networks [19, 24, 26].

Another simplified rate dynamics which has been frequently used is

t
dn(t)

dt
= −n(t)+ f(m ext

V +CJ̄s(t),sV )

s(t) = tsynn(t), (15.88)

where t remains unspecified. Although the fixed points of the systems described
by Equations (15.80) and (15.88) are the same, this latter scheme neglects the dy-
namics for the synaptic variable, and instead uses an arbitrary time constant for the
process by which the firing rate attains its steady state value. In conditions of high
noise, Equations (15.80) seem, therefore, better suited to describe the time course of
network activity than Equations (15.88).

We can extend Equations (15.80) to allow the description of a network with two
(excitatory and inhibitory) neural populations, with firing rates nE and nI , and with
synaptic latencies. If synaptic activation has a latency of tlE for excitation and tlI for
inhibition, then we have

dsE(t)
dt

= −sE(t)/tsyn,E + nE(t − tlE)

nE(t) = fE(m extE
V +CEJ̄EEsE(t)− J̄EICIsI(t),s E

V )
dsI(t)

dt
= −sI(t)/tsyn,I + nI(t − tlI)

nI(t) = fI(m extI
V +CEJ̄IE sE(t)− J̄IICIsI(t),s I

V ). (15.89)

Equations (15.89) are Wilson-Cowan type dynamical mean-field equations which
are ‘derived’ from an underlying biophysical description of neurons and synapses.
In principle, the behavior of this model can be compared quantitatively (albeit ap-
proximately) with that of the original large-scale network of irregularly spiking LIF
neurons. One should bear in mind, however, that when time delays are included, the
dynamics become significantly richer, and the analysis more complicated. In fact,
rigurously speaking, in the presence of temporal delays the system becomes infinite-
dimensional, even if one deals with a single population (a function evaluated at t +t ,
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i.e., displaced in time, can be expressed as an infinite series of the time-derivatives of
the function evaluated at t). Still, simplified descriptions of this complicated dynam-
ical system can be used which produce results in good agreement with those from
simulations [21, 26, 40]. In general, the Wilson-Cowan type equations do a good job
of predicting the mean rate instabilities. They predict oscillatory instabilities only
in the above mentioned conditions (large amplitude noise filtered by synapses with
time constants comparable to membrane time constants, see [21, 26, 40]). For small
noise, instabilities not predicted by the rate equations occur, in which neurons are
synchronized ‘spike-to-spike’ (see e.g., [1, 62, 122] and refs therein). For other dis-
cussions about reductions to firing rate equations, see [7, 52, 109]. In a network in
which a significant part of the fluctuations is generated by the network itself, Equa-
tions (15.80-15.88) can also be generalized to include the variance as a dynamical
variable [11]. This approach gives rather accurately the mean rate instabilities in
such networks, but not the oscillatory instabilities induced by the interplay between
the dynamics of the variance and the mean, where the full Fokker-Planck approach
must be used [19].

15.3.3 Bistability in a single population network

We now come back to the fully connected network of NE excitatory cells. As we
have seen in Section 15.3.2 (Figure 15.4), such networks can have more than one
steady-state for the firing rates, provided the excitatory coupling is strong enough.
Thus, an excitatory network can be bistable. In absence of external inputs, and with
linear synapses, bistability typically occurs between one steady state at zero rate and
another one at rates close to saturation. How is this picture affected by realistic
synaptic dynamics? A situation of interest is when synaptic currents are mediated
by saturating NMDA receptors [120]. By the arguments presented above, the fluctu-
ations in these currents are negligible, because of the long decay time constant. In
addition to NE recurrent contacts, each neuron also receives Cext AMPAR-mediated
excitatory synaptic inputs from outside the network. Each of these external inputs
provides spikes according to an independent Poisson process, and the firing rate of
each input is random from a distribution with mean next . Thus, in this particular ex-
ample, all the noise is generated outside the network, and is independent from cell to
cell by construction.

We consider a slightly different dynamical picture from the one introduced in the
previous section in Equation (15.80). The main difference is that, since we want to
include the realistic synaptic dynamics, Equation (15.40), appropriate for the slow
NMDA channel dynamics, the synaptic currents depend now non-linearly on the
firing rates. Following the arguments presented in Section 15.3.2, we use the mean
level of synaptic activity at the recurrent synapses s̄NMDA as the dynamical variable,
since the time constant of the NMDA-mediated currents is the slower time scale of
the system. However, the synaptic activity depends now in a non-linear way on the
input rate. Equations (15.40) and (15.80) suggest seeking a dynamical equation for
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the variable s of the form

ds̄NMDA

dt
= − s̄NMDA

tNMDA

+(1− s̄NMDA)F(n), (15.90)

where the function F(n) is determined in a self-consistent way by the steady state
dependency of s̄NMDA on n (note that we are going directly from the firing rate n to the
s̄NMDA variable. Thus we are neglecting the dynamics associated to the variable x(t)
in Equation (15.41)).

Imposing ds̄NMDA/dt = 0 we obtain

s̄ss
NMDA =

F(n)
1

tNMDA
+ F(n)

≡ y(n), so that F(n) =
y(n)

tNMDA(1−y(n))
. (15.91)

Inserting this expression back into Equation (15.90), we obtain

ds̄NMDA

dt
= − 1

t e f f
NMDA

[s̄NMDA −y(n)] , (15.92)

where t e f f
NMDA = tNMDA(1−y(n)), and where n is given by

n =

[
tre f + t e f f

m

√
p
∫ Vth−Vss

sV

Vr−Vss
sV

ex2
(1 + erf(x))dx

]−1

, (15.93)

which depends on s̄NMDA through t e f f
m and Vss (see Equations (15.61) and (15.59)).

Thus, due to the saturation implicit in Equation (15.90), the effective time constant
of this dynamics depends on the firing rate, and becomes faster at higher pre-synaptic
activity. When the firing rates change slowly enough, this dynamics produces quan-
titative agreement with the results from simulations of the full spiking network [95].

Looking at these expressions, one notices that the dependence of the firing rate on
the mean recurrent synaptic activity is always through the product NEḡNMDAs̄NMDA ≡
gtots̄NMDA ≡ s̃. The steady states of our dynamics are thus given by the solutions of the
following equation

s̃
gtot

= y(n(s̃)), (15.94)

which correspond to the intersections of the curves given by each side of this equa-
tion plotted as a function of s̃. This equation generalizes Equation (15.63) to the
situation of non-linear synapses. Qualitatively, these intersections correspond to the
points in which the activity at the synapse (the right-hand side of Equation (15.94))
is equal to the feedback provided by the network (the left-hand side of the same
equation), which is a necessary condition for the network to be at a steady state.
The advantage of using s̃ as our variable, is that now the right-hand side of the self-
consistency equation is no longer dependent on the total synaptic conductance gtot,
which measures the gain, or amplification, of the mean activity at a single synapse
by the network. Thus, as gtot is varied, the self-consistent solutions of the dynam-
ics move like the intersections of the two curves in Equation (15.94) as the slope of
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the straight line measuring the network feedback is changed. In Figure 15.5A, the
function y(n(s̃)) and the line s̃/gtot have been plotted for three values of gtot. This
figure shows that, depending on the value of the gain, the two curves can intersect
either once or three times, allowing for the possibility of several coexisting steady
state solutions.

The next step is to look at the stability of these solutions. It can be done along the
lines of Section 15.3.2. Let us, for brevity use s̄ ≡ s̄NMDA. We rewrite the dynamical
equation as

ds̃
dt

=
1

t e f f
NMDA

(gtoty(n(s̃))− s̃) ≡ G(s̃), (15.95)

The stability of a steady-state s̃ss is given by the slope of G(s̃) evaluated at s̃ss. If

dG(s̃)
ds̃

∣∣∣∣
s̃=s̃ss

< 0 or
dy(n(s̃))

ds̃

∣∣∣∣
s̃=s̃ss

<
1

gtot
(15.96)

then s̃ss is stable. Recall that G( ˜sss) = 0. If G(s̃) has a negative slope at s̃ss, then it
is positive for s̃ slightly less than s̃ss, therefore s̃ will increase in time according to
Equation (15.95), converging towards s̃ss. Similarly, G(s̃) is negative for s̃ slightly
larger than s̃ss, again s̃ will converge back to s̃ss. Therefore, s̃ss is stable. Conversely,
if the derivative of G(s̃) is positive at a steady state, the latter is unstable.

Equation (15.96) implies that to assess the stability of a steady state solution
graphically by looking at the intersections of the two functions in Equation (15.94),
the stable fixed points will be those in which the sigmoid function has a lower slope
than the straight line at the intersection.

Figure 15.5A shows that if the recurrent gain gtot is lower than the dashed line
marked by gLow

tot , the slope 1/gtot is too high and there is only one fixed point with
low, but non-zero activity, which is always stable. On the other hand, when the
recurrent gain is higher than the dashed line marked by gHigh

tot , the only fixed point,
which is also always stable, corresponds to a state of high activity. In between, there
is a range of values of gtot in which three fixed points coexist. The ones with higher
and lower activity are stable (marked with a filled circle), and the intermediate one
(open circle) is unstable. When gtot lies within this range, the network is said to be
bistable. The intermediate unstable point corresponds to the steady-state which we
showed in Figure 15.4 with excitatory connections.

As shown in Figure 15.5C, when the network is bistable, transient inputs can
switch the state of the network between its two stable states. The network can, in
this sense, be used as a working memory device (see next section), as the presence or
absence of an input to the network can be read out from its activity after the stimulus
is no longer physically present. One atractive feature of this encoding scheme is its
robustness. Indeed, the activity state of the network does not reflect the occurrence
of a single stimulus, but rather of a class of stimuli. In our example, quite a different
range of amplitudes of the applied current will lead to the same steady-state. The
network is said to use ‘attractor dynamics’, since each fixed point attracts the state of
the network from a wide range of initial conditions. This concept can be understood
by imagining that the state of the network, in our example the gating variable s̄, slides
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Figure 15.5

Bistability in a simple, one-population recurrent network. (A). Mean synaptic ac-
tivity as a function of the total recurrent synaptic input s̃ = gtots̄NMDA (sigmoid; thick
solid line) and same quantity when s̃ is interpreted as the total recurrent network
feedback (thin dashed lines). gHigh

tot = 50 nS and gLow
tot = 34 nS correspond to the

highest and lowest values of the network gain in which the network is bistable for
this network parameters. The crossings of a straight line corresponding to an in-
termediate value of gtot = 40 nS with the sigmoid, correspond to the 3 steady state
solutions in the bistable regime. Stable (unstable) solutions are marked with a filled
(open) circle. (B). Mean firing rate of the neurons as a function of the total recur-
rent synaptic input. The fixed point solutions in A are shown. Note the low rate
(∼ 40 Hz) of the stable high activity state, and the non-zero rate (∼ 1 Hz) of the
stable low activity state. Network parameters are: Cext next = 0.7 KHz, gext

AMPA = 3.1
nS. Parameters for the single cells are like in Figure 15.1. Synaptic parameters are
given in Section 15.2.6.2. (C). Time course of activity (top) in the network when
gtot = 40 nS. Brief current pulses (bottom) switch the network between its two stable
states. (D). Potential function associated to the dynamics of Equation (15.92) for
three different values of gtot, corresponding to the situations where there is only one
low activity steady-state (upper curve), one high activity steady-state (lower curve)
and for a bistable network (middle curve). The values of sNMDA at the steady states
are given by the minima of the potential function. Inset: blown-up version of the
low activity region of U shows the disappearance of the low activity minimum of the
potential as gtot increases.



Mean-Field Theory of Recurrent Neural Networks 467

down a hilly landscape. The valleys (or minima) correspond to the steady-states, and
the class of stimuli which are attracted to each steady-state (called its basin of attrac-
tion) are the set of all locations in the landscape which roll down to the same minima.
Indeed, the dynamics (15.92) can be re-written as

ds̄
dt

= −dU(s̄)
ds̄

. (15.97)

This dynamics describes the movement of a point particle at location s̄ sliding down
the landscape defined by the function U(s̄) in the presence of high friction. U(s̄) is
also called the potential of the dynamics, and it is such that the speed of the particle at
location s̄ is equal to minus the slope of U at that location. In Figure 15.5D we show
three examples of the U(s̄) for values of the gain at the recurrent connections gtot such
that the network has either a single high (gtot > gHigh

tot ) or low (gtot < gLow
tot ) activity

steady-state, and for an intermediate value of gtot, where the network is bistable. For
low enough gain, U(s̄) has a single minimum, and as the gain increases, a second
minimum at a higher value of s̄ appears. These two minima coexist for a range of
values of the gain, but if the gain is high enough, the low activity minimum disap-
pears (see inset in Figure 15.5D).

Several features deserve comments: First, in contrast to the network of linear
synapses of Section 15.3.2, the firing rate in the high activity fixed point is about 40
Hz (Figure 15.5B), much less than saturation rates, even in the absence of inhibi-
tion. This rate is in the upper range of the available physiological data for persistent
activity(20-50 Hz). This relatively low rate is due to the saturation properties of the
NMDA receptor. Second, the low activity state has a low firing rate of about 1Hz.
This is due to the presence of noise in the system. In the absence of noise, i.e.,
when the synaptic current is constant in time, the input-output function of the neuron
becomes a sigmoid with a ‘hard’ threshold. For currents below this threshold the
output rate is identically zero (see trend for decreasing noise levels in Figure 15.2)
and in the supra-threshold regime it increases as a sub-linear function of the input
current until saturation at 1/tre f is reached. In these conditions, when the network
is bistable, the low activity state is necessarily zero. When noise is included in the
description, the firing rate can be non-zero even in the sub-threshold regime: the
membrane potential, which hovers around its steady state below threshold, crosses
this threshold once in a while as a result of the random fluctuations in the input cur-
rent [8, 118]. Such a state of low, fluctuation-driven activity has been suggested to
correspond to the background or spontaneous activity state found in the cortex [11].
The fact that the low activity state is stable in Figure 15.5 is due to the fact that
the excitatory feedback is unrealistically weak (see caption of Figure 15.5). When
excitatory feedback is stronger, the non-zero low rate state becomes unstable, and
inhibition becomes necessary to achieve stability at low rates [11]. Hence, a more
detailed model is required.
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15.3.4 Persistent neural activity in an object working memory model

As we have just demonstrated, the self-consistency equations whose solutions pro-
vide the firing rates of the different neural populations in the steady-states of the
recurrent network can, in some cases, have multiple solutions for the same set of
parameters and external inputs to the network. When this is the case, transient exter-
nal inputs can switch the state of the network among its possible stationary solutions.
Conceptually, the network can now function as a short-term or working memory sys-
tem, as its state of activity is no longer uniquely specified by the ‘static’ variables of
the system (cellular or network parameters, unspecific external inputs, etc) but also
carries information about the recent history of transient inputs to the network. More
generally, a recurrent network can display multi-stability, whereby a resting state of
spontaneous activity coexists with multiple attractor states (stable neural firing pat-
terns), each of which encodes a different sensory stimulus. Therefore, the identity
of a transient input is encoded and stored in the level of spiking activity of a distinct
neural assembly in the recurrent circuit. Such stimulus-selective persistent activity
has been documented during electrophysiological experiments on behaving monkeys
during working memory tasks [35, 41, 42, 43, 44, 45, 46, 47, 48, 55, 56, 73, 79, 81,
85, 86, 89, 100, 124].

We now describe in some detail an object working memory model that has been
analyzed both at the mean-field level and with numerical simulations. For the model
to comply with the basic phenomenology of the data from object working memory
experiments, the simple bistable network presented in the previous section has to be
considerably enlarged. First, local networks in association cortices are likely to be
endowed with much more than two attractors. The experiments in the temporal lobe
with a large number of stimuli (up to 100) [81, 85, 86, 100] suggest the following
picture:

• In the absence of external stimulation, networks in the temporal lobe are in a
spontaneous activity state, in which all neurons fire at low levels of several Hz;

• Upon presentation of a particular familiar stimulus, a small sub-population of
neurons in localized areas of the temporal lobe exhibit persistent activity; this
fraction of neurons can be estimated to be around 1% or a few % [81]. Thus,
the representation of familiar stimuli in these areas is sparse;

• Representations of different stimuli have very small overlaps, since neurons
typically respond to only one or a few images in the set of shown images [81].

A model for object working memory based on these observations has been built in
several stages [9, 11, 12, 21]. The model of [11] is a network of randomly connected
excitatory and inhibitory neurons much as the one discussed in Section 15.3.1.3.
In addition, the excitatory population is divided in sub-populations, where a given
sub-population is assumed to have a strong visual response to a particular stimulus.

A schematic representation of the architecture of the model is shown in Fig-
ure 15.6A. The network consists of two large pools of interacting pyramidal cells
and interneurons. Both populations are fully connected with themselves and with
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each other. The pyramidal cell population is itself divided in several sub-populations.
Since the experiments show that single cells only respond to a very small fraction of
the stimulus set (approximately 1%), the model assumes that each sub-population
shows selective responses to a single stimulus, and that the different sub-populations
are non-overlapping. In addition to this set of ‘selective’ sub-populations, there is
a sub-population of neurons which are not selective to any particular object. All
neurons also receive unspecific excitation from outside the network. In the model
of [11], synaptic transmission was assumed to be instantaneous. [25] proposed a
model with more biologically plausible synapses (a full description of the spiking
neuron model, as well as the complete set of mean-field equations, can be found in
that paper). In the model, excitatory transmission is both AMPAR- and NMDAR-
mediated, though with a dominant contribution of the NMDA component at the re-
current synapses and a dominant AMPA component on the external inputs, while
inhibitory transmission is mediated by GABAA receptors. Neurons belonging to
the same selective sub-population are assumed to be frequently co-activated by the
visual input which drives them effectively, and, therefore, the excitatory synapses
connecting them are assumed to have undergone Hebbian synaptic potentiation, so
that the synaptic strength at these recurrent connections is supposed to be larger than
average.

As shown in Figure 15.6B, when the strength of these synapses is increased to be
approximately twice the average (baseline) excitatory coupling strength, there is a
sudden ‘bifurcation’ at which bistability emerges in each selective sub-population.
Therefore, a graded difference in the coupling strength could lead to qualitatively
different network behaviors (e.g., with or without persistent activity). Again the
firing rate in the elevated persistent activity state is fairly low, in agreement with the
data. Also, although the firing rates predicted by the mean-field model (solid curve)
slightly overestimate the results from the direct simulations of the original spiking
neural network (filled dots), the agreement between the two is reasonably good.

An example of the behavior of the network when the sub-populations are bistable
is shown in Figure 15.6C. The upper part of the figure shows rastergrams from se-
lected neurons from each of the sub-populations, and the lower part shows the popu-
lation firing rate for each of the sub-populations. During the time interval marked as
sample, the firing rate of the external inputs to the sub-population marked as num-
ber 1 is transiently elevated. The resulting increase in activity in this sub-population
persists during a delay of several seconds, self-sustained by recurrent synaptic re-
verberations. At the end of the delay, an excitatory input to the whole network, sig-
naling the behavioral response [29], switches the network back to the resting state.
The persistent delay activity slightly increases the excitatory drive to the interneuron
population, which also increases its activity. As a result, other sub-populations not
selected by the transient input are more strongly inhibited during the delay.

15.3.5 Stability of the persistent activity state

The stability of the persistent state in a single population network is easily read out
from a graph such as the one of Figure 15.5. In networks with several populations,
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Figure 15.6

Behavior of an object working memory network. (A). Schematic representation of
the network. Circles represent the different sub-populations. Labels on the arrows
indicate the type of synaptic connection between them. The width of the arrows
qualitatively represents the strength of the corresponding synaptic connections. (B).
Bifurcation diagram showing the onset of bistability as a function of the strength
of the connections within a selective sub-population relative to a baseline. Lines
are the prediction from the mean-field version of the model, with solid (dashed)
lines representing stable (unstable) steady states. Squares (spontaneous activity) and
circles (elevated persistent activity state) are results from simulations of the spiking
network (continued).
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Figure 15.6

(C). Time course of the activity of the different sub-populations of the network in
a delayed match-to-sample protocol. The network is initially in a resting state with
low and uniform spontaneous firing activity. A brief stimulus to one of the neural
sub-populations (indicated in red) triggers persistent activity that is self-sustained
by recurrent reverberations and that is confined to that neural sub-population. This
memory is erased, and the network is turned off, by another transient input during
the match+response time epoch. Top: rastergrams. Bottom: firing rate histogram
across the corresponding sub-populations. Red: selective sub-population receiving
a transient external excitation during the sample period. Green, yellow, blue and
brown: sub-populations selective to other stimuli. Cyan: sub-population of non-
selective excitatory cells. Black: inhibitory interneurons. (See color insert.)

such as the excitatory-inhibitory networks, the analysis becomes more complicated,
and the stationary state with the highest firing rate can destabilize through an oscilla-
tory instability. Oscillatory synchrony can then disrupt bistability, or multi-stability.
Conditions for stability of a persistent activity state in presence of synchrony can
be understood from the simple following intuitive argument. Consider a network of
neurons which, upon the arrival of a transient excitatory input, switch their activity
from a few Hz in spontaneous activity to an elevated activity state of 20-40 Hz. Let
us consider a single neuron firing at 25 Hz in this persistent activity state. This neu-
ron fires, on average, every 40 ms. Since the tonic external input has not changed, in
order for the neuron to maintain this firing rate, the recurrent network must provide
enough current during the next few tens of milliseconds after each spike so that the
cell will spike again. How can this be achieved? A possibility is that the network
operates in an asynchronous state, where the assumed statistical independence of the
firing times in different neurons is satisfied. In such a state, the fraction of neurons
firing a spike across the network is, on average, constant. This property implies that,
if the number of cells is large enough, the network will generate a tonic input, con-
stant in time on average, which can sustain the firing of the single cells in a stable
manner.

On the other hand, when there is some degree of synchrony, the fraction of cells
firing at any given time starts to fluctuate on average, even for a very large network
size. Consider the extreme case in which, at some instant of time, the whole network
is perfectly synchronized, i.e., all neurons fire at the same time. Unless some mecha-
nism exists which can keep a memory of this burst of activity and somehow delay it,
turning it into an input to the cells at a later time, the activity of the network would
decay to the resting spontaneous state [60]. A mechanism working in that direc-
tion could be implemented by the long time constant of NMDAR-mediated synaptic
transmission [120]. Intuitively, according to Equation (15.29), if a synapse has time
constant tsyn the current into the cell resulting from a single spike at tspk is still 37%
of its maximum at tspk + tsyn. This delay between the occurrence of an excitatory
event, and its effect on the post-synaptic cell could, therefore, be beneficial for the
stability of persistent activity in the presence of synchrony.
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In addition, a long synaptic time constant for excitation might help to stabilize
the asynchronous state itself. Oscillations easily occur in networks of interacting
excitatory and inhibitory neurons, if the time constant of inhibition is longer than
that of excitation (see e.g., [26, 120]). The intuitive reason is that, if such a network
is perturbed from its steady state, the excitation will build up before the inhibition
has time to suppress it. This excess of excitation will result in an increased inhibition
which eventually overcomes the excitation, resulting in an overall suppresion of the
excitation in the network. A decreased drive to the inhibitory cells leads to a decay of
their activity, releasing the excitatory population and the rhythmic cycle starts again.
When the excitation is slower, this type of oscillatory instability is prevented, as any
excitatory perturbation results in an increased inhibition before the excitation has
time to build up.

An example of the effect of changing the effective time constant of excitation
on the stability of persistent activity is shown in Figure 15.7, for the object-working
memory network described above. Remember that in this network, GABAAR- medi-
ated inhibition has a time constant of 10 ms, and AMPAR- and NMDAR-mediated
excitation have time constants of 2 ms and 100 ms respectively. In the Figure, the
temporal course of the average activity of a sub-population of selective cells after
the application of a transient excitatory input is shown, as the relative contributions
of AMPA and NMDA receptors at each excitatory synapse is varied systematically,
thus taking the network from a scenario in which excitation is slower than inhibition
to one in which it is faster. When the AMPA:NMDA ratio of the charge entry per
unitary EPSC is 0.1 (measured at V = −55 mV, near threshold), the average activity
is fairly constant in time and shows only small amplitude fluctuations which do not
destabilize the persistent state. As the ratio is progressively increased, excitation
becomes faster, and the amplitude of the fluctuations grows. However, due to the
delay effect mentioned above, the state of persistent elevated activity is still stable for
fairly large amplitude fluctuations in the average activity (see Figure 15.7c). Indeed,
in these conditions, the power spectrum of the average activity shows a clear peak
near 40 Hz (see inset in Figure 15.7e). Although the issue of whether the persistent
activity observed in the cortex is indeed oscillatory is controversial, a similar spectral
structure has been recorded in local field potentials of area LIP [90] (but see [30]).
As expected, when excitation becomes too fast, the amplitude of the oscillations
becomes too large, and NMDAR-mediated excitation is unable to bridge the gap
between activity bursts, with the resulting destabilization of the persistent activity
state, and the network’s working memory behavior is lost (Figure 15.7D).

These arguments raise the possibility that NMDAR-mediated excitation, or more
generally, slow synaptic or cellular recurrent excitation could help to prevent os-
cillatory instability resulting from the excitation-inhibition loop, thereby contribut-
ing to the stability of persistent activity generated in recurrent cortical networks.
Other factors can of course affect this stability. For instance, mutual inhibition be-
tween interneurons can in some conditions reduce the propensity of instability in
an excitation-inhibition loop [62, 116]. This effect can be understood using a two-
population rate model like Equations (15.89). When there is no synaptic latency, it
can be shown by the linear stability analysis of a steady state that the I-to-I coupling
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Figure 15.7

Stability of pesistent activity as a function of the AMPA:NMDA ratio. (A-D). Tem-
poral course of the average firing rate across a sub-population of selective cells in
the network of Figure 15.6 after transient excitatory input, for different levels of the
AMPA:NMDA ratio. This ratio is defined as that of charge entry through a unitary
post-synaptic current at V = −55 mV (near threshold). As the ratio is increased,
oscillations of a progressively larger amplitude develop, which eventually destabi-
lize the persistent activity state. (E). Snapshot of the activity of the network in C
between 3 and 3.5 seconds. Top: Average network activity. Bottom: Intracellular
voltage trace of a single neuron. Inset. Power spectrum of the average activity of
the network, showing a peak in the gamma (∼ 40 Hz) frequency range. Persistent
activity is stable even in the presence of synchronous oscillations.
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effectively reduces the time constant of the inhibitory population dynamics; faster in-
hibition thus reduces the likelihood for this type of oscillatory instability [112, 116].
However, it is important to emphasize that the oscillatory instability with reduced
NMDA:AMPA ratio in our working memory models (Figure 6 and Figure 6 in [29])
was observed in the presence of strong I-to-I synaptic connections. The same result
was also obtained with a spatial working memory model of Hogkin-Huxley-type
conductance-based neurons [112]. Note that the models of [116] and [62] did not
include synaptic latency, which has been shown to favor fast synchronous oscilla-
tions in a purely inhibitory network [21, 19, 26]. In general, stronger NMDA:AMPA
ratio promotes asynchrony. Stronger I-to-I coupling without latency contributes to
network asynchrony, but with synaptic/cellular latency could lead to oscillatory in-
stability.

Other factors which might also contribute to the stability of persistent activity
states include intrinsic ionic currents with long time constants [112], or bistability at
the single cell level [28, 75]. Finally, heterogeneities, both in cellular and in connec-
tivity properties, and noise, tend to desynchronize the network.

15.3.6 Multistability in balanced networks

Can bistability, or multi-stability, occur in a balanced network? Furthermore, can
multistability occur between several states in which all neurons fire in a Poissonian
fashion? These questions are interesting from a theoretical point of view, but are also
raised directly by available data suggesting that the irregularity in the output spiking
activity of cortical neurons is as high in high-rate persistent activity states as in the
low-rate spontaneous activity state [30].

The balanced model of Section 15.3.1.2 seems incompatible with multistability,
since the rates depend linearly on the external inputs through Equation (15.66). In-
deed, unless the matrix of gain coefficients in equations (15.66) is singular (which
requires a biologically unrealistic fine-tuning of parameters) these equations have a
single solution for a fixed external input and are, consequently, incompatible with
bistability. This is the manifestation of a general problem: any non-linear behavior
in balanced networks requires a significant amount of fine-tuning in network param-
eters.

Several partial solutions to this problem can be suggested. First, in networks with
finite connectivity such as the one of Section 15.3.4, multistability can be found even
though the background state of the network is qualitatively a ‘balanced state’ (strong
coupling, irregularly firing neurons). In fact, the multistability properties of such
networks can be understood in the limit C → •, J ∼ 1/

√
C, if the relative size f

of the selective sub-populations are taken to be small compared to the rest of the
network, f ∼ 1/

√
C: in this case, the leading order to the mean input in both cue and

non-cue populations vanishes due to the ‘balance’ condition, but the corrections to
the leading order are finite and different between the cue and non-cue populations,
leading to a non-linear equation for the rates in the cue population (see [20] for a
discussion of the sparse coding limit f → 0). Thus, multistability is relatively easily
achieved. The intuitive picture is that, while the global activity of the network is set
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by the ‘balance’ condition set by the strong global inhibition, the activity in the small
selective excitatory sub-population becomes essentially uncoupled from the rest of
the network. Consequently, this sub-population behaves essentially as the weakly
coupled excitatory network of Section 15.3.3. However, a direct consequence of
this scenario is that the CV in persistent activity must be lower than in spontaneous
activity, because the mean inputs are larger in the cue population, while the variance
remains unchanged (see Figure 2). Thus, there is no multistability between several
‘balanced states’.

It is therefore possible for small sub-populations within a larger balanced network
to be bistable in a robust way, but at the price that the small sub-populations them-
selves do not remain balanced in both steady-states. Is there an alternative? The idea
would be to find a scenario in which the variance in the cue population also increases
in a significant way from spontaneous to persistent activity, so that the increase in
CV induced by the increase in variance counterbalances the decrease induced by the
increase in the mean. One can even imagine a scenario in which the mean does not
change, but the variance does. Such a scenario was introduced in [93, 94] for a net-
work with finite connectivity C. It is a generalization of the model of [11] (see Figure
15.6A) in which the interneurons are also subdivided in selective sub-populations.
Such a network is divided functionally in ‘columns’ or ‘micro-columns’ composed
both of excitatory and inhibitory populations. Both populations are activated in a
selective way when their preferred stimulus is shown. Consequently, in a persistent
state, both excitatory and inhibitory populations raise their firing rates. A similar
phenomenon was observed in experiments monitoring the activity of neurons in the
prefrontal cortex of primates during working memory tasks. Recordings of nearby
putative pyramidal cells and interneurons showed that the two sub-populations in-
crease their firing rate during the delay period [92]. This has lead to the postulate of
a micro-columnar organization of the pre-frontal cortex [92].

The ‘micro-columnar’ network has been studied at the mean-field level [93, 94].
In order to do a systematic investigation of the spiking variability resulting from dif-
ferent types of network organizations, the mean-field theory has been extended to be
self-consistent both at the level of rates and CVs. In the previously discussed models,
Poisson spiking statistics was an assumption, so the irregularity in the spiking activ-
ity in the pre-synaptic spike trains was ‘fixed’. In [93] this assumption was relaxed
by assuming that the neuronal spike trains can be described as renewal processes
characterized by their mean rate and CV (a renewal point process is characterized
by independent ISI intervals from an arbitrary distribution). When the statistics of
the renewal spike trains are close to the Poisson case, the output rate and CV of the
post-synaptic neuron can be calculated as a function of the rate and CV of its inputs,
leading to steady state solutions in which both the rate and the CV are calculated
self-consistently. Using this framework, multistability in the micro-columnar net-
work described above has been studied using simple heuristic firing rate dynamics
similar to Equation (15.88). The synaptic interactions between neurons depend on
whether they belong to the same or to different micro-columns, and again, selec-
tive micro-columns are characterized by stronger excitatory recurrent interactions.
In Figure 15.8, we show the time course of activity of a bistable micro-column in
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Bistability in a balanced multi-columnar cortical circuit. (A). Temporal evolution of
the firing rate from the excitatory and inhibitory sub-populations of a column. At
t = 500 ms, a transient excitatory input was applied to both sub-populations. The
elevated activity state in response to this input outlasts the stimulus offset. Note
the elevated firing rate of the inhibitory sub-population also. (B). Same as above
for the CV of the two sub-populations. The CV increases with the firing rate. (C).
The figure shows the quantities mV = mC/gL and sV =

√
tmsC/Cm of the neurons in

the excitatory sub-population. They correspond to the mean and standard deviation
of the current, but are expressed in mV to facilitate comparison with the distance
between Vth and VL, equal to 20 mV (dashed line). The mean input current remains
essentially the same for both the resting state and persistent state, regardless of their
very different firing rates. The increase in firing rate in response to the stimulus is due
to an increase in the amplitude of the fluctuating component of the current, hence the
increase in CV above. In this network, both stable states are in the balanced regime.
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response to a transient input. Panels A and B show the average rate and CV of
the excitatory and inhibitory sub-populations in the micro-column. In this network,
since the micro-column remains balanced in the elevated rate state, the CV of both
sub-populations remains close to one in the delay period. Both the similar courses
of activity of the excitatory and inhibitory populations, and the high CV during el-
evated persistent activity are consistent with measurements from prefrontal neurons
in working memory tasks [30, 92]. The reason for this behavior is that the mean
current to both sub-populations (see the lower panel for the case of the excitatory
sub-population) remains approximately constant as the network switches between
its two stable states. The increase in firing rate is due to an increase in the fluctu-
ations in the current. Indeed, as a result of this, the CV actually increases in the
elevated firing rate state.

This increase in CV is in contrast to the decrease in CV in models in which the
network is not balanced in the elevated activity state, like the networks described
in the previous two sections. This qualitative difference between relative change in
spiking variability in these scenarios should, in principle, be experimentally testable,
although the small difference in CV observed in Figure 15.8 would be hard to detect
in experimentally recorded spike trains, due to limited sampling problems. Further
experimental data are needed to resolve this issue.

As suggested at the beginning of this section, this scenario still suffers from a fine
tuning problem. The range of multistability in the network with balanced persistent
state is extremely small for realistic numbers of inputs per cell [93]. In fact, such
multistability vanishes in the large C limit, even if the sub-populations are taken
to scale as 1/

√
C, because in that limit the difference in the fluctuations between

spontaneous and persistent activity vanishes.

The fundamental problem which precludes robust bistability in balanced networks
is the different scaling of the first two moments of the input current with the number
of inputs and with the connection strength. While the mean scales as JC, the variance
scales as J2C. It is thus impossible to find a scaling relationship between J and C
that keeps both moments finite when C → •.

It is possible that cross-correlations in the activity of different neurons might pro-
vide a solution to the ‘linearity’ problem of balanced networks. The different scaling
of the mean and the variance is a direct consequence of the fact that we have as-
sumed the different inputs to the cell to be independent, so that the variance of their
linear sum is the sum of their variances. If the inputs to the cell showed signifi-
cant correlations, the variance would now scale as (JC)2, in which case any scaling
relationship between J and C would have the same effect on the mean and on the
variance. It would therefore be of great interest to incorporate cross-correlations in a
self-consistent manner into the picture we have been describing in this chapter.
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15.4 Summary and future directions
In this chapter, we have presented analytical mean-field techniques that can be used
to study the collective properties of large networks of spiking neurons. In analyz-
ing the self-consistent steady-states of these networks, we observed that the self-
consistency equations have sometimes multiple stable states. This leads quite natu-
rally to the the interpretation of these networks as models of working memory sys-
tems. The methods discussed here help to understand in detail in which conditions
multistability can be achieved in large networks of spiking neurons. The results that
have been discussed are of course only the current status of a rapidly growing field.
Extensions of both the mean-field techniques and of network architectures for work-
ing memory are either already done, under way, or should be done in the near future.
We discuss here several of these possible extensions.

• More realistic single neuron models. The LIF lacks several features of real
neurons. First, it lacks any sub-threshold resonance phenomena [65]. General-
izations of LIFs with several variables have been introduced that possess such
sub-threshold resonance properties and can be studied analytically in stochas-
tic contexts along the lines of Section 15.2.3 [98]. Second, it lacks an intrinsic
spiking mechanism. The firing rate of neurons with intrinsic spike genera-
tion mechanism can be studied in the context of the ‘quadratic integrate-and-
fire’ neuron [22], and even more realistic neurons can be studied analytically
(Fourcaud et al. SFN 2002 abstract). Furthermore, mean-field theory can be
extended to a recurrent network of Hodgkin-Huxley-type conductance-based
single neurons [109]. This generalization may be important, e.g., the network
stability may be different depending on whether single neurons are described
by Hogkin-Huxley-type models or leaky integrate-and-fire models [26, 50].

• More realistic synaptic dynamics. The mean-field description of realistic
synaptic interactions can be improved in at least two ways. First, synaptic
fluctuations act through conductance changes, which are multiplied with the
driving force (V −Esyn) to yield synaptic current. Therefore the noise is mul-
tiplicative. We have sidepassed this difficulty by replacing V with its average,
so that the noise term becomes additive to the voltage equation. It would be
desirable to be able to deal analytically with multiplicative noise. Second,
synapses display short-term depression and facilitation [113, 131]. Mean-field
models that incorporate synaptic depression have been investigated [115, 120],
but the implications of short-term plasticity to recurrent networks, especially
to working memory models, still await to be fully explored.

• Extension to correlations between neurons. In this chapter we have al-
ways assumed that the spiking activity of different cells was independent.
Although the experimentally observed cross-correlations are relatively weak
[14, 31, 74, 130], they might have a large impact on the input-output relation-
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ship of a neuron, since when the correlation coefficient of the inputs to a cell
is not zero, the fluctuations in its total afferent synaptic are proportional to the
number of inputs to the neuron, instead of to its square root, as in the mod-
els we have described. Although the analytic treatment of cross-correlations
is technically complicated, a systematic characterization of their effect on the
rate and variability of simple spiking neuron models is becoming available
[38, 82, 101, 102]. The real challenge is to extend the framework here pre-
sented in such a way to include cross-correlations in a self-consistent way.
A first step in this direction has been taken by [78], where cross-correlation
functions in a recurrent fully connected recurrent network of spike response
neurons [53] have been calculated.

Finally, let us end with a note on recurrent networks that display a continuum of
stable neural firing patterns. Some working memory systems are believed to encode
features of sensory stimuli that are analog quantities (such as spatial location, di-
rection, eye position, frequency, etc). Such systems have been hypothesized to be
implemented in the brain by recurrent neural networks endowed with a continuous
family of attractor states. Heuristic firing-rate models of this kind have been widely
investigated [5, 16, 28, 63, 91, 103, 125, 128]. More recently, more biophysical con-
tinuous attractor models of spiking neurons have been developed for spatial working
memory [29], parametric working memory [80] and short-term memory in the ocu-
lomotor system [104]. Theoreticians have also begun to analyze mean-field models
that are derived from these spiking neural network models [80, 104, 109]. Further
progress in this direction will considerably advance our theoretical understanding of
recurrent cortical networks, and shed insights into the cellular and network mecha-
nisms of working memory.
Acknowledgments. A.R. thanks Ruben Moreno for helpful discussions. A.R. and
X-J.W. are supported by NIMH, the Alfred Sloan Foundation and the Swartz Foun-
dation. N.B. is supported by the C.N.R.S.

Appendix 1: The diffusion approximation
We will follow the exposition by [97]. We consider the case of a single post-synaptic
neuron which receives CE excitatory and CI inhibitory independent Poisson inputs
of rates nE and nI respectively, each delivering a charge JE and JI per spike though
an “instantaneous” synaptic current (see above). For this discussion, we measure
voltages with respect to VL, i.e., VL = 0. We will also measure the effect of each
pre-synaptic spike by the size of the resulting instantaneous jump in the membrane
potential J̄E,I = JE,I/Cm. Since the process is Markov, it satisfies

r(V,t + Dt|V0,t0) =
∫ •

−•
dV ′r(V, t + Dt|V ′, t)r(V ′, t|V0, t0). (15.98)
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If Dt is sufficiently small, so that Dt � tm, and so that the probability of receiving
more than one spike in Dt is negligible, and since the pre-synaptic spikes produce
discrete jumps, if follows that

r(V,t + Dt|V ′,t) = [1− (CE nE +CI nI)Dt]d (V ′
0 −V)+

+ CE nE Dtd (V ′
1 −V)+CI nI Dtd (V ′

2 −V), (15.99)

where the first, second and third terms correspond to the probabilities of receiving no
spikes, an excitatory spike or an inhibitory spike in Dt respectively, and V ′

0,1,2 are the
values of the depolarization at t +Dt in these three cases, given that the depolarization
was V ′ at t. In order to calculate V ′

0,1,2, we use the fact that, since Dt is small enough,
the exponential time course of V in between spikes can be approximated by a linear
decay. Thus

V ′
0 = V ′(1− Dt

tm
)

V ′
1 = V ′(1− Dt1

tm
)+ J̄E +[V ′(1− Dt1

tm
)+ J̄E ]

Dt2
tm

V ′
2 = V ′(1− Dt1

tm
)− J̄I +[V ′(1− Dt1

tm
)− J̄I]

Dt2
tm

, (15.100)

where Dt1 + Dt2 = Dt. Using the property d ( f (x)) = d (x − x′)/|∂x f (x′)| with x′
such that f (x′) = 0, and expanding to first order in Dt/tm, equation (15.98) can be
expressed as

r(V,t + Dt|V0,t0) = (1 +
Dt
tm

)
[
(1− (CE nE +CI nI)Dt) r(V (1 +

Dt
tm

), t|V0, t0)+

+ CE nE Dt r([V − J̄E ](1 +
Dt
tm

), t|V0, t0)+

+ CI nI Dt r([V + J̄I](1 +
Dt
tm

), t|V0, t0)
]
, (15.101)

which, upon taking the limit Dt → 0 becomes

∂
∂ t

r(V,t|V0,t0) =
∂
∂V

[(
V
tm

)r(V, t|V0, t0)]+CE nE [r(V − J̄E , t|V0, t0) (15.102)

− r(V,t|V0, t0)]++CInI [r(V + J̄I, t|V0, t0)−r(V, t|V0, t0)].

Finally, expressing the terms in square brackets as a Taylor series expansion around
V , one obtains

∂
∂ t

r(V,t|V0,t0) =
•

Â
n=1

(−1)n

n!
∂ n

∂V n [An r(V, t|V0, t0)]. (15.103)

where

A1(V ) = − V
tm

+ J̄ECE nE − J̄ICI nI (15.104)

An = J̄n
ECE nE +(−1)nJ̄n

I CI nI n = 2,3, . . . (15.105)
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are called the infinitesimal moments of the process. The intuitive nature of the diffu-
sion approximation becomes now clear: the smaller J̄E,I , the fewer the terms needed
to express r(V ∓ J̄E,I,t|V0,t0) as a Taylor series expansion arround V , and the fewer
the terms one has to maintain in the infinite-order Equation (15.103) to give an accu-
rate description of the process.

Appendix 2: Stability of the steady-state solutions
for rss(V )

The function rss(V ) is the solution of the stationary Fokker-Planck Equation (15.23)
with the appropriate boundary conditions. To assess the dynamical stability of this
solution, one has to use the general Fokker-Planck Equation (15.9) to test the effect
of small perturbations on the steady-state distribution. We briefly mention the logic
of this procedure.

For the sake of simplicity, we only discuss here a simple situation in which synapses
are instantaneous, with a latency tl ms after the pre-synaptic spike time. In this case,
the dynamical counterparts to Equations (15.63, 15.68) are

tm
∂r
∂ t

=
s 2

ext

2
∂ 2r
∂V 2 − ∂

∂V
[(V − mext − J̄tmn(t − tl))r ] , (15.106)

in the weakly coupled, fully connected case (no noise in recurrent inputs), and

tm
∂r
∂ t

=

(
s 2

ext +CJ̄2tmn(t − d )
)

2
∂ 2r
∂V 2

− ∂
∂V

[(V − mext −CJ̄tmn(t − tl)) r ] , (15.107)

in the strongly coupled, sparsely connected case (noise in recurrent inputs). In both
cases the boundary conditions are given by Equations (15.19,15.20).

The stationary solution to Equation (15.106) (resp. 15.107) is Equation (15.63)
(resp. 15.68). To study their stability, a linear stability analysis must be performed.
It consists in looking for solutions to Equations (15.106, 15.107) of the form

r(V,t|V0,t0) = rss(V )+ d r(V,l )exp(l t) (15.108)

n(t) = nss + d n(l )exp(l t), (15.109)

where rss, nss correspond to the stationary solution, d r and d n are small deviations
around the stationary solution that evolves in time with the (complex) growth rate
l . Upon inserting Equation (15.109) in Equations (15.106) or (15.107), and keeping
the term first order in d r and d n , an equation results for the possible growth rates l .
Solutions with Re(l ) > 0 indicate that the stationary state is unstable. Instabilities
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might come about with a positive real eigenvalue: this is a mean rate instability,
which typically occur in a network with strong recurrent excitation. Alternatively, an
instability associated with a positive real part of a complex eigenvalue signals a Hopf
bifurcation. If the bifurcation is supercritical, the network exhibits a synchronized
oscillation with a frequency close to Im(l ). For more details on this approach, see
[1] for the scenario with a simplified model with purely external noise, and [24] for
a model with recurrent noise.

References
[1] L. F. Abbott and C. van Vreeswijk (1993), Asynchronous states in a network

of pulse-coupled oscillators, Phys. Rev. E, 48: 1483-1490.

[2] M. Abramowitz and I. A. Stegun (1970), Tables of Mathematical Functions,
Dover Publications, NY.

[3] E. D. Adrian (1928), The Basis of Sensation: The Action of the Sense Organs,
W. W. Norton: NY.

[4] B. Ahmed and J. C. Anderson and R. J. Douglas and K. A. Martin and J. C. Nel-
son, Polyneuronal innervation of spiny stellate neurons in cat visual cortex,
J. Comp. Neurol., 341: 39-49.

[5] S. Amari (1977), Dynamics of pattern formation in lateral-inhibition type neu-
ral fields, Biol. Cybern., 27: 77-87.

[6] D. J. Amit (1995), The Hebbian paradigm reintegrated: local reverberations as
internal representations, Behav. Brain Sci., 18: 617.

[7] D. J. Amit and M. V. Tsodyks (1992), Effective neurons and attractor neural
networks in cortical environment, Network, 3, 121-137.

[8] D. J. Amit and M. V. Tsodyks (1991), Quantitative study of attractor neural
network retrieving at low spike rates I: Substrate – spikes, rates and neuronal
gain, Network, 2: 259-274.

[9] D. J. Amit and M. V. Tsodyks (1991), Quantitative study of attractor neural net-
work retrieving at low spike rates II: Low-rate retrieval in symmetric networks,
Network, 2: 275.

[10] D. J. Amit and N. Brunel (1997), Dynamics of a recurrent network of spiking
neurons before and following learning, Network, 8: 373-404.

[11] D. J. Amit and N. Brunel (1997), Model of global spontaneous activity and
local structured activity during delay periods in the cerebral cortex, Cerebral
Cortex, 7: 237-252.

[12] D. J. Amit and N. Brunel and M. V. Tsodyks (1994), Correlations of cortical



Mean-Field Theory of Recurrent Neural Networks 483

Hebbian reverberations: experiment vs theory, J. Neurosci., 14: 6435-6445.

[13] M. C. Angulo and J. Rossier and E. Audinat (1999), Postsynaptic glutamate
receptors and integrative properties of fast-spiking interneurons in the rat neo-
cortex, J. Neurophysiol., 82: 1295-1302.

[14] W. Bair and E. Zohary and W. T. Newsome (2001), Correlated firing in macaque
visual area MT: time scales and relationship to behavior, J. Neurosci, 21: 1676-
1697.

[15] M. Bartos and I. Vida and M. Frotscher and J. R. P. Geiger and P. Jonas (2001),
Rapid signaling at inhibitory synapses in a dendate gyrus interneuron network,
J. Neurosci., 21: 2687-2698.

[16] R. Ben-Yishai and R. Lev Bar-Or and H. Sompolinsky (1995), Theory of
orientation tuning in visual cortex, Proc. Natl. Acad. Sci. USA, 92: 3844-
3848.

[17] V. Braitenberg and A. Schutz (1991), Anatomy of the Cortex, Springer-Verlag.

[18] P. C. Bressloff and S. Coombes (2000), Dynamics of strongly coupled spiking
neurons, Neural Computation, 12: 91-129.

[19] N. Brunel (2000), Dynamics of sparsely connected networks of excitatory and
inhibitory spiking neurons, J. Comput. Neurosci., 8: 183-208.

[20] N. Brunel (2000), Persistent activity and the single cell f-I curve in a cortical
network model, Network, 11: 261-280.

[21] N. Brunel and F. Chance and N. Fourcaud and L. Abbott (2001), Effects
of synaptic noise and filtering on the frequency response of spiking neurons,
Phys. Rev. Lett., 86: 2186-2189.

[22] N. Brunel and P. Latham (2003), Firing rate of noisy quadratic integrate-and-
fire neurons, submitted manuscript.

[23] N. Brunel and S. Sergi (1998), Firing frequency of integrate-and-fire neurons
with finite synaptic time constants, J. Theor. Biol., 195: 87-95.

[24] N. Brunel and V. Hakim (1999), Fast global oscillations in networks of integrate-
and-fire neurons with low firing rates, Neural Computation, 11: 1621-1671.

[25] N. Brunel and X. J. Wang (2001), Effects of neuromodulation in a cortical
network model of object working memory dominated by recurrent inhibition,
J. Comput. Neurosci., 11: 63-85.

[26] N. Brunel and X.-J. Wang (2003), What determines the frequency of fast net-
work oscillations with irregular neural discharges? I. Synaptic dynamics and
excitation-inhibition balance, J. Neurophysiol. in press.

[27] M. A. Cohen and S. Grossberg (1983), Absolute stability of global pattern
formation and parallel memory storage by competitive neural networks, Trans-
actions IEEE, SMC-13: 815-826.



484 Computational Neuroscience: A Comprehensive Approach

[28] M. Camperi and X.-J. Wang (1998), A model of visuospatial short-term mem-
ory in prefrontal cortex: recurrent network and cellular bistability, J. Com-
put. Neurosci., 5: 383-405.

[29] A. Compte and N. Brunel and P. S. Goldman-Rakic and X.-J. Wang (2000),
Synaptic mechanisms and network dynamics underlying spatial working mem-
ory in a cortical network model, Cerebral Cortex, 10: 910-923.

[30] A. Compte and C. Constantinidis and J. Tegnér and S. Raghavachari and M.
Chafee and P. S. Goldman-Rakic and X.-J. Wang (2002), Spectral properties
of mnemonic persistent activity in prefrontal neurons of monkeys during a de-
layed response task, (Submitted to J. Neurophysiol.).

[31] C. Constantinidis and P. S. Goldman-Rakic (2002) Correlated discharges among
putative pyramidal neurons and interneurons in the primate prefrontal cortex,
J. Neurophysiol., 88: 3487-3497.
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