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Miller, Paul and Xiao-Jing Wang. Power-law neuronal fluctuations
in a recurrent network model of parametric working memory. J
Neurophysiol 95: 1099-1114, 2006. First published October 19,
2005; doi:10.1152/jn.00491.2005. In a working memory system, per-
sistent activity maintains information in the absence of external
stimulation, therefore the time scale and structure of correlated neural
fluctuations reflect the intrinsic microcircuit dynamics rather than
direct responses to sensory inputs. Here we show that a parametric
working memory model capable of graded persistent activity is
characterized by arbitrarily long correlation times, with Fano factors
and power spectra of neural activity described by the power laws of a
random walk. Collective drifts of the mnemonic firing pattern induce
long-term noise correlations between pairs of cells, with the sign
(positive or negative) and amplitude proportional to the product of the
gradients of their tuning curves. None of the power-law behavior was
observed in a variant of the model endowed with discrete bistable
neural groups, where noise fluctuations were unable to cause long-
term changes in rate. Therefore such behavior can serve as a probe for
a quasi-continuous attractor. We propose that the unusual correlated
fluctuations have important implications for neural coding in para-
metric working memory circuits.

INTRODUCTION

Neuronal activity in the cerebral cortex is highly irregular
(Buzsaki 2004; Compte et al. 2003; Shadlen and Newsome 1994
Softky and Koch 1993). Fluctuations in spike discharges are often
correlated between simultaneously recorded cells on a trial-by-
trial basis (Bair et al. 2001; Gawne and Richmond 1993; Lee et al.
1998; Zohary et al. 1994); this covariance greatly impacts the
extent to which noise can be averaged out over a neuronal pool
and so determines the accuracy with which a stimulus feature can
be extracted from a large population of neurons (Abbott and
Dayan 1999; Averbeck and Lee 2004; Shadlen and Newsome
1996; Shamir and Sompolinsky 2004; Sompolinsky et al. 2002).
Correlations arise from common inputs caused by both overlap-
ping afferents and local synaptic interconnections. For example,
cells in the primary visual cortex become correlated because of
shared thalamic inputs as well as lateral connections within the
cortex. Exactly how correlated noise enhances or decreases the
coding efficiency for an oriented visual stimulus critically depends
on the (feedforward vs. recurrent) network architecture (Series et
al. 2004).

Correlated fluctuations provide a valuable probe into the
dynamic nature of a neural network. For responses of sensory
cells to external stimuli, the effects of direct sensory inputs and
local connectivity are confounded. In contrast, neurons in
working memory systems exhibit persistent activity in the

absence of external stimulation, when the subject must hold
information transiently in the mind. Hence fluctuations of
persistent activity (Compte et al. 2003; Constantinidis and
Goldman-Rakic 2002) are believed to result from the intrinsic
dynamics of a working memory microcircuit. The cellular
mechanisms of mnemonic persistent activity represent a topic
of intense current interest (Brody et al. 2003; Major and Tank
2004; Wang 2001). Of special interest are working memory
circuits that encode an analog quantity, such as those integrat-
ing a velocity signal into a persistent change in position or
direction (Aksay et al. 2000; Taube and Bassett 2003) or
storing in active short-term memory the spatial location or
temporal frequency of a sensory stimulus (Funahashi et al.
1989; Romo et al. 1999). After a transient input, neurons in
such a network exhibit sustained changes of activity that are
tuned with a stimulus feature in a graded manner. This suggests
the system could possess a continuous family of stable self-
sustained activity states. Neuronal tuning curves that arise from
such activity states are often bell-shaped functions or mono-
tonic functions of the encoded quantity.

For a parametric working memory system, if the delay firing
rates of two monotonically tuned neurons are plotted against each
other, a curved line results, as shown in Fig. 1A. Such a curved
line is referred to as a line attractor (Seung 1996). The realization
of a continuum of monotonically tuned persistent firing states
requires fine-tuning of network parameters (Miller et al. 2003;
Seung et al. 2000b). In an alternative scenario, the network could
display multiple persistent states, not truly a continuum, by virtue
of a set of discrete stable activity patterns that can be robustly
realized without fine-tuning of parameters (Goldman et al. 2003;
Koulakov et al. 2002). Different stimuli cause the network to
change discontinuously from one pattern of activity to another,
whereas background noise does not cause a switch in the state of
persistent activity. Hence the discrete network model has a limited
sensitivity to small differences in stimuli, but is robust to noise in
the circuit. Whether the continuous or discrete model better
describes neural integrators remains an open question (Major and
Tank 2004).

Thus far, most experimental and computational studies have
been concerned with the trial-averaged firing rates. Fluctuation
analysis offers a different approach to characterize and poten-
tially test distinct working memory models. In a continuous
attractor network, noise is integrated in time, so the mnemonic
activity could drift in the same manner as a random walk.
Because correlation functions for a random walk do not decay
exponentially with time (Mandelbrot and Ness 1968), we
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reasoned that unusual fluctuation properties should be a con-
spicuous feature of continuous ‘“‘parametric’ memory net-
works, in which mnemonic neural firing is monotonically
tuned to an analog quantity (Aksay et al. 2000; Miller et al.
2003; Romo et al. 1999; Seung 1996; Seung et al. 2000b). A
more robust discrete integrator network (Goldman et al. 2003;
Koulakov et al. 2002) would not show the same random drifts
in response to noise, unless the noise were strong enough to
cause transitions between the multiple discrete states (Miller
2006). If the scale of noise fluctuations sets the coarseness of
the system, a system is considered as quasi-continuous when-
ever the difference in discrete rates is less than the noise-
induced variation in rate during a trial.

The purpose of this study is to analyze temporal fluctuations
in firing patterns of working memory models with monotoni-
cally tuned persistent states. We show that power-law fluctu-
ations are a salient feature of continuous attractor networks.

METHODS

Computational network model

We developed a cortical microcircuit model for the task of para-
metric working memory, as published previously (Miller et al. 2003).

P. MILLER AND X.-J. WANG

FIG. 1. Network properties. A: schematic represen-
tation of a line attractor. Top: tuning curves of 3
different neurons. Bottom: representation of the contin-
uous attractor in the planes of pairs of neurons. Arrow
indicates direction in which fluctuations are not rapidly
damped in time, because they shift the system along the
continuous attractor of the network. B: schematic
model architecture. There are 2 networks of positively
and negatively monotonic neurons, respectively. Each
network has 12 excitatory pyramidal cell populations
(squares) and 12 inhibitory interneuron populations
(circles). Synaptic connections are stronger within the
same population than between populations. Connectiv-
ity is asymmetrical, so that the activation threshold, ©,
by stimulus is the lowest for neural population 1 and
highest for neural population 12. The 2 networks inter-
act through pyramid-to-interneuron connections, result-
ing in cross-inhibition. Stimulus inputs are given
N equally to all excitatory cells within a network, but they
differ across the 2 oppositely tuned networks.

Low—®

High-©

The task requires macaque monkeys to encode and maintain in
memory a vibrational frequency, before comparison with a second
vibrational frequency. In the secondary somatosensory cortex of a
monkey, the spiking response of a neuron to the vibrotactile stimuli
varies either positively monotonically or negatively monotonically
with the stimulus frequency. Neurons in the prefrontal and premotor
cortices, which receive inputs from the secondary somatosensory
cortex, show tuned mnemonic activity that can be sustained for up to
6 s during a delay after the end of the initial stimulus (before a 2nd
comparison stimulus). Our model network is intended to reflect the
activity of prefrontal cortical neurons. We included two sets of
populations, corresponding to sets of neurons that receive inputs
separately from the secondary somatosensory cortex. One set of inputs
is positively monotonically tuned while the other set is negatively
monotonically tuned to the vibrational stimulus frequency.

We used interconnected integrate-and-fire neurons, grouped into
populations that had strong intrapopulation connections and weaker
connections between populations. The connection strengths decrease
exponentially with the difference between population numbers (Fig.
1B). The decay in connection strength was more gradual from high-
to-low population numbers, so that the neurons in populations with
low index received more excitatory current from other cells than those
with higher index. This led to a range of thresholds for responses to
external input, with the low-index populations being the most excit-
able and having the highest spontaneous rates.
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We couple the two sets of oppositely tuned populations by cross-
inhibition. The positively monotonic populations are labeled 1 for the
most excitable to 12 for the least excitable, and the negatively
monotonic neurons are labeled 1* for the most excitable to 12* for the
least excitable. Cross-inhibition is not uniform, but strongest between
populations labeled by i and (14 — i)*, where i runs from 2 to 12.
Hence the increase in activity of a highly excitable positively mono-
tonic population, after a weak stimulus, helps to reduce the activity of
a less excitable negatively monotonic population. A larger stimulus
results in a strong increase in activity for the less excitable positively
monotonic populations and a concurrent decrease in activity of the
more excitable negatively monotonic populations.

We realized a continuous attractor, with moderate recurrent exci-
tation, where the total synaptic weight from all other excitatory
populations is of the same order as the self-excitation within a
population. For each population, the background external input am-
plitude and intrapopulation recurrent excitation strength were adjusted
to a particular combination, corresponding to a point called a “cusp”
in the two-dimensional parameter space, indicated by C in Fig. 2A.
For a strength of recurrent excitation greater than at the cusp, bist-
ability can exist between distinct up (persistently active) and down
(resting) states, with a gap between them (A in Fig. 24). For weaker
recurrent excitation than at the cusp, the population firing rate varies
smoothly with the excitatory drive (B in Fig. 2A4). At the cusp, there
is a possibility of an approximately vertical line segment, indicating a
range of stable firing rates for the population with a fixed background
excitatory input (position C, Fig. 2A, right).

We generated a set of discrete attractors for robust working mem-
ory (Koulakov et al. 2002) by creating many bistable populations with
a range of thresholds. We achieved this by increasing the recurrent
connection strength within each population while reducing the con-
nection strengths between populations (see point A in Fig. 24) and
increasing the average leak conductances. The bistable populations
each converge onto a readout population of 400 neurons, whose firing
rates encode in a step-like manner the number of active bistable
populations. We use the statistical properties of the readout cells for
a fair comparison between the discrete model and the continuous
model. The set of bistable populations should just be considered as
one particular mechanism for generating the more realistic properties
of the readout cells, which are suitable for experimental comparison.

We chose stimulus strengths for the discrete attractor, so that each
stimulus would cause the discrete system to be in the same state for all
trials with that stimulus. In this way, we can use the discrete system
as a control to show that typical networks with a single stable state
after a stimulus do not exhibit the same type of fluctuations seen in the
continuous attractor network.

Single neuron parameters

Individual neurons are simulated using the single-compartment
leaky-integrate-and-fire model (Tuckwell 1988), such that the mem-
brane potential, V,, of cell, i, follows the current-balance equation

dv;
Chn E = —a(Vi— V) — geSei(Vi = Vo) — &Su(Vi = V1) — ZexSexui(Vi — Vi)

- gcuescue(vl - VE) )

where C,, is the total membrane capacitance, g, is the leak conduc-
tance, V; is the leak potential, g and Vi are the conductance and
reversal potential for excitatory channels and g; and V; are the
conductance and reversal potential for inhibitory channels, respec-
tively. g.,, and g.,. are the fixed conductances for background noisy
input and applied, stimulus-dependent input, respectively, whereas
Sexe and s, are the corresponding time-dependent gating variables
(see Egs. 5 and 6). When the membrane potential reaches a threshold,
Ve the neuron spikes, and the membrane potential is reset at V,

reset

for an absolute refractory period, 7.,
Eq. I.

The total synaptic drive for excitation or inhibition (Sg or S)) is the
sum of synaptic inputs from all presynaptic neurons j

before continuing to follow

Si= > Ws(0) @

J

where W;_, is the relative synaptic weight from cell j to cell i, and s;
is the synaptic current gating variable activated by the presynaptic
neuron j firing spikes at times ¢ Specifically, for excitatory

synapses, we have

spike,j*

ds; — S
(Til = ay X Pr(t)(1 — 5;)8(1 — typikej) — ;IS 3)

and for inhibitory synapses

BT 8 )~ @
dr ik T
with synaptic time constants 7,. The probability of vesicular release,
(Pg()), is described in the next subsection.
Background noisy input to all neurons is simulated using uncorre-
lated Poisson spike trains at a rate, r.,,, through nonsaturating syn-
apses, of conductance g, which are gated according to

dS e Sext
o 8(t — typikeex) — a (&)
with synaptic time constant 7,,, following spikes at times, Zy,ic oxc-
Similarly, during the stimulus, Poisson spike trains of rate, A,
generate additional excitation through a-amino-3-hydroxy-5-methyl-
isoxazole-4-propionic acid receptor (AMPAR)-mediated synapses of
conductance, g.,., multiplied by a gating variable, s,., which follows

dscuc
— =3t — typirecud) —
dt Text

S,

Scue

(6)

The rate, A, represents the combined spike rate of multiple afferents
from secondary somatosensory cortex, and increases or decreases
linearly with stimulus frequency for the positively monotonic or
negatively monotonic populations, respectively.

In the network models presented here, background and stimulus
inputs are mediated by a-amino-3-hydroxy-5-methylisoxazole-4-pro-
pionic acid (AMPA) receptors, with 7., = 2ms, recurrent excitation
through N-methyl-p-aspartate (NMDA) receptors (Wang 1999, 2001)
with 7, = 100 ms and Vg = 0 mV, and inhibition through GABA ,
receptors with 7, = 10 ms and V; = —70 mV. In the continuous
attractor network, the cellular parameters are as follows for excitatory
cells: C,, 05 nF, g = 384 nS, V, = =70 mV,
Vresel = _60 mV7 Vthr = _45 mv’ Tref = 2 ms, 8ext = 6 nS’ rext =
1.2 kHz, g = 36 nS, g; = 12 nS. For inhibitory cells, they are as
follows: C,, = 0.2 nF, g, = 17.6nS, V;, = =70 mV, V. = —60
mV, V., = =50 mV, 7. = 1 ms, g, = 1.6 nS, r,,, = 1.8 kHz,
85 = 8eue = 36 1S, gy = 12 nS. The discrete integrator network has
a range of leak conductances for the excitatory cells, equally spaced
from g; = 30.4 nS for cells in population-1 to g; = 40 nS for cells
in population-12. The inhibitory neurons have g; = 20 nS, g = 3
nS, and r., = 1.0 kHz. Otherwise single-cell properties are the same
as in the continuous attractor network.

Short-term plasticity of excitatory synapses

All excitatory synapses exhibit short-term presynaptic facilitation
and depression (Hempel et al. 2000; Varela et al. 1997). We imple-
ment the scheme described by Matveev and Wang (2000), which
assumes a docked pool of vesicles containing neurotransmitter, where
each released vesicle is replaced with a time constant, 74. The finite
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pool of vesicles leads to synaptic saturation, because when the
presynaptic neuron fires more rapidly than vesicles are replaced, no
extra excitatory transmission is possible. Such synaptic depression
contributes to stabilizing persistent activity at relatively low rates.

We assume that there is at most one vesicle release per spike; hence
the release probability at any individual synapse, Py(?), is

Pr(0)=1-=[1=p0O" )

where p,(#) is the release probability for an individual vesicle and N(7)
is the number of docked vesicles (smaller than a maximum »,). We
make the simplification that there are many synapses between each
pair of connected neurons, such that the average release probability
per synapse, (Pg(1)), simply scales the amplitude of synaptic trans-
mission, as shown in Eq. 3. Similarly, we do not keep track of a
discrete N(¢) for every individual synapse, but assume that the several
synapses between two neurons have a binomial distribution with an
average number of docked vesicles, (N(f)) (where the brackets ()
represent the average over this binomial distribution, with mean
(N(1))) and maximum N,. Hence (N(r)) is a continuous variable
obeying

ANy No—(N) <N>

py = (PR(0)8(t — tie) (&)

decreasing by (Pg()) after a spike at time 7
binomial distribution, we have

(Pr®) = (1 = [1 = p,OT"") ©)
=1 =[1 = p(0) X (NOYN I 10)

spike- BY averaging over the

and this value of (Pg(?)) is used in Egq. 3.

The vesicular release probability is given by the product of three
gating variables, p, () = O,()O,(t)O5(t). A gating variable O;(¢) (i =
1,2,3) increases because of calcium influx triggered by an action
potential, followed by a decay with time constant 7+ between spikes.
Specifically, the following simple update rule is used: a gating
variable O;(¢) (i = 1,2,3) follows

— Oy(n) exp[ — (ta1

Our simulations use the following values for the parameters in the
continuous network: N, = 16, 7, = 0.5 s, C} = 045, T} = 50 ms,
C; = 0.75, 7 = 200 ms, C; = 0.9, 7 = 2 s. Excitatory neurons in
the discrete attractor network are identical except with 7, = 0.1 s.

Om+1=1-{1 — t)/TlC (11

Network connectivity

Connection strengths between neurons depend only on their group
numbers and are all-to-all. All weights are normalized by (i.e., divided
by) the number of neurons in the presynaptic group, so that average
network properties should be independent of the system size.

The set of weights Wg,, W, Wy, all follow the same form

—li—Jl
W= e 4 a2
! NgmsUEI
where N,,,, = 12 is the total number of groups used, WEL s the

maximum connection strength between groups of the same label
=), and o determines the breadth of connections to other
groups. WE | o, W, and oy, have similar definitions.

The recurrent excitation has a slightly different form. First, the
connections within the same group are significantly stronger than
those between groups, so we define a separate set of parameters for
the WEE, =W,. Second, the connection strengths between different
groups i and j are asymmetric

WEE = WEE exp(ﬂ) (13)
i—j 0

erpso-lAEE

for i > j and

P. MILLER AND X.-J. WANG

W:;LJ = weE CXp( Aggli ]|> (14)
apsTi

if i < j, where Agg is an asymmetry factor. The continuous attractor

network has Az = 1.5 so that connections are stronger from higher

to lower threshold neurons.

The cross-inhibition, WEL _ is the strength of connection from each
inhibitory population, labeled by i to the excitatory population of
opposite tuning labeled by 14 — i for 2 =i = 12.

The full set of parameters are as follows for the continuous
network:

WoE = 0.16, W, = 0.244, W, = 0.239, W, = 0.237, W, = 0.238,

= 0.239, Wy, = 0.24, W, = 0.241, Wy = 0.242, W, = 0.243,
Wio = 0.244, W, = 0.245, W, = 0.246; 0, = 0.5, 0, = 0.4, 05 =
0.39, o, = 0.385, 05 = 0.385, o, = 0.388, 0, = 0.392, oy = 0.397,

g, = 0402, o, = 0408, oy, = 0414, o), = 042; Az = 1.5;
WEL =1.65, 0 = 025, WE =05, 0, =02, WL =20,0, =

0.5. WEL = 0.25.
For the discrete network: WEE = 0.14, W, = 0.35, W, = 0.365,
= 0.378, W, = 0.39, W5 = 0.401, Wy, = 0412, W, = 0.423,

= 0.434, W, = 0.445, W,, = 0.455, W, = 0.465, W,, = 0.475;

—10 o, = 10, o3 = 10, 0'4—10 os = 10, o, = 10, o, = 10,
0'8 = 10, 0, = 10, 0o = 10, o, = 10, o), = 10; Agz = 1.0;
W/Fnlax - 03 Ogr = 04 Wllrllzax - 03 O = 04 Wirllax - 05 Oy =
0.5; WEL =0.25.

The readout cells of the discrete network are excited by cells from
the populations, i, with weights Wi™® as follows: WER = 0.45, WER =
0.4, WER = 035, WER = 0.4, WER = 0.5, WER = 0.2, WER = 0.2,
WER—OZ WER—02 W‘ﬁ‘f—02 WER—OZ WER—OZ

Covariance functions

In the following sections, a key quantity that enters the calculations
and affects all the statistics is the covariance in spike rates, cov(’) (ty,
t,) between neurons i and j (which can refer to the same neuron with
i = j) at times ¢, and t,. The special case cov{ (t,, t,) is the variance
in spike rates across trials for a neuron i at time #,. When analyzing
data, we count the number of spikes by neuron, i, in trial, n, in specific
bins of width 6f (where 6t = 25 ms unless otherwise stated) between
t = (k — 1/2)ét and t = (k + 1/2)ét as N7(k). Hence the relevant
covariance in spike count becomes

coviM(kdr,kdt + 1) = —— >, [N'(K) — N(W)]INI(k + 7/81) — N(k + 7/61)]

trials
n

> INNONS (k + 7181)]

trials

[N EN“(k)][ EN;’(HT/&)] (15)

where we have substituted for the trial-averaged count, N,(k) =
(1/N, i) ZaNi(k), explicitly in the final line. We achieve the average
across different trials, n, in our computer simulations by using differ-
ent initializations of the random number generator.

Correlation functions and correlograms

We calculate the unnormalized cross-correlogram by averaging the
covariance function over the measurement interval according to the
formula (Bair et al. 2001; Brody 1998, 1999)

(T—m)/dt
> coviN(kdkdt + 7) (16)
T—1

k=0

Ci_](T) =

The time lag is 7 and the total temporal window of data measurement
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is T. Both T and ¢ are integral multiples of 67. The integration window
for detection of spikes offset by 7 is limited to 7 — 7. The above
definition is for positive . For negative 7, the summation limits are
from k = —1/87 to 7/67 and prefactor is 1/(T + 7) such that C;(—7) =
Cii(7).

We normalize the covariance functions by dividing by the geomet-
ric mean of the variance at the two time-points (Brody 1999). This
leads to the correlation coefficient, ry(tt + 1), between spike times ¢
and ¢ + 7 of neurons i and j

cov(t,t + 7)
pi(t,t +7) = 7)
\eovi(t,1)cov(t + Tt + 1)
We average over time, ¢
1 T-r
py(7) = Tiﬂ_ ) py(tt + m)dt (18)

to produce the correlograms in Fig. 3, A and C.

Figure 4B is calculated using a variant of Eq. 16 with 7 — 7
replaced by 7" to remove any artificial dependence on 7 because of its
inclusion in the integration limit. Different values of 7" produce the
four different curves in Fig. 4B.

Power spectrum

The appropriate power spectrum for a nonstationary process is the
Wigner-Ville spectrum (Flandrin 1989), which is well established in
signal processing and physics (Mallat 1999). It is defined as a function
of frequency, w, and time, ¢, as

W(tw) = J cov(t + 7/2,t — 7/2) exp( — iw7)dT 19)

where cov(?,,t,) is the covariance function (between 2 times, ¢, and 7,)
described in an earlier subsection. The integration over 7, the time-
difference (7 = t, — t,) leads to a result independent of ¢, the mean
time [t = (¢, = t,)/2] for a stationary process.

For a nonstationary process, we can calculate a power spectrum in
frequency alone, P(w), independent of time, 7, by averaging the
Wigner-Ville spectrum across the measurement period (Flandrin
1989) as

T
P(w) = ;J W(t,w)dr 20

0

In practice, to obtain good statistics from noisy spike trains, such a
temporal average is essential.

Calculation of power spectrum from spike trains

In Fig. 4C we plot the temporally averaged Wigner-Ville spectrum,
P(w), for neurons in our simulations, using a measurement interval of
T = 10 s. Specifically, we calculated the average power spectrum by
combining spikes from different neurons in a population and using
Egs. 15, 19, and 20 to give

1 Nial Npop  T/(81)

P(w,) = NN > E > NMRNNK') cos[w,di(k — k)]
pop STrial st k=1
7/(51) Nirial Npo Nial Npo
11 .
=Y [ S NEILY S N E coslwditk — k)] @D)
k=t PP N=1 =1

where w, = (n7)/T, and the sums are over all binned spikes [where k
is the time index for the bin that contains spikes at times ¢ such that
k= (602 <t =k + (8)/2)] from N,,, = 25 different neurons from
the same population (with identical network inputs, but different

1103

background noise) in trial-A out of N, In the log-log plot of Fig.
4C, we show values for low-n up until statistical noise causes the
power to be negative for some data points (in which case we cannot
take the logarithm) and estimate the power coefficient, «, from a
straight line fit of log-power versus log-frequency through the points
shown.

Fano factor

The Fano factor, F(7), is a measurement of trial-to-trial variability
of the spike count of an individual neuron. It is obtained from the
variance in spike count during a measurement window of temporal
length, 7, and is expressed as a function of time

. 2 IN(T) = (NP )
T @2

Noise correlation

We evaluate the noise correlation by counting the total number of
spikes during a delay of 6 s after the cue offset, for a given neuron, i,
in the nth trial, as N; . The noise correlation, Xij» between two
neurons, i and j, is defined as (Lee et al. 1998)

- 2, (Vi = (NYV))
S R - ) S (= )

where (N;) = (2N, /Ny is the trial-averaged number of spikes for
the ith neuron. Clearly X;; = 1, the maximum possible correlation
when i = j, and in general, —1 = X; = 1. The noise correlation is
calculated for each cue and averaged across cues in Fig. 5, A and B.

The total spike count covariance, plotted in Fig. 5C, is simply the

numerator in the preceding function, that is

X

23)

> (NN, — (NN

RESULTS

We examined spike-time correlations in a recurrent network
model of noisy spiking neurons for somatosensory parametric
working memory (Miller et al. 2003). The model was designed
to simulate prefrontal cortical neurons in monkeys during a
somatosensory delayed discrimination task (Romo et al. 1999).
In this task, the monkeys were trained to discriminate the
frequencies of two vibrotactile stimuli, presented before and
after a delay period of 3—6 s, so that the behavioral response (a
lever press to indicate whether the 1st or 2nd stimulus was at
a higher frequency) depended on remembering the first stim-
ulus frequency across the delay period. It was discovered that
neurons in prefrontal and premotor cortices exhibited persistent
delay activity that was tuned monotonically to the initial
frequency. Such neurons maintain the necessary information
for the animal to perform the delayed comparison task.

The model network contains 12,000 neurons that fire spon-
taneously and stochastically (with a CV averaging >1 at firing
rates <10 Hz, dropping to 0.5 as firing rates increase to 40 Hz)
because of noisy excitatory inputs. The neurons are arranged in
two sets of 12 neuronal populations. In line with the experi-
mental data (Romo et al. 1999), the activity of one set of
populations increases with the stimulus frequency, whereas the
activity of the other set decreases with increasing stimulus
frequency. Hence the tuning of populations is positively mono-
tonic or negatively monotonic, respectively. Recurrent excita-
tion dominates within each set of populations, whereas the two
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FIG. 2. Continuous or discrete attractor networks. A: schematic phase
diagram showing possible stable states for a single population as a function of
excitatory drive (x-axis) and strength of intrinsic excitatory feedback (y-axis).
Boundary of a bistable region, where 2 stable states exist with a gap between
them (A) is given by a cusp (C). For recurrent excitation weaker than at the
cusp, the system varies continuously from low to high activity (B). For
recurrent excitation greater than at the cusp, bistability exists in a range of
external drive. B: trial-averaged neural firing rate for a positively monotonic
excitatory cell in the network with quasi-continuous states. Solid bar represents
cue duration of 1 s. Colors from blue through green to red represent increasing
stimulus frequency. C: trial-averaged neural firing rate for a positively mono-
tonic excitatory readout cell in the network with discrete states. Same repre-
sentation as B. D: tuning curves showing average firing rate during the delay
for 3 neurons from different populations in the quasi-continuous model. The
points X, Y, and Z mark the stimuli used in Fig. 3B. E: tuning curves with
average firing rate in the delay for 3 neurons from different bistable popula-
tions in the network with discrete states (open symbols) and readout population
(filled symbols). Only the readout cells are designed to have realistic properties
that can be compared with experimental data.

oppositely tuned sets are connected by cross-inhibition (see
Fig. 1B). The results comparing the mnemonic activity of our
model network with the delay activity of monkey neurons are
published elsewhere (Miller et al. 2003).

In our model, after a transient stimulus, neurons are able to
fire persistently, with slow drift, over a range of firing rates.
The feedback to each population is tuned (schematically to
position C in Fig. 2A) so that each population is on the cusp of
bistability, enabling the system to be close to possessing a
continuous attractor (Aksay et al. 2000; Durstewitz 2003;
Loewenstein and Sompolinsky 2003; Miller et al. 2003; Seung
1996; Seung et al. 2000b). The delay activity after different
strengths of stimulus is shown in Fig. 2, B and D. Neurons are

P. MILLER AND X.-J. WANG

able to fire persistently over a wide range of rates. Initial
stimuli of different intensities cause a transient increase in
firing rates, before the network settles into a state of approxi-
mately constant firing rate, but with fluctuations caused by
noise. We label the system in this case as quasi-continuous.

Alternatively, we can adjust parameters so that each popu-
lation provides strong excitatory feedback to itself and receives
less excitation from other sources (position A in Fig. 2A). In
such a case, the population can be strongly bistable, often with
a large gap in firing rates between a down state and an up state.
If groups of neurons are bistable, but have differing excitabil-
ities or thresholds, the network can possess a number of robust,
discrete stable states (Goldman et al. 2003; Koulakov et al.
2002), with the number of states approximately equal to the
number of bistable groups. Figure 2, C and E, shows the
persistent activity for such a multistable network. The possible
firing rates of an individual neuron have a large gap, between
states where the rate is almost zero, and states where the firing
rate is high (Fig. 2E, open symbols). Such a large gap in firing
rates results from the strong recurrent feedback within a pop-
ulation, so that once the neurons in a population are able to fire
a little, they excite each other with strong synaptic input,
causing increasing activity in an escalating manner. Synaptic
depression and receptor saturation limit the rise in firing rate to
a persistent level of 40-50 Hz in our model. Any transition
between the multiple discrete states in the network involves a
discrete jump in the rate of at least one population of neurons,
from their spontaneous value to their lowest persistent rate
(across the gap in Fig. 2A). Such a large jump in firing rates of
neurons in a population between stable states makes the dis-
crete system more stable to noise fluctuations (Koulakov et al.
2002).

To produce more realistic cells in the discrete attractor
network, to be compared with those in the continuous attractor
network, we added a readout population to the discrete net-
work. The readout population receives excitatory input that is
a weighted sum from all populations of the same sign of tuning
in the network. The tuning curve of the readout population
(Fig. 2E, solid symbols) more closely resembles those of
neurons in the continuous network and experimental data
(Romo et al. 1999). Cells from the readout population also
have a similar, rate-dependent CV (although about 10% lower)
to neurons in the continuous attractor network. In all statistical
analyses, we use such cells from the readout population of the
discrete network.

Hence using the same framework of interconnected popula-
tions of neurons, we compared the noise and correlations of
these two types of memory system. Our main results are
independent of details of the model. However, they rely on
noise moving the system along a continuous range of states but
being unable to cause large jumps in activity between discrete
states. A set of discrete attractors with small gaps in rate
between states, or with large noise fluctuations, so that noise
could cause spontaneous transitions between the discrete
states, would show the same behavior we describe here for a
continuous attractor (Miller 2006).

Random walk of rate

If a continuous attractor underlies our parametric working
memory model, fluctuations in the state of the network are
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described by a random walk. To show this conceptual point,
consider a simplified, linear model of a typical cell in a neural
group whose firing rate r(f) obeys the following dynamic
equation

dr r—

GI -
—= + An(
& VAN(1)

@49

where GI is the mean firing rate produced by the input current

I, m(?) is an uncorrelated noise, \Z is the noise amplitude, and
T, 1s a synaptic or membrane time constant (a few to tens of
milliseconds). Noise leads to an autocorrelation which decays
exponentially

Cii(7) = exp( — /7).

Parametric working memory requires neurons to display sus-
tained changes of firing activity by feedback mechanisms
either within a cell (Camperi and Wang 1998; Egorov et al.
2002; Goldman et al. 2003; Loewenstein and Sompolinsky
2003) or through a reverberatory network (Koulakov et al.
2002; Miller et al. 2003; Seung 1996; Seung et al. 2000b). In
either case, a positive feedback implies a component of the
input current that increases with its own firing rate, so making
the simplification of linear feedback, I = I, + Wr, the above
equation becomes

dr
dr

r— GWr — GlI, o r Gl,

Ts i \/An(t) Tere(W) i Ts
where T.(W) = 7/(1 — GW) > 7. If there is no feedback,
W = 0, and in time 7, the firing rate reaches its steady-state
value, GI,, as in Eq. 24. With strong feedback (GW — 1), one
has 7. >>> 7. In the limit 74 — o, the first term in the right
hand side of the equation vanishes. The firing rate integrates
the input / as well as noise over time, in the sense of calculus:
r(t) =(Gly/t)t + A["m(t')dt’. Moreover, after the input is
withdrawn, the firing rate is maintained stationary at any level
(within an operating range) except for noise-induced drifts;
hence the system behaves like a line attractor. The average rate
is given by < r > = Gl t/7,, where f; is the time when the
input is withdrawn, whereas the trial-to-trial variance in rate
increases linearly with time: ((r — (r))?) = Ar.

The analogy between the random walk model and our
parametric working memory model lies in the fact that the
continuum of persistent activity states form a one-dimensional
curved line in the space of population firing rates, as schemat-
ically shown in Fig. 1A. If the firing rates are temporarily
perturbed by noise to move off this line, the network’s dynam-
ics cause the firing rates to return back to the line, but do not
prevent any drifts along the continuous attractor. Such noise-
induced drifts along the attractor are similar to a random walk.
To assess whether the simple random walk model can quanti-
tatively capture the behavior of our large-scale and highly
nonlinear network model, we analyze the fluctuation properties
of population firing rates and spike counts.

+ \An(n  @25)

Random walk analysis of a line attractor

A closer analysis of the effects of noise on a system with a
continuous attractor reveals that the correlation functions are
determined by the products of gradients of the tuning curves of
two neurons (Ben-Yishai et al. 1995; Pouget et al. 1998). The
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argument is shown in Fig. 1A, where the top three figures
depict the tuning curves (average firing rate as a function of
stimulus) for three neurons. The first two are positively mono-
tonic; the third is negatively monotonic. When the system has
a continuous attractor, the only fluctuations that are not rapidly
damped out are those along the attractor. The attractor can be
seen as a curve in a plot of the firing rate of one neuron versus
another, with each point in the curve corresponding to the two
firing rates of persistent activity after a particular stimulus.
Noise has the same effect as the stimulus in shifting the firing
rates along the attractor. Two positively monotonic neurons
[with firing rates ry,r, and tuning curves f;(s).f>(s)] either both
increase or decrease their firing rates together, after a larger or
smaller stimulus, and after noise fluctuations. Hence their noise
correlations are expected to be positive.

If we consider the firing rate of mnemonic persistent activity
as a function of stimulus, s, and noise, n(¢), expanded to first
order in the noise, we have

1= fils + 0] = fi(s) + n(n)dfi/ds
2 = fils + n()] = fols) + n(n)df/ds

The noise correlation and unnormalized cross-correlation func-
tions are proportional to the covariance of firing rates,
(ri(@®)ry(t"))—(r(t)){r,(t")), which is given by the product of the
noise terms in Egs. 26 and 27. Hence the cross-correlation is
proportional to the product of gradients of the two tuning
curves [(df,/ds). (df,/ds)] (Ben-Yishai et al. 1995; Pouget et al.
1998). If the gradients of tuning curves of two neurons have
opposite sign [as in Fig. 1A; (dfi/ds)(dfs/ds) < 0], the noise
correlation is negative between the corresponding neurons.
That is, a fluctuation along the attractor simultaneously causes
the positively monotonic neurons to increase their firing rates
and negatively monotonic neurons to decrease their rates or
vice versa. Similarly, for an individual neuron, the covariance
function is proportional to (df/ds)?, so all effects of noise are
greater after cues that fall on a steep part of a neuron’s tuning
curve.

Noise during the stimulus presentation leads to variation in
the initial encoded values of s and has a correlated effect on the
firing rate of neurons in the same way as noise during the
delay. The main effect of both stimulus noise and drift noise in
a line attractor is encoded in the one-dimensional variable, s.
The firing rate of each neuron responds to the network noise by
an amount proportional to the square of the gradient of its
tuning curve. In the preceding analysis, we assumed that
fluctuations are small compared with changes in the gradient of
the tuning curve, so df;/ds remains constant for each neuron for
a complete trial, allowing Egs. 26 and 27 to be expanded only
to first order. If the first-order approximation is valid, the
proportionality constant, A, is the same for both stimulus noise
and drift noise. That allows us to write the total noise at time
tas

(26)

(27)

oi () = At + 1) 28

for any neuron, i, where #, quantifies noise during the stimulus
and is a constant for all neurons that form the line attractor and
A; = (df/ds)>.

Other results for a random walk are described in detail in the
APPENDIX. We summarize the key features that can be compared
with our network results here. The covariance function,
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cov(t,,t,), for a random walk starting at # = 0 is independent of
the time difference, |t, — ¢,|, and instead equals the variance of
the process given above in Eg. 28 where t is the earlier of ¢, or
t, (Gillespie 1992) (cf. Egs. A4 and AS).

The other statistical measures presented in this paper are
derived from the covariance or variance functions. The time-
average of the covariance function is proportional to the
integration limits used in the time-averaging (see Egs. A6—-A9).
The average (Eq. 16), leads to a linear decay in |7]

Co(1) = A(T + 21, — |7)/2 29)

for the unnormalized correlation function of a random walk,
which will be compared with Fig. 3A—C. An alternative method
results in curves independent of 7, but linearly increasing with 7"

C! (1) = AT + 21,)12 (30

for the unnormalized correlation function of a random walk,
which will be compared with Fig. 4B.

A hallmark of random walk behavior is an inverse-square
power law for the Wigner-Ville power spectrum (Eq. 19)
(Flandrin 1989). When averaged over a finite time interval, 7,
specific frequencies, w,, = nm/T should be used, so that the
inverse-square power law is apparent in the averaged spectrum.
We find that initial variance in the random walk leads to
oscillations in the power spectrum between even and odd
frequencies (Egs. A1l and Al2), such that

P(w,) = 24/w? 31

for even n and

P(w,) = 2A(1 + 2t/T)w} 32)

for odd n.

The Fano factor, F(T), for a random walk, also shows
power-law behavior, increasing quadratically with time. Initial
variance in the starting points contributes a linear term, such
that for a Poisson-like renewal process

A(T* + 34,T
oy =1+ AL 30 33)
37,
In the following subsections, we present the results of our
spiking network and compare them with those expected for a
random walk in a line attractor.

Correlation function

Fluctuations are commonly quantified by autocorrelation
functions of single neurons and cross-correlation functions
between them (Bair et al. 2001; Brody 1999; Perkel et al.
1967a,b; Singer and Gray 1995). The autocorrelation function
is a function of two times (1 for each spike) and should only be
written as a function of the time-difference, or time-lag, 7, if
the underlying process is stationary (Gardiner 1985). Many
processes measured in neuroscience are not stationary, so the
shuffle-correction is used to remove the principle effects of
systematic variations in the average rate. We use the term
correlogram to denote the shuffle-corrected covariance func-
tion, normalized by the product of SD in spike count (produc-
ing a correlation coefficient), averaged across the measurement
interval (Brody 1999). We use the term unnormalized correlo-
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FIG. 3. Long-time correlograms. A: autocorrelogram measured during de-

lay period for 3 populations of the quasi-continuous network (black, blue, and
green) and 1 from the discrete network (red). Central dip is caused by the
refractory period. Note that the neurons in the network with quasi-continuous
states have a non-zero correlation for large time-lags, decaying slowly, ap-
proximately linearly with time. Inset: autocorrelogram reaches O after a few
tens of milliseconds for a neuron in the discrete network. B: size of offset in
the unnormalized autocorrelogram is cue-dependent and is greatest at the
steepest parts of the tuning curve for any particular neuron. Stimuli correspond
to those marked X, Y, and Z in Fig. 2D. C: cross-correlograms between
neurons of the same population (2-2), two closely tuned positively monotonic
populations (2-3), a low-threshold and high-threshold population (2-12) and
between a positively and negatively tuned population (2—12*). The lack of
time-symmetry between oppositely tuned populations-2 and 12* is a sign that
in this case, the firing rate of the negatively tuned population (12*) drifts for
several seconds before affecting the firing rate of the positively tuned popu-
lation (2).

gram when referring to a temporal average of the covariance
function.

Trial-to-trial differences in the underlying rate have been
shown to give rise to artifacts in cross-correlograms at short
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time scales (Brody 1998, 1999). In contrast, we report that the
correlation functions are affected on long time scales by the
linear increase in variance of firing rate as a function of time
that arises from the temporal integration of noise in a quasi-
continuous attractor.

The autocorrelograms for three cells in our graded memory
network are shown in black, green, and blue in Fig. 3A.
Strikingly, temporal correlations between spikes persist for
many seconds and seem to show a gradual, linear decrease with
the time lag. In contrast, a network with robust, discrete states
does not show any long-term correlations (Fig. 3A, red curve).
In fact, the autocorrelograms for all neurons fall to zero during
a time scale on the order of the synaptic time constant (100 ms
for NMDA receptors in this work; Fig. 3A, inser).

The autocorrelogram in Fig. 3A was calculated by averaging
over memory activity after different stimuli. If we compute the
correlations separately after each stimulus, we find that only a
small subset of stimuli result in such large, long-term persis-
tence in the correlations. This is because, if the stimulus lies on
a relatively flat part of a neuron’s tuning curve, small network
fluctuations do not cause significant changes in the firing rate
of that neuron. Tuning curves of neurons in our network are not
linear in general, but resemble sigmoidal functions, as seen for
the majority of neurons in the experimental data (Miller et al.
2003; Romo et al. 1999). It is the steepest part of the tuning
curve that is most sensitive to fluctuations. If the tuning curve
of a neuron is linear (unlike those seen in our model), the effect
of fluctuations during the delay should be independent of
stimulus.

In Fig. 3B, we calculated the unnormalized autocorrelogram
separately for delay activity after three stimuli, corresponding
to the positions X, Y, and Z in Fig. 2D. To obtain better
statistics, we averaged cross-correlations between 25 neurons
in a single population. Because the population fires asynchro-
nously and all neurons within one population receive the same
network input, their autocorrelation functions are essentially
the same. The average cross-correlation between all pairs of
neurons in the same population is identical to the average
autocorrelation of those neurons, except at very short time
scales (less than ~25 ms). It is only the é-function peak at T =
0 and the dip in the autocorrelation at short 7 (because of the
refractory period and recovery from reset; Fig. 3A) that distin-
guishes autocorrelations from cross-correlations between cells
within a population of our network.

Figure 3C shows that the cross-correlogram is greater be-
tween neurons with similar tuning curves (such as 2 neurons in
the same population, 2-2, or neighboring population, 2-3) than
between neurons with very different thresholds (2—12). The
cross-correlogram is negative between neurons of opposite
tuning (2—12%*) and is temporally asymmetric. The asymmetry
is a sign that firing rates of one population can drift for several
seconds before the change in rate is strong enough to affect the
populations with opposite sign of tuning. This is because
cross-inhibition is not the dominant feature in our network and
suggests that, on a time scale of a few seconds, our system
resembles more closely two weakly coupled continuous attrac-
tors (where drift in 1 attractor provides input to the other) than
a single set of stable points.

In all cases, autocorrelograms and cross-correlograms do not
decay exponentially as exp(—#/7) with a characteristic time
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constant, 7 (see the text after Eq. 24), but decay more linearly,
as is typical for a random walk.

Increasing variance of rate

We found that the variance of single-trial population firing
rates (calculated with 100 trials) increases approximately lin-
early from the stimulus offset for up to 10 s of the mnemonic
period (Fig. 4A). The nonzero intercept at ¢+ = 0 reflects
trial-to-trial noise in the system’s response to the stimulus.

The linear time course with nonzero intercept for the firing
rate variance is consistent with a random walk (see Egs. A4 and
A5 and Noise during the stimulus), with an initial distribution
of starting points caused by variability of neuronal response
during the stimulus presentation (Eq. A2). Note that the vari-
ance of neurons in the discrete system remains constant and
low (Fig. 4A, red curve).

Covariance independent of time lag

Such a random walk also provides an explanation for the
observed near-linear behavior of the correlograms reported in
Fig. 3. Because random walks are nonstationary processes (the
variance increases with time), correlation functions depend
separately on the two times of measurement (z,,f, + 7) and not
just on their difference, T (see METHODS). Hence when evaluat-
ing correlations as a function of the time lag, 7, by integrating
over t,, the precise measurement interval affects the result. It
can be shown mathematically that a linear increase in the
variance of rates as a function of time leads to a linear increase
in the unnormalized correlogram as a function of the integra-
tion interval (Miller 2006; Saleh 1978). In the standard formu-
lation, the integration interval is (T — |T), where 7 is the
time-lag and T is the total time of measurement. With fixed 7,
this leads to a linear decrease with 7, as seen in Fig. 3B.

In Fig. 4B, we tested whether the unnormalized autocorre-
logram is truly a function of the measurement interval using an
alternative integration window to calculate the temporal aver-
age (the sum over k in Eq. 16). We calculate the unnormalized
autocorrelogram by including spikes over a range of 7" + 7 for
each value of 7 so that the integral over ¢, is over a fixed value,
T" = T — 7. rather than 7 — 7. Hence the measured
correlation interval is independent of 7 and proportional to 7".
We plotted curves for the average unnormalized autocorrelo-
gram of 100 neurons (25 neurons in each of 4 populations)
using increasing values of 7" (4, 8, 12, and 16 s for the
ascending curves). For a perfect random walk, the curves in
Fig. 4B would be constant with T and equally spaced along the
y-axis (see METHODS). The curves do have a y-offset that
increases monotonically with 7’, whereas they vary little with
7, so the network’s activity is behaving qualitatively like a
random walk during the delay.

Power law of power spectra

Furthermore, for a random walk, the power spectrum, P(w,,),
of the spike train should include a delta-function at the origin
and at low frequencies an inverse-square law decay, such that
P(w,) = w, “ where a equals 2 (Flandrin 1989) and w, = nw/T.
A pure power law decay should appear as a straight line on a
log-log plot, with the slope of the line giving the exponent (Fig.
4C). We estimated the exponent, «, for several cells by fitting
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FIG. 4. Random walk behavior after the 14-Hz cue. A: trial-to-trial variance of average firing rate in population-2 of the continuous attractor network increases
approximately linearly with time (black), but with an offset (at + = 0) indicating significant trial-to-trial variation in the responses to the stimulus by the end of
the cue. Mean rate for the population following the cue varies between 8 and 11 Hz. Readout population from the discrete attractor shows a low, constant variance
(red). Inset: each thin line represents the population-average firing rate (with trial-averaged mean rate subtracted) for an individual trial after the end of the
stimulus (10 trials are shown of 50 used to calculate the variance for the population in the continuous attractor network). B: dependence of the unnormalized
autocorrelogram on the measurement interval, 7'. We vary the integration window for spikes as a function of 7 to maintain a constant range, 7", for the first spike
in the pair. Hence the window for a pair of spikes is equal to 7" + 7. The 4 curves in ascending order are for values of 7" = 4, 8, 12, and 16 s such that the
autocorrelation increases monotonically with 7". For a perfect random walk, curves would be independent of T and proportional to 7'. Results are average from
100 neurons (25 in each of 4 populations) over 50 trials for a single cue (black) and from 25 cells in the readout population of the discrete network (red). C:
log-log plot of the power spectrum for cells from population-2 of the continuous attractor network, shows decay at low frequencies close to a power-law (close
to linear on the log-log plot). Filled circles for frequencies, f = w,/27, with odd n, and open circles for even n (w, = n@/T with T = 10 s). Data are calculated
from the spike trains of 25 cells of each population to produce the figure. Inset: power spectrum showing low-frequency behavior for cells from 1 population
(black circles), with the readout population of the discrete attractor as comparison (red crosses). D: Fano factor as a function of time. Dark lines, for neurons
in the quasi-continuous network the variance in spike count normalized by the mean spike count (Fano factor) increases with time during the delay after cues
that give a large offset in the autocorrelogram; red, neurons in the discrete network have approximately constant Fano factors over the same time interval, with
smaller values for cues leading to higher firing rates and more regular interspike intervals. Analysis predicts that a random-walk of the rate leads to a Fano factor
that increases quadratically with time (dashed gray line).

the linear region of log-log power spectra. We fitted curves
separately through odd and even data points, because these
were offset due to noise during the stimulus (see Eq. AI2 and
Noise during the stimulus). The fits yielded values ranging
from o = 1.6 to @ = 2.1 (@ = 1.77 and 1.66 for the odd and
even frequencies, respectively, of population-2, shown in Fig.
4(C). The fact that « deviates from 2 indicates that our network
is not a perfect continuous attractor. Internal dynamics (such as
synaptic depression) mean that steady states are not constant,
and a lack of perfect tuning means systematic network drift
occurs on a slow time scale given by the synaptic time constant
divided by the fractional mistuning (Seung et al. 2000a) (see
Eq. 25). Hence infinitely precise tuning is necessary to generate
a perfect continuous attractor (with no systematic drift),
whereas the quasi-continuous attractor of our network is suf-
ficient for short-term memory.

Power law of Fano factors

We also considered the variability across trials of spike
count in a specific time interval, measured by the Fano factor.
It is calculated as the variance in number of spikes divided by
the mean spike count. A large Fano factor means large varia-

tion in the neuronal activity. Temporal correlations in the spike
times give rise to temporal changes of the Fano factor. Fano
factors typically vary between O (for regular spiking) and 1 (for
Poisson processes) when no temporal correlations arise from
variations in the firing rate (de Ruyter van Steveninck et al.
1997). The system with discrete attractors (Fig. 2, C and E)
does indeed have a low value of the Fano factor that is constant
over time (Fig. 4D, red). The Fano factors are near unity for
neurons at low firing rates and have values closer to zero for
more rapidly firing neurons (in our model, a dominance by
synaptic excitation implies that spike trains at a higher firing
rate are more regular). In sharp contrast, neurons in the system
with a quasi-continuous attractor exhibit Fano factors that
increase with time as a result of the internal dynamics of the
network. The increase is consistent with calculations for a
random walk process, which produces a Fano factor that
increases quadratically with time (Miller 2006; Saleh 1978)
(see APPENDIX and Eq. Al4).

In summary, these different characteristics are consistent
with each other, showing that our network approximates a
continuous attractor and exhibits approximate random walk
behavior.
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FIG. 5. Noise correlation of persistent activity. A: normal-
ized correlations in the spike counts for delay activity after all
cues. Correlations of 3 positively monotonic excitatory neu-
rons with 2 neurons from each population are shown. Note
that correlations are greatest between cells of the same
population (points neighboring the same-cell peak of magni-
tude 1) or between cells in populations with similar tuning
curves, and are negative between oppositely tuned cells. B:
solid or dashed black curves: distributions of noise correla-
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Noise during the stimulus

A strong test of a random walk in a line attractor is to fit the
variance as a linear function, A(¢ + ¢,), where the value of ¢,
representing noise during the stimulus, is the same across all
cells (see analysis preceding Eg. 28). Therefore to check for
consistency, we fit values of 7, using Egs. 28—33 to describe
the statistical measures presented in Fig. 4, following a cue of
frequency 14 Hz. For example, we fitted curves separately
through the odd (open symbols) and even (filled symbols) data
points of the power spectra shown in Fig. 4C. While both
curves should decay with the same power law of 2 for a
random walk, initial variance in firing rates at the beginning of
the integration window should lead to odd data points (odd n
for w, = n@/T), having a higher amplitude than for even data
points. A difference between odd n and even n arises from the
cosine contribution in Eq. A12. In the standard result, ignoring
any initial offset variance (Flandrin 1989), the only oscillations
appear from the sine term, which gives zero contribution at all
values of w,. In contrast, the cosine contribution gives a
contribution proportional to +#,/7 for odd n and —#,/T for even
n. Hence we can use this difference in amplitudes to check
whether our estimates of 7, are consistent with estimates from
our other statistical measures. In this case, we find that calcu-
lations of ¢, range from #, = 0.4 s to ¢, = 4.2 s for different
cells.

We found a similarly wide variation in estimates of 7, from
calculations of the variance (Fig. 4A), the autocorrelations (Fig.
4B), and the Fano factors (Fig. 4D). Such a wide variation
means that estimates of 7, do not provide strong evidence for a
continuous attractor. However, for population-2, the estimates
of 1, after a 14-Hz cue, using the methods of Fig. 4, A—D, were
2.3, 2.7, 3.4, and 2.4 s, respectively. These values are quite
comparable and show consistency across different calculations.

tions in the continuous attractor network between cells of
which the 2 tuning curves have the same signs of slope
(predominantly positive correlations) or the opposite signs of
slope (negative correlations), respectively. Gray: 2 distribu-
tions of noise correlations for cells in the discrete attractor
network, with means of +0.001 and —0.001 that are barely
distinguishable. C: covariance in total spike count of pairs of
neurons, as a function of the product of the slopes of their
tuning curves. Data are binned along the x-axis, with mean
and error bars of each bin plotted. Data are taken during the
delay period, for each cue, and between all pairs of neurons
with 2 representatives from each population. We fitted a tanh
function to the tuning curve of average rate as a function of
stimulus and used the gradient of this curve at each stimulus
as df/ds. Theory predicts that the 2 quantities are proportional
to each other, such that the points would fall about a straight
line through the origin. Steeper gray line is a fit through data
in the positive quadrant (for neurons with the same sign of
tuning curve). Notably, the 2nd gray line, which fits the data
in the negative quadrant, is less steep.

Noise correlation

The noise correlation between pairs of neurons, plotted in
Fig. 5A, is the integral over all time lag of their shuffle-
corrected unnormalized cross-correlograms, divided by the
geometric mean of the areas under the two shuffle-corrected
unnormalized autocorrelograms (Bair et al. 2001; Brody 1999).
We selected two neurons from each excitatory population and
calculated noise correlations between all pairs of neurons that
we selected. In the quasi-continuous attractor network, the
largest noise correlations occur between different neurons of
the same population (except for the trivial case of noise
correlation equal to unity for the same neuron), whereas the
noise correlation is typically negative between oppositely
tuned neurons (Fig. 5A). To quantitatively assess the latter
observation, we calculated the histogram of noise correlation
for two separate categories of pairs of neuron: pairs of neurons
with the same sign of tuning (both positively monotonic or
both negatively monotonic) versus pairs of neurons with the
opposite sign of tuning (one positively monotonic and the other
negatively monotonic). We plotted the distributions of noise
correlation for the two categories in Fig. 5B. It is clear that
noise correlations are positive for neurons with the same sign
of tuning and are negative for neurons with the opposite signs
of tuning.

In the discrete attractor network, we also expect the sign of
noise correlation between two neurons to depend on the rela-
tive signs of tuning, because neurons with similar tuning are
coupled by excitation, whereas neurons with opposite tuning
are coupled by inhibition. We did find slight, but significant,
evidence for such a sign-dependence of the noise correlation
when measuring across neurons from all populations of the
discrete network. Neurons with the same sign of tuning had an
average noise correlation of +0.001 (average of 25,000 pairs),
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and neurons with opposite tuning had an average of —0.001
(average of 20,000 pairs). The difference is significant, but
such a small difference in midpoints of the two histograms
(Fig. 5B, gray) is masked by the much larger magnitude of the
SD (~0.15). Neurons within the same population of the dis-
crete network had a larger noise correlation, averaging 0.007
(cf. with 0.3 for the continuous network).

The analysis after Egs. 26 and 27 suggests that, not only
should the sign of noise correlation depend on the relative sign
of tuning of two neurons, but the covariance in total spike
counts should be proportional to the product of gradients of
tuning curves (Ben-Yishai et al. 1995; Pouget et al. 1998). To
test this prediction, we calculated the covariance in total spike
counts between neurons during memory states after different
cues and plotted this as a function of the product of gradients
of their tuning curves. We binned the results according to the
value along the x-axis (product of tuning-curve gradients) and
plotted the mean with SE in the y-axis (total spike-count
covariance) in Fig. 5C. We noticed that a single linear fit did
not match the data well, but rather two separate linear fits
through the origin were needed for the two quadrants of data.
The linear fit in the negative x-y quadrant has a smaller slope
than the fit through the positive x-y quadrant. The lower
gradient indicates that the magnitude of noise correlation
between neurons of opposite tuning is lower (i.e., the correla-
tion is less negative) than expected, given the noise correla-
tions between neurons with the same sign of tuning. This result
can be accounted for by the fact that the connections between
neurons with the same sign of tuning are stronger than those
cross-connections to populations with the opposite sign of
tuning (Fig. 1B). Hence populations with the same sign of
tuning (aligned vertically in Fig. 1B) are closely entrained with
each other, but the weaker connections across the network
(horizontal connections in Fig. 1B) allow more independence
between fluctuations in the firing rates of oppositely tuned
populations. Such covariance in neuronal activity limits the
possibility of obtaining more information from noisy neurons
by pooling them together (Abbott and Dayan 1999).

Discrete attractor network

In all the results presented for the discrete attractor network,
we used stimulus strengths that reliably cause the system to
attain one specific stable state. However, if intermediate stim-
ulus strengths are used, trial-to-trial fluctuations during the
stimulus can leave the system in different states on different
trials. In such an event, the system of discrete attractors
possesses long-term noise correlations, which are similar to the
continuous attractor network, but with specific, significant
differences.

In contrast to the continuous attractor network, whose vari-
ance increases with time, the trial-to-trial variance in firing
rates is initially large and remains constant with time in the
system of discrete attractors. All other results stem from this
and resemble equivalent effects that arise from noise during the
stimulus (represented by the quantity #,) in the continuous
network. The discrete system has a memory of noise during the
stimulus, which lasts for the duration of the trial (in the absence
of transitions between discrete states). The amplitudes of these
long-term noise correlations in a discrete attractor network are
stimulus-dependent, but in an additional way to that shown in

P. MILLER AND X.-J. WANG

Figs. 1A, 3B, and 5C for the continuous attractor. When the
stimulus strength is smoothly changed, the network responds
from being in one state with near 100% certainty, to 50% one
state and 50% the next state, to 100% in the next state and so
on through all discrete states (assuming the states are separated
far enough compared with noise fluctuations). The variance is
minimal when the system is reliably in one state and peaks
when it is equally likely to be in two states. Hence the variance
and magnitudes of long-term correlation effects all oscillate as
a function of cue strength.

To observe these effects in a discrete attractor network, it is
most likely that an animal should be trained with a discrete set
of stimuli, and the neural responses compared using interme-
diate stimuli. The large long-term noise correlations at inter-
mediate stimuli would increase the psychometric thresholds
around those stimulus values for any behavior relying on a
discrete memory network.

DISCUSSION

Our results show that if a network of neurons contains a
continuous attractor that acts as a memory store, it will produce
correlations that persist on the time scale of any memory held
in the network. This is because noise fluctuations along the
attractor are not damped, but instead are integrated in time to
produce an activity pattern resembling a random walk. The
power-law behavior presented here should be a salient charac-
teristic of any system with a continuum of states. For example,
in a model of spatial working memory (Camperi and Wang
1998; Compte et al. 2000), the network dynamics maintain the
form of a bell-shaped persistent activity pattern but do not
prevent random drift of the position of the peak in activity
around the network. Hence the location of the peak wanders
with time as a random walk, with a variance that increases
linearly with time (Compte et al. 2000). Such behavior can lead
to autocorrelation and cross-correlation functions that do not
decay exponentially with time (Ben-Yishai et al. 1995; Pouget
et al. 1998).

Our realization of a continuous attractor depends on recur-
rent excitatory feedback through synapses within the network.
However, recurrent excitation could originate from intrinsic
membrane dynamics within a single cell, leading to a range of
stable single-cell firing rates (Loewenstein and Sompolinsky
2003). As long as noise is able to change those stable rates,
similar power-law behavior should be observable in the spike
times of such neurons. The results rely on the ability of noise
to change the activity of the network between stable values. A
network with a set of discrete stable states, in the presence of
strong noise that can change the system from one state to
another does possess the same correlations as a continuous
attractor (Miller 2006). However, such a network lacks the
characteristic robustness of a discrete system. On the other
hand, if the noise is weaker than the barrier between different
discrete states, the network activity is robust to noise fluctua-
tions. Such robust networks do not show power-law behavior.

Sensory neurons in the visual system can also exhibit un-
usual fluctuations in their spike times (Baddeley et al. 1997;
Teich et al. 1997). In these cases, the power spectra show
power-law behavior, proportional to 1/w® with « between one
and two, corresponding to fractional Brownian motion (Man-
delbrot and Ness 1968). Similarly, the variance in spike count
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increases as a power law, supralinearly with time, to produce
Fano factors that increase with time as a power law. Teich
suggests the power-law behavior observed in retinal cells under
constant illumination (Teich et al. 1997) is the result of internal
optimization in the circuitry to encode natural stimuli charac-
terized by scaling statistics. Such power-law statistics within
presented natural scenes might directly explain power-law
behavior observed in the visual cortex (Baddeley et al. 1997).
In contrast to these feedforward networks, our system with a
continuous attractor is dominated by its recurrent feedback. It
acts as a memory system, maintaining persistent activity after
a transient input has withdrawn. It is the behavior of the system
in the absence of inputs that leads to the power-law correlations
studied in this paper.

Long-term spike correlations give rise to significant noise
correlations between neurons in a recurrent network. Such
correlations have been seen in neurons associated with the
memory of spatial location (Constantinidis and Goldman-
Rakic 2002) and with the memory of a vibrational frequency
(Machens et al. 2005). Moreover, if two neurons with opposite
gradients of their tuning curves are simultaneously measured,
one expects to see negative cross-correlations at long time
delays and negative noise correlations. Neurons with similar
tuning are observed to possess more positive noise correlations
than those with dissimilar or opposite tuning curves in spatial
working memory tasks (Constantinidis and Goldman-Rakic
2002) and spatial motor response tasks (Lee et al. 1998).
Negative noise correlations have been observed between neu-
rons with dissimilar tuning in the spatial motor response task
(Lee et al. 1998) as well as between positively tuned and
negatively tuned neurons in the vibrational memory task (Ma-
chens et al. 2005).

In our analysis of the system as a continuous attractor state,
positive correlations between oppositely tuned neurons can
only occur if fluctuations in the rate of the whole attractor state
occur more often than fluctuations along the attractor. For
example, trial-to-trial variations in the concentrations of mod-
ulators could cause regional covariances of firing rates to be
positive and swamp any negative correlations arising from
noise in the network. However, because significant changes in
the baseline properties of a large number of neurons would
destabilize a continuous attractor, it is difficult to reconcile
such a model with experimental data. The cross-inhibition
between oppositely tuned neurons in our system means that a
random drift in the firing rate of one network causes the firing
rate to drift in the opposite direction for the oppositely tuned
neurons.

To retrieve a signal encoded in a network with one set of
positively monotonic neurons and one set of negatively mono-
tonic neurons, it is necessary to take the difference between the
activities of the two sets. This leads to an improved signal-to-
noise ratio if oppositely tuned neurons have positively corre-
lated noise, because when taking the difference, any positively
correlated noise would cancel (Abbott and Dayan 1999; Romo
et al. 2003). This would require oppositely tuned neurons to be
either uncoupled (and subject to similar neuromodulation) or to
be coupled by excitation. Hence the cross-inhibition suggested
by some data (Machens et al. 2005), which we used to help
stabilize the mnemonic activity in the network, is not optimal
for decoding.

When the dominant fluctuations in a system are along an
attractor, the fluctuations in spike counts of different neurons
that form the attractor will necessarily be correlated. The
diffusion of the activity pattern along the attractor sets a limit
on the amount of information available about the original
stimulus. Trial-to-trial variability in the firing rate of a neuron
that arises from random drift of the network’s activity results in
a loss of information about the original stimulus, which cannot
be regained by pooling together more neurons from the same
network subject to the same random drifts in activity (Shadlen
and Newsome 1996). In our network, we find that increasing
the number of neurons in each population improves the stabil-
ity of the encoded quantity and reduces the total noise. Because
the background noise input remains unchanged, the CV of
individual neurons is not greatly reduced, but the noise corre-
lation between cells does decline significantly with increasing
network size. Our network has all-to-all connectivity, so the
number of synapses per neuron scales with system size, and we
make a compensatory reduction in synaptic conductance.
Hence the noise caused by recurrent feedback received by a
single neuron scales inversely with system size in our model.
This decreases the amount of fluctuation along the attractor,
reducing the loss of information caused by random drift, as the
number of neurons in the system increases.

Experimental observation of a variance in responses that
increases approximately linearly with delay would be strong
evidence of a random walk process in a memory system. Such
behavior has been seen in spatial working memory tasks
(White et al. 1994) and is suggested in some monotonically
graded memory tasks, such as memory of visual contrast or
vernier (see Fig. 1 in Pasternak and Greenlee 2005).

Such a systematic change in the trial-to-trial variance in
spikes per bin as a function of time during the task means that
the underlying process is nonstationary. Most standard statis-
tical tools assume a stationary process, yet most neuronal spike
trains are not stationary, so care is needed with the analysis
(Brody 1998). We used the Wigner-Ville power spectrum
(Flandrin 1989) (see Eq. 19), which in signal theory is an
established generalization of the power spectrum to nonstation-
ary processes (Mallat 1999). Calculation of autocorrelations as
a function of a single time lag variable, 7, is strictly only valid
for stationary processes with constant variance. However, be-
cause measurement of two-point correlations (in ¢, and t,) is
experimentally unfeasible with noisy spike trains, some kind of
temporal average is required. To reduce the effect of changing
variance, we normalized the spike-count covariance functions
by the product of SD at different time-points, thus generating
temporal correlation coefficients (Papoulis 1984), before aver-
aging them across time (Brody 1999). This method leads to a
result bounded between 1 and —1, and it is the most appropri-
ate method for analyzing temporal correlations in a nonstation-
ary process.

In summary, we observed long-term correlations in a net-
work of spiking neurons, which was designed to exhibit a
continuous range of persistent activity. The network is sensi-
tive to noise fluctuations, and we contrast its behavior with a
more robust network with discrete states where noise cannot
change the activity of the network from one discrete state to
another. In the discrete network, noise after stimulus offset is
rapidly damped and leads to no observable correlations, but in
the continuous network, the memory of noise is on the same
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time scale as the memory of the stimulus. Memory of noise is
a hallmark of random walk behavior, which is defined as the
temporal integral of noise. We showed that many properties of
our network can be interpreted as approximate random walk
behavior, namely linearly increasing variance of firing rates,
linearly decaying unnormalized correlograms, power spectra
with a power-law decay of exponent close to two, and Fano
factors that increase with time. Such behavior, when observed
in experimental data, can be considered as evidence for a
quasi-continuous attractor.

APPENDIX

Analysis: covariance function for a point renewal process
with the rate undergoing a random walk.

For analysis of the effects of random variations in the underlying
rate, we assume spikes are emitted randomly, with the probability of
a spike in a time from ¢ to ¢t + 6t being r(r)6t, where r(f) is the
underlying rate at that instance. If the rate function follows a random
walk, the spike train of each neuron is a doubly stochastic Poisson
point process (Saleh 1978).

The spike covariance cov(t,,t,) 6t,6t, is given by the probability of
spikes in both time intervals #, to t, + 6t and #, to ¢, + 6t minus the
product of the separate probabilities of a spike in each interval. Hence

Cov(tl,t2)8t18t2=j dr,P(rl,tl)rl&lJ’ dryP(ry,t|rit)) 81,
0 0

- |:f°° dr,P(r,,tl)r,811:| |:f’° drzP(rz,tz)rzﬁtz} (AI)
0 0

where P(r,t,|r,,t,) is the probability density for the underlying rate of
r, at time ¢, given its value of r, at time f,. For a random walk of the
firing rate, beginning at a rate, r, at + = 0, where r, is given by a
Gaussian distribution of mean, 7, and variance, o;,

_ 1 —(r— r(,)2
P = ot @) ex"[ 2041+ o%)]

_ ! = (r—n)

T 2AlAl+ )] e"p{zm - ron} (A2)
and

P(ryb|rit) = (A3)

eXp|: (r,— ”1)2:|
\27A(L — 1)) 2A(t — 1))
where A is the square of the noise amplitude and we have written
05 = At in Eq. A2 to quantify the initial noise during the stimulus
(see Gillespie 1992; Miller 2006). The variance of firing rates in-
creases linearly with time as A(¢ + t,). Equations A2 and A3 are valid
for times such that A7 << r,, because the firing rate cannot be negative.

Substituting Egs. A2 and A3 into Eq. Al and solving the integrals
leads to

cov(t,h) = At, + 05 = A, + 1) (A4)
where 0 = ¢, = t,. Similarly
cov(ty,t) = At, + 05 = Alt, + 1)) (AS)

if 0 =1, = t,. We only consider times greater than zero for the present
analysis, assuming no spikes occur before + = 0, and hence
cov(t,t,) = 0fort; <Oort, <O.
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Autocorrelation function for a random walk

The standard calculation of the autocorrelation function for a time
lag of ¢ includes all spikes in a total measurement interval, 7,
assuming no spikes occur before + = 0 and after r = 7. Hence the
covariance function is zero for ¢, > T or t, > T, and the unnormalized
autocorrelation function is calculated as

T-7
f dricov(tty + 7)
0

where the above form is written for 7 > 0 so that when the time of the
first spike, t,, ranges from O to T — ¢, the time of the second spike, 7,,
ranges from 7 to 7, and the complete measurement interval from O to
T is covered by the spike pair. That is, no contribution occurs to the
integral for 1, > T — 7, because in such a case, t, > T and the
covariance function is zero. Importantly, the measurement interval
decreases linearly with 7 in the preceding formulation. If we use the
result for a random walk of the firing rate, replacing cov(z,,t,) with
A(t, + t,) in the preceding equation, we obtain the result

Cy(1) = (A6)

(T—17)

Cy(7) = A(T + 28— 7)/2 (A7)

producing a linear decrease with 7. This explains the near linear decay
with 7 for the time-averaged unnormalized correlation coefficients in
Fig. 3B.

We used an alternative form for the cross-correlation function when
calculating the results presented in Fig. 4B to emphasize that, for a
pure random walk, the spike covariance is independent of the time lag,
7, but increases with the measurement time. Hence we use values of
a measurement interval, 7", that are smaller than the total measure-
ment interval of the spike train but are independent of 7. If we have
data for spikes from a time of + = O up to the time 7" + T,,,,, Where
Tohax 1S the maximum value of time lag used, we can calculate an

max

alternative, unnormalized autocorrelation function as

1 ("
Cl (1= Tf dt,cov(ty,t + 1) (A8)
0

which yields
C! (1) = AT + 21,)12 (A9)

increasing linearly with 7" but independent of 7 (see Fig. 4B).

Power spectrum for a random walk

For a random walk with finite duration, 7, and initial variance
caused by noise during the stimulus, Az, (see Egs. A4 and A5), the
covariance function, cov(¢t + 7/2, t — 7/2), is proportional to ¢ + 7, —
|72 for0 =t + 7/2 < Tand 0 = t — 7/2 = T and is zero otherwise.
This yields for t < 772

A
W(t,w) = s [1 = cosQRwt) + 2wt sin(Rwt)] (A10)

and for t > T/2

W(tw) = %{1 — cos[2a(T — 1)] + 2w(2t — T + t,) sin[20(T — 1)]}

(Al1)
Averaging this function over ¢ between 0 and 7 yields
2A i
Plw) =2 {1 _sin(@D) fo, cos(wT)]} (Al2)
w” T T

where the random walk of firing rate is defined with noise amplitude
A

VA such that the variance increases linearly with time as A(r + 1,).
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Equation A12 simplifies to 2A/(w3,,) for w,,, = 2mm/T and 2A(1 +
2t/ DI W3, 1) for wy,,, = 2m + )7/T.

Hence a hallmark of random-walk behavior is a power-law decay of
the power spectrum, with an exponent close to two. Any initial
trial-to-trial variance, Az, in the starting point of the random walk
leads to an additional oscillating contribution in the power spectrum,
so that the curve with odd-integer n = 2m + 1 is higher than the curve
with even-integer n = 2m.

Fano factor for a random walk

If spikes are emitted in a Poisson manner, with probability r(¢)6t in
time f to t + 6, where the rate varies in time and from trial to trial,
but maintains an average 7, the Fano factor is given by (Saleh 1978;
Miller 2006)

N 2f5de’ [ de"Varlr(?")]

F(T)=1
@ rol

(A13)

For a random walk with an initial spread of starting points such that
the variance is Var[r(r)] = A(t + t,), Eq. Al3 yields

A(T + 31,T)

F(T) =1+
D 37,

(Al4)

Hence another indication of random walk behavior is a power-law
increase in the Fano factor, with any initial variance in the rates
contributing a linear term.
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