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Molecular switches have been implicated in the storage of information in biological systems. For small structures such
as synapses, these switches are composed of only a few molecules and stochastic fluctuations are therefore of
importance. Such fluctuations could potentially lead to spontaneous switch reset that would limit the lifetime of
information storage. We have analyzed a model of the calcium/calmodulin-dependent protein kinase II (CaMKII) switch
implicated in long-term memory in the nervous system. The bistability of this switch arises from autocatalytic
autophosphorylation of CaMKII, a reaction that is countered by a saturable phosphatase-1-mediated dephosphor-
ylation. We sought to understand the factors that control switch stability and to determine the functional relationship
between stability and the number of molecules involved. Using Monte Carlo simulations, we found that the lifetime of
states of the switch increase exponentially with the number of CaMKII holoenzymes. Switch stability requires a balance
between the kinase and phosphatase rates, and the kinase rate must remain high relative to the rate of protein
turnover. Thus, a critical limit on switch stability is set by the observed turnover rate (one per 30 h on average). Our
computational results show that, depending on the timescale of fluctuations in enzyme numbers, for a switch
composed of about 15 CaMKII holoenzymes, the stable persistent activation can span from a few years to a human
lifetime.
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Introduction

Molecular switches have been implicated in many types of
cell-biological processes including the storage of decisions
about cell fate [1], genetic control [2], and memory storage in
the brain [3]. The mechanisms of such switches generally
depend on some kind of autocatalytic process. If a switch is
composed of a small number of molecules, stochastic
fluctuations are significant and a deterministic description
is not sufficient [4]. Because of the dynamic interaction of
opposing reactions, such fluctuations can spontaneously reset
the state of a switch. Reset events of this kind impose a
temporal limit on the usefulness of the switch for information
storage. It is thus crucial to understand the factors that
control switch stability and to develop quantitative insight
into how the stability required for a particular biological
process could be achieved. The stability problem of switches
has so far been studied primarily in relation to genetic
switches [5,6,7,8,9].

The problem of switch stability is of particular relevance to
synaptic function [10,11] since memory is thought to be
encoded by changes in synaptic strength [12] and because
there are indications that synaptic strength is controlled by
molecular switches [13,14,15]. By a molecular switch, we mean
a molecule or a small group of molecules that can undergo a
persistent change in state. In our definition, the change in
state occurs in a discrete rather than a smoothly graded way.
Clearly, spontaneous reset of a synaptic switch that encodes
memory would be problematic because it would lead to loss
of the stored memory. The fact that at least some memories

persist for a human lifetime indicates that storage processes
of extraordinary stability are present.
The mechanisms that underlie synaptic information storage

are beginning to be elucidated [16]. It has been demonstrated
that brief periods of strong stimulation can lead to an increase
in the strength of synapses, a process termed long-term
potentiation (LTP) [17]. In vivo studies show that LTP can
persist for at least a year [18]. The initiation of LTP is caused
by activation of N-methyl-D-aspartate (NMDA) channels and
elevation of intracellular calcium (Ca2þ) concentration [19,20].
There is general agreement that the resulting activation of
calcium/calmodulin-dependent protein kinase II (CaMKII)
plays a critical role in LTP (reviewed in [3]). CaMKII activation
is persistent [21], is required for LTP [22,23,24], and is
sufficient by itself to produce potentiation [25]. Genetic
modification of CaMKII that prevents its sustained activation
prevents long-term memory, as defined in behavioral tests

Received July 14, 2004; Accepted January 25, 2005; Published March 29, 2005
DOI: 10.1371/journal.pbio.0030107

Copyright: � 2005 Miller et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Abbreviations: CaMKII, calcium/calmodulin-dependent protein kinase II; I1, free
inhibitor-1; I1P, phosphorylated inhibitor-1; LTP, long-term potentiation; NMDA,
N-methyl-D-aspartate; PP1, protein phosphatase-1; PSD, postsynaptic density;
Sptot, total number of phosphorylated subunits

Academic Editor: Idan Segev, Hebrew University, Israel

*To whom correspondence should be addressed. E-mail: xjwang@brandeis.edu

PLoS Biology | www.plosbiology.org April 2005 | Volume 3 | Issue 4 | e1070705

Open access, freely available online PLoS BIOLOGY



[24]. The possibility that CaMKII is a synaptic memory
molecule is further strengthened by the finding that it has
autocatalytic properties that would allow it to function as a
molecular switch [10,26,27]. Although CaMKII is required for
long-term synaptic modification and is therefore a strong
candidate as a memory molecule, whether evidence that its
persistent activation is necessary for the maintenance of LTP
remains an open question [23].

In a previous analysis of the CaMKII switch, Zhabotinsky
and Lisman [28,29] proposed a model that incorporated
many key biochemical properties of CaMKII holoenzymes
and the phosphatase-1 (PP1) enzymes that dephosphorylate
them [30,31]. It was shown that an interplay between
autophosphorylation of CaMKII holoenzymes and dephos-
phorylation by PP1 molecules can give rise to two stable states
of phosphorylation at basal levels of free Ca2þ. Therefore, a
transient input of high Ca2þ (such as during the stimulation
protocol used in LTP induction) can switch the system from
an unphosphorylated (DOWN) state to a persistent, highly
phosphorylated (UP) state. Such a persistent change in
activation of CaMKII following LTP induction could underlie
the persistent change in synaptic strength. In these previous
modeling efforts, chemical reactions were described deter-
ministically by the law of mass action, precluding estimates of
the switch stability. The need for considering the limits on
stability imposed by stochastic fluctuations is made more
urgent by recent measurements showing that the number of
CaMKII holoenzymes in the postsynaptic density (PSD) of a
single synapse is relatively small [32]. For a typical PSD, there
are about 30 holoenzymes [32]. In the absence of a theory that
relates switch stability to the number of switch molecules, the
implications of this finding are unclear. The current work
addresses this issue using Monte Carlo simulations of the
stochastic chemical reactions in the CaMKII/PP1 system. This
approach allows us to estimate quantitatively the stability
(lifetime) of a CaMKII switch and its dependence on the
number of molecules. Our results thus provide new informa-
tion about the potential for the CaMKII switch within the
PSD to store long-term memories.

A second goal of our work is to analyze the impact of
molecular turnover on switch stability. Because biological
switches are themselves composed of molecules that are
unstable, turnover must occur. Such turnover is likely to have
a detrimental effect on switch stability [33]. However, turn-
over need not necessarily lead to switch reset since new
molecules may adopt a state that is dependent on the state of
the other molecules in the switch [33,34]. Specifically, when
the CaMKII switch is in the UP state, the PP1 activity should
be saturated. This saturation reduces the effectiveness of the
phosphatase so that when a phosphorylated holoenyzme is
replaced by a newly synthesized unphosphorylated one, the
new holoenzyme will become phosphorylated as a result of
the autophosphorylation even at basal Ca2þ levels. This can
restore the state of the switch that was present before the
turnover event. Direct measurements show that the CaMKII
at synapses turns over about once per day [35], a timescale
much shorter than synaptic memory. However, no theory has
been developed for any type of molecular switch that allows
an estimation of how this turnover quantitatively affects
stability. Here we examine this issue with regard to the
CaMKII switch. Our findings reveal general principles with
implications for other kinds of molecular switches.

Results

Autocatalysis Leads to Bistability
To understand the effect of stochastic fluctuations in

molecular switches, we have implemented simulations of the
CaMKII/PP1 switch model [28,29]. In this implementation,
reactions are modeled stochastically using Monte Carlo
methods and the number of CaMKII and PP1 molecules that
are individually considered is comparable to the numbers
contained within the PSD at single synapses.
A CaMKII holoenzyme is composed of two rings, each with

six kinase subunits. Each subunit has a single phosphorylation
site at Thr286/287 that, when phosphorylated, makes the
subunit active even when Ca2þ/calmodulin is no longer
bound. Autophosphorylation of the site on a given ‘‘sub-
strate’’ subunit proceeds if two necessary conditions are
fulfilled [36]. Ca2þ/calmodulin must bind to the ‘‘substrate’’
subunit in order to reveal its Thr286/287 site. Also, the
counterclockwise neighboring ‘‘catalyst’’ subunit must be
active. Hence, the initial autophosphorylation necessary to
switch a ring ‘‘on’’ requires the binding of two molecules of
Ca2þ/calmodulin. Subsequent phosphorylation of other sub-
units within a ring is faster (see Figure 1A) since the
phosphorylated subunit is constitutively active without Ca2þ/
calmodulin. Thus, only a single Ca2þ/calmodulin is required to
phosphorylate a ‘‘substrate’’ subunit if its counterclockwise
‘‘catalyst’’ neighbor is already phosphorylated. (Note that our
results are unaffected by the direction of autophosphoryla-
tion, but based on geometric considerations, we assume it is
asymmetric [27,37].) At the resting Ca2þ concentration, with
our standard parameters, the initial autophosphorylation
occurs at an average rate of one per 3.5 h per unphosphory-
lated ring, while the further phosphorylation steps occur at
approximately one per 4 min per available ‘‘substrate’’
subunit. We assume that the molecules of PP1 held in the
PSD can dephosphorylate any of the sites on any of the
holoenzymes in the PSD. Furthermore, PP1 becomes satu-
rated when the kinase becomes hyperphosphorylated [29].
Figure 1B indicates schematically how the total rates of

autophosphorylation and dephosphorylation lead to two
stable states at the resting Ca2þ level. The curves in the figure
show how these reactions vary as a function of the total
number of sites phosphorylated. The intersection points
(where dephosphorylation balances phosphorylation) define
three steady states, of which the left and right ones are stable
and the middle one is unstable. Switching can occur if
phosphorylation of the system is forced (either by a transient
signal or by a spontaneous fluctuation) far enough away from
one stable value that it passes the unstable value; the system
will then fall into the basin of attraction of the second stable
point. Once in this basin, the intrinsic dynamics of the system
set the timescale of drift to the second stable state.
The model presented here includes stochastic turnover of

CaMKII holoenzymes with an average lifetime of 30 h that is
independent of phosphorylation level, as experimentally
determined [35]. We assume, except where stated otherwise,
that once a holoenzyme is removed, it is immediately
replaced by an unphosphorylated holoenzyme. If the switch
is in the DOWN state, the newly inserted holoenzyme is likely
to stay off: any spontaneous phosphorylation will be
countered by dephosphorylation, which removes a subunit
in approximately 5 min, on average. However, if the switch is
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in the UP state, the phosphatase is so saturated by other
phosphorylated holoenzymes, that the average time for a
newly inserted subunit to be dephosphorylated is almost 1 h.
Hence, the newly inserted holoenzyme can turn on as a result
of the activation of the kinase by basal Ca2þ levels [28,29],
since the time for it to be phosphorylated is significantly less
than the time for turnover. Thus, the UP state of the switch is
stable, in spite of turnover.

Parameters for the model were constrained according to
the references cited in Table 1. Where the constraints
allowed a range of variation, we chose values of parameters
so that the system would be bistable and have approximately

equal lifetimes of the UP and DOWN states (see below). We
required that our standard system have equal numbers of
CaMKII holoenzymes and PP1 molecules, as their concen-
trations are known to be similar, but adjusted the less well-
determined Hill constants, KH1 and KH2, to maximize system
lifetime (see below). While our model is more sensitive to
the value of KH1 than any other parameter, bistability still
exists in a significant range (10% around its optimal value)
when all other parameters are fixed. Compensatory cova-
riation of other parameters maintains the system’s bistability
at fixed calcium when KH1 varies by more than a factor of
three. Our study aims to test whether a plausible set of
kinetic parameters enables a molecular switch, with a small
number of participating molecules, to be stable in spite of
fluctuations.
Two critical requirements exist for the switch to function.

First, the initial (P0 to P1) phosphorylation step must be
significantly slower than further phosphorylation steps. This
is true as the Hill constant for Ca2þ activation of CaMKII
[38,39] is significantly greater than the average Ca2þ

concentration in the physiological resting state (0.7 lM
versus 0.1 lM in most of this paper). Second, the
phosphatase activity must saturate so the rate of dephos-
phorylation per phosphorylated subunit is significantly
slower in the UP state than in the DOWN state. This is
achieved as the Michaelis constant, KM, of PP1 is much lower
than the concentration of CaMKII subunits (0.4 lM versus
400 lM in this paper, though we also test the model with a
KM of 10 lM [40]). Thus, according to the latest experimental
data, the two critical requirements for a functioning switch
are met.
Figure 1C and 1D (with 16 holoenzymes simulated) show

that a large, 2-s-long Ca2þ elevation of the kind that may
occur during LTP induction [41] can switch the system from
the unphosphorylated DOWN state to a highly phosphory-
lated, persistent UP state. The system drifts toward the UP
state even after Ca2þ falls to its basal level (Figure 1D). Such a
drift has been observed experimentally [42]. During the drift
period, which can take tens of minutes, the system would be
more vulnerable to depotentiation. In this particular example
(with 16 holoenzymes), the stable UP state is reached in under
an hour (Figure 1D). As seen in Figure 1E, the resulting UP
state remains stable for at least 10 y.

Spontaneous Transitions between the Baseline and
Memory States
We examined the distribution of times between sponta-

neous switching events as a measure of the stability of
memory storage. Figure 2A shows that the total phosphor-
ylation level of a small system with eight holoenzymes is only
stable on the time scale of months, not years; sporadically,
fluctuations cause the system to change from one state to the
other, as indicated by the random switching of phosphor-
ylation level. Analysis reveals that the times spent in either
the DOWN or UP state (i.e., the lifetimes) are distributed
exponentially (Figure 2B) (apart from brief transition times).
Such an exponential distribution [43] indicates that the
probability of transition per unit time is constant for a given
state. The exponential distribution of lifetimes has a
characteristic time constant that equals the average lifetime
in the state (and the inverse of the probability of transition
per unit time).

Figure 1. CaMKII Autophosphorylation and PP1 Saturation Lead to

Bistability in the Phosphorylation States of CaMKII at Resting Ca2þ

(A) Phosphorylation of the first subunit is slow at resting Ca2þ because
of the requirement for two Ca2þ/calmodulin molecules (see text).
Subsequent phosphorylation is faster because only one Ca2þ/calm-
odulin is required.
(B) Schematic figure indicating how bistability arises from the
dependence of phosphorylation and dephosphorylation rates on
the number of subunits phosphorylated. Stable states are at the left
(DOWN) and right (UP) intersections of the two curves. The middle
crossing is unstable. The greater the area of the shaded region
between a stable steady state and the unstable steady state, the harder
it is for fluctuations to destabilize that stable steady state (the larger
their basins of attraction).
(C) A 2-s pulse of high Ca2þ switches the system (with 16 holoenzymes)
from a low state of phosphorylation to a higher state within the basin
of attraction of the UP state (see [D]). Phosphorylation fraction is
Sptot/12NCaMK.
(D) After the end of the Ca2þ pulse, it can take tens of minutes for the
system to reach the dynamic equilibrium in the UP state.
(E) The UP state is stable for many years in a system with 16
holoenzymes.
DOI: 10.1371/journal.pbio.0030107.g001
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The overall stability of the system is dependent on the
lifetimes of both the UP and DOWN states. In general, any
change in the system that increases the rate of phosphor-
ylation tends to increase the lifetime of the UP state while
reducing the lifetime of the DOWN state. The opposite is true
for an increase in dephosphorylation rate. This tradeoff
between lifetimes of the two states can be demonstrated by
varying the number of phosphatase enzymes in the system
while all other parameters are fixed. As seen in Figure 2C, a
reduction in the amount of phosphatase resulted in an
increased lifetime of the UP state, but destabilization of the
DOWN state; in contrast, increasing the amount of phospha-
tase had the opposite effect (Figure 2D). Figure 2E (blue)
shows the lifetimes averaged over 400 transitions, as a
function of the number of phosphatase enzymes. Again, the
lifetime of the UP state decreases, and the lifetime of the
DOWN state increases with the number of PP1 molecules. We
define the ‘‘system’s lifetime’’ as the smaller of the two
lifetimes, because we assume that a random potentiation of a
synapse is as equally undesirable as a random depotentiation;
a spontaneous transition from either state would be
detrimental for memory. It follows that the system is optimal
at the crossing of the two curves (Figure 2E), where the two
lifetimes are equal (so that neither lifetime is too small). Such
an optimum corresponds to a balance between the processes
of phosphorylation and dephosphorylation. We therefore
define the phosphatase concentration at which the two curves
cross to achieve balance as the optimal concentration.

In the simulations described above, we set the optimal
phosphatase concentration equal to the concentration of the

CaMKII holoenzymes (R. J. Colbran, personal communica-
tion; see Table 1). We adjusted the less well-constrained
parameters to achieve this. To see how sensitive the system’s
lifetime is to these particular choices, we simulated the system
with a different value of the phosphorylation rate constant
for the kinase, changing k1 from 1.5 s�1 to 0.75 s�1. Figure 2E
(red) shows that the optimal phosphatase concentration is
also reduced, but at this concentration the system lifetime
remains as high as in the original system (the intersection of
the two curves is shifted but remains at the same lifetime). We
also tested the system’s robustness to a 25-fold larger value, 10
lM, for KM. With an increased optimal phosphatase concen-
tration, the system of 20 holoenzymes was stable for over 10 y.
Thus, achieving long lifetimes does not require a specific level
of enzyme activity, but does require an appropriate balance
between phosphorylation and dephosphorylation rates. See
Discussion for how this might be achieved.

Stability Increases Exponentially with the Number of
Molecules
We next considered how the system’s lifetime varies with

the number of holoenzymes (while PP1 varies in proportion,
as does the system’s volume). Figure 3A and 3B show the
behavior of the model switch with four and 16 holoenzymes,
respectively. We found (Figure 3C) that the system stability
increases exponentially with the number of holoenzymes (i.e.,
the system size). As a result of this exponential dependence,
the lifetime of the system almost doubles for each additional
holoenzyme in the PSD. These simulations show that a switch
made of only four holoenzymes can only be expected to have

Table 1. Parameters Used in the Model

Parameter Symbol Value Units Reference

No. of CaMKII holoenzymes NCaMK 4–20 (20) — [32]

No. of phosphatase enzymes NPP1 NCaMK (20) — R. J. Colbran, pers. comm.

Volume of the PSD vol 2 3 105 � 106 (106) nm3 [32]

Concentration of Ca2þ [Ca] 0.1 lM [75]

Concentration of free I1 [I1] 0.1 lM

Activity of calcineurin divided by its Michaelis constant mCaN 1.0 s�1

Activity of PKA divided by its Michaelis constant mPKA 1.0 s�1

The Michaelis constant of protein phosphatase KM 0.4 lM

The Ca2þ activation Hill constant of CaMKII KH1 0.7 lM [38,39]

Hill coefficient for Ca2þactivation of CaMKII nH1 3 — [40,67]

The Ca2þ activation Hill constant of calcineurin KH2 0.3 lM [71]

Hill coefficient for Ca2þ activation of CaN nH2 3 — [71]

The catalytic constant of autophosphorylation k1 1.5 s�1 [36]

The catalytic constant of protein phosphatase k2 10.0 s�1 [40,76]

The association rate constant of PP1.I1P complex k3 100 lM�1 s�1 [77]; this paper

The dissociation rate constant of PP1.I1P complex k4 0.1 s�1 [77]; this paper

The equilibrium constant of PP1.I1P complex KI 1 nM [77]

Rate of holoenzyme turnover mT 1/30 h�1 [35]

Key quantities at resting [Ca2þ] = 0.1 lM

Phosphorylation of first subunit of ring 6m1 7.61 3 10�5 s�1 Equation 1

Phosphorylation of a neighboring subunit m2 4.36 3 10�3 s�1 Equation 2

Concentration of free I1P [I1P] 2.8 lM Equation 4

Inhibition of phosphatase mi = k3[I1P] 280 s�1 Equation 5

Fraction of phosphatase free of inhibitor fe ¼ k4
miþk4 1/2,801 — Equation 5

Total number of phosphorylated subunits Sptot 0–12 NCaMK —

Dephosphorylation rate per phosphorylated subunit m3(Sptot) Equations 8–13

Maximum rate at [Sptot] = 0 3.53 3 10�3 s�1

Saturated rate at [Sptot] = 12 NCaMKNA/vol 2.97 3 10�4 s�1

PKA, cAMP-dependent protein kinase.

DOI: 10.1371/journal.pbio.0030107.t001
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stability on the order of days to weeks, whereas increasing the
system to 16 holoenzymes could result in a switch that is
stable for a human lifetime.

Protein Turnover Limits Memory Lifetime
In order to understand more deeply the cause of sponta-

neous switching, we examined what was occurring in the
switch during the period preceding switching events. The two
examples in Figure 4A and 4B show the total instantaneous

level of phosphorylation of the system during the time
preceding a spontaneous transition to the DOWN state
(Figure 4A is for a system of four holoenzymes, Figure 4B for
a system of 16). Holoenzyme turnover events are evident in
these traces, because a turnover event causes an abrupt drop
in the level of phosphorylation (marked by red arrows). In
Figure 4A, four turnover events occur in a 3-h period prior to
a downward switching event, and in Figure 4B, six turnover
events occur in the same length of time (t = �7 h to �4 h),
after which intrinsic dynamics take over to complete the
downward transition. Based on the average time for turnover
of 30 h per holoenzyme, one would expect a turnover event
every 7.5 h in a system with four holoenzymes, and every 1.9 h
in a system with 16 holoenzymes. Hence, the figures indicate
that high numbers of turnover events occur in the periods
before a transition, as expected if turnover initiates switching
to the DOWN state (as explained on the next page). Such high
amounts of turnover result from the stochastic nature of the
turnover process, and occurred prior to such spontaneous
transitions in all the traces we examined. Hence, protein
turnover, and, in particular, its stochastic nature, strongly
affects the system’s ability to store information.
We next investigated how the rate of protein turnover,mT,

affects the switch’s stability. We found that an increase in the
rate of protein turnover has little effect on the lifetime of the
DOWN state, but dramatically reduces the lifetime of the UP

Figure 2. Switch Stability Is a Trade-Off between Lifetimes of UP and

DOWN States

(A) Spontaneous switching between UP and DOWN states in a system
with eight CaMKII holoenzymes.
(B) The distribution of lifetimes between switching events is
exponential, as demonstrated by the straight line fit for lifetimes of
the UP state on a semi-logarithmic scale.
(C and D) Removing one PP1 enzyme (seven instead of eight) (C) leads
to a longer lifetime for the UP state but shorter lifetime for the
DOWN state; whereas adding one PP1 enzyme (nine instead of eight)
(D) yields the opposite effect.
(E) Dependence of average lifetimes of the UP state (squares) and
DOWN state (circles) as a function of the number of PP1 enzymes
(with eight CaMKII holoenzymes). Filled blue symbols correspond to
data points from (A), (C), and (D). Lines are approximate, analytic
results (based on Materials and Methods and [51]). The optimal
lifetime of the switch is defined by the intersection point of the two
curves, at which the lifetimes of the UP and DOWN states are equal.
Blue indicates reference parameters. Red indicates k1 = 0.75 s�1, one-
half of the standard value. The lifetime does depend on kinetic
parameters, but maximum stability is approximately the same, albeit
with a different number of PP1 molecules.
DOI: 10.1371/journal.pbio.0030107.g002

Figure 3. Stability of the Switch Increases Exponentially with System Size

(Number of CaMKII Holoenzymes and PP1 Molecules)

(A) Spontaneous transitions in a systemwith fourCaMKII holoenzymes
and four PP1 enzymes. Phosphorylation fraction is Sptot/12NCaMK.
(B) System with 16 holoenzymes and 16 PP1 enzymes, with four times
the volume of (A). Note different timescales between (A) and (B).
Phosphorylation fraction is Sptot/12NCaMK.
(C) The switch’s lifetime increases exponentially with system size.
Numbers of all species scale together with system volume. Circles are
data points, line is a linear fit, indicating an exponential dependence,
because the ordinate is in logarithmic scale. The red asterisks indicate
data points where we included the PP1–I1P fluctuations explicitly.
DOI: 10.1371/journal.pbio.0030107.g003
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state. Again, this is to be expected if turnover is responsible
for initiating a switch DOWN in the system. Since the system
is optimal when the two lifetimes are similar, in a series of
simulations where we used different rates for protein turn-
over, we also adjusted the amount of PP1 to return to an
optimal system (where UP and DOWN state lifetimes are
similar). Hence, we can plot in Figure 4C the optimal lifetime

of the switch as a function of average time for protein
turnover. For turnover times of less than 1 mo, the optimal
system stability is strongly dependent on the rate of turnover,
suggesting that protein turnover is a limiting factor in the
stability of the switch. Indeed, making the turnover rate very
fast (hourly) can cause the system to lose all bistability.
In the UP state of our system, protein turnover replaces

phosphorylated holoenzymes with unphosphorylated ones
and is thus effectively acting like a phosphatase. It was
therefore of interest to compare this effective phosphatase
activity to the rate of dephosphorylation produced by the
phosphatase itself. We proceeded by calculating the total rate
for individual phosphorylated rings to switch off, that is, to
become an unphosphorylated ring in state P0. Such a
switching-off rate is the sum of the turnover rate and the
rate for dephosphorylation by phosphatase. Our approximate
calculation is accurate when the switching-on and switching-
off rates for a ring are much slower than the rates for
individual subunits to be phosphorylated or dephosphory-
lated, as it assumes a ring has time to reach all configurations
of phosphorylation before it switches off (see Materials and
Methods). Given that assumption, we obtained the proportion
of time a ring that is on spends in each configuration of
phosphorylation. The unphosphorylated state, P0, where a
ring is off, can be reached either by turnover, or by
dephosphorylation from the state with a single phosphory-
lated site, P1. Hence, the average rate at which a ring switches
off (Figure 4D) is given by m3qP1þ mT, where m3 is the rate per
phosphorylated subunit of phosphatase activity (m3 of equa-
tion 8), qP1 is the proportion of time a ring that is on spends in
the configuration P1 and mT is the protein turnover rate. Note
that as the number of rings switched on increases, so the total
phosphorylation of the system increases, causing both m3 and
qP1 to decrease. As is evident in Figure 4D, when more than
half the rings in the system are on, the rate of rings switching
off becomes identical to the turnover rate, mT, itself
(horizontal dashed line in Figure 4D). Hence, with a 30-h
turnover rate and the optimal concentration of phosphatase,
the phosphatase is unable to switch a ring off in the UP state;
loss of phosphorylated rings is purely due to turnover.
We next sought to visualize how the system remains in the

UP state even while turnover is causing the replacement of
approximately two-thirds of the phosphorylated holoenzymes
with unphosphorylated ones during a 30-h period (on average).
In Figure 4E, we present a snapshot of a few hours of activity to
show the time course for turnover and rephosphorylation of
individual rings. The system in Figure 4E contains 20
holoenzymes, so the UP state is stable for many decades.
Turnover events are marked by vertical lines. Unphosphory-
lated rings that become phosphorylated are indicated by the
colored step-like lines, where each step indicates the phos-
phorylation of a subunit. It should be noted that at any one
time, even though the system is in the UP state, a number of
rings are unphosphorylated because of previous turnover. The
rate of switching on for rings is proportional to the number of
rings off. On average, the total rate of switching onmatches the
rate of phosphorylated rings lost by turnover. This dynamic
equilibrium between the switching on of rings and turnover
determines the average number of unphosphorylated rings at
any time. In the system of 20 holoenzymes (and therefore 40
rings), the number of unphosphorylated rings typically varies
from four to eight. The number is five before the first turnover

Figure 4. The Rate of Protein Turnover Limits the Maximal Lifetime of the

System and Leads to a Minimal Rate of Energy-Consuming Activity

(A and B) Stochastic changes in total phosphorylation during a
transition from the UP to DOWN state, with turnover events marked
by arrows, in a system with (A) four CaMKII holoenzymes and (B) 16
CaMKII holoenzymes. Red arrows indicate turnover events, which
cause an abrupt drop in the level of phosphorylation.
(C) Log–log plot of lifetime of the switch as a function of turnover
rate for the system with eight CaMKII holoenzymes (the red asterisk
marks 30-h turnover, used as standard in this paper).
(D) The rate for an individual ring of subunits to switch off as a
function of the total number of rings that are on (shown here for a
system with eight CaMKII holoenzymes). As more rings are turned on,
the phosphatase activity saturates and the equilibrium level of
phosphorylation per ring increases. As a result, the switching-off rate
for rings in the UP state for the system approaches the turnover rate
(dashed line), because the probability of total ring dephosphorylation
by PP1 becomes small.
(E) Dynamic equilibrium between turnover (vertical solid black lines)
and switching on of rings (colored step-like lines) when the system is
in the UP state. At the time of the first turnover, five rings are already
unphosphorylated by prior turnover. The system is stable because the
rate of rings switching on matches the rate of turnover of
phosphorylated rings (each turnover event can result in the loss of
zero, one, or two phosphorylated rings). A system with 20
holoenzymes is shown.
DOI: 10.1371/journal.pbio.0030107.g004
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event on Figure 4E and reaches a maximum of nine following
the two closely spaced turnover events to the right in Figure 4E.
The figure also illustrates how once one subunit is phosphory-
lated on a ring, the others rapidly follow.

Effect of Fluctuations in Reactant Concentrations
In our simulations thus far, we have not considered noise in

the signaling pathways that control the kinase and phospha-
tase reactions. A careful analysis of this issue requires an
understanding of the signals that lead to bidirectional
synaptic modification, as well as a consideration of the noise
reduction mechanisms; both are beyond the scope of this
paper. Nevertheless, we wanted to determine whether the
switch we have modeled could tolerate reasonable noise levels
in its input. In this class of models, reaction rates are
nonlinear in Ca2þ concentration, so fluctuations in Ca2þ

concentration affect the mean reaction rate, as well as
providing additional noise about the mean rate. Moreover,
the functional dependence on Ca2þ is not the same for all
reaction steps. In particular, fluctuations in Ca2þ concen-
tration increase the average rate of the slow initial (P0 to P1)
phosphorylation step, which requires two Ca2þ/calmodulins,
to a greater extent than any other reaction steps. The change
in relative reaction rates means that, in principle, large
enough fluctuations can destroy the bistability altogether,
whatever the system size. This class of switch has no absolute
protection against Ca2þ fluctuations—indeed, we require in
our model that a strong enough change in Ca2þ, as occurs
during LTP, leads to a switch from the DOWN to the UP state
(see Figure 1C). However, the system should be robust to
smaller, realistic fluctuations that occur in the absence of
LTP. Figure 5A (blue squares) shows that the system with our
standard parameters (but with a lower, 0.07 lM, baseline) is
able to tolerate the moderate fluctuations that might arise
from Ca2þ influx through NMDA-receptor-mediated channels
(0.1 lM amplitude with 100 ms decay time; [44]) due to
spontaneous presynaptic action potentials (a 0.5-Hz Poisson
train) with only modest reduction in stability. Although the
lifetime increases less steeply with system size than in the case
without fluctuations (Figure 5A, black circles), extrapolation
suggests that a system with 20 holoenzymes would be
sufficient to have a lifetime of 100 y. If we use larger
fluctuations, of amplitude 1.0 lM, it is important to adjust
parameters to compensate for the change in average activity
produced by fluctuations. With such an adjustment (see
Materials and Methods) the system with 1.0-lM fluctuations in
free Ca2þ concentration (with 100 ms decay time, above a 0.1-
lM baseline in a 0.5-Hz Poisson train) is slightly more stable
than the original system without fluctuating Ca2þ (Figure 5A,
red triangles). We conclude that plausible levels of Ca2þ

fluctuations in spines do not necessarily compromise switch
stability.
In our simulations so far, we have assumed fixed numbers

of enzyme molecules, but in principle these numbers may
fluctuate with time, potentially compromising stability. We
implemented several sets of simulations to address this issue.
In each set, we carried out a number of simulations
corresponding to a range of timescales for fluctuations of
PP1. Specifically, we varied the average time between random
steps of plus one or minus one in the number of PP1
molecules in the PSD, and plotted this time as the x-axis in
Figure 5B and 5C. It should be noted that the total time the

Figure 5. Switch Stability in the Presence of Spontaneous Fluctuations in

Free Calcium Concentration and the Total Number of Enzymes

(A) Effect of Ca2þ fluctuations on stability (lifetime) as a function of
number of CaMKII holoenzymes. Circles indicate the original system
without Ca2þ fluctuations. Squares indicate the original system with
free Ca2þ fluctuations of amplitude 0.1 lM and baseline 0.07 lM.
Triangles indicate adjusted system with free Ca2þ fluctuations of
amplitude 1.0 lM and baseline 0.1 lM. The adjusted system has
alternative parameters, such thatNPP1=NCaMK/2, k1= 6 s�1, k2= 7 s�1,
and KH1 = 4.0 lM. The ordinate is in logarithmic scale.
(B) Effect of fluctuations in the number of PP1 molecules on the
lifetime of UP states (squares/solid line) and DOWN states (circles/
dashed line) (16 holoenzymes). The timescale on the abcissa is the
average time for the number of PP1 molecules to increase or decrease
by one. Red indicates 12 , NPP1 , 20. Blue indicates 8 , NPP1 , 24.
The ordinate is in logarithmic scale.
(C) Lifetime of UP states (squares/solid line) and DOWN states (circles/
dashed line) when the number of holoenzymes and PP1 molecules
fluctuate in the respective ranges 14 , NCaMK , 18 and 8 , NPP1 , 24.
The timescale for PP1 fluctuations varies along the abcissa. The
timescale for CaMKII fluctuations is fixed by the turnover rate (30 h
per holoenzyme). The ordinate is in logarithmic scale.
DOI: 10.1371/journal.pbio.0030107.g005
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system spends away from its optimum is usually the sum of
many such time steps. In the first set of simulations, with the
number of CaMKII holoenzymes held fixed, we assumed the
number of PP1 molecules could fluctuate by plus or minus
25%, so in the particular case of 16 holoenzymes, the number
of PP1 molecules varies between 12 and 20. The resulting
lifetimes for the UP and DOWN states are given in Figure 5B
in red. The lifetime decreases as the average time between
changes in PP1 increases. This is because slow fluctuations
lead to long periods of time when the system is far from
optimal. In contrast, if the fluctuations are rapid, the system
may not have time to make a transition even if the system
loses bistability temporarily. Still, even with a change every
6 h, the system with 16 holoenzymes is stable for over about
20 y. Second, we increased the amplitude of fluctuations in
PP1 to plus or minus 50% (a variation of a factor of three,
from eight to 24 in this case). The simulation results in Figure
5B (blue) indicate that such an increase in amplitude of
fluctuation causes the average lifetime for the system to
decrease. Again, if the fluctuations are relatively rapid, they
do not seriously degrade the switch. It is somewhat
remarkable that when the number of PP1 molecules varies
by a factor of three over a timescale of tens of minutes, the
switch lifetime still averages over 10 y. Third, we introduced
slow fluctuations in the number of CaMKII holoenzymes,
assuming stochastic insertion of holoenzymes as well as
stochastic turnover. Since the timescale of removal is set at
30 h per holoenzyme [35], the average rate of insertion is
fixed (at 16 every 30 h) to ensure the appropriate average of
16 holoenzymes within the PSD. As above, the simulations
covered a range of timescales for the fluctuations of PP1,
whose number could vary between 8 and 24. We found that
variations in the number of holoenzymes are more delete-
rious than variations in PP1 alone. In particular, loss of
holoenzymes from the PSD destabilizes the UP state. This is
because the effect seen above, of a nonoptimal CaMKII to PP1
ratio, is exacerbated by a reduction in switch size when
holoenzymes are lost (cf. Figure 3C). Figure 5C indicates the
resulting lifetimes when the number of CaMKII holoenzymes
varied between 14 and 18. Without PP1 fluctuations
(equivalent to a time step of zero) the DOWN state is little
affected by these slow fluctuations in the number of
holoenzymes (circles/dashed line), but stability of the UP
state is greatly reduced (squares/solid line). Including slow
PP1 fluctuations of 650% reduces the lifetimes of both UP
and DOWN states to below 10 y. Although a system averaging
20 holoenzymes would be more stable, we conclude that
during turnover, a holoenzyme removed from the PSD needs
to be replaced relatively rapidly—on a timescale of minutes,
not hours—to avoid degradation of the switch. Moreover, if
CaMKII were not anchored, but able to freely diffuse in and
out of the PSD, fluctuations in the number of holoenzymes
present would be increased, and bistability would not be
possible [45,46].

Discussion

In this paper, we have considered the stability against
fluctuations of a bistable switch based on the interaction of
CaMKII and PP1 in the PSD. Although a deterministic model
of such a switch has been presented before [28,29], it was not
previously possible to assess quantitatively the potentiality of

the switch for long-term information storage, because the rate
of spontaneous reset was not known. Given the small number
of CaMKII molecules at synapses [32], stochastic fluctuations
in the reactions must necessarily lead to switch reset on some
timescale. Our results show that that this timescale depends
crucially on the number of molecules that make up the switch
(see Figure 3C). Indeed, this dependence is highly nonlinear,
scaling exponentially with the number of molecules involved.
We have shown that this timescale can exceed human lifetimes
when the number of holoenzymes is greater than 15 (see
Figure 3B), provided the parameters of the system are in an
optimal range. A substantially smaller number of holoen-
zymes, such as four, would result in spontaneous transitions
on a timescale of a week (see Figure 3A). One interesting
possibility is that initially a small number of CaMKII
holoenzymes is sufficient for the immediate information
storage and with time, during an initial consolidation period
[47,48], a larger number of holoenzymes accumulate at the
PSD, allowing for more permanent memory formation (see
Figure 3C). Our general conclusion is that relatively small
groups of CaMKII molecules, such as are found in the PSD
(where the average is 30 holoenzymes) can function as highly
stable switches and could potentially subserve information
storage for very long periods.
The exponential dependence of lifetime on system size is

consistent with general theoretical considerations [11]. This
is because the switch can be described as a biochemical
system with a ‘‘double well’’ effective energy potential in
which two minima are separated by a barrier. The fluctua-
tions in the reactions generate noise-driven hopping over the
barrier in a manner analogous to thermally driven hopping
over a real potential barrier [11,49,50,51]. The effective
barrier height is proportional to the system size [49], and it is
well-known that with a constant noise source, the time for
transitions across a barrier increases exponentially with
barrier height [51,52]. Intuitively, a transition from the UP to
DOWN state is triggered when a critical number of CaMKII
rings (proportional to the system’s size N) are dephosphory-
lated at the same time. In terms of probability, the decrease
in likelihood with N is the same effect as the increase in
expected number of coin tosses necessary to obtain N heads
in a row, each with a probability p = 1/2. The probability for
N consecutive heads is pN, and the expected time (number of
coin tosses) it takes before this happens is (1/p)N = 2N, which
grows exponentially with N. By analogy, the larger the system,
the more rings of CaMKII have to turn off randomly without
recovery before they are able to cause a switch in the whole
system. If the dephosphorylation events do not occur ‘‘in a
row,’’ switching off a critical number of CaMKII rings within
a short time interval, the opposing reactions (autophosphor-
ylation) have time to counteract and turn rings on, allowing
the natural dynamics to drive the system back to the UP
equilibrium state.
An additional finding is that the molecular turnover of

CaMKII strongly limits switch stability (see Figure 4). If
turnover were absent, switch stability could be an order of
magnitude higher (see Figure 4C). Our analysis shows an
interesting set of relationships between the rates of phos-
phatase and kinase activities and the rate of protein turnover
with regards to their effect on switch stability. In principle,
lowering the basal phosphatase and kinase rates in propor-
tion increases switch stability. Such lowering of the dephos-
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phorylation rate has a second desirable feature of lowering
energy consumption. This is because the UP state consists of
what biochemists call a ‘‘futile cycle,’’ in which the rate of
ATP-utilizing phosphorylation equals the rate of dephos-
phorylation. Although minimizing energy utilization dictates
that the system be ‘‘cooled’’ (lowering the phosphatase and
kinase rates), our results show that there are limits to how
much cooling is effective and that this limit is set by the
protein turnover rate. Specifically, if cooling sets the
phosphatase and kinase rates too low, the system cannot
regain steady-state values after a molecular turnover event
(newly inserted unphosphorylated kinase molecules will not
become fully phosphorylated, as they do in Figure 4E). In this
case, unphosphorylated kinase molecules will accumulate,
leading inexorably toward the threshold for reset to the
DOWN state.

Our results suggest that the stability of a switch depends
sensitively on a balance of phosphorylation and dephosphor-
ylation rates. Hence we assessed how changes in the ratio of
PP1 to CaMKII affect the lifetimes of states of the switch
(see Figure 2E). We find that short-term fluctuations in the
ratio, on a timescale of tens of minutes, do not significantly
degrade the switch (see Figure 5B). Slower fluctuations are
more deleterious, particularly as stability of the UP state is
compromised if the number of CaMKII holoenzymes becomes
too low (see Figure 5C). In contrast to its robustness to short-
term fluctuations, our system requires the long-term average
ratio of activities is constrained (see Figure 2E). Hence, if all
other parameters and concentrations are fixed, the ratio of
numbers of PP1 molecules to CaMKII molecules should lie in
a narrow optimal range (see Figure 2E). It will thus be of
interest to see whether special mechanisms exist to stabilize
the ratio of PP1 to CaMKII in the long term. Promoting the
necessary fixed ratio of PP1 to CaMKII may be one of the
functions of the scaffolding proteins that hold CaMKII and
PP1 within the PSD structure [53,54,55,56,57,58]. Moreover,
our results (see Figure 5A) indicate that moderate Ca2þ

fluctuations are tolerable on short timescales, but we find the
average level must be tightly regulated over the long term (to
within several percent; data not shown). Since the kinase
activity depends on the level of free calmodulin, it may
further be expected that free calmodulin is regulated over
long timescales. This may be an important function of the
known calmodulin buffers [59,60]. In the absence of control
mechanisms, the stability of the switch would be greatly
reduced.

Several limitations of our study should be noted. While we
addressed the effect of Ca2þ fluctuations (see Figure 5A), we
did not include the detailed reaction steps of Ca2þ binding to
calmodulin in our model, but used the steady-state values for
reaction rates based on Ca2þ/calmodulin. These steady-state
rates may not be reached during rapid changes in concen-
tration. Hence, the phosphorylation rates may not vary with
Ca2þ precisely as we have modeled, in which case other
parameters or concentrations would have to be altered to
maintain an optimal system. However, including calmodulin-
binding steps, and removing the assumption of excess, freely
available calmodulin, would reduce the effect of sharp, brief
rises in free Ca2þ. Hence, the influx of Ca2þ necessary to cause
LTP could be greater than presented here (see Figure 1C),
and the system may be stable to larger Ca2þ fluctuations than
those we include. Quantitative measurements of spontaneous

Ca2þ fluctuations in vivo will be needed to assess whether the
switch stability is robust against realistic fluctuations. A
second type of simplification that we have made is likely to
lead to an underestimate of stability. We have assumed that
the CaMKII molecules bound in the PSD are operating with
the same kinetic constants measured in free solution.
However, some or all of the CaMKII in the PSD may be
bound to NMDA receptors [61,62]. This binding increases the
rate of autophosphorylation of the first site, allowing it to
occur with only one calmodulin bound rather than two. If
such binding to NMDA receptors occurs significantly only
after an LTP event, when the system is in the UP state, the
effect of protein turnover will be reduced, because unphos-
phorylated rings would become rapidly phosphorylated
before the whole system has time to switch to the DOWN
state.
While the switch we have described could be stable for a

human lifetime, long-term information storage may not
require stability of this magnitude. One possibility is that
such long-term stability is not solely a property of the switch,
but emerges from interaction between the switch and an
attractor network created by memory-specific synaptic
connections. According to this idea [47,48], reactivation of
the attractor, perhaps during sleep, may serve to refresh the
memory by setting switches back to their correct state. For
such a system to work, average switch stability need only be
larger than the time between reactivations of the attractor.
Such reactivations appear to be important in the early stages
of memory, when consolidation is important [47,63]. How-
ever, we know little quantitatively of how frequently such
reactivation processes take place. Moreover, the role of
reactivation in long-term maintenance of a memory trace,
after initial consolidation, remains unclear. Advances in this
direction would enhance our understanding of the interplay
of molecular and network properties in determining the
overall stability of memory in the brain.

Materials and Methods

The model. We treat each ring of six subunits of CaMKII as an
independent entity [37,64,65,66]. Each subunit can be in one of two
states: either phosphorylated or unphosphorylated. The set of
possible configurations among the six subunits results in 14
distinguishable states for a ring, labeled here by the number of
phosphorylated subunits: P0, P1, P2 (three configurations for P2
because the two phosphorylated subunits can be either neighboring,
or separated by either one or two unphosphorylated subunits), P3
(four configurations), P4 (three configurations), P5, and P6. The
different configurations have different multiplicities, which are
counted when calculating rates of reactions that change config-
urations. Phosphorylation of the first subunit of a ring (P0 to P1)
requires the binding of two activated calmodulins, so is slow at
resting Ca2þ concentrations (see Figure 1A). Once a single subunit
is phosphorylated, it can catalyze the phosphorylation of neighbor-
ing subunits in a directional manner [27], so that further
phosphorylation steps are faster at resting Ca2þ concentrations
(see Figure 1A). We refer to a ring in the unphosphorylated state,
P0, as off, and a ring with any other level of phosphorylation as on.
Once a ring is on, we do not include further slow steps for that ring
in the calculations, because the faster, directional steps dominate.

Taking a Hill coefficient of three [40,67], we have for the initial
phosphorylation rate per subunit:

m1 ¼ k1

½Ca2þ�
KH1

� �6

1þ ½Ca2þ�
KH1

� �3
" #2 ð1Þ
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and for the phosphorylation of a clockwise neighboring subunit:

m2 ¼ k1

½Ca2þ�
KH1

� �3

1þ ½Ca2þ�
KH1

� �3 : ð2Þ

The dephosphorylation occurs through the Michaelis–Menten
scheme:

PP1þ Sp>
kþ

k�
PP1 � Sp�!k2 PP1þ S ð3Þ

with Michaelis constant, KM ¼ k�þk2
kþ
¼ 0:4lM, and where Sp denotes a

phosphorylated subunit while S denotes an unphosphorylated one. In
the simulations presented here, we assume kþ= k2/KM and set k� to
zero, but we find the results are not noticeably influenced by the
relative values of k� and kþ at fixed k2 and KM.

The phosphatase is deactivated by phosphorylated inhibitor-1
(I1P), a noncompetitive antagonist [68,69,70]. We follow the for-
mulation of Zhabotinsky [28], assuming the level of free inhibitor-1
(I1) is constant (at 0.1 lM) in the PSD owing to free exchange of I1
with the larger cell volume. Such free exchange with the larger cell is
important, as the number of free I1 molecules in the PSD is less than
one on average. Even the spine itself can contain fewer I1 molecules
than there are PP1 molecules in the PSD. However, the rapid and
strong binding of PP1 to the inhibitor means that the PSD acts as a
sink of free I1, and the total concentration of all I1 in the PSD is
significantly greater than that of free I1. Importantly, I1 exchanges
between the PSD and spine volume vary rapidly, and between the
spine and parent dendrite with s � 1 s, a timescale much faster than
that of the phosphatase and kinase reactions.

I1 is phosphorylated by cAMP-dependent protein kinase and
dephosphorylated by calcineurin. The rate of dephosphorylation of
I1P by calcineurin increases with Ca2þ, with a Hill coefficient of three
[71], because calcineurin requires Ca2þ/calmodulin to activate. Hence
I1 is less phosphorylated and the phosphatase is less inhibited at
higher Ca2þ concentrations. These reaction steps (modeled by
Zhabotinsky [28]) are assumed to be fast, so we can write down the
stationary level of free I1P concentration as

½I1P� ¼ ½I1� mPKA
mCaN

1þ ð½Ca2þ�=KH2Þ
3

ð½Ca2þ�=KH2Þ
3 ð4Þ

and the fraction, fe, of phosphatase that is free of inhibitor and hence
active as

fe ¼
k4

k3½I1P� þ k4
¼ 1

1þ ½I1P�=KI
ð5Þ

with KI = k4/k3.
In the majority of results presented here, we do not simulate the

reaction of phosphatase inhibition stochastically. Since the reaction
occurs on a timescale faster than other reaction steps, we can use the
quasi-steady-state assumption and use only its equilibrium values [72].
We did test this assumption by carrying out simulations that included
both a stochastic step for phosphorylation of I1 (instead of equation 4)
and for inhibition of PP1 (instead of equation 5). Simulating such fast
processes (two to three orders of magnitude faster than other
reactions) means a huge increase in the total number of reactions per
unit time and hence a corresponding increase in the computer time
required. The results for the three systems we tested (red asterisks in
Figure 3C) showed no significant difference from the results without
such fast fluctuations. Hence, we have confidence in our use of the
equilibrium values for other data points.

Turnover occurs at a rate, mT, and acts equivalently to a non-
saturating dephosphorylation process, as we assume all holoenzymes
are replaced by unphosphorylated ones, and any attached PP1 is
released back to the system.

It is possible to calculate analytically m3, the rate of dephosphor-
ylation by PP1 per phosphorylated subunit. Note that from Figure 1B,
we require m3 to decrease at high phosphorylation so that the total
concentration of subunits dephosphorylated per unit time, m3�[Sptot],
saturates (we have written the total concentration of phosphorylated
subunits, [Sptot] = [Sp] þ [PP1.Sp]). To write the rate of dephosphor-
ylation on the right hand side of equation 3 as m3�[Sptot], we assume the
intermediate product, [PP1.Sp], is at steady state. We combine

equation 3 with the other two ways that [PP1.Sp] can change. That
is, noncompetitive inhibition leads to the reaction

PP1:Spþ I1P>
k3

k4
PP1:Sp:I1P; ð6Þ

while turnover leads to

PP1 � Sp�!ttT PP1þ S: ð7Þ

So we calculate an effective dephosphorylation rate constant, m3,
from m3�[Sptot] = k2[PP1.Sp] assuming d[PP1.Sp]/dt = 0. The result is,
writing [E0] = NPP1NA/vol,

m3 ¼ k2
fe½E0�½Sp�=½Sptot�

KM þ mT=ðkþfeÞ þ ½Sp�
; ð8Þ

where the concentration of phosphorylated subunits without
phosphatase attached, [Sp], is given by

½Sp� ¼ ½Sptot� � ½E0� � KM � mT=ðkþfeÞ
2

þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Sptot� � ½E0� � KM � mT=ðkþfeÞ

2

� �2

þ ½Sptot�ðKM þ mT=ðkþfeÞÞ

s
: ð9Þ

As expected, the rate, m3, decreases significantly for [Sptot] . KM such
that at large total phosphorylation in the UP state, the product
m3 � ½Sptot�7!k2fe½E0� is a constant (see Figure 1B). In the limit of
negligible phosphorylation, ½Sptot�7!0, equation 9 simplifies to give

½Sp�’½Sptot�
KM þ mT=ðkþfeÞ

KM þ mT=ðkþfeÞ þ ½E0�
; ð10Þ

hence, from equation 8,

m3ðSptot ¼ 0Þ ¼ k2
fe½E0�

KM þ mT=ðkþfeÞ þ ½E0�
’ k2fe: ð11Þ

In the limit of high phosphorylation (where ½Sptot� � KM ), equation 9
becomes

½Sp�’½Sptot� � ½E0�; ð12Þ

leading to

m3ð½Sptot� � KMÞ’
k2fe½E0�
½Sptot�

: ð13Þ

Our derivation differs from the standard Michaelis–Menten ap-
proach because we cannot assume that ½Sptot� � ½E0� at all times, so
[Sp] 6¼ [Sptot].

Monte Carlo simulations. We conducted Monte Carlo simulations
of this model, in which all the microscopic configurations of CaMKII
holoenzymes were counted and chemical reactions between these
states were simulated as stochastic Markov processes. We used the
algorithm of Gillespie [51,73], which can be summarized as follows.
We identify all the possible configurations of rings. There are 56 in
total, because for a configuration with a given number, n, of
phosphate groups, the number of PP1 bound can vary from 0 to n
(assuming n , NPP1). So for each of the 14 configurations of
phosphate groups, the number of configurations including enzymes is
multiplied by n þ 1. For example, a ring with two subunits
phosphorylated (P2) can have up to two PP1 enzymes attached. As
there are three distinguishable configurations for two phosphory-
lated subunits on a ring, and each configuration can have zero, one,
or two PP1 enzymes attached, we include nine separate configu-
rations for P2. We have the following numbers of configurations: P0
(1), P1 (13 2), P2 (33 3), P3 (43 4), P4 (33 5), P5 (13 6), and P6 (13
7), to obtain 56 in total. We do not explicitly count the different
relative positions of PP1 bound to phosphate groups, but just select
one of the phosphorylated subunits at random when the dephos-
phorylation occurs.

At any point in time, the system is in a state that is defined by the
number of rings in each configuration, denoted by fNig, i = 1, 2,. . .,
56. The numbers of rings in each configuration fNig determine the
rates of each of the possible reaction steps, frjg. A reaction step takes
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a ring from one of the 56 configurations to another. With the three
types of reaction steps (phosphorylation, PP1 binding, or dephos-
phorylation) able to occur from most of the configurations, in total
the system has 144 distinguishable reaction steps. However, most of
the rates are zero at any particular instance. Protein turnover is
treated stochastically like any other process. Turnover results in two
randomly chosen rings (i.e., one holoenzyme) being replaced by two
rings in the state P0 (totally unphosphorylated).

The fundamental assumption behind the simulations is that any
particular rate, rj(t), depends only on the present configuration, not
on the history of the system. This makes the reaction scheme a Markov
process. The key step that is necessary when dealing with small
numbers of molecules is to recall that the deterministic rate is the
macroscopic average of a stochastic process, such that the probability,
Pjdt of reaction step j in a small time interval, dt, is given by

Pjdt ¼ rjdt; ð14Þ

that is, the rate is simply the probability of occurrence per unit time,
and, given the Markov assumption, we now have a Poisson process.

Gillespie’s algorithm proceeds by first summing the rates of all
reaction steps to obtain the average rate, RT, for any change in
configuration:

RT ¼
X
j

rj : ð15Þ

The distribution of times elapsed before a reaction step follows an
exponential decay,

PðsÞ ¼ RTexpð�RTsÞ; ð16Þ

which is a standard result, easily verified as it satisfies the necessary
requirement:

PðsÞds ¼ RðsÞds � ½1�
Z s

0
Pðs9Þds9�; ð17Þ

that is, the probability of reaction in time step from s to sþ ds equals
R(s)ds multiplied by the probability that a reaction did not happen
before s.

Once the time for the next reaction step is randomly selected, a
second random selection is taken to decide which particular reaction
occurs. The relative probabilities, pj, of each reaction step are simply
proportional to their rates, pj = rj/RT.

Given the time and type of the next reaction step, the total time for
the system is advanced by s, and the quantities, fNig, in relevant
configurations are updated, as are the reaction rates for the affected
reaction steps. The process now repeats itself with a new set of
reaction rates. Total phosphorylation is monitored, and thresholds
for determining a switch to the UP state or a switch to the DOWN
state are set according to the equilibrium values, but typically if the
total falls to below 10% phosphorylation, we record a transition to
the DOWN state, and if it spontaneously rises to 70% phosphor-
ylation, we record a transition to the UP state. It should be noted that
the time it takes for the system to switch between UP and DOWN
states is on the order of hours, which gives an overestimate of the
lifetime of a state when in reality the system is ‘‘in transition.’’
However, such an error on the order of hours is insignificant
(compared to many years for typical average lifetimes) except in the
most unstable systems presented here.

Simulations begin with either 0% or 100% phosphorylation, but
within a very short time (at least compared to the lifetimes of UP and
DOWN states) the system settles near the equilibrium values for UP
or DOWN states, respectively.

Switching-off rate calculations. We define a ring in the unphos-
phorylated state, P0, as off, and one with any subunits phosphorylated
as on. We calculate the rate for rings to switch off by assuming that all
rings in the system that are on reach a dynamic equilibrium in their
phosphorylation levels, in the time between switching-on and
switching-off events for rings. This approximation, known as
separation of timescales, is valid when the individual subunit
phosphorylation and dephosphorylation rates are much faster than
the rates for rings to switch on and off (as evident in Figure 4E).

For a given amount of total phosphorylation, we know exactly the
average activity of the phosphatase. Knowing this activity means
average rates can be calculated for all reactions. The different
average rates determine the rate of change from one configuration of
a holoenzyme to another, so knowing the average rates allows us to
obtain numerically the relative amounts of time, qi, spent in each
configuration, i. Hence we can calculate when the system has a given

total level of phosphorylation, Sptot, what is the average phosphor-
ylation level per ring, Pav ¼

P
i Piqi, where Pi is the phosphorylation

of configuration i. The total level of phosphorylation, Sptot, when a
given number of rings are on, Non, is given by

Sptot ¼
X
i

PiNi ¼
X
i

PiNonqi ¼ NonPav ð18Þ

Since Sptot is proportional to Pav and Pav depends on Sptot, we iterate
the equations to find a self-consistent solution for Sptot and Pav for
each value of Non.

To find the switching-off rate per ring, plotted in Figure 4D, for
each number of rings switched on, the total phosphorylation, Sptot, is
calculated as above. The value of Sptot determines the phosphatase
activity per subunit, m3, which affects the proportion of time spent by
a ring in each configuration. Notably, the lower m3 is, the more
phosphorylated are the on rings, and the lower is qP1. The rate for a
ring to switch off is the sum of the turnover rate, mT, and rate of
dephosphorylation by PP1 of holoenzymes with only a single phos-
phorylated subunit, m3qP1.

Ca2þ influx and fluctuations. For the LTP induction protocol, we
use a burst of Ca2þ influx constituted by a Poisson train of Ca2þpulses
at 100 Hz. Each pulse is a 0.1-lM step increase, followed by a 100 ms
exponential decay in free Ca2þ concentration.

In the study of the effects of background Ca2þ fluctuations, we
assume Ca2þ entry through NMDA receptors occurs as a random
Poisson train with an average rate of 0.5 Hz. We model each Ca2þ

influx as a step rise of 0.1 or 1.0 lM, followed by exponential decay
with a time constant of 100 ms ([44], assuming a membrane potential
of�50 mV and a spine volume of 0.1 lm3; peak [Ca2þ] rise is 0.14 lM
per presynaptic spike). We reduce the base level of Ca2þ to 0.07 lM
in the 0.1-lM amplitude simulations, keeping all other parameters the
same, to maintain an approximate balance between phosphorylation
and dephosphorylation rates. We assume a refractory period of 2 ms
for the presynaptic neuron, so that no two Ca2þ influxes occur within
such a short interval (hence the train of Ca2þ inputs is not quite
Poisson, but includes a 2-ms negative correlation).

If the fluctuation amplitude is too large (for example, if it is
doubled from 0.1 lM to 0.2 lM in this case) and the model parameters
are fixed, then bistability is completely lost, because the fluctuations
actually change the average effective kinetic rates of reaction steps
and bring them outside of the range for bistability of the system.
Hence, in the simulations with amplitude 1.0 lM, we maintain a base
Ca2þ level of 0.1 lM and adjust other parameters (see legend of
Figure 5) to maintain an appropriate balance between the different
reaction rates. For example, we include a higher KH1 to maintain low
rates for the initial phosphorylation step. With the alternative
parameters, the system is only bistable if the Ca2þ fluctuations are
present.

Notice that the number of free Ca2þ ions in the PSD is on average
less than one. However, Ca2þ acts through Ca2þ-bound calmodulin
(which can be at a higher concentration), and the exchange of both
free Ca2þ and calmodulin between postsynaptic density and the spine
is much more rapid than both the fluctuations considered here and
typical CaMKII reaction steps. Hence, we can neglect such strong, but
fast, ‘‘shot’’ noise. Exchange of free Ca2þ or calmodulin between the
dendritic shaft and spine will cause significant additional fluctua-
tions, but only if it is on a slower timescale than the dissociation steps
between Ca2þ and calmodulin, or Ca2þ/calmodulin and CaMKII.
Future work, including on these specific binding reaction steps [74], is
necessary to clarify more precisely the dynamical effects of Ca2þ

changes on the system.
Parameters. Parameters for the standard system are given in

Table 1. In figures where one parameter varies, all others are fixed
according to the table, unless otherwise stated. Figures where the
number of holoenzymes changes also include a proportionally
changed volume and number of phosphatases, to maintain fixed
concentrations. The standard concentration of PP1 is equal to that
of CaMKII holoenzymes, at 20 molecules per 106 nm3 or 33 lM. Our
maximal system with 20 holoenzymes is slightly smaller than an
average synapse of 30 holoenzymes [32]. Hence, the volume is smaller
than average, corresponding to a cylindrical PSD of diameter 250
nm (compared to an average diameter of 350 nm in [32]), assuming
the holoenzymes are predominantly in a single layer of a little over
20 nm thickness, to give a volume of 106 nm3 for the domain of
reactions.

For those parameters in the table without experimental references,
we chose values that were in a reasonable range given the values for
similar chemical reactions. We picked simple values that would work
well for our system. For example, a low Michaelis constant is
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beneficial because the range of bistability increases [28]. In general,
variation of any one parameter, without alteration of the others, leads
to an effect like that shown in Figure 2, where number of
phosphatases is varied. If, for example, the activity of calcineurin is
higher (e.g, giving mCaN = 2.0 instead of mCaN =1.0), then the amount
of I1P is halved and the amount of uninhibited PP1 increases. Hence,
the stability of the UP state decreases while stability of the DOWN
state increases. However, a system with a lower overall PP1
concentration would work as well as the original system. So,
modification of individual parameters does degrade the system,
reducing the lifetime of one state relative to the other. Nevertheless,
if the cell is able to maintain concentrations of species in an optimal
range determined by the actual value of parameters, then the best
results shown here can be achieved (cf. [28]).
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