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The recent publications of the inter-areal connectomes for mouse, marmoset, and macaque cortex have allowed deeper comparisons
across rodent vs. primate cortical organization. In general, these show that the mouse has very widespread, “all-to-all” inter-areal
connectivity (i.e. a “highly dense” connectome in a graph theoretical framework), while primates have a more modular organization.
In this review, we highlight the relevance of these differences to function, including the example of primary visual cortex (V1) which,
in the mouse, is interconnected with all other areas, therefore including other primary sensory and frontal areas. We argue that this
dense inter-areal connectivity benefits multimodal associations, at the cost of reduced functional segregation. Conversely, primates
have expanded cortices with a modular connectivity structure, where V1 is almost exclusively interconnected with other visual
cortices, themselves organized in relatively segregated streams, and hierarchically higher cortical areas such as prefrontal cortex
provide top–down regulation for specifying precise information for working memory storage and manipulation. Increased complexity in
cytoarchitecture, connectivity, dendritic spine density, and receptor expression additionally reveal a sharper hierarchical organization
in primate cortex. Together, we argue that these primate specializations permit separable deconstruction and selective reconstruction
of representations, which is essential to higher cognition.
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Introduction
The underlying architecture of the mammalian cortex is crucial
to understanding the neural bases of cognition, and comparative
studies allow insight into mechanisms of brain evolution and
species-specific specializations. Investigations into inter-areal
connectivity, now known as the mesoscale connectome (Zeng
2018), predate the connectomics era by several decades and
are tightly linked to the technical advances of tract-tracing (TT;
see Cowan 1998; Lanciego and Wouterlood 2020). As was often
the case in neuroscience, much of the effort started with the
macaque visual system, including prefrontal cortical (PFC) visual
association areas, such as the frontal eye fields (FEFs) and area
46. The 1980s were witness to many fundamental publications
exploring many pathways and connections, eventually to be
brought together in Felleman and Van Essen (1991), where
it was for the first time presented in a single table of inter-
areal connectivity. The terminology used back then is revealing:
Although it very much was the matrix of a network, it was just
described as a table, thus retrospectively showing the difference
between this seminal work and our current connectome concept.

In many ways, connectomics is anatomy combined with graph
theory. The concept of connectome itself, a term independently
coined by Sporns et al. (2005) and Hagmann (2005), had to wait
14 more years and can be summarized as follows: a network-based
approach to understanding the brain’s connectivity at all scales, from
structure to function. This importantly differs from the simpler
study of connectivity in both scope and method, aspiring to
integrate micro-, meso-, and macroscales together, which is to
say understanding their interactions, through the lens of network
science and graph theory. As the terms of graph theory may be
unknown to many readers, a guide is provided in Box 1.

Box 1. A brief guide to graph theory terminology.

Graph. A graph is an abstract representation of a network.
They are composed of only two elements: nodes (also called
vertices) and links (also called edges). A graph can be
directed, meaning that the links have directionality (repre-
sented by arrows), where a link going from A to B (A → B) is
different from a link going from B to A (B → A), or undirected
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(represented by simple lines), where A → B is identical to
B → A. A graph can also be weighted, meaning that a weight
is attributed to each link, representing their magnitude; or
binary (i.e. nonweighted) where a link simply exists or does
not exist. These two categories of graphs are orthogonal to
each other and nonmutually exclusive.

Adjacency matrix. Although graphs are often graphically
represented with points and lines (or arrows), they are usu-
ally thought about and handled as matrices. The adjacency
matrix of a graph is a matrix where each row and column is a
node of the graph, and every entry in the matrix represents a
link. A binary matrix will only be filled with 0s and 1s, when
a weighted matrix can hold any values, with no bound nec-
essary. An undirected graph will always have a symmetrical
matrix, because A → B is identical to B → A, but a directed
graph can have an asymmetrical matrix.

Density. The density of a graph measures its complete-
ness. A complete graph means that the matrix is full, and
therefore, all possible connections actually exist. On the
opposite side, an empty graph means the matrix is empty.
Density itself is the number of links that do exist divided
by the number of links that could, diagonal excluded. If the
graph is complete, the density is 1 and falls to 0 if the graph
is empty. A graph is said to be dense if its density is close to
reaching maximal value, and said to be sparse when density
is close to 0.

Degree. The degree of a node (or vertex) is simply the
number of links attached to said node. In a directed graph,
the notion should be divided into two: in-degree and out-degree.
The in-degree of a node is, quite transparently, the number
of in-coming links and the out-degree the number of out-
going links. High degree nodes will, in some topologies, be
called hubs.

Average shortest path length. A crucial notion for net-
works, especially if one is interested in efficiency of infor-
mation passing. Length here should be understood to mean
topological distances, that is, the number of node-to-node
jumps one needs to make in order to get from an arbitrary
starting node to any target node. For any pair of nodes,
there is usually a diversity of paths (i.e. sequence of links)
that are linking the two nodes, ranging from the shortest
possible to potentially infinitely long and convoluted paths.
Taking the shortest possible path gives information on how
topologically close the pair of nodes is. If one does that
for every possible pair of nodes, one can then compute the
average, thus giving information about the network as a
whole. A graph with low average shortest path length means
that nodes are on average close to each other within that par-
ticular network. In other words, getting from any point to any
other point in the network takes a small number of “hops,”
which is a good way to ensure good flow of information.

Clustering coefficient. As for node degree, the clustering
coefficient is computed for each node, and can then be aver-
aged over all nodes as a global property. It essentially asks the
question: Are my friends friends with each other? For any given
node, one takes the set of direct neighbors (i.e. nodes directly
connected to the node in question) and counts the number of
links that do exist in that set, divided by the number of links
that could exist (also in that set). It is basically a measure
of the density, computed for the subnetwork defined by the
direct neighbors of a node. Said differently, it quantifies how

close the neighbors are from being a clique, which is itself
defined as a subset of nodes within the graph that reaches
a density of 1.

Modularity. Related to clustering and yet different, modu-
larity is a global metric that measures the existence of a com-
munity structure in the network. In other words, modularity
quantifies how easy it is to separate a graph into different
modules/communities. A community can be defined as a
subset of nodes that are more densely connected together
than they are with the outside of that subset. Said differently,
two nodes are more likely to be connected if they belong
to the same community. There are in fact many ways to
detect communities in a network, and a modularity value
cannot be computed without having assigned all nodes to at
least one community. Once that is done by whatever means,
the number of edges within a community is divided by the
total number of existing edges in the graph (i.e. the fraction
of in-module links) and is compared by subtraction to the
expected fraction that would occur in a randomized version
of the same graph (i.e. with equal number of nodes and links),
usually preserving the degree of each node.

Dyadic and triadic motifs. Those small subsets of nodes of
size 2 or 3 that repeat themselves throughout the network.
In a way, they are the fundamental building blocks of every
network. A motif is a specific pattern of links in a given
subgraph. Counting the occurrences of each motif is called
a census, and the number of different motifs depends on
the number of nodes one chooses for the breakdown. For
dyads (2-node motifs), there are only 3 of them: empty,
unidirectional, and bidirectional. Hence, a dyad census in a
directed graph is just counting empty links, 1-sided arrows,
and 2-sided arrows. On the other hand, a triad (3-node motif)
is best understood as a triangle of nodes, where each side
of the triangle (i.e. links) can be empty, unidirectional, or
bidirectional. The number of possible combinations is now
16, meaning that a triad census already has 16 different
motifs ranging from empty to fully connected bidirectionally
and all possible combinations in between. The distribution of
those motifs can be characteristic to the family of graphs the
network belongs to and is often described as the fingerprint
of a network. It does not, however, necessarily relate to the
function of the network.

Topology. In general, topology is the study of object prop-
erties that are not modified under continuous geometrical
deformations, such as bending, stretching, and twisting. In
the case of networks, networks organized as an “S,” an “L,” or
a “U” are topologically identical, but different from an “O,”
and itself different from a “B.” In the realm of real-world
networks, topology is a word used with an added level of
abstraction, and several types of topologies can be used to
describe a single network. A random graph can also be small-
world (see below), and although two separate random graphs
have only a very slim chance of being topologically identical,
their randomness does capture something important about
their topology (and so would their small-wordness). Closer
to connectomics, an important type of topology, passionately
debated in the field, is that of small-world topology, evoked
just above. A small-world network is defined by a high clus-
tering coefficient (higher than its randomized equivalent),
and a small average shortest path length (similar to its
randomized equivalent, random graphs usually having very
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short path length compared to their size). In other words,
most of one’s friends are also friends together, and one can go
to any other point in the network in only a few hops. Small-
world properties are thought to be very common in many
real-world networks, from the web to gene networks. One
of their characteristics is the existence of hub nodes, with a
relatively higher degree than others, which link together the
different clusters.

The interareal cortical connectomes of the mouse, marmoset
and macaque are becoming increasingly realized (Markov et al.
2014a; Rosa et al. 2014; Gămănuţ et al. 2018), offering the oppor-
tunity for rich comparisons across species. These analyses have
confirmed the general tenet that smaller brains—e.g. in rodents—
have greater widespread, all-to-all “dense” interareal connectivity
compared to larger brains, due to volume constraints imposed by
the skull, and that long-range connections in particular are more
sparse in larger primate brains, with cortical regions thus more
specialized (Horvát et al. 2016). This pattern in mammalian brains
is consistent with wider principles, i.e. that smaller nervous sys-
tems necessarily perform multisensory level processing at earlier
stages in sensory cortical streams, and that smaller nervous sys-
tems are more interconnected, arguably even at the synaptic level.
In drosophila, a single presynaptic terminal (a “T-bar”) makes
synaptic contact with many dendrites (Scheffer 2020), whereas in
primate association cortex, most cortico-cortical connections are
a single input onto a single spine (Peters et al. 1991; Cano-Astorga
et al. 2021). Analyses of the long-range connections in macaque,
and their presumed extrapolations to the human cortex, have led
to speculations that this organization makes large-brained pri-
mates more vulnerable to focal injury (e.g. stroke) due to reduced
redundancy. This topological organization may be more conducive
to disconnection syndromes like aphasia, but may also allow for
the rise of higher cognition (Ringo 1991; Kaas 2000; Horvát et al.
2016; Goulas et al. 2019; Wang et al. 2020; Ardesch et al. 2022).

In 2021, Changeux and colleagues (Changeux et al. 2021)
produced an outstanding review exploring the link between
mammalian brain size and cognitive abilities of the human
brain, including language, and the genetic specificities behind
it. They argue that increase in connectome modularity is a key
aspect of brain expansion that allows for complex cognition to
happen, such as working memory. Far from going against their
claims, the current review explores similar questions from the
other end of the mammalian brain continuum, by highlighting
the recent findings that have emerged from comparisons of the
mouse, marmoset, and macaque connectomes, and explores how
these major differences in connectivity patterns may influence
the neural representations underlying cognition. We suggest
that a highly dense connectome, as seen in the small mouse
brain, not only provides robustness against lesions (i.e. through
redundancies) but also likely facilitates multimodal integrative
processes at earlier sensory stages, in the service of rapid motor
and emotional response to environmental threats. However, dense
connectivity may limit the power of abstract cognitive tasks,
where information held in working memory must be precisely
specified, dissociated, and reconstructed based on relevance
to top–down goals. We explore how a more modular network
structure may be essential for abstraction and higher cognition,
providing a cache of “raw data” in early sensory cortices that can
be utilized in multiple ways. However, this requires a large cortex
that can process multiple, effectively segregated domains and

with sufficient top–down control to flexibly organize information
as context demands. The following reviews some of the anatom-
ical, physiological, and molecular data to support these ideas.

Summary of areal connectivity data
From mouse to marmoset to macaque, three
connectomes, one principle
The mesoscale connectome, investigated by means of retrograde
TT, reveals several key organizing principles that appear to hold
across the species so far studied (Markov et al. 2014a; Gămănuţ
et al. 2018; Theodoni et al. 2021). The first principle is that of
network density (see density, Box 1), where there are striking differ-
ences between primate and mouse cortex. A density of 1 indicates
that any area is connected with all other areas, while a density of
0 indicates that any area is connected to no other areas. Estimates
of density have varied based on the use of different TT and sam-
pling techniques; thus, it is critically important when comparing
across species to compare studies that used the same paradigm
to capture connectivity. In the macaque, original estimates varied
quite a bit, ranging from 0.05 to 0.58 (Markov et al. 2013b), due to
differences in TT methods. However, the methodologically con-
sistent, high sampling frequency data of the Kennedy/Knoblauch
group yields a density of 0.66 (Markov et al. 2014a), now marginally
lowered to 0.62 with the addition of 11 injections (Froudist-Walsh
et al. 2021).

This notion of density, although simplistic because unweighted
and binary, heavily influences the possible topologies that the
cortical network can take (see topology, Box 1). Specifically, such a
high inter-areal density forbids certain families of topologies that
were argued for at the time, most notably that the cortex could be
of a small-world topology (Tononi et al. 1994; Sporns et al. 2000;
Sporns and Honey 2006; Honey et al. 2007). As explained in Box 1,
a small-world network is defined by high clustering/small average
shortest path length compared to a randomized version of the
same graph. At 62% density, however, the randomized rewiring of
the graph cannot possibly reduce the clustering coefficient, and
the small-world definition fails to be efficiently applied (For a
detailed review on this issue, see Markov et al. 2013a; Knoblauch
et al. 2016).

Turning now to the mouse, two studies, published in parallel in
2014, proposed two independent datasets for inter-areal connec-
tivity, one using a viral anterograde tracer (Oh et al. 2014) and the
other combining anterograde and retrograde tracing (Zingg et al.
2014). Taken together, along with later re-evaluation (Horvát et al.
2016; Ypma and Bullmore 2016), those studies offered density
values ranging from 0.32 to 0.73. As with the primate studies, this
vast range in density values may seem confusing, but is due to the
differences in methods used to analyze the TT data. Thus, it is crit-
ical to use the same methodological paradigm when comparing
across species. In 2018, Gămănuţ and colleagues (Gămănuţ et al.
2018) published high-sampling-frequency retrograde TT data in
the mouse, using the same paradigm as used in the macaque
(Markov et al. 2014a), and thus allowing for direct comparisons
across species. Using the same methods as that in macaque, they
showed that mouse cortex had a density of 0.97, consistent with
prior, more localized figures (Wang et al. 2012). In other words, in
the mouse, apart from a few missing connections, any (cortical)
area is directly connected to any other area.

Recently, the Rosa group produced a retrograde TT, marmoset
connectivity matrix, with a methodology equivalent in dye and
sampling frequency to the Kennedy/Knoblauch group (Theodoni
et al. 2021). Their results yield a density of 0.62, very much on
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par with the macaque. The differences in parcellation schemes
(117 for the marmoset against 91 for the macaque), goes in the
direction of the macaque having a slightly sparser connectivity if
it had an equally fine-grained cortical parcellation.

With these outstanding results came the realization that the
physical embeddedness of those networks was crucial to under-
stand their properties. In 2013, Ercsey-Ravasz et al. (2013) uncov-
ered a relationship between connection weights (i.e. fraction of
labeled neurons, or FLN, the number of labeled neurons in an area
divided by the total number of neurons labeled by the injection
across cortex) and distances (i.e. the physical distance through
white matter, in millimeters). This relation extends beyond mere
correlation, it expresses a probability of a connection as a func-
tion of its wiring cost. Furthermore, this distribution follows an
exponential decay, meaning that the probability and weight of a
given connection between a pair of areas decreases with distance,
and does so exponentially. This exponential distance rule (EDR), is
reminiscent of a similar distance rule at the local scale, observed
within 2 mm of retrograde TT injection sites (Markov et al. 2011).

As all exponential decays, the EDR has a unique decay parame-
ter λ, which can be used to constrain the construction of otherwise
random networks. When applied this way, the EDR is able to
predict and retrieve many statistical features of the actual inter-
areal network, including the proportions of absent, unidirectional
and bidirectional connections (i.e. 2-node of dyadic motifs; see
Box 1), the distribution of triadic (i.e. 3-node) motifs, and the
distribution of cliques (i.e. complete sub-networks) as a function
of their size (Ercsey-Ravasz et al. 2013). Further, the EDR has
been applied in a generative random model of connectivity at
the axonal level and successfully retrieves several aspects of the
macaque’s actual data topology and binary properties at the inter-
areal level (Song et al. 2014). As the EDR is a statistical property
of the cortex, it cannot predict the existence or absence of a
given specific connection. Nonetheless, it is a crucial feature that
defines the topology of the cortical network and should be seen as
an alternative category of networks to describe the cortex (Markov
et al. 2013a).

Subsequently, this EDR was found to exist in the mouse meso-
connectome (Horvát et al. 2016; Gămănuţ et al. 2018), in the rat
(Noori et al. 2017), and in the marmoset (Theodoni et al. 2021), and
held the same explanatory power of network statistics in all these
species (for a discussion about the human meso-connectome,
see Box 2). Furthermore, it appears that the λ of each species
studied thus far scales up as normalized gray matter volume
goes up (Fig. 1), while density undergoes a 30% decrease from
mouse to macaque (Markov et al. 2014a; Gămănuţ et al. 2018).
In other words, the bigger the brain, the sharper the decay with
distance relative to brain size, resulting in an increased overall
binary disconnection. This aligns with Ringo’s (1991) theory that
increasing neuron count while maintaining density is constrained
by physical space. As neuron count grows, required connections
increase exponentially, with white matter volume quickly out-
running gray matter. This is however not the case, as one of the
clearest findings in comparative neuroanatomy is that the white
matter volume is strictly constrained to a power law (Zhang and
Sejnowski 2000). The problem is even greater in primates, where
average neuron soma size does not scale up with brain volume,
as opposed to rodents (Herculano-Houzel 2012; Herculano-Houzel
et al. 2014; Herculano-Houzel et al. 2015). Consequently, evolving
an EDR at the meso-scale becomes an almost necessary effect of
natural selection. Short-range connections, energy-efficient and
space-saving, face less selective pressure than long-range ones

and should be more abundant, a trend that intensifies with axonal
lengths.

Box 2. The case of the human meso-connectome.

Although neuroscience does not, in principle, revolve around
the human primate, it is only fair that we should discuss it
when thinking about scaling properties of the brain across
species. In Theodoni et al. (Theodoni et al. 2021), the λ value
for the human is extrapolated to be 0.1, based on a power
law correlation between λ and grey matter volume that
includes mouse, rat, marmoset and macaque. For obvious
ethical reasons, the investigation of the human inter-areal
connectome is for now confined to diffusion-based MRI cou-
pled with tractography (TG) which produces non-directed,
symmetrical connectivity matrices that fairly systematically
tend to be complete (i.e. all-to-all connectivity) or at least
very dense. We know that to be an incorrect estimate of
the meso-connectome because, in comparison, Tract–Tracing
(TT) produces a directed, asymmetrical matrix with sharp
discrimination for absent connections.

In macaques, where both techniques can be compared,
the correlation between TT and TG is 0.59 after symmetriza-
tion of the TT matrix (Donahue et al. 2016), meaning that
already there is need to create false positives to increase
the correlation. Further, the same study shows that the cor-
relation drops by half when removing the 25% highest TT
connections weights, which is to say that most of the cor-
relation comes from the stronger and more easily detectable
connections. At best, therefore, we know that 40% of the TG
data does not really track existing connections as otherwise
detected by TT, and more so for the medium/low weight
connections, which are the ones that give specificity to the
network. On top of that, TG is, as we said, very weak at
detecting absent connections (i.e. finding true negatives vs.
False positives). Unfortunately, there is no reason to think
that those issues are less important in the human brain (but
they could well be worse, given the size), so one should be
very careful about conclusions that can possibly be drawn
from human dMRI-based TG, at least regarding the network’
shape, statistical properties and topology.

That cautionary tale now properly laid out, a recent study
from Rosen & Halgren (Rosen and Halgren 2021) extracted a
TG-based λ value for the human brain based on the collated
and massive dataset of the Human Brain Project. Defying the
prediction from Theodoni et al, the authors find a human λ

value of 0.04. meaning that if they are correct, the human
meso-connectome EDR would be even more abrupt than
what is predicted by extrapolation from other species. The
potential effect of such a low value in a big brain (human or
not) is laid out and discussed in the section called "Evolution
of cortex topology" of the main text.

Before closing this boxed section, we ought to mention
another promising line of investigation (Yeo et al. 2011) is
using what is known as functional connectivity MRI (fcMRi),
based on a detailed analysis of the Default Mode Networks
(DMNs), where synchronized activations show potential to be
a good predictor of TT connectivity, and vice-versa (Buckner
and DiNicola 2019). As is the case for the TG, nonetheless,
connections characterized as weak by TT may elude detec-
tion as they would fail to ignite activity in the corresponding
area.
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Fig. 1. Normalized λ as a function of the cubic root of gray matter volume.
The EDR exponential decay parameter λ, usually expressed in mm−1, is
here multiplied by the maximal inter-areal distance (mm) of the atlas,
rendering it dimensionless, and therefore comparable across species. This
dimensionless λ increases with brain size, showing that the exponential
decay of the EDR becomes sharper as brain size increases.

Additionally, the EDR not only optimizes brain wiring but also
enhances evolvability, in that it facilitates the next evolutionary
step. In EDR-based cortical networks, adding long-distance con-
nections incurs minimal cost and doesn’t necessitate extensive
rewiring, paving the way for future cortical expansion (Markov
et al. 2013a). This underscores the importance of λ as a critical
evolutionary factor fine-tuned by natural selection. To be exact,
evolution selects for cost-effective, self-organizing information
processing system that minimizes wiring expenses. EDR-based
models, with their λ parameter, effectively capture the statistical
properties of this wire minimization.

Modularity and the reach of primary
sensory areas
A striking example of brain scaling properties is the distance,
relative to brain size, reached by a given area’s connectivity. In
the mouse, as we have seen, a 0.97 density means that, with few
exceptions, all cortical areas are connected with one another. This
is not to say that there is no wiring cost pressure, even at this
brain size. The very fact that the mouse has an EDR precisely
means that there is already a higher cost to long connections. Still,
an area such as V1 receives and sends inputs to all areas so far
injected, including other primary cortical areas, as well as motor,
premotor and limbic cortices (Gămănuţ et al. 2018; Fig. 2). Mouse
V1 is, in terms of connectivity, far from being a purely visual area,
could be considered to be associative, as with every other mouse
cortical area.

In comparison, primate V1 has very restricted connectivity.
Marmoset or macaque alike, V1 connects to only about 45% of
all areas. The prefrontal cortex, mostly nonexistent in the mouse,
is largely disconnected from primate V1, along with motor and
premotor cortices. In fact, primate V1 primarily focuses on exten-
sive connections within the visual system (Markov et al. 2014a;
Theodoni et al. 2021). V1 is in these datasets only represented
by V1 foveal injections, but still retains in the macaque weak
connections with the auditory cortices (Markov et al. 2011), such
as medial and lateral belt (MB and LB, equivalent to a secondary
auditory cortex), the parabelt (PB; tertiary auditory) and even
a few detected cells in the Core (primary auditory cortex).
Injections in the far eccentricities of V1 reveal important

connections with the core, belt and parabelt areas, opening
further the possibility of mild multimodal integration in primary
sensory areas (Falchier et al. 2002).

Not without caution (larger relative size and barrel field), a
similar pattern emerges for S1 (primary somatosensory cortex,
Fig. 2), highly interconnected with nonsomatosensory/nonmotor
cortices in the mouse, while only mainly connected to the motor,
cingulate and insular cortices in the primate. There are also some
connections to higher level dorsal stream areas, consistent with
the vision of action paradigm, as described by Goodale and Milner
(Goodale and Milner 1992; Goodale 2011).

These comparisons are only tentative, as many anatomical,
physiological and ecological differences separate mice from pri-
mates (e.g. nocturnal/diurnal lifestyles, eye orientation, binocular
vision, no fovea nor visuotopy in mouse V1; Ohki et al. 2005;
Ibbotson and Jung 2020). Furthermore, rodents and primates have
elected for vastly different evolutionary strategies, shaped by and
in shaping radically different ecological niches, such as highly
socially complex arboreal life vs socially simple burrowing ones,
for which visual systems are bound to be adapted (Previc 1990).

Nonetheless, within reason, the analogy between primary
visual and somatosensory cortices of rodents and primates
stands, and they sharply exemplify what happens to all areas
when transitioning from rodents to primates. The “connectivity
horizon” reduces (in a normalized brain perspective), from the
entire cortex in the mouse, to a more specific pattern reflecting
the involved functions. In graph theoretical terminology, the
cortical network becomes more modular (see modularity, Box 1),
meaning that the community structure, if always present in
weighted terms, becomes clearly delineated even in binary ones.
This, we argue, is an essential aspect of applying an EDR to
a larger brain. As the cortex expands, wiring costs increase
differentially on short-range and long-range connections. Thus,
network density falls as long-range connections are selected out,
leading to a specific and modular pattern of connectivity.

Evolution of cortex topology
Based on what was just said, one could conjecture that, applied
to very large brains such as apes and the human primate, den-
sity would continue to fall and modularity to increase, up to
a point where the cortex would essentially be a sparse net-
work of function-oriented communities, largely isolated from one
another, apart from the few connections linking them together.
In short, a small-world network, with its collection of hubs. That
would be, however, a bad approximation of the EDR applied to
large brains.

However big a brain, and however large a λ value, each area will
always be connected to their most direct neighbors. So we propose
that the global topology one gets when increasing size of an EDR-
constrained brain size is not one of a small-world, but one of a
k-nearest neighbor network (k-NN, which we will here loosely call
a lattice-like network, as such a network would gradually con-
verge to a lattice as the number of neighbors, k, diminishes), where
any area is always connected to its local physical neighbors, with
rarefying middle range-connections, and even rarer long-range
ones (see Fig. 3). This is highly consistent with the calculations
of Murre and Sturdy (1995) where a nearest neighbor topology
gives very small connectivity (i.e. white matter) volume. In fact,
it could easily be argued that small brains such as the mouse
are also of k-NN topology, only with an arbitrarily large k. In that
kind of topology, the cortex becomes akin to a sheet of gradu-
ally changing functional properties and functional segregation
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Fig. 2. Primary sensory and motor areas become more disconnected from other primary cortical areas as brain size increases across species. (A) Lateral
view drawings of mouse, marmoset and macaque brains, shown at the same scale. Colors indicate analogous primary areas across the three species for
which connectivity data are available: green, visual; orange, somatosensory; blue, motor; red, auditory; and pink, ventromedial prefrontal cortex (not
shown). Bar scale, 1 cm. (B) Reduced retrograde tract-tracing, inter-areal connectivity matrices for each species, resulting from injections in primary
visual, somatosensory, and motor (columns), and showing 5 source areas (rows): V1, primary visual; AUDp/AUCore/Core, primary auditory; SSP/S1,
primary somatosensory; mop/M1/F1, primary motor, PL/IL prelimbic/infralimbic (mouse) and its primate equivalent area 25/32. Each colored entry
represents a connection from a row area to a column one. Connection weights are expressed in log10 scale, ranging 6 orders of magnitude, from
dark brown (very weak) to bright yellow (very strong). Gray represents absent connections and hatched squares, self-connections. (C) Circular graph
representation of connectivity data shown in (B), with color-coding from (A). Injected areas are depicted with needles. Arrow color intensity and width
indicate weights: thin pale arrows: weak connections; thick dark blue arrows: strong connections.

becomes increasingly possible as the brain increases in size and
the lattice structure takes over from the edge-complete structure
of smaller brains, thus offering a path to parallel processing, such
as the dual visual stream system.

Although the notion of a dual visual stream system is well
documented in primates (Mishkin et al. 1983; Goodale and Milner
1992; Kravitz et al. 2011) and appears to be reaching consensus for
the mouse cortex (Harris et al. 2019; D’Souza et al. 2022), details
such as which functional aspects are segregated are still very
much under investigation (Wang et al. 2012; Glickfeld and Olsen
2017; Saleem 2020; Gămănuţ and Shimaoka 2022). There is also
a weaker hierarchical organization in mouse than in primates,

consistent with the more dense connectivity at earliest stages in
mouse (Gămănuţ and Shimaoka 2022). Assuming we are correct,
an EDR-based, small-brain topology, close to edge-completeness,
could still harbor some aspects of dual processing, based on poor
but existent segregation (i.e. weak but non-null community struc-
ture), with porous functional boundaries, as it indeed appears to
be the case (Gămănuţ and Shimaoka 2022).

Another example of segregation of function and increased
hierarchical complexity with respect to primate brain size can
be found in the somatosensory/motor systems. The two systems
stay well connected together across evolution (Figure 2) and,
in fact, stay also fairly close together in terms of their spatial
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Fig. 3. Effect of brain size on the topology of the inter-areal network. In smaller brains with lower wiring cost, an EDR-based brain with a smaller
(normalized) λ parameter leads to an “all-to-all,” (near-) complete graph (i.e. very high density), as shown by retrograde tract tracing data. In such brains,
information propagates from sensory primary areas to the entire network very quickly (blue connections), with little room available for hierarchical
information processing or segregation of function. In bigger brains such as great apes, cetaceans, or elephants, the increased wiring cost leads to a larger
(normalized) λ and a correspondingly sharper EDR. Density falls drastically (here chosen at 0.07 for illustration), leaving place to a much sparser network.
We posit that, in such sparse network, we should expect a k-NN topology akin to a lattice, where each area is primarily connected to its direct neighbors
and only a few longer-range connections otherwise remaining. There, information would spread gradually, from neighbor to neighbor, allowing both
hierarchical processing and segregation of function (blue and orange connections). Intermediate size primate brains, such as marmosets or macaques,
would fall in-between those two ends of the spectrum.

proximity on the cortical mantle. This should not be surprising in
the context of an EDR-based network: if two areas close together
will probabilistically share a strong connectivity, the converse
could also well be true, such that two areas that require tight
connectivity to perform their functions will stay close together
through evolution. Indeed, the somatosensory and motor systems,
although described with different names, are actually opera-
tionally interdependent, with the somatosensory system provid-
ing proprioceptive information that is essential to motor function.
Thus, this may be an example of areas being adjacent to one
another due to their inseparable functions. Further, the EDR would
predict that the bigger the brain, the more stuck together they are.
As the normalized λ increases with brain size, the "connectivity
horizon" shrinks in normalized space, forcing together any two
areas that require high connectivity. In actual space, however, it
remains true that a bigger brain means more space for a given
system to produce new and/or more specialized areas whose
network, thanks to a very sharp EDR, will soon exhibit highly
specific connectivity. Jon Kaas, in his excellent 2004 paper (Kaas
2004) on the evolution of the motor system in primate, reported
increasing modularity and complexity in connectivity patterns
within the somato-motor system, and already suggested there
that modularity would be a valid solution to the wiring problem
in large brains.

Of course, size cannot possibly be all there is regarding brain
evolution. Cortex expansion has happened independently numer-
ous times during mammalian evolution, leading to different cor-
tical organizations (Northcutt and Kaas 1995), with, at the heart
of it, differential growth and timing in different cortical territories

(Finlay 2009; Finlay and Huang 2020), resulting in a conserved
pattern of cortical expansion across species (Chaplin et al. 2020).
The capybara, largest rodent on earth, has a brain of about 60 g,
barely less than the cynomolgus monkeys from which the TT data
are produced. Its gyrified cortex, indicative of increased skull con-
straints, is, as for all rodents, almost completely devoted to sen-
sory and motor fields rather than association cortices (Campos
and Welker 1976). Nevertheless, an EDR should remain at work,
allowing potentially for a similarly dense connectome to that of
the cynomolgus and a similar topology. Conversely, the mouse
lemur, the smallest primate known to exist, has a lissencephalic
brain of 1.8 g, similar to that of a rat. There, an EDR would likely
predict a highly dense inter-areal connectivity like that of the
mouse, but with a functional layout of a primate. Segregation of
function and community structure, as with the mouse, should be
weak but not necessarily completely absent. Recent functional
imaging data in the mouse lemur are compatible with this inter-
pretation (Garin et al. 2021). In short, size will determine the topol-
ogy, and thus network capacity for functional segregation, but not
the specific function that emerges from a given cortical area.

When applying evolutionary logic to the brain, it is often
assumed that the increase in size led to higher and more complex
cognitive functions, that it opened a new ecological niche, to
only then adapt brain functions to it. Although very much valid,
we would like to complete the picture by offering here that the
primate brain can also and nonconcurrently be explained by
reversing this evolutionary causality. In particular, we submit
that cortical expansion happened because complex cognitive
functions were needed to survive and reproduce. Perhaps because
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primates entered a niche of heightened sociology and arboreal
life (Ho et al. 2021), they needed at the same time an efficient
understanding of spatiality (Previc 1990) and social/political
interactions (MacKinnon and Fuentes 2011; Gintis et al. 2019),
both of which require extensive memory skills (Where is the food?
Who has it? Are they friends or foes? etc.; Sherry and Schacter
1987; Klein et al. 2002; Allen and Fortin 2013), abstraction abilities
(inter-individual interactions as objects, hierarchy, and political
rule inference; Klein et al. 2002), planning and compositionality
(Byrne 1998), as well as some amount of theory of mind, or at
least its early precursor (Brüne and Brüne-Cohrs 2006). Selecting
for brains capable of all this seems to mean, at least in part, the
implementation of function segregation and parallel processing.
Evolution tends to follow the easier route, and a bigger brain,
already constrained by an EDR since at least the last common
ancestor with rodents, ontologically gives all that, as we have
seen. Although more energy-consuming, a larger cortex should
be evolutionarily easier than a careful rewiring of a small brain
because the number of necessary mutations is minimal (e.g.
vary one parameter governing neuronal proliferation, rather than
change all the signaling events that guide connections to their
more permanent configurations). This is all the more easy, in fact,
since the EDR also grants the cortex a fair amount of evolvability, as
it makes the next evolutionary step easier to achieve (Markov et al.
2013a). It stands to reason, therefore, that one solution evolution
would employ to address the need for complex cognitive skills is
precisely a brute force increase in brain size. This is certainly
highly consistent with the “social brain hypothesis” (Dunbar
and Shultz 2007), which argues that social group size, and its
associated cognitive demands, is one of the prime factors driving
brain expansion.

Cortical hierarchies across species
Increasing modularity in network topology is not the only salient
distinction between mice and primates that may allow for the
emergence of abstraction and higher cognition. In addition to a
smaller brain, mice have a shallower hierarchical organization
than primates (Goulas et al. 2017; D’Souza et al. 2022; Gămănuţ
and Shimaoka 2022) and a narrower range of cortical heterogene-
ity (Charvet et al. 2015; Fulcher et al. 2019; García-Cabezas et al.
2023). Additionally, scaling factors do not apply equally to all cor-
tical areas. Association areas have disproportionately expanded
in the primate lineage (Finlay 2009; Chaplin et al. 2020). Below, we
will elaborate on how hierarchies are defined and discuss species
differences.

What is a cortical hierarchy?
Cortical hierarchy depends on the concept of directionality and
sequence in connectional architecture. In early studies of the
macaque visual system, physiological and anatomical evidence
suggested that projections with “top–down” functional correlates
were characterized by inter-areal anatomical connections with
the majority of origin neurons located in deep layers V to VI, which
were deemed “feedback.” We will elaborate more on top–down
functional correlates in a later section. The converse “bottom–up”
functional correlates were characterized by inter-areal anatom-
ical connections with the majority of origin neurons located in
superficial layers II to III, deemed “feedforward” (Rockland and
Pandya 1979; Rockland 2022). Further study elucidated that not
only did the origin neurons in such pathways have distinct lam-
inar assignments, but their terminations also populated distinct

laminar compartments. For example, feedback pathways typically
featured a wide axonal termination zone in layer I with a notable
absence in layer IV, and feedforward pathways had a distinctive
termination zone in layer IV, like canonical sensory thalamo-
cortical projections (reviewed in: Vezoli et al. 2021; Rockland 2022).
Thus, “top–down” and “bottom–up” functional processes could be
correlated with distinct anatomical relationships. Later studies
demonstrated that cortical connectivity is frequently reciprocal,
with a feedforward projection returned by a feedback connec-
tion.

But rather than being interchangeable terms, “top–down”
and “feedback,” or “bottom-up” and “feedforward,” are best
understood as dissociated concepts from distinct modalities
(function and structure, respectively), but which can be useful
to pair together conceptually. One reason for this distinction is
that inter-areal processes considered to exemplify top–down roles
are not uniform in feedback anatomical presentation. Inter-areal
anatomical connections rarely feature connections originating
only in superficial (II to III) or deep (V to VI) layers, in fact,
they are often graded. For example, consider two canonical
feedback projections: (i) from V2 to V1, where an average of
only 58% of neurons are found in deep layers, while 42% of
neurons originate in superficial layers, and (ii) from V4 to V1,
where ∼70% of neurons originate in the deep layers (Markov
et al. 2014b; Chaudhuri et al. 2015). Another reason is that
feedback and feedforward connections also exist outside the
sensory systems. For example, a recent study suggested that
the macaque subgenual prefrontal area 25 has a strongly
feedback relationship to prefrontal area 12 (Joyce and Barbas
2018), a feedback presentation that does not fit neatly into
a “top–down” functional framework as conceived in sensory
systems.

Hierarchy can be defined in several distinct ways (Hilgetag
and Goulas 2020). One definition follows the example set by
Felleman and Van Essen (1991), where feedforward and feedback
relationships are used to assemble a sequenced structure of
information flow with feedback-dominant structures at the top
and feedforward-dominant structures on the bottom, though this
hierarchy had critical drawbacks in its initial conception (Hilgetag
et al. 1996). This concept of hierarchy has since been further
constrained by the integration of connectional weight decay over
distance to produce a refined version, via the Kennedy/Knoblauch
group (reviewed in Vezoli et al. 2021). These efforts have produced
a sequenced network superstructure assembled from empirically
obtained weighted feedforward and feedback indices obtained
using a uniform pipeline of retrograde injections and analyses
in 40 areas of the macaque (and studied in 91 areas; Froudis-
t-Walsh et al. 2021), an enormous feat, though as yet incomplete
given the exhaustive effort required to add cortical areas to it.
We will refer to this as the anatomical hierarchy. This pipeline
has been extended to the marmoset (Theodoni et al. 2021) and
mouse (D’Souza et al. 2022; Gămănuţ and Shimaoka 2022) and,
as we have seen for network topology, now allows a direct species
comparison of anatomical hierarchy as well. In such comparisons,
marmosets exhibit a similarly deep hierarchical structure as the
macaque, with some notable exceptions, while mice exhibit a
shallower hierarchy.

A shallow hierarchy can be distinguished from a deep hierarchy
in a few ways. To understand this distinction, it is necessary
to introduce the concept of feed-lateral or columnar connec-
tions. This type of connection falls in between a feedforward
or feedback presentation, where close to equivalent proportions
of neurons (at origin) are located in supra- and infra-granular
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layer compartments. The return connection is typically also feed-
lateral, with terminations appearing across layers (Felleman and
Van Essen 1991). Cortices with reciprocal feed-lateral connections
are positioned within the same hierarchical level, while cortices
with a reciprocal feedforward-feedback pattern are positioned in
distinct hierarchical levels. A shallow hierarchy occurs from the
detection of minimal hierarchical steps within the network, while
a deep hierarchy occurs from the detection of many steps within
the network.

A distinct concept, but one which is sometimes paired with
anatomical hierarchy, is that of a cortical gradient or spectrum,
which can be any changing parameter along the cortical surface,
for example, cytoarchitectonics (John et al. 2022), or functional
connectivity (Margulies et al. 2016). Recent lines of evidence
suggest that some gradients can align with the current sequence
of the anatomical hierarchy in primates, such as receptor density
(Froudist-Walsh et al. 2021; Froudist-Walsh et al. 2023; Zilles
and Palomero-Gallagher 2017; Goulas et al. 2021; Hansen et al.
2022), intrinsic timescale and mRNA expression (Murray et al.
2014; Burt et al. 2018), or spine density (Elston et al. 2011;
González-Burgos et al. 2019; Theodoni et al. 2021), implying
the possibility that there may be an alignment of laminar
patterns of connections with larger forces that determine
cortical gradients in primates, and to a lesser degree, in mice
as well (Fulcher et al. 2019; Gămănuţ and Shimaoka 2022). A
framework uniting gradients in cortical features and the laminar
pattern of connections called the structural model (Barbas and
Rempel-Clower 1997) was based on the observation in 1986
by Helen Barbas (Barbas 1986) that the degree of difference in
cortical type between connected areas can predict the presence
and strength of laminar pattern of connections (Beul et al. 2017)
and sometimes is now also called the architectonic type principle
(Hilgetag et al. 2019).

Linking cortical type, laminar connections, and
species differences
The structural model can also be used as a theoretical framework
for cross-species comparisons (García-Cabezas et al. 2019; Goulas
et al. 2019). Architectonic type is often presented as an ordinal
variable akin to dimensionality reduction of multiple lines of neu-
ranatomic evidence, including myelination, laminar elaboration,
and other chemoarchitectonic factors (Barbas and Rempel-Clower
1997; Dombrowski et al. 2001; John et al. 2022), though type
can often be approximated by neuron density if a continuous
variable is desired (Medalla and Barbas 2006; Beul and Hilgetag
2019). The structural model demonstrates that if two connected
cortical areas are of similar architectonic type, they exhibit a feed-
lateral or columnar pattern of reciprocal connections, meaning
participation of superficial and deep layers at both the sender
and receiver cortex. Because the cortex is a gradually changing
structure, areas of similar cortical type are often nearby in terms
of wiring distance, and these as we have seen are the strongest
connections by traditional neuranatomic measures (e.g. FLN). Two
connected cortical areas have more polarized laminar patterns
of connections when they are more dissimilar in cortical type,
meaning that two very dissimilar cortices exhibit a more pure
feedforward and reciprocal feedback architecture (e.g. even small
changes in cortical architecture are correlated with subtle shifts in
laminar connectional architecture (Medalla and Barbas 2006). The
link between laminar connectional architecture and relational
cortical architecture is hypothesized to emerge from developmen-
tal forces (Barbas 2015; Beul and Hilgetag 2020) that may together
shape cortical architecture, laminar patterns of connections, and

possibly the wiring length of connections (García-Cabezas and
Zikopoulos 2019).

The phylogenetic expansion of primate cortex includes an
expansion in the range of cortical type, such that the most elabo-
rate primary sensory areas in macaques (e.g. V1) do not resemble
in laminar sophistication their counterparts in rodents, while
the least elaborated cortices (e.g. limbic cortices) have more rec-
ognizable counterparts in rodents (García-Cabezas et al. 2023).
According to the structural model, with increasing cortical het-
erogeneity comes increasing combinatorial possibility for laminar
patterns of reciprocal connections, and thus increasing opportu-
nities for transformation of signals in segregated streams of a
modular network. Given the narrower range of cortical hetero-
geneity in mice, the structural model predicts more feed-lateral
type connections and fewer pure feedback and feedforward rela-
tionships, i.e. a shallower hierarchy, which appears to be true
(Harris et al. 2019; D’Souza et al. 2022; Gămănuţ and Shimaoka
2022), although there are some critical distinctions, for which
more widespread adoption of single-neuron tracing resolution
technology in the macaque could help address (e.g. Zeisler et al.
2023). Thus, the larger diversity in cortical types and laminar
connections in macaque may confer a deeper hierarchy and more
opportunities for refinement of information.

Macaque and mouse V1 differ starkly in laminar organization
(Gilman et al. 2017; García-Cabezas et al. 2023), perhaps owing
to the expanded proliferation during development that is well
documented in primates (Dehay et al. 1993; Kornack and Rakic
1998; Smart et al. 2002), leading some to argue that they are not
homologous structures (García-Cabezas et al. 2023). Like cytoar-
chitectonic type, which is generally assessed using laminar elab-
oration and some chemoarchitectonic parameters, microscale
structural and physiological data also exhibit a wider range of
heterogeneity across the cortical landscape in macaques than in
mice, indicating that not only is there more modular “space” in
network topology for specialized processes but also more spe-
cialization in the structural and physiological attributes of the
cortices that carry out these processes.

A few studies in the last decade have demonstrated this point.
Comparative studies have revealed that layer III pyramidal cells
in frontal cortex and V1 of mice have roughly equivalent mor-
phological and physiological properties, while in macaques, there
are stark differences in these properties between prefrontal cortex
and V1 (Amatrudo et al. 2012; Medalla and Luebke 2015; Gilman
et al. 2017). Neurons in mouse V1 and frontal cortex have higher
synapse density, more total spines, higher spine density, and larger
and more complex dendritic arbors than neurons in macaque
V1, but are lower than macaque dorsolateral prefrontal cortex
(dlPFC) neurons (Gilman et al. 2017; Wildenberg et al. 2021).
Layer III pyramidal cells in primates in general exhibit greater
morphological heterogeneity across the cortical expanse, with the
highest reported dendritic complexity and spine density found in
deep layer III of dlPFC and anterior cingulate, compared to V1
and early visual cortical areas (Elston 2000, 2003; Elston et al.
2006; Elston et al. 2011; Medalla et al. 2017), while mice have
no detectable gradient in spine density variation among areas
so far studied (Ballesteros-Yáñez et al. 2006; Gilman et al. 2017).
The gradient of increasing spine density along the ascending
anatomical hierarchy in primates is central to recent theories of
primate working memory, which have been successful at replicat-
ing the partially distributed patterns of persistent activity seen
during working memory tasks in modular networks (Wang 2020;
Froudist-Walsh et al. 2021; Mejías and Wang 2022). Further, com-
parative ultrastructural analyses have revealed that macaque
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dlPFC axospinous synapses are characterized by larger presynap-
tic boutons and postsynaptic densities including a greater propor-
tion of perforated synapses, compared to those in V1 (Hsu et al.
2017). Thus, there are more, and presumably stronger, synapses
on layer III pyramidal cells in dlPFC than V1, while there are
relatively more short, “stubby” spines in macaque V1 than in dlPFC
(Amatrudo et al. 2012; Young et al. 2014). As shorter spine necks
are associated with more accurate and rapid transfer of synaptic
excitation to the parent dendrite (Araya et al. 2006), the increased
number of stubby spines in macaque V1 would be consistent with
more faithful neurotransmission that may be a critical in early
sensory cortices, but more detrimental to more complex compu-
tations required to maintain persistent firing for abstraction and
working memory. Together, this suggests that there may be less
diversity in laminar elaboration and pyramidal cell morphology
in mouse cortex compared to primate cortex. In particular, mouse
cortical areas studied thus far seem to lie between the extremes
of the macaque cortical diversity gradient, with neither signature
of primate primary sensory cortex nor higher hierarchical regions
like dlPFC.

In summary, primates have more modular cortical networks,
allowing for distributed communities that can maintain degrees
of relative information segregation, which may allow information
to be selectively combined and integrated. Cortical heterogeneity
may allow further specialization to occur. Separately, a deep
hierarchy allows iterative feedforward and feedback interactions,
thought to provide the basis for belief update in the framework of
active inference (Gregory 1997; Friston 2010). In contrast in mice, a
dense network topology produces a comingling of information at
all (though fewer) levels, and fewer cortical areas, with less struc-
tural diversity, mean fewer opportunities for specialization and
inter-areal refinement. In the following sections, we will discuss
the consequences of species differences in meso-connectome
topology by reviewing V1 physiology and then the interaction
between the cortex and the hippocampus. We will then elaborate
on primate prefrontal specializations for working memory and the
evolution of molecular mechanisms.

Consequences of species differences in
multisensory integration and network
topology
Multisensory convergence in primary areas
across network topologies
A dense connectome, such as observed in the mouse, means
that almost all areas are connected to each other, including
early sensory areas. This specific configuration seems central
to facilitate early multisensory integration, in which congruent
multimodal stimuli are known to decrease reaction time com-
pared to unimodal stimulus (Molholm et al. 2002; Sakata et al.
2004; Wang et al. 2008). This may be especially helpful to the
survival of small animals—with necessarily small brains—that
are frequently preyed upon, where their rapid response to threat-
ening events would be paramount. Early convergence of sensory
information might facilitate initiation of fast, “instinctive” motor
responses necessary to navigate threatening situations (freezing,
fight, flight, etc.).

Additionally, the formation of a long-term memory of the
emotional event could help to guide more effective, future
decisions, such as when to avoid vs. approach. For example,
bringing together both the sound and sight of a hawk in area
V1, coupled with simultaneous somatosensory information
regarding whether one is exposed vs. hidden, could provide

an early signal about how to respond to a dangerous event.
Similarly, the formation of long-term memories regarding
dangerous vs. safe contexts has clear survival benefit, where
multiple sensory aspects form a detailed memory. In humans,
this is described as episodic memory, where the convergence
of sensory, affective, and cognitive events over an interval of
time conjoin to create a fully integrated “episode,” which is then
consolidated into longer-term memory if it is sufficiently salient
or meaningful. This type of memory relies on the hippocampal
formation, which we will elaborate upon in a later section
(Scoville and Milner 1957).

Of course, primates also rapidly respond to threatening sit-
uations. Larger brains, such as the primate brain, feature net-
works that are more modular, with connections between early
sensory areas largely absent. This endows the network with the
flexibility to integrate sensory information later on, but it does
not mean multimodal information can never reach primate pri-
mary sensory areas, because this can occur via feedback projec-
tions from higher areas back to early areas. The modularity in
a primate cortical network instead may confer (i) the ability for
sensory information to be transformed and refined before large-
scale multimodal integration, and (ii) the flexibility to use more
refined multimodal sensory information to inform early sensory
processes, if needed. For example, there is evidence in humans
and monkeys that multimodal information can affect processes
in primary sensory areas (Driver and Noesselt 2008). In addition
to feedback cortical connections, multimodal information that
reaches unimodal areas may also be conveyed via thalamic con-
nections (e.g. the pulvinar nucleus, Froesel et al. 2021). There
is also some retained early modality integration in pathways
where rapid synthesis is essential, for example, when early visual
responses are modulated by eye movements to prevent blurred
vision (Denagamage et al. 2023) and for coordination of head and
eye movements with vestibular and visual information (Angelaki
et al. 2011). Finally, neuromodulation, the subject of our last sec-
tion, can rapidly silence the activity in primate lateral prefrontal
areas that are necessary for abstraction. This is thought to be
a mechanism to divert resources to processes more relevant to
multimodal integration and rapid defensive behaviors (Arnsten
2009; Arnsten 2015).

Cortical topology and a comparison of V1 in vivo
neuronal physiology in the macaque vs. the
mouse
Consequences of varying cortical network topology across mice
and macaques can be seen in studies using in vivo electrophys-
iology. Decades of neurophysiological recordings from area V1
in primates have shown that these neurons respond selectively
to visual features (e.g. color, orientation, motion direction). Area
V1 neurons show selectivity for stimuli presented on the retina
even in anesthetized animals (e.g. Hubel and Wiesel 1968), while
V1 responses to other sensory modalities have been reported
in awake macaques for certain tasks that require multisensory
integration (Wang et al. 2008), but these are restricted to the
peripheral visual field that receives some auditory projections
(Fig. 2 and Falchier et al. 2002).

Although the macaque and mouse recording paradigms have
many differences, they usually involve head fixation for sta-
ble recording, but the ability to move the body in a chair (pri-
mate) or spherical treadmill (mouse). Given this similarity across
paradigms, and the large species differences in V1 cortical connec-
tivity described above, it is particularly interesting that macaque
V1 neurons show little or no response to the monkeys’ movements
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(Talluri et al. 2022), while a large number of studies show that
mouse V1 neurons are greatly influenced by locomotor state (Ayaz
et al. 2013; Saleem et al. 2013; Erisken et al. 2014; Dadarlat and
Stryker 2017; Dipoppa et al. 2018; McBride et al. 2019), such as
enhancing the encoding of visual stimuli (Dadarlat and Stryker
2017). While additional studies in macaques with larger-scale
movements would be needed for a direct comparison to the
mouse paradigm, the physiological data so far are consistent with
the lack of projections from somatosensory and motor cortices
to V1 in primates rendering V1 neurons selectively responsive
to visual stimuli and the presence of projections from S1 and
M1 to V1 in mice providing large effects of locomotion on visual
responses (Fig. 2).

There are multiple caveats that must be considered when
comparing visual physiological responses across species. An
obvious species difference is that primates are diurnal and highly
visual, while rodents are nocturnal and rely more on olfaction
and somatosensation. As mouse vision is adapted to a nocturnal
ecology, they do not have a fovea or perceive color. Their eyes
are located on the sides of the head to maximize the visual
field, but thus they have poor stereo vision. Indeed, mice can
move their eyes independently (Michaiel et al. 2020). Although
these adaptations are consistent with a nocturnal vs. diurnal
animals, they cannot account for the differences in cortical
connectivity between rodents and primates described above,
as species differences in cortical connectivity are not unique
to V1 (they are evident in the pattern of connections of S1 as
well, Fig. 2). There are also important differences in the earlier
aspects of the visual system between mouse and macaque that
should be considered, for instance the more extensive processing
of visual stimuli by the mouse retina than by the primate retina,
and the differences in inputs to V1 (predominately from LGN in
primate vs. superior colliculus in mouse). However, the example
of locomotion influencing V1 activity in mice but not macaques
seems to capture the differences in cortical connectivity rather
than these other large species differences. We should also
emphasize that the extraordinary experimental tools available
for studies of mouse cortex may be beneficial for understanding
primate peripheral vision, with which mouse vision shares many
similarities (Niell and Scanziani 2021).

Studies in macaques have suggested that V1 records a “faithful”
reflection of the visual signals entering the retina, encoding the
physical visual stimulus, with only minor modulations of activity
depending on whether the stimulus is perceived or not (Leopold
and Logothetis 1996; Lamme et al. 2000; van Vugt et al. 2018).
Another example of this phenomenon is the segregation of motion
detection processes among the dorsal stream areas in primates,
where V1 detects local motion signals, but the integration of
motion components into global patterns occurs in higher-order
areas (Lempel and Nielsen 2019). This is in contrast to mice, where
motion integration occurs in V1 (Movshon et al. 1983; Smith et al.
2005; Palagina et al. 2017). The intrinsic physiological properties
of primate V1 neurons are also consistent with more faithful
neurotransmission, where spontaneous excitatory postsynaptic
currents (sEPSCs) are diminished in amplitude and frequency and
have faster kinetic profiles in layer III of macaque V1 than in dlPFC
(Amatrudo et al. 2012; Zaitsev et al. 2012; Medalla and Luebke
2015). In this view, V1 captures the “raw data,” maintaining the
trace for only a very brief time (e.g. ∼200 ms) in iconic memory
stores. As described below, such signals can be influenced by
signals from higher-order association areas that feed back to V1 to
serve object recognition or implement biases in signal processing
according to behavioral goals (Roelfsema et al. 1998). However,

large-scale multisensory integration is unlikely to occur in pri-
mate area V1, but in areas farther downstream.

Significance of the hippocampal system as an
ancestral multimodal structure
In mammals, high-order multisensory signals converge into the
entorhinal cortex, which is the entryway to the hippocampal com-
plex (Fig. 4A) and sits atop the traditional primate visual hierarchy
in the now classic wiring diagram (Felleman and Van Essen 1991)
and its alternate or updated versions (Hilgetag et al. 2016; Vezoli
et al. 2021). Information from cortical areas funnels through
the entorhinal cortex into the hippocampus, with multisensory
responses especially evident in CA3, in both rodents and primates.
Current theories propose that mixed selective neurons in the
hippocampus (Ravassard et al. 2013) integrate information from
different sources and sensory systems such as distal visual cues
(Muller and Kubie 1987), self-motion cues (Gothard et al. 1996),
e.g. proprioception, optic flow, and vestibular cues (Stackman
et al. 2002), and other sensory cues (Save et al. 2000), such as
olfaction (Wood et al. 1999), audition (Itskov et al. 2012), and
somatosensation (Young et al. 1994).

In rodents, the vast majority of hippocampal neurons in CA3
and CA1 are place cells, signaling the location of an animal in
allocentric space (Moser et al. 2015). Place cells are thought to
form during spatial navigation when rodents “path integrate” and
hippocampal neurons integrate inputs from entorhinal cortex
grid cells that respond to proprioceptive, vestibular, somatosen-
sory, and possibly other cues (Hartley et al. 2000; Moser et al. 2015).
Bonafide place cells, however, have not been found in primates
(Mao et al. 2021; Piza et al. 2023). Instead, in primates (including
humans), hippocampal neurons respond to a wider variety of
cues (Graves et al. 2023). Nevertheless, a large proportion of cells
seems to be driven by complex associations of visual inputs
(Rolls and Wirth 2018; Gulli et al. 2020; Corrigan et al. 2022; Piza
et al. 2023).

These species differences in selectivity of hippocampal neu-
rons could in part be a result of cortical network topology dif-
ferences. For example, the mouse hippocampus receives more
“raw” sensory information than the monkey, because the mouse
entorhinal cortex is directly connected with primary sensory
areas. On the other hand, in primates, entorhinal connectivity
with early sensory areas is weak, yet it is stronger with association
areas that are themselves farther removed from primary sensory
areas (Fig. 4A; Bergmann et al. 2016). Thus, the primate hippocam-
pus may receive sensory information that is significantly more
transformed than the mouse hippocampus, which may, in turn,
result in a more selective dialogue between the hippocampus and
neocortical areas during memory consolidation. Sensory signals
that make it into in the “less” early sensory-connected primate
hippocampus may undergo strong filtering by association areas
(Lennert and Martinez-Trujillo 2013) and thus the primate “raw
sensory cache” therefore does not have direct access to the high
Hebbian plasticity circuits of the dentate gyrus, CA3 and CA1. The
phylogenetic rerouting of hippocampal connectivity from early
sensory to association areas in primates may be linked to the
expansion of the primate neocortical mantle. One could speculate
that with a more selective filter (i.e. a narrower connectivity),
information would enter the hippocampus with heightened pre-
cision and congruence, thus exploiting the hippocampal Hebbian
plasticity mechanisms to a greater extent, essentially ‘tuning it
up’. This could be a mechanism for increasing the efficiency of
memory formation in primate brains.
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Fig. 4. Examples of multimodal convergence and functional segregation in the macaque cortex. (A) Wiring diagram depicting inputs to perirhinal (areas
35 and 36) and parahippocampal cortices (areas TH and TF), which are major inputs to the entorhinal cortex (ERC), the main cortical entry point into
the hippocampus (HPC). Inputs to the perirhinal and parahippocampal cortices are higher order association areas, and often polymodal. The perirhinal
areas are more associated with feature-specific inputs and functions, while the parahippocampal areas are more associated with spatially related inputs
and functions. Adapted from Suzuki and Amaral (2004). (B) The separation of sensory streams for spatial vs. feature information for both visual and
auditory information continues into the PFC, terminating in dorsal (spatial) vs. ventral (feature) zones of the macaque dlPFC as conceived by Patricia
Goldman-Rakic; adapted from a drawing by Mark S. Williams in (Arnsten 2003). Recent work suggests that auditory zones extend to the frontal pole and
medial surface as well (Medalla and Barbas 2014).

Studies in both rodents and humans have shown that the
degree of long-term memory consolidation is strongly influenced
by the affective significance of the event, involving interface
with the amygdala (e.g. emotionally salient events; Cahill and
McGaugh 1996), and the PFC (e.g. meaningful events, required
by a task; Golby et al. 2001), with the PFC also being important
for memory retrieval (Lepage et al. 2000). Long-term potentiation
(LTP) in rodent CA3 is also greatly affected by neuromodulators
such as norepinephrine (NE; Huang and Kandel 1996), which is
also regulated by the amygdala (Valentino et al. 1998; Curtis et al.
2002), and the PFC (Arnsten and Goldman-Rakic 1984; Sara and
Herve-Minvielle 1995; Jodo et al. 1998).

Some general organizational principles of the hippocampal
system are similar in rodents and primates. However, it is note-
worthy that the multisensory inputs into the hippocampal system
in macaques retain a degree of segregation even at high levels of
the cortical hierarchy (Fig. 4A). For example, the parahippocampal
cortices TH and TF are associated with aspects of spatial process-
ing, while the perirhinal cortices 35 and 36 (sometimes called TL)
are associated with feature and object processing (Fig. 4A; Blatt
et al. 2003; Suzuki and Amaral 2004; Bachevalier and Nemanic
2008). Thus, what appears to be a convergent system in wiring
diagrams actually retains functional and connectional segrega-
tion with a finer-grained parcellation until very high levels.

However, despite some generally conserved principles, some
critical species differences in hippocampal organization have
emerged. For example, macaques have an uncal hippocampal
extension absent in rodents (Rosene and Van Hoesen 1987; Barbas
and Blatt 1995; Ding 2013), and species-specific connectional
relationships, e.g. with amygdala (Fudge et al. 2012; Wang
and Barbas 2018). In the reuniens nucleus of the thalamus,
hippocampal afferents form specialized highly complex synaptic
formations, reminiscent of synaptic triads formed by peripheral
afferents to sensory nuclei (Joyce et al. 2022). Other emerging
evidence suggests that there are some fundamental differences
in the microstructural organization (Benavides-Piccione et al.
2020; Montero-Crespo et al. 2020) and neurochemical composition
(Merino-Serrais et al. 2020; Tapia-González et al. 2020) of human

CA1 that likely have significant consequences for local processing.
Future studies will have to be performed to understand the full
functional import of these differences.

Functional segregation, parallel streams, and
modularity
In addition to having a hippocampal system, larger-brained pri-
mates have a greatly expanded cortex, with increasing association
cortices as a defining feature, as discussed above. Inter-areal con-
nectomics show an expansion of segregated sensory processing
streams (Ungerleider 1985; Kravitz et al. 2013), with frontal struc-
tures often emerging near the top (Fig. 4B). In macaques, dlPFC
and anterior cingulate cortex (ACC) exhibit top–down functional
roles and longer integration times for the processing of sensory
stimuli (Goldman-Rakic 1987; Murray et al. 2014; Chaudhuri et al.
2015; Li and Wang 2022). In the marmoset, premotor areas emerge
near the top in a recent hierarchical ranking (Theodoni et al. 2021).
We will describe in a later section how top–down regulation
of sensory streams (e.g. by the PFC) can gate information flow
in coordination with relevant goals such as task demands.
Working memory, abstraction, reasoning, and high-level decision-
making all require the generation of highly specific but flexible
mental representations in which information must often be
deconstructed and recombined in both the processing of sensory
events and in the reactivation of information stored in short- or
long-term memory. For example, this deconstruction and recon-
struction of information must occur in order to think about things
we have never experienced, such as a pink elephant floating in the
clouds singing Gershwin, as well as to extract dynamic rules and
concepts from events around us (Wallis et al. 2001; Bunge et al.
2003). We propose that modular cortical organization as seen in
primates is needed to support the generation and sustenance
of the precise but dynamic mental representations needed for
working memory, abstract reasoning, flexible decision-making,
insights about oneself and others, and planning for the future.
In support of this, modeling studies demonstrate that network
modularity is necessary for working memory and abstraction
(Kaiser and Hilgetag 2010; Rodriguez 2019; Changeux et al. 2021).
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These cognitive operations are particularly important to the
survival of individuals, as well as communities, within complex
social environments.

Recordings from the macaque dlPFC illustrate how these neu-
rons can dynamically represent specific dimensions of sensory
events that may not be possible if there was global, intersen-
sory connectivity at early stages. For example, dlPFC neurons
can generate and maintain the representation of highly specific
categories of visual features (Freedman et al. 2001), with flexible,
increased firing to the relevant dimension when seminal to the
task (McKee et al. 2014). In contrast, neurons in inferior temporal
cortex that process visual forms encode sensory information less
dependent on task demands (McKee et al. 2014). This type of
dynamic coding of a relevant dimension by the PFC can only occur
if information is not “contaminated” with extraneous information
at early stages in the sensory streams. Recent recordings show
that the primate dlPFC can represent multiple, distinct informa-
tion tracks in parallel (Roussy et al. 2022).

Relative sensory segregation may even persist as sensory
streams reach the PFC in macaques (Fig. 4B). For example,
the anatomical tracing studies of Goldman-Rakic (1987, 2011)
demonstrated a segregation of sensory inputs to the PFC, resulting
in an association of dorsal PFC with visual or auditory space, in
contrast to the ventral PFC association with visual or auditory
features (Fig. 4B). This is consonant with the synthesis of Ongür
and Price (2000), where the lateral surface of the PFC generates
and sustains representations of the outer world, and the ventral
and medial surfaces represent the inner world, such as the
viscera. A similar parallel organization can be seen with human
fMRI (Haxby et al. 2000), although it important to note that both
fMRI and physiological recordings can exhibit “reflected activity”
from other areas, and only causal/lesion studies can demonstrate
areas that are essential generators.

Interactions between hippocampal and
prefrontal systems in primates
Under optimal conditions, the convergent, multimodal, hip-
pocampal memory system and the modular cortical system
work together. However, there is little known at the cellular
level about how this occurs in primates. Parts of the PFC and
entorhinal cortex are reciprocally connected (Insausti et al. 1987;
Muñoz and Insausti 2005), perhaps providing a dialogue with the
hippocampus (this can also occur via the thalamus, e.g. Joyce
et al. 2022). The hippocampus (CA1 and subiculum) projects
directly to the PFC and most densely to the medial and orbital
PFC (Barbas and Blatt 1995; Chiba et al. 2001; Price 2007; Aggleton
et al. 2015). It is generally accepted that the PFC has no direct
inputs to the hippocampal formation, although one early study
reported that the dlPFC has direct projections to a posterior
extension of the presubiculum near the anterior aspect of the
calcarine sulcus (Goldman-Rakic et al. 1984), though this region
can be challenging to distinguish from the ventral retrosplenial
cortex, and its parcellation remains controversial (Kobayashi and
Amaral 2000; Aggleton et al. 2015). The hippocampus is needed for
working memory featuring delays longer than ∼15 s (Zola-Morgan
and Squire 1985) How the hippocampus and the PFC systems
interact to sustain and manipulate information is an area for
future research, though many indirect routes may exist to support
this interaction (see discussion in Aggleton et al. 2015).

Other structures that receive cortical convergence
Other structures receive convergent cortical input. One example
is the striatum, where cortical areas that are otherwise connected

with each other tend to project to the same striatal zones (Miller
and Cohen 2001; Averbeck et al. 2014). This is particularly true
for cortical areas that have been identified by cluster analyses
to share common inputs (Giarrocco and Averbeck 2021, 2023). A
second example is the thalamus, particularly association nuclei
(e.g. the mediodorsal nucleus, or the pulvinar nucleus) which have
expanded in primates, including humans (Baldwin et al. 2017;
Chin et al. 2023; Giarrocco and Averbeck 2023). Although these
pathways are not emphasized in this review, they also play a
critical role in shaping all cortical processes. These structures
have been implicated in a recent model of nested topological con-
nectivity patterns among forebrain structures, based on parallel
expansion between these structures during evolution, particularly
with the addition of the dorsal pallium (Giarrocco and Averbeck
2023).

The importance of top–down connectivity
for controlling the contents of WM
A critical tool for abstract thought is the ability to employ top–
down regulation of sensory inputs, and presumably of stored
memories, to control the contents of the “mental sketch pad”
according to current goals (also reviewed in Wang et al. 2020).
Top–down gating of sensory processing over the early portions of
sensory streams (Fig. 3) is essential to diminish processing of irrel-
evant distractions, promote focus on relevant dimensions, and
activate and integrate specific dimensions (e.g. stored representa-
tions of pink elephants, the lyrics and melody of “Summertime,”
etc.). In addition to extensive feedback projections from higher-
order areas like the PFC, extensive local recurrent excitation
within the PFC is necessary to generate and sustain the goals
for top–down control, including powering long-range recurrent
connections, notably with posterior association cortices (Levitt
et al. 1993; Goldman-Rakic 1995; Chafee and Goldman-Rakic 2000;
González-Burgos et al. 2000). This section will provide examples
from primate lesions, physiology, and anatomy that demonstrate
the importance of these top–down mechanisms emanating from
the PFC.

It has been shown that PFC plays key role as driver of top–down
control (Buschman and Miller 2007; Deco et al. 2023), with more
abstract operations situated more rostrally (Nee and D’Esposito
2016). Top–down control has been most readily studied in terms
of regulating attention to sensory events, where there is extensive
evidence from studies of both humans and macaques. For exam-
ple, humans with dlPFC lesions have impaired top–down control
of attention, where they are unable to inhibit the processing of
sensory distractors (Woods and Knight 1986; Knight et al. 1989;
Yamaguchi and Knight 1990; Chao and Knight 1995), and are also
less capable of strengthening the processing of relevant sensory
stimuli (Barceló et al. 2000). Similar findings have been seen in
macaques, where dlPFC lesions make animals more susceptible
to interference during working memory (Bartus and Levere 1977),
and physiological recordings show that dlPFC is involved with top–
down control of attention (Buschman and Miller 2007; Panichello
and Buschman 2021), including projections from the frontal eye
field back to V4 to gate early visual responses in coordination with
eye movements (Moore and Armstrong 2003).

Physiological recordings coupled with reversible lesions have
helped to establish a causal role for the macaque dlPFC in top–
down control of attention. A classic study by Fuster showed
that cooling the dlPFC reduced the firing of inferior temporal
cortex (ITC) neurons to the correct color, and that this was
particularly evident in neurons in superficial layers of ITC
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(Fuster et al. 1985). Consistent with this physiology, lesioning of
the dlPFC impaired performance on a related task when top–down
control was needed for performance (Rossi et al. 2007). Recordings
from the dlPFC during visuospatial working memory show that
dlPFC “delay cells” that represent a location in visual space
during working memory are resistant to distractors, in contrast
to neurons in parietal association cortex area LIP (Carlson et al.
1997; Suzuki and Gottlieb 2013) and that reversible inactivation of
the dlPFC produced much larger increases in distractibility than
inactivation of LIP (Suzuki and Gottlieb 2013), a finding replicated
by computational models in which the PFC has stronger recurrent
connectivity than LIP (Murray et al. 2017; Froudist-Walsh et al.
2021). The ability of the dlPFC to maintain persistent firing even
in the presence of distractors develops with age (Zhou et al. 2013),
consistent with the late maturation of the PFC in primates (Rakic
et al. 1994).

“Top–down” influences can even be seen extending to macaque
V1. V1 receives feedback from many of the same visual areas
to which it projects, such as V2, V3, V4, and MT, but receives
almost no direct projections from the PFC (Xu et al. 2022) with the
exception of area 8l (Markov et al. 2014a). Supporting this view,
V1 shows only small “top–down” modulations during attention
or working memory tasks (Yoshor et al. 2007; Leavitt et al. 2017;
Martinez-Trujillo 2022). This view would be consistent with keep-
ing a relatively “raw data” cache in V1, and filtering information
based on top–down goals at higher levels of the hierarchy.

Anatomy of top–down modulation in primates
As previously described, the term “top–down” is often associated
with functional studies demonstrating that association areas
can tune information in sensory areas (Treue and Maunsell
1996; McAdams and Maunsell 1999; Berman and Colby 2009).
Anatomical studies using neural tracers have suggested possible
circuit mechanisms for the modification of information in sensory
streams via cortico-cortical (Medalla and Barbas 2014), cortico-
thalamic (e.g. Zikopoulos and Barbas 2012), and cortico-striatal
projections (e.g. Choi et al. 2017), which may be substrates for top–
down regulation such as attention. Here, we describe examples of
cortico-cortical and cortico-thalamic connectional architecture
that may subserve such functions. Cortico-cortical “top–down”
connections, particularly in sensory streams, often take the form
of feedback patterns of laminar innervation. Although these
connection patterns are often more complex than modeled, a
deeper study of some of these feedback connections provides
clues as to how PFC projections can shape information flow
in sensory streams. Here, we will highlight the few studies
examining in fine detail the frontal eye field projections to
visual association cortices (Anderson et al. 2011) and projections
from the frontal polar area 10 to the superior temporal gyrus
(STG; reviewed in: Medalla and Barbas 2014); note that there
are currently no studies examining the feedback projections
from the dlPFC anterior to the FEF at this level of detail.
In all cases, prefrontal projections predominantly target the
spines of putative excitatory neurons, with a much smaller,
but likely of great functional import, proportion innervating
putative inhibitory neurons. Quantifying the inhibitory targets
of long-range projections may be particularly valuable for
understanding how specialization of function may emerge in the
densely connected mouse cortex. Indeed, although mesoscopic
connectivity can be used to predict patterns of working memory
activity in the monkey cortex (Froudist-Walsh et al. 2021;
Mejías and Wang 2022), in the mouse such predictions require
knowledge of the cell-type targets (Ding et al. 2024).

One study used electron microscopy to examine the termi-
nation patterns of the frontal eye fields (FEF, area 8) in V4
and lateral intraparietal cortex (LIP; Anderson et al. 2011). It
should be noted that the frontal eye field is a motor area, whose
connections thus may have properties specific to coordinating
eye movements with visual processing. Though this study did
not quantify the laminar distribution of axon terminations, other
studies have demonstrated that subdivisions of the FEF can have
distinct feedforward and feedback laminar termination patterns
in subdivisions of LIP, which can be correlated with gradients
in neuronal density of the origin and termination cortices
(Medalla and Barbas 2006), a demonstration of the complexity
of connectional networks, the benefit of small injection sites, and
an illustration that prefrontal projections to sensory streams are
not exclusively feedback. In both V4 and LIP, FEF terminations
across layers targeted spines and a variable amount of putatively
inhibitory dendritic shafts, with higher levels of spine innervation
in superficial layers (V4: 85% to 92% spines; LIP 78% to 93% spines).
The V4 to V2 projection, a feedback projection occurring earlier in
the dorsal stream, mostly targets layer I with minor termination
zones in II to III and VI, and targeted spines at a lower frequency
(∼80%; Anderson and Martin 2006).

These studies in the dorsal visual stream indicate that
prefrontal projections likely gain access to local circuits mainly
through contact with pyramidal neurons, and a small cohort of
synapses formed on inhibitory neurons. Though the authors were
not able to discern the types of inhibitory neurons that were
targeted by these projections, inhibitory neuron class likely plays
an important role in the impact of afferents on local circuits
(Wang et al. 2004). In macaques, Torres-Gomez et al. (2020) have
demonstrated varying proportions of inhibitory neuron types
in superficial layers of a selection of cortices along the dorsal
stream, ranging from early visual areas to the dlPFC. Though
their study did not explicitly include V4 or LIP, the range of
cortices covered overlaps with these areas along the dorsal
stream. In MT, parvalbumin (PV) positive inhibitory neurons
were the most frequent, while in dlPFC, calretinin (CR) positive
inhibitory neurons were the most frequent. These two types of
inhibitory neurons display different innervation patterns within
the cortical circuit, so their recruitment by afferents from other
areas likely introduces disparate consequences for local activity. It
is still unclear which inhibitory neurons are targeted by incoming
afferents in each of these areas. Notably absent from the literature
are studies examining the visual stream postsynaptic targets
originating from more anterior parts of the dlPFC, like areas 46 and
9, known for their role in working memory and executive function.
This type of information will be an important contribution given
that the dorsal stream is one of the most studied physiological
systems in nonhuman primates.

The feedback projections from frontal polar area 10 to the STG
auditory association areas Ts1, Ts2, and Ts3 have been examined
in a set of studies quantifying not only their laminar termination
patterns, bouton characteristics, and postsynaptic targets with
excitatory neurons, but importantly also their synaptic interac-
tions with different classes of inhibitory neurons, demonstrating
with finer detail how the PFC can influence sensory processing
within auditory streams (Fig. 5). Terminations coming from area
10 predominate in superficial layers of the STG (79% to 87%),
demonstrating a strong feedback termination pattern for this
projection (Barbas et al. 2005). The authors also found a progres-
sive increase in the size of area 10 axon terminals from layer I
to layer IV (Germuska et al. 2006; Medalla et al. 2007; Medalla
and Barbas 2014), suggesting that though fewer, when present in
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Fig. 5. Frontopolar- “top-down” frontopolar projections to auditory association areas of the superior temporal gyrus. Area 10 axons terminate in a
feedback pattern, with smaller frequent boutons in layer I and larger, sparser boutons in mid-to-deep layers. Terminations in layer I likely interact
with disinhibitory inhibitory neurons (CR, calretinin), while in layer II to III, they interact more frequently with inhibitory neurons that target the apical
dendrites (CB, calbindin) or pyramidal neurons; in mid-deep layers, they are more likely to target perisomatic inhibitory neurons (PV, parvalbumin).
Adapted from Figs 4 and 5 of Medalla and Barbas (2014).

layer IV, area 10 boutons may have a larger synaptic effect on
their targets (Germuska et al. 2006). More frequent, but smaller
boutons in layer I may provide a low tonic tone of excitation for
postsynaptic targets, including inhibitory neurons. In contrast to
feedforward projections that target the middle layers of a cortical
column, which tend to be more focally concentrated, and which
may provide a strong net excitatory effect, feedback projections,
which have a wider breadth in termination zone particularly in
layer I, may have more diverse net effects cortical microcircuitry
(Rockland and Virga 1989; Javadzadeh and Hofer 2022).

The inhibitory microsystem in superficial layers of STG likely
affects how area 10 signals gain entry into local circuitry. Like
prefrontal projections to the dorsal visual stream, the majority
of area 10 terminations targeted the spines of putative exci-
tatory neurons in STG, while the remainder targeted function-
ally distinct inhibitory neurons dependent on the layer. In pri-
mates, labeling of inhibitory neurons is often performed using
the calcium-binding proteins calbindin (CB), PV, and CR (Torres–
Gomez et al. 2020), because these markers are largely nonover-
lapping in primates, label 90% + percent of inhibitory neurons in
primate cortex, and feature some useful functional distinctions
(Condé et al. 1994; DeFelipe 1997; Wang et al. 2004; Medalla et al.
2023). In STG, layers II-III are populated in highest number by CR
neurons, followed by CB neurons, and then PV neurons (Kondo
et al. 1999). In superficial layers of primate cortex, CR neurons
are thought to have a predominantly disinhibitory role via inhi-
bition of other inhibitory neurons (DeFelipe 1997; Meskenaite
1997; Wang et al. 2004; Melchitzky et al. 2005), while CB neurons
target the dendritic tree of pyramidal apical dendrites, and PV
neurons have a perisomatic targeting pattern on pyramidal neu-
rons (DeFelipe 1997). The authors note more area 10 termination
contacts in layers II to III with CB neurons than PV neurons, and
while they did not label CR neurons, all contacts with inhibitory
neurons in layer I were CB and PV negative, suggesting the bulk
of inhibitory targets were CR positive (Medalla et al. 2007). Con-
tacts with CB neurons may sculpt activity in the apical dendritic
trees of pyramidal neurons, perhaps decreasing noisy or irrele-
vant inputs and gating sensory inputs to the working memory
network (Froudist-Walsh et al. 2021). Area 10 contacts with CR
neurons in layer I may play another important “top–down” role,

namely, in the permissive routing or gating of incoming signals,
as suggested by modeling (Yang et al. 2016) and physiological
studies (Krabbe et al. 2019). This may be a mechanism for top–
down disinhibition-mediated amplification of pertinent incom-
ing signals. Disinhibition-mediated gating may be an important
component of primate specialization, as the increase in inhibitory
neurons seen in primate cortices is driven by an expansion of
the CR class (Džaja et al. 2014). Area 10 terminations may thus
initiate local circuit mechanisms to highlight pertinent signals in
a “top–down” fashion via CR-mediated disinhibition (Yang et al.
2016), while closing the gate on distracting information via CB-
mediated inhibition (Wang et al. 2004; Froudist-Walsh et al. 2021).
As CB and CR neurons likely express distinct neuromodulatory
receptors (Tremblay et al. 2016), the mix and levels of circulating
neuromodulators in cortex (here STG) may determine whether
inhibitory or disinhibitory feedback mechanisms dominate at a
particular time.

Another opportunity for top–down modulation early in sensory
streams occurs via specialized macaque projections to the tha-
lamic reticular nucleus (TRN). The TRN is an entirely inhibitory
nucleus that gates output from other thalamic nuclei. The TRN
receives afferents from corticothalamic and thalamocortical pro-
jections, but it is positioned to dampen thalamocortical output
(Zikopoulos and Barbas 2007). Sensory cortices and their thalamic
counterparts interact with topographic TRN sectors, but elements
of the macaque prefrontal cortex interact with the breadth of
the TRN, outside the prefrontal sector (Zikopoulos and Barbas
2006). One example is the dlPFC, which does not have a rodent
homologue. Thus, the macaque PFC is specialized to recruit the
TRN to gate thalamic output in other modalities. This may be an
additional mechanism for top–down modification of activity in
sensory streams and could play an important role in estimating
decision confidence (Jaramillo et al. 2019).

The evolution of molecular mechanisms to
regulate contents of WM
The contents of working memory are further refined by
neuromodulatory influences, enhancing the coordination of
cognitive state with arousal state (Arnsten et al. 2012). Studies of
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Fig. 6. Molecular gradients aligned with the cortical hierarchy in primates. (A) As described in the text, research has shown increasing expression of
GRIN2B, CALB1, DRD1, and HTR1A encoding the GluN2B subunit of the NMDAR that closes slowly and fluxes high levels of calcium, the calcium-binding
protein, calbindin, the dopamine D1 receptor, and the serotonin 5HT1A receptor, respectively. GRIN2B (NMDAR-GluN2B) are essential to persistent dlPFC
neuronal firing during working memory. (B) The cortical hierarchy across the dorsal stream with increasing timescales across regions, from V1 to MT,
to LIP to dlPFC to ACC (anterior cingulate), areas often used to compare molecular expression levels. (C) The levels of GRIN2B expression in dlPFC
increase across primate brain evolution, adapted from Muntané et al. (2015). Figure based on Murray et al. (2014); Burt et al. (2018); Arnsten et al. (2021);
Froudist-Walsh et al. (2021); Froudist-Walsh et al. (2023).

macaque and human cortex show positive correlations between
intrinsic timescale and increasing GRIN2B (NMDAR-GluN2B) and
CALB1 (the calcium buffering protein CB) expression across the
cortical hierarchy, consistent with increasing integration and
persistent firing requiring higher levels of calcium at higher
levels of the hierarchy (Fig. 6A and B; Murray et al. 2014; Burt
et al. 2018; Arnsten et al. 2021). Indeed, there is an evolutionary
increase in GRIN2B expression in the primate dlPFC (Fig. 6C),
suggesting the increasing use of this receptor with the expansion
of abstract cognition. There are also gradients in neuromod-
ulatory receptors (Fig. 6A and B), including an increase in the
density of the dopamine (DA) D1 receptor (D1R; Froudist-Walsh
et al. 2021). However, we still need to understand how these
gradients translate to cell-specific expression, as many studies
utilized tissue homogenates or otherwise did not distinguish
cell type.

The effects of DA at D1R have received particular focus,
where decades of research have shown these actions to be
essential to dlPFC operations (Brozoski et al. 1979; Sawaguchi and
Goldman-Rakic 1994; Vijayraghavan et al. 2007; Puig and Miller
2012; Vijayraghavan et al. 2016; Wang et al. 2019). Particularly
relevant to the current discussion is the finding that optimal

levels of DA D1R stimulation in dlPFC can “sculpt” the tuning
of delay cells, by decreasing responses to nonpreferred stimuli
(Vijayraghavan et al. 2007; Fig. 7). As there is increased DA release
in dlPFC to salient events (Kodama et al. 2014), this may be an
additional mechanism by which the contents of working memory
can be tuned in accordance with arousal state. Dopamine release
in the cortex may therefore act as a signal that salient or reward-
predicting stimuli should be protected in working memory and
make it more difficult for future sensory stimuli to disrupt this
representation (Froudist-Walsh et al. 2021). With high levels of
catecholamine release as occurs during uncontrollable stress, the
dlPFC is fully disconnected, with loss of delay cell firing, switching
control of behavior to other circuits (Arnsten 2015). Thus, these
neuromodulatory actions may act in combination with top–down
projections to refine the contents of working memory, and to
orchestrate brain state in response to the environment. More
generally, neuromodulation may enable considerable flexibility
in the gating of different information into cortical networks by
flexibly enhancing or shutting off excitatory signaling at dendritic
spines and inhibition via distinct cell types. This flexible control
of connectivity pathways has been termed dynamic network
connectivity (Arnsten et al. 2010; Arnsten et al. 2012).

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/5/bhae174/7676598 by R

obert W
hitelaw

 user on 25 June 2024



Magrou et al. | 17

Fig. 7. A working model of how dopamine actions at D1R in layer III
of dlPFC may sculpt network inputs and refine the contents of working
memory. Dopamine D1R are concentrated on dendritic spines in layer III
dlPFC, often at extrasynaptic locations where they are colocalized with
ion channels that weaken network connectivity, such as HCN-slack chan-
nels (Paspalas et al. 2013; Gamo et al. 2015; Wu et al. 2024). Thus, weaker
(nonpreferred) inputs may be differentially gated out. Enhancement of
lateral inhibition from PV interneurons may also contribute to the refine-
ment of representations in working memory. Based on Vijayraghavan
et al. (2007) and Arnsten et al. (2021).

However, neuromodulation and dynamic network connectivity
do not affect the whole cortex equally. The density of most neu-
romodulatory receptor types per neuron increases systematically
along a gradient that aligns with the cortical hierarchy in the
macaque (Froudist-Walsh et al. 2023; Fig. 6). Of all 14 studied
receptor types, the dopamine D1 receptor expression has the
strongest positive correlation with the cortical hierarchy (Froud-
ist-Walsh et al. 2021). The gradient in expression of DA and
D1R across the cortical hierarchy suggests that these modulatory
mechanisms are less prevalent in V1 and increase across the
visual streams into the PFC (Froudist-Walsh et al. 2021). Indeed,
the available anatomical and physiological evidence suggests
that, in contrast to the dlPFC, macaque V1 may be less influenced
by neuromodulators (Froudist-Walsh et al. 2023), consistent with
it providing a more faithful cache of “raw data.” Thus, the DA
innervation of macaque V1 is limited to layer I (Berger et al. 1988),
with a sparse noradrenergic innervation as well (Kosofsky et al.
1984; Levitt et al. 1984; Morrison and Foote 1986). These anatom-
ical data are consistent with physiological studies showing that
local application of DA into macaque V1 has little effect on V1
neuronal firing (Zaldivar et al. 2014).

Although there appear to be little effects of DA in pri-
mate V1, cholinergic inputs may have greater influences
than the catecholamines (Coppola and Disney 2018; Krueger
and Disney 2019). Muscarinic receptors are concentrated on

GABAergic interneurons in macaque V1, and local application
of acetylcholine reduces V1 neuronal firing (Disney et al. 2012).
Indeed, muscarinic M2 receptors are an excellent, evolutionarily
conserved marker of primary sensory cortex (Zilles and Palomero-
Gallagher 2017). Interestingly, cortical areas at higher levels of
the cortical hierarchy have more extensive muscarinic receptor
expression on pyramidal cells (Disney et al. 2014), consistent with
the general theme of greater neuromodulatory influences at
higher levels of the cortical hierarchy. There is also a relatively
rich serotonergic innervation of macaque V1 (Kosofsky et al.
1984; Levitt et al. 1984; Morrison and Foote 1986), as well as high
expression of serotonergic 5HT2 receptors (Lidow et al. 1989; Zilles
and Palomero-Gallagher 2017), but the influence of serotonin
receptor mechanisms on V1 neuronal firing is currently unknown.
Little is known about serotonin actions in the macaque dlPFC
(Williams et al. 2002), and these will be important areas for future
research. The most unique pattern of expression of all receptors in
the primate brain is that of the serotonin 5-HT1A receptor, which
increases 17-fold from V1 to subgenual and anterior cingulate
(Froudist-Walsh et al. 2023; Fig. 6). Given that neuron density
decreases by almost 5-fold from V1 to frontal and cingulate
cortex (Collins et al. 2010), this enables much greater capacity
for neuromodulation of single neurons and dynamic network
connectivity in the primate prefrontal and cingulate cortex. A
similar pattern of serotonin 5-HT1A receptor expression exists
in the human and rat brain, although the gradient of expression
is noticeably flatter in the rat cortex (Froudist-Walsh et al. 2023).
Thus, in addition to a flattened connectivity hierarchy (see above),
the rodent brain may also have a flattened receptor gradient. This
could help explain findings that rodents’ primary sensory cortex
is more strongly modulated by state than the primate V1. At the
other end of the hierarchy, these results also intriguingly point
to greater capacity for flexible routing of information near the
top of the hierarchy in the primate brain compared to that of
the rodent.

Summary
In summary, emerging analyses of cortical areal connectivity
across species have revealed not only some similarities but
also many marked differences between rodent and primate
cortical organization. The convergence of connections into the
hippocampus has been a highly successful strategy for the
creation of episodic memories, conserved across species, while
larger, primate cortices have added computational space for
modular processing essential to abstraction and working memory.
Although the reduction in density of cortical connectivity in
primates has sometimes been considered a necessary sacrifice to
constrain brain size within the skull, we argue that the modular
nature of long-range connections in primate, in combination
with top–down regulation from higher areas in the cortical
hierarchy, are essential to the deconstruction and reconstruction
of information central to abstract thought. Given the pervasive
use of mouse models in neuroscience research, these funda-
mental differences in cortical organization between rodents and
primates must be appreciated if we are to effectively translate
across species.
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