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Lo CC, Wang CT, Wang XJ. Speed-accuracy tradeoff by a control
signal with balanced excitation and inhibition. J Neurophysiol 114: 650–661,
2015. First published May 20, 2015; doi:10.1152/jn.00845.2013.—A hall-
mark of flexible behavior is the brain’s ability to dynamically adjust
speed and accuracy in decision-making. Recent studies suggested that
such adjustments modulate not only the decision threshold, but also
the rate of evidence accumulation. However, the underlying neuronal-
level mechanism of the rate change remains unclear. In this work,
using a spiking neural network model of perceptual decision, we
demonstrate that speed and accuracy of a decision process can be
effectively adjusted by manipulating a top-down control signal with
balanced excitation and inhibition [balanced synaptic input (BSI)].
Our model predicts that emphasizing accuracy over speed leads to
reduced rate of ramping activity and reduced baseline activity of
decision neurons, which have been observed recently at the level of
single neurons recorded from behaving monkeys in speed-accuracy
tradeoff tasks. Moreover, we found that an increased inhibitory com-
ponent of BSI skews the decision time distribution and produces a
pronounced exponential tail, which is commonly observed in human
studies. Our findings suggest that BSI can serve as a top-down control
mechanism to rapidly and parametrically trade between speed and
accuracy, and such a cognitive control signal presents both when the
subjects emphasize accuracy or speed in perceptual decisions.

decision making; speed-accuracy tradeoff; top-down control; bal-
anced input

THE ABILITY TO DYNAMICALLY adjust speed vs. accuracy is a
salient feature of decision-making (Bogacz et al. 2010; Gold
and Shadlen 2002; Heitz 2014; Wang 2008; Wickelgren 1977):
if “to get it right” is the priority, we slow down to gather more
information and gain a better performance. On the other hand,
if time is at a premium (e.g., when detecting a predator), we
make a quick judgment at the potential cost of accuracy.
Speed-accuracy tradeoff (SAT) can result from a trial-by-trial
learning process, which is believed to depend on synaptic
plasticity and reward information in the cortex and basal
ganglia (Balci et al. 2010; Gold and Shadlen 2002; Lo and
Wang 2006; Wang et al. 2013). However, adjustment can often
be made quickly, “on the fly,” based on either task instruction,
a changing environment, or a subject’s own will (Edwards
1965; Forstmann et al. 2008; Luce 1986; Palmer et al. 2005;
Wickelgren 1977).

SAT is commonly considered in terms of adjusting a deci-
sion threshold of an integrator (Bogacz et al. 2006; Edwards
1965), such as that described by the drift diffusion model

(DDM) (Luce 1986; Ratcliff 1978). In this framework, under
speed emphasis the decision threshold is decreased, so it can be
reached faster to trigger a response, whereas accuracy empha-
sis is instantiated by an increase of the decision threshold to
integrate more information before a decision is made. The idea
of changing decision threshold is intuitively appealing and
consistent with fitting behavioral data with DDM in a number
of experiments (reviewed in Bogacz et al. 2010). However,
recent studies of SAT (Hanks et al. 2014; Heitz and Schall
2012) have revealed neuronal responses that are more complex
than predicted by the threshold-tuning hypothesis. In particu-
lar, the studies showed that the ramping rates of the neuronal
activity were modulated by the task conditions that empha-
size speed or accuracy. Latest analysis also suggested that
the behavioral and neuronal data in SAT experiments can be
explained by changing the threshold and the rate of evidence
accumulation in the system-level models, such as the drift
diffusion and the linear ballistic accumulator models (Cassey et
al. 2014; Rae et al. 2014).

Given the emerging evidence on the modulation of ramping
rates by SAT, we ask how can a spiking neural network model
be modified to accommodate such evidence with neuronal level
mechanisms? In the present study, we used a leading attractor-
based neural network model (Wang 2002), which captures the
nature of nonlinearity of neural dynamics and has been shown
to reproduce behavioral performance as well as neuronal re-
sponses in decision-making tasks (Deco and Rolls 2006; Fur-
man and Wang 2008; Liu and Wang 2008; Soltani and Wang
2006; Wang 2002; Wong and Wang 2006). Recent studies
suggested that, when considering the biological constraints, the
attractor-based circuit models out-perform an integrator when
accuracy is more important than speed (Miller and Katz 2013),
and that robust and optimal decision-making can be realized by
neuronal gain modulation in the attractor network model (Ni-
yogi and Wong-Lin 2013). Furthermore, we have shown that
the attractor dynamics and the decision behavior of the spiking
neural network model can be rapidly changed by a top-down
signal with balanced excitation and inhibition (Lo and Wang
2009; Wang et al. 2013). This balanced synaptic input (BSI)
has been observed in vivo in various nervous systems, includ-
ing the frontal cortex (Haider et al. 2006; Shu et al. 2003),
primary visual cortex (Mariño et al. 2005) and spinal cord
(Berg et al. 2007). Computational and experimental studies
have shown that BSI can affect the response property of
neurons (Anderson 2000; Burkitt et al. 2003; Hô and Destexhe
2000), and a key insight is that BSI provides a plausible
mechanism for gain modulation (Abbott and Chance 2005;
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Ayaz and Chance 2008; Brozovic et al. 2008; Chance et al.
2002; Salinas 2000; Vogels and Abbott 2009).

In this paper, we propose and show that emphasis on speed
or accuracy can be rapidly achieved by BSI as a top-down
control signal in the circuit model of decision making (Fig. 1).
In the model, emphasis on accuracy requires a top-down
signaling which, interestingly, reduces the gain of an integra-
tor. Conversely, emphasis on speed correlates with an in-
creased gain. Interestingly, this gain modulation can be real-
ized in the model by changing the condition (strength and/or
ratio of excitation and inhibition) of BSI. Moreover, our model
predicts that the ramping rate of neural integrators for infor-
mation accumulation and the baseline neural activity are lower
with accuracy emphasis, which is consistent with recent studies
in which single neurons in the lateral intraparietal area and the
frontal eye field (FEF) of behaving monkeys displayed a
reduction both in the ramping rate and the baseline activity
under accuracy compared with speed emphasis (Hanks et al.
2014; Heitz and Schall 2012).

Therefore, the neural circuit model has identified a specific
neural circuit mechanism for SAT. Our results suggest that BSI
can serve as a top-down control mechanism to rapidly and
parametrically modulate a perceptual decision. This finding
suggests a specific functional role of long-distance top-down
projection onto GABAergic inhibitory neurons, which has
recently been documented for pathways from the prefrontal
cortex to other parts of the brain (Barbas et al. 2005; Bunce and
Barbas 2011; Medalla et al. 2007).

MATERIALS AND METHODS

Perceptual decision-making task. Our decision-making model of
spiking neurons was described previously (Hsiao and Lo 2013; Lo and
Wang 2006; Wang 2002; Wang et al. 2013; Wong et al. 2007; Wong
and Wang 2006) and has been applied to different types of decision
processes (Deco et al. 2009; Wang 2008). For the sake of concrete-
ness, here we will focus on model simulations of a visual direction-
discrimination task, the random-dot motion task (Roitman and
Shadlen 2002). In the task, a subject is shown a display of randomly
moving dots. A small portion (called coherence level or motion
strength, c=) of the dots move coherently toward one of the two
possible directions, e.g., right or left. The subject is required to
determine the direction of coherent motion. The subject has to indicate
the direction by a saccadic eye movement as soon as a decision is
reached. In our model, two inputs representing the amount of right-
ward and leftward random-dot motion directions [presumably from
middle temporal area (MT) as previously reported (Britten et al.
1993)] are fed into two competing neural populations (ER and EL) in
the decision circuit model, respectively (Fig. 1). The mean spike rate
� of each input depends on the motion strength of the stimulus
linearly and follows the equations:

� � �0 � �Ac' (1)

for the direction of the coherent motion and

� � �0 � �Bc' (2)

for the opposite direction. �0 (�40 Hz) is the baseline input for the
purely random motion, c= is the coherent motion strength with a value
between 0 and 1, and �A (�120 Hz, unless otherwise stated) and �B

(�40 Hz, unless otherwise stated) are factors of proportionality. It
was reported that the population average of the slope of MT neuron
response function is 3.5 times higher in the preferred direction than in
the nonpreferred direction (or �A � 3.5 �B) (Britten et al. 1993).
Given the fact that �A and �B for individual MT neurons follow broad
distributions (Britten et al. 1993), our assumption of �A � 3 �B is not
substantially different from the observation. In the present study, we
used six levels of motion strength: 0%, 3.2%, 6.4%, 12.8%, 25.6%
and 51.2%. The decision time is defined as the time interval between
the start of the sensory input and the time when the population firing
rate of either of the populations EL or ER reaches a preset threshold
(30 Hz). This preset threshold remained unchanged throughout the
study. When comparing the model with behavioral data, we also
calculated the response time which is the summation of the decision
time and a nondecision time (tnd), which represents the neural latency
contributed by sensory and motor processes. A correct trial is defined
as the trial in which the excitatory population (EL or ER) which
receives the stronger input (�0 � �A � c=) reaches the decision
threshold first.

Neural circuit model. The computational model was described
previously (Brunel and Wang 2001; Wang 2002; Wang et al. 2013).
Briefly, the network model consists of four interconnected neural
populations ER, EL, I and NSE (Fig. 1). Each of ER and EL contains
240 excitatory neurons and receives inputs that represent the random-
dot moving toward right and left, respectively. The populations
compete against each other through the inhibitory population I, which
contains 400 inhibitory neurons. The nonselective population NSE
contains 1,100 excitatory neurons, mimicking neurons that are selec-
tive for directions other than the two choice alternatives or to other
stimuli that are irrelevant to the present study. In the model, NSE
neurons do not receive stimulus input and maintain a baseline activity
(several Hertz). The circuit model exhibits winner-take-all competi-
tion: only one of the excitatory populations (ER or EL) can win the
competition by ramping up its activity to cross the decision threshold,
whereas the other population is eventually suppressed. This behavior
resembles neuronal activity observed in the lateral intraparietal area in
monkeys when performing the random-dot task (Roitman and Shadlen

Fig. 1. A cortical circuit model of perceptual decision with the balanced
synaptic input (BSI) as a top-down control. The decision circuit consists of two
populations (EL and ER) of excitatory (E) neurons selective for choice alter-
natives, a population of inhibitory (I) interneurons and a population of
nonselective excitatory neurons (NSE). The neural populations EL and ER

receive sensory inputs and BSI and compete against each other; which of the
two reaches a threshold first determines the network’s choice in a simulated
random-dot direction discrimination task (see MATERIALS AND METHODS). The
top-down circuit consists of two pairs of E and I neural populations (Ctr1 and
Ctr2 for EL; Ctr3 and Ctr4 for ER). Each pair provides BSI to one of the
decision populations (EL or ER).
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2002; Shadlen and Newsome 2001). In the present study, the decision
populations ER and EL received additional input with balanced exci-
tation and inhibition as top-down signals from populations Ctr1 to Ctr4

(Fig. 1) (Wang et al. 2013).
Synaptic strength and background noise. All synaptic connections

between neural populations and within a neural population (recurrent
connections) are all to all, i.e., every neuron in the source population
makes synaptic connections to every neuron in the target population.
The values of synaptic efficacy g (in nS) are as follows (for excitatory
connections, values are given as gAMPA/gNMDA for currents mediated
by AMPA and NMDA receptors): gER � ER � gEL � EL � 0.09/0.297,
gER � I � gEL � I � 0.04/0.13, gER � NSE � gEL � NSE � 0.05/0.165,
gER � EL � gEL � ER � 0.04294/0.1417, gNSE � ER � gNSE � EL �
0.04294/0.1417, gNSE � I � 0.04/0.13, gNSE � NSE � 0.05/0.165,
gI � I � 1.075 and gI � ER � gI � EL � gI � NSE � 1.3975.

Each neuron in the network receives external inputs with effective
Poisson spike rate of 2,400 Hz serving as the background noise. The
background input is applied through AMPA receptor-mediated cur-
rents with a synaptic conductance of 2.1 nS for all excitatory neurons
and 1.62 nS for all inhibitory neurons. The excitatory component of
BSI is applied by the populations Ctr1 and Ctr3 to the decision
populations EL and ER, respectively, through AMPA receptors. The
inhibitory component of BSI is applied by the populations Ctr2 and
Ctr4 to the decision populations EL and ER, respectively, through
GABAA receptors.

Single-neuron and synapse models. Each neuron in the circuit model
is simulated using the leaky integrate-and-fire model. The membrane
potential V(t) for each neuron obeys the following equation:

Cm

dV�t�
dt

� �gL�V�t� � VL� � Isyn�t� (3)

where Cm is the membrane capacitance, gL is the leak conductance,
VL is the resting potential, and Isyn is the total synaptic current. When
the membrane potential V(t) of each neuron reaches a threshold
Vthreshold � �50 mV, a spike is emitted, and V(t) is set to the reset
potential Vreset � �55 mV for a refractory period Tr � 2 ms. For
inhibitory neurons, we used the following parameters: Cm � 0.2 nF,
gL � 20 nS and VL � �70 mV. For excitatory neurons, we used
Cm � 0.5 nF, gL � 25 nS and VL � �70 mV.

The synaptic current Isyn(t) includes inputs from visual stimulus
(Istimulus), other neurons in the circuit [recurrent (Irecurrent)], back-
ground noise (Inoise) and BSI (IBSI):

Isyn�t� � Istimulus�t� � Irecurrent�t� � Inoise�t� � IBSI�t� (4)

where the background noise is applied to all neuronal populations, and
visual stimulus and BSI are only applied to the populations ER and EL.
We modeled three types of receptors for synapses: AMPA, NMDA
and GABAA. They are described by:

Synaptic current � gAMPAsAMPA�t��V�t� � VE�

�
gNMDAsNMDA�t��V�t� � VE�
1 � �Mg2��e�0.062V�t�⁄3.57

� gGABAsGABA�t��V�t� � VI� (5)

where VE (�0) and VI (� �70 mV) are the reversal potentials, [Mg2�]
(�1.0 mM) is the extracellular magnesium concentration, g is the
synaptic efficacy, and s is the gating variable. Subscripts in g and s denote
the receptor type. The gating variables of the three receptors obey

dsAMPA�t�
dt

� �
k

��t � tk� �
sAMPA

�AMPA

dsNMDA�t�
dt

� ��1 � sNMDA�t���
k

��t � tk� �
sNMDA

�NMDA
(6)

dsGABA�t�
dt

� �
k

��t � tk� �
sGABA

�GABA

where the decay constants �AMPA � 2 ms, �NMDA � 100 ms and
�GABA � 5 ms; � � 0.63; �(t � tk) is the Dirac delta function; and tk

is the time of the kth presynaptic spike. We note that we did not model
the rise-time dynamics in NMDA-mediated synapses because the rise
time (�1–2 ms) is much smaller than the decay time (�100 ms),
which dominates the dynamics of the network (Wong and Wang
2006). Therefore, neglecting the rise time of NMDA receptors did not
significantly alter the dynamics of the system.

BSI. The setting of BSI generally follows the feedforward BSI
mechanism described previously (Wang et al. 2013). We emphasize
that the “balance” in BSI is not defined by any single ratio of
excitatory and inhibitory input, but depends on the membrane poten-
tial of the recipient neurons. Briefly speaking, given a ratio between
the strengths of the excitatory and inhibitory components of BSI, the
induced depolarizing and hyperpolarizing currents can cancel each
other (balanced) at a certain level of the membrane potential, VB, of
the recipient neurons. Taking the decision population EL for example,
BSI can be formalized as

IBSI � �gAMPA
Ctr1�ELsAMPA

Ctr1�EL�VB � VE�
� gGABA

Ctr2�ELsGABA
Ctr2�EL�VB � VI� � 0 (7)

Assuming that BSI provides a steady input with a mean firing rate r,
it can be easily shown that the steady input results in a mean gating
variable s � �r. Let the spike rates of the excitatory and inhibitory
components of BSI be re and ri, respectively. Hence we obtain

�gAMPA
Ctr1�EL�AMPAre�VB � VE�

� gGABA
Ctr2�EL�GABAri�VB � VI� � 0 (8)

which leads to

rigGABA
Ctr2�EL

regAMPA
Ctr1�EL

�
�AMPA�VB � VE�

��GABAi�VB � VI�
� �0.4

VB

�VB � 70�
(9)

where �GABA � 5 ms and �AMPA � 2 ms. The left side of the
equation, R � rigGABA

Ctr2�EL ⁄ regAMPA
Ctr1�EL, represents the ratio R between

the strength of inhibitory and excitatory components of BSI and is
hence defined as BSI ratio. The strength S of BSI is defined as S �
0.3regAMPA

Ctr1�EL. The purpose of multiplying regAMPA
Ctr1�EL by 0.3 was to

bring the value of the maximum working BSI strength to about 1. We
note that all parameters are symmetric between the left side (EL, Ctr1

and Ctr2) and the right side (ER, Ctr3 and Ctr4) of the neural circuit;
therefore, BSI ratio and strength for the two decision populations EL

and ER are identical. The effect of BSI is that it drives the membrane
potential toward VB which acts as an effective reversal potential.
When the membrane potential is higher than VB, BSI produces a
hyperpolarized current. If the membrane potential drops below VB, the
BSI current becomes depolarizing.

In a previous study (Wang et al. 2013), we discovered that,
depending on the BSI ratio, increasing BSI strength exhibited differ-
ent influences on speed and accuracy of decision making. When the
BSI ratio R 	 1.2 (denoted as I � E), the speed reduces and the
accuracy increases with BSI strength. In contrast, when the BSI ratio
R 
 1.156 (denoted as I 	 E), we observed an opposite trend. In the
present study, we analyzed the behavioral performance and neuronal
activity in I � E and I 	 E regions, discussed how SAT can be
realized with respect to the different BSI settings and compared the
results with experimental observations.

In the present study, we mainly tested the BSI ratio between R �
1.156 and R � 1.297, which correspond to the VB of �52 mV and
�53.5 mV, respectively. This range of membrane potential is below
the spike threshold (�50 mV) and is close to the baseline membrane
potential (approximately �53 mV) of the neurons when the network
is in its baseline state (no random-dot stimulus and no BSI).
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Model fits. We fitted the model-predicted psychometric functions to
the behavioral data in Palmer et al. (2005) by a maximum likelihood
method similar to that used in the same study. Specifically, we
maximized a log likelihood (L) function

ln�L� � �
c'

�ln LP�c'� � ln LT�c'�� (10)

where

LP�c'� �
n !

k ! �n � k� !
P�c'�k�1 � P�c'��n�k (11)

represents the likelihood of the observed performance (k correct trials
out of n total trials) given the predicted performance P(c=) at a
coherent level c= and

LT�c'� �
1

w�2�
e��t�c'� � T�c'��2⁄2w2

(12)

represents the likelihood of the observed mean response time t(c=),
given the predicted mean response time T(c=). w is a weight factor for
the fitting and is typically given by the standard error of the model-
predicted mean response time. However, the magnitude of the pre-
dicted standard error was much smaller in the high than in the low
coherence level; therefore the fitting biased toward the high coherence
levels, i.e., curves in the large c= region fitted better than in the small
c= regions. To address the issue, we used a fixed weight (w � 0.1)
which balanced the fitting between different coherence levels.

RESULTS

Ramping rate of population activity. We first checked the
effect of BSI with different values of ratio and strength on an
isolated excitatory neuron. We found that, in the I � E regime,
BSI exhibits effects that are consistent with the previous
finding (Chance et al. 2002) in which BSI reduces the response
gain of single neurons, as indicated by a shallower slope of the
input-output function [frequency-current (f-I) curve] (Fig. 2,
top left). In contrast, in the I 	 E regime we observed that

increasing BSI strength increases the response gain (Fig. 2, top
left). We next tested how BSI modulates the decision behavior
of the recurrent network model in a simulated random-dots
direction discrimination task (see MATERIALS AND METHODS). BSI
with an I � E setting significantly slows down the ramping
activity of the winning population, while BSI with an I 	 E
setting speeds up the ramping activity (Fig. 2, top right). The
change of the response gain of single neurons is magnified at
the circuit level: while the slope of the initial segment (below
10 Hz in ordinate) of the single neuron f-I curve is changed by
10–15% when the BSI strength is varied from 0 to 0.5 for both
I � E and I 	 E settings (Fig. 2, bottom left), the mean decision
time of the decision circuit is changed by 90% or more (Fig. 2,
bottom right). The mean ramping rate was estimated by divid-
ing the decision threshold (30 Hz) by the mean decision time
(the time it takes from the onset of the random-dots stimulus to
the decision threshold crossing). The dramatic difference be-
tween the effect of BSI on single neurons and on the population
activity originates from the strongly recurrent (attractor) net-
work dynamics, which amplifies considerably any slight
change in the single neuron response gain. Therefore, BSI
provides a very efficient mechanism for modulating the neural
integrator circuit.

Exponential tail of decision time distribution. Interestingly,
under the influence of BSI, the circuit model exhibits a large
trial-to-trial variability which results in a broad and skewed
decision time distribution, as observed in a number of human
behavioral studies (Heathcote et al. 1991; Hervey et al. 2006;
Luce 1986; Sigman and Dehaene 2005; Usher and McClelland
2001). We plotted the decision time distribution (the probabil-
ity density function) for each rBSI and found that, when the
mean decision time was increased by BSI, it did not simply
result from a shift of the peak of the decision time distribution,
but also was due to a change in the shape of the distribution
(Fig. 3). When BSI with an I � E setting (S � 0.5, R � 1.247)

Fig. 2. Effect of BSI on single neurons and on
the cortical circuit model. Top left: single-neu-
ron input-output relationship [frequency-current
(f-I) curve] for different BSI strengths (S) and
ratios (R). Top right: sample traces of neural
ramping activity with different BSI strengths
and ratios during the decision task. A high BSI
ratio (more inhibition) reduces the ramping rate
of the population activity which results in a
longer mean decision time, while a low BSI ratio
(more excitation) increases the ramping rate
which causes a smaller mean decision time. The
decision time is defined by the threshold (30 Hz)
crossing by the ramping neural firing rate (r),
and t � 0 indicates the onset of the stimulus.
Bottom left: mean slope of the initial segment
(below 10 Hz) of the single neuron f-I curve.
Bottom right: mean decision time as functions of
BSI strength for high BSI ratio (squares) and
low BSI ratio (circles). The change in the slope
of the f-I curve at the single neuron level is
magnified at the circuit level due to strongly
recurrent (attractor) dynamics. The stimulus mo-
tion coherence c= is 3.2% for top right and
bottom panels.

653SPEED-ACCURACY TRADEOFF BY BALANCED TOP-DOWN CONTROL

J Neurophysiol • doi:10.1152/jn.00845.2013 • www.jn.org



was applied to the circuit model, the distribution shifted to the
right, while at the same time developed a long exponential tail
compared with the no BSI condition (Fig. 3). In contrast, when
BSI with an I 	 E setting (S � 0.5, R � 1.114) was applied to
the model, the distribution shifted to the left with a more
symmetric shape.

We further found that the simulated distributions could be
well fitted by the ex-Gaussian function, which is an exponen-
tially modified Gaussian function often used to describe re-
sponse time distributions in various human decision tasks
(Ratcliff 1978, 1993; Ratcliff and Rouder 1998). The ex-
Gaussian function is the convolution of the Gaussian and the
exponential functions and has three parameters: � for the
mean, � for the standard deviation of the Gaussian component,
and � for the time constant of the exponential component. The
Gaussian component forms the peaked distribution with a
symmetric shape, while the exponential component gives rise
to a long tail. The three parameters (�, �, �) were (0.120,
0.099, 0.101), (0.345, 0.123, 0.147) and (0.500, 0.218, 0.873),
and the 
2 errors of the fittings (divided by the number of bins)
are 9.6 � 10�4, 2.0 � 10�3 and 4.1 � 10�3 for the BSI (I �
E), No BSI and BSI (I 	 E) conditions, respectively. We found
that the time constant � of the exponent component increases
with the BSI ratio. We quantified the relative contributions of
the exponential and the Gaussian components to the overall

shape of the response time distribution by calculating �/�,
which increases from 1.02 for I 	 E to 4.00 for I � E
conditions. We note that a larger contribution from the expo-
nential component produces a more skewed decision time
distribution with a long tail. To visualize the skewness of the
decision time distributions, we rescaled the distribution as
follows. Let P(t) denote the distribution of decision time t for
a given BSI condition, and tpeak be the decision time at the peak
of the distribution. We rescaled Pr(t) by calculating P(t/tpeak) �
tpeak, so that the peak positions for different BSI conditions are
aligned, while the total area of each distribution remains
unchanged. The result shows that the decision time distribu-
tions for different BSI conditions have different shapes (Fig. 3,
bottom, inset), with a larger BSI ratio giving rise to a longer
exponential tail.

SAT: behavioral performance. Our previous study (Wang et
al. 2013) showed that the speed and accuracy can be simulta-
neously adjusted by changing the BSI strength and/or the ratio
(Fig. 4, A and B). This gives a subject the flexibility to perform
SAT with a wide range of physiological settings. For example,
speed can be traded for accuracy if we change the BSI
strength while keeping the BSI ratio as a constant (path 1 in
Fig. 4, A and B). Alternatively, one can also change the BSI
ratio while keeping the BSI strength as a constant (path 2 in
Fig. 4, A and B).

We next compared the two BSI strategies (paths 1 and 2)
with the DDM. Note that, in our model, we kept the thresholds
symmetric (same for both EL and ER populations) and un-
changed (30 Hz). We plotted the performance and the decision
time as functions of stimulus motion strength for both BSI
strategies. For each strategy, we selected three settings that
produce long, medium and short mean decision times (Fig. 5, A
and B). We found that the performance and decision time
curves of both BSI strategies could be well fitted by DDM in
a way that resembled what has been observed in a study of
human SAT based on the same random-dot task (Palmer et al.
2005). In the study, the authors fitted the behavioral perfor-
mance by DDM and found that the normalized decision bound
� varies significantly if the subjects were instructed to perform
the task at different speeds, while the other fitting parameters,
sensitivity (k) and the residual time (tR), only changed slightly.
The tR (or the tnd) represents the neural latency that is not part
of the ramping activity. In the DDM, the performance P and
the mean decision time T depend on � and k by the following
equations (Palmer et al. 2005):

P�c'� �
1

1 � e�2k�c'

T �
�

kc'
tanh��kc'� � tR

where c= is the coherence level of the random dot stimulus. The
drift rate in the model is given by kc=. The normalized bound
� is derived by dividing the decision bound by the standard
deviation � of the noise. The normalization turns the model
from three parameters (decision bound, � and the tR) into two
(� and tR). To compare our model with the DDM, we fit the two
equations shown above to the simulated behavior produced by
our spiking network model with the two BSI strategies. Inter-
estingly, we found that both BSI strategies produce behavioral

Fig. 3. BSI produces a skewed decision time distribution with a long expo-
nential tail. Top: decision time distributions with BSI (S � 0.5) of different
ratios or without BSI with c= � 3.2%. High ratio BSI increases the mean
decision time by shifting the peak, as well as by producing a long right tail. The
simulated data are fitted using ex-Gaussian probability density function (solid
curves). Bottom: same distributions and curve fittings as in A but plotted in
logarithmic scale along the y-axis. Strong BSI produces a long tail following
the exponential form, in contrast to the short tail with a more symmetric form
in the case of no BSI (S � 0). Inset: to further demonstrate that the high ratio
balanced input increases the skewness of the decision time distribution, we
horizontally rescale the distributions so that the peak positions of the distri-
butions are all equal to 1.
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effects that correspond to a significant change of �, while k and
tR only changed slightly (Fig. 5C). For the constant ratio case
(R � 1.247), three different values of strength S � 0.1, 0.4, 0.6
correspond to DDM with parameters � � 0.74, 1.01, 1.46; k �
16.2, 15.2, 15.0; and tR � 136 ms, 148 ms, 154 ms,
respectively. For the constant strength case (S � 0.4), three
different values of ratio R � 1.156, 1.247, 1.297 correspond
to DDM with parameters � � 0.581, 1.01, 1.51; k � 13.5,
15.2, 13.3; and tR � 101 ms, 148 ms, 122 ms, respectively.
Therefore, at the behavioral level, changing the strength of
BSI with a constant ratio or changing the ratio with a
constant strength in the neural circuit model produce similar

effects with varying the decision bound in the DDM. In
other words, showing that the behavioral data in SAT can be
fitted by the DDM with varying � and constant k does not
necessarily mean that the accumulation rate of the underly-
ing system dynamics is invariant and the decision threshold
changes under SAT.

We took a further step by fitting our model to the behavioral
data of the subject JP in Palmer et al. (2005) with the maximum
likelihood method (Eqs. 10–12). For each task condition (fast,
neutral or accurate), we maximized the log likelihood function
(Eq. 10) by tuning the BSI strength (S), BSI ratio (R) and the
tnd, while leaving all the rest neuronal and network parameters
fixed. In addition, we tuned �A and �B (Eqs. 1 and 2) under the
constraint that they are invariant across task conditions. These
two parameters describe the relationship between the visual
stimuli and the actual inputs to the model and, therefore, affect
the shape of the psychometric functions. For each combination
of the tuning parameters, we performed 3,000 simulations trials
for every coherence levels and then calculated the performance
(proportion correct) and mean response time, which were used
to calculate the likelihood functions. We found that our model
fitted the observed performances and mean response times
reasonably well (Fig. 6A). The best-fit values of (S, R, tnd) are
(0.1, 1.114, 30 ms), (0.1, 1.407, 20 ms) and (0.225, 1.350, 0
ms) for the fast, neutral and accurate conditions, respectively.
The best values for �A and �B were found to be 114 Hz and 76
Hz, respectively, for all three conditions. The difference in the
BSI settings between the fast and the neutral conditions mainly
lies in the ratio, while both strength and ratio changed
between the neutral and the fast conditions. Intriguingly, we
found that, in addition to the mean response times, the
response time distributions of the model also match very
well to the data, in particular for the difficult tasks (low
coherence levels) (Fig. 6B).

SAT: neural activity. We have shown that adjusting BSI
settings produces SAT at the behavioral level. Next, we asked
whether the simulated neuronal activity resembles those ob-
served in primate SAT tasks. A recent monkey study (Heitz
and Schall 2012) with single-unit recordings may shed light on
the question. In the study, the authors measured activity of FEF
neurons of monkeys in a visual search task with cues for fast,
accurate or neutral responses. While the perceptual decision
task was different from the random-dot paradigm, neurons in
FEF also exhibit decision and SAT-related neural activity. In
particular, averaged firing rate of movement neurons exhibit
variable ramping rate across different SAT conditions, and
some (29%) movement neurons display SAT-dependent base-
line shifts (Fig. 7C). We analyzed the simulated neuronal
activity in our model and discovered that, while both BSI
mechanisms exhibited modulated ramping rate as in the ob-
served data, changing the BSI ratio resulted in a much larger
modulation of the baseline firing rate (Fig. 7A) than changing
the BSI strength did (Fig. 7B). Therefore, changing the BSI
ratio with a constant strength leads to the modulatory effects
that resemble observed neuronal activity (Fig. 7C).

Top-down modulation with pure excitation or inhibition. We
have demonstrated that BSI with various settings of strength
and ratio resembles the observed responses under different
speed instructions. The result poses an important question: if
the SAT can be realized in our model by slightly “unbalanced”
(I � E or I 	 E) BSI, can we achieve the same effect by simply

Fig. 4. Speed-accuracy tradeoff (SAT) can be realized in the model in different
ways. By changing BSI ratio and strength, we can achieve various levels
(indicated by color) of performance (A) and mean decision time (B). We can
divide the parameter space (strength and ratio) into two regimes. In the “more
excitation” regime (I 	 E), increasing BSI strength reduces the performance
but increases the speed, while in the “more inhibition” region (I � E),
increasing BSI strength improves the performance but reduces the speed. We
investigated two specific BSI strategies: taking the path 1 (the up-down arrow)
by changing BSI strength with fixed ratio, or the path 2 (the left-right arrow)
by changing BSI ratio with fixed strength. [Adapted from Wang et al. 2013].
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applying a small amount of input with pure excitation or
inhibition? To address the question, we replaced BSI by
synaptic input with pure excitation or inhibition. To compare
with BSI, we quantified the strength of the excitatory or
inhibitory input on the same basis: first, the synaptic weight of
the pure excitation or inhibition was the same with that used for
BSI (0.1 nS), and, second, following how we quantified the
BSI strength, we also defined the strength of the input as S �
0.3rg, where r is the input firing rate, and g is the synaptic
conductance. Our tests showed that the network model is very
sensitive to the change in the pure excitatory or inhibitory input
(Fig. 8). Although a small amount of excitation (S � 0.05) or
inhibition (S � 0.03) did improve the performance and in-
crease the decision time, slightly stronger input (0.1 for exci-
tation or 0.05 for inhibition) dramatically suppressed the ability
of the network to make a decision and led to poor performance
and increased number of nondecision trials (as labeled in Fig.

8B). The nondecision trials were characterized by two trial
outcomes: 1) failed winner-take-all competition in which both
decision populations had their firing rates ramp up simultane-
ously and sometimes prematurely; and 2) failed decisions in
which none of the decision neural populations reached the
decision threshold by the end of the trials. The sensitivity of the
network shows that purely excitatory or inhibition input does
not provide a suitable mechanism for fine control of SAT in the
noisy neural environment.

DISCUSSION

In the present study, we investigated how a top-down control
signal, implemented as BSI, modulates perceptual decisions in
a cortical circuit model, and our results are threefold. First, by
changing BSI ratio and/or strength, we can alter the slope or
rate of neural population ramping activity, resulting in faster

Fig. 5. Varying BSI strength or ratio in the neural circuit model produces the same behavioral effect as changing the decision bound (threshold) in the drift
diffusion model (DDM). A: the simulated performance (top) and mean decision time (bottom) with a constant BSI ratio (R � 1.247) but different strengths (S �
0, 0.4 and 0.6). The simulated performance and mean decision time were fitted by DDM (solid curves) using Levenberg-Marquardt algorithm (Nocedal and
Wright 2006) with weighting of 1/y, where y is the ordinate of the data. B: same as in A but with a constant strength (S � 0.4) and different ratio (R � 1.156,
1.247, 1.297). C: Three fitting parameters in the DDM, normalized decision bound (top), sensitivity (middle) and residual time (bottom), as functions of BSI
strength (black) and ratio (gray). The result showed that changing BSI settings in the cortical circuit model led to significant decision bound changes in DDM,
while the other two parameters only change slightly.

Fig. 6. The cortical circuit model fitted reasonably well to the
behavioral data in a human SAT experiment (Palmer et al.
2005). A: We varied BSI ratio, BSI strength, nondecision time,
and parameters of stimulus input (�A and �B) and then selected
the settings that maximized a log likelihood function for each of
the three task conditions (fast, neutral and accurate) for the
subject JP. B: we overlapped the simulated response time
distributions with those from the data (same subject) for c= �
3.2% and found that they matched very well in all three
conditions. We also fitted the ex-Gaussian curves (dashed lines)
to the data for comparison.
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but less accurate, or slower but more accurate decisions.
Second, SAT can be realized by different strategies: changing
either strength or ratio, or both. Third, the model-predicted
behavior can be well fitted by only varying the decision
threshold in the DDM, thereby demonstrating that behavioral
data fitting by the DDM are insufficient to conclude that the
ramping slope of neuronal activity remains the same under
speed vs. accuracy emphasis.

Our results are consistent with recent empirical studies
which observed SAT-dependent ramping rate (Hanks et al.
2014; Heitz and Schall 2012). Furthermore, another two recent
studies implemented more sophisticated approaches in model
selection and demonstrated that SAT could be accounted for by
varying the rate of information accumulation in the drift
diffusion and the linear ballistic accumulator models (Cassey et
al. 2014; Rae et al. 2014). Therefore, our neuron-level model
does not contradict those system-level models, but rather
provides more insights into neural circuit mechanisms of SAT
and paves the way for establishing links between models at the
system and neuronal levels. Although we intend to reproduce
various features of neural activity observed in SAT experi-
ments, with a few homogeneous populations, our model was

only able to qualitatively reproduce SAT modulated ramping
rate and baseline activity, such as those observed in FEF
movement neurons (Heitz and Schall 2012). It remains to be
studied how our model can be expanded to reproduces diverse
activity exhibited by different neuron types, including visual
and visuomovement neurons.

We noted that our model fits better to the response time data
at the low- than at the high-coherence levels (Fig. 6A). We
suspect that this is due to different top-down control exerted by
the subjects at different coherence levels. In the experiments
(Palmer et al. 2005), the subjects were instructed to match the
target response time for the most difficult condition (lowest
motion coherence). Therefore, the subjects experienced less
speed stress at high coherence levels and might implement
different top-down control strategies. New experimental de-
signs and more data are necessary for identifying the potential
differences in the top-down control across stimulus conditions.

We noted that the threshold in the proposed circuit model
acts more like a movement threshold which determines the
time for the downstream circuits, such as the basal ganglia, to
trigger a saccade (Hsiao and Lo 2013; Lo and Wang 2006).
Nevertheless, we would like to emphasize that our proposal of

Fig. 7. SAT via changing BSI ratio modulates baseline neural activity in a way
that is consistent with a recent primate study (Heitz and Schall 2012). A: we
calculated the trial-average r of the winning decision populations in the correct
trials for the two BSI mechanisms. By changing the BSI ratio while keeping
the strength as a constant (S � 0.4), we observed higher baseline levels evoked
by lower BSI ratio. B: the change in the baseline level is much smaller (	1 Hz)
when SAT was implemented by changing BSI strength with a constant ratio
(R � 1.247). C: a similar trend as in A was observed for movement neurons in
frontal eye field in the primate experiment (Heitz and Schall 2012). Note that
the baseline adjustment was also observed for some movement neurons, but the
effect is obscured here by averaging across neurons with and without the effect
(Heitz and Schall 2012). C is adapted from Heitz and Schall 2012 [reprinted
with permission from Elsevier].

Fig. 8. Purely excitatory or inhibitory input does not provide a better mecha-
nism of SAT than BSI due to the sensitivity of the decision circuit to the input.
A: mean decision time as functions of stimulus motion strength for different
common input conditions. The mean decision times increased dramatically
when we added a weak inhibitory input to the decision neural populations
(circles and squares). In contrast, an opposite trend was observed when we
added a weak excitatory input (diamonds and x’s). For comparison, gray lines
were added to indicate the mean decision times for the three BSI settings as in
Fig. 5B. B: performance as functions of stimulus motion strength for the same
input conditions as in A. Adding weak excitatory or inhibitory input dramat-
ically increases the percentage of nondecision trials, indicated by the numbers
next to the symbols for those with a large percentage (�5%) of nondecision
trials. For comparison, gray lines were added to indicate the performance for
the three BSI settings as in Fig. 5B.
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BSI does not necessarily exclude “threshold tuning” as a
mechanism of SAT (Hsiao and Lo 2013; Lo and Wang 2006).
In fact, two recent studies (Heitz and Schall 2012; Jantz et al.
2013) observed a variable threshold in movement-related neu-
ron across task conditions. It would be interesting to include
downstream premotor circuits in our model for threshold tun-
ing in future studies.

In addition to BSI and decision threshold tuning, several
theoretical studies have suggested that the behavioral perfor-
mance can also be controlled by various mechanisms, includ-
ing locus coeruleus modulated gain transients (Shea-Brown et
al. 2008), the urgency or timing signals (Churchland et al.
2008; Hanks et al. 2014; Standage et al. 2011, 2013), and
common excitatory input to the decision neural populations
(Furman and Wang 2008; Roxin and Ledberg 2008; Standage
et al. 2011). The urgency signal plays a top-down modulatory
role that is similar to the BSI mechanism. BSI modulates the
accelerated ramping activity exhibited by the attractor network,
while the urgency signal introduces variable acceleration to the
linear ramping activity of DDM; likewise, the Ornstein-Uhlen-
beck process with an acceleration term instead of a leakage
term (Usher and McClelland 2001) may also exhibit similar
SAT properties. It is worth to investigate, under a rigorous
mathematical framework, the correlation between these mech-
anisms and whether the proposed BSI mechanism can be
viewed as a biological implementation of the concept of
urgency signals and the accelerating Ornstein-Uhlenbeck pro-
cess. The common excitatory input can be treated as a limiting
case under the framework of the BSI in which the BSI ratio
approaches 0. When varying the common excitatory input

around a critical value that characterizes a bifurcation, the
system is very sensitive to the magnitude of the common input;
hence one can easily make a significant alteration to the system
dynamics by just a slight change in the input level. The
drawback is, as we have shown, that it is difficult to make a
precise control for the SAT if the system has a large intrinsic
noise, as in most neural systems. On the other hand, in a system
that has the capability of precise input control with small noise,
the common excitatory input may work as an alternative
mechanism of SAT. The proposal of the timing signal in
Standage et al. (2013) described a mechanism that encodes
elapsed time of a trial by a hypothetical timing network. The
mechanism can be viewed as an urgency signal in the form of
common excitatory input. We suggest that, by integrating the
BSI mechanism into the timing network, one can greatly
improve the controllability of this model in terms of SAT.

We have previously shown that BSI alters the dynamics of
the system and increases or decreases the local stability (“the
crater”) at the center of the “energy landscape” under the high
ratio (I � E) or the low ratio (I 	 E) settings, respectively
(Wang et al. 2013) (Fig. 9). The changes in the landscape
explain the changes of decision behavior as well as the changes
in the neuronal ramping activity under different BSI settings
(Wang et al. 2013). Interestingly, if we consider the landscape
before the onset of the stimulus, BSI-modulated local stability
can also explain the increased baseline firing rate with the
speed instruction, as observed in our model and in monkey
experiments (Fig. 9, A and C). Moreover, after the stimulus
onset, in the case where the local stability still exists (Fig. 9D),
the firing rate of the decision neurons exhibits a two-phase

Fig. 9. Schematic plot illustrating how neural dynamics are changed due to BSI-modulated alternation of the potential surface. The x-axis represents the difference
between the r of the two decision populations (r � rER � rEL). From the dynamic system point of view, decision making can be described as a process of falling
into one of the two basins (decision attractors) for a particle that starts from the center of an effective “energy landscape” (Wang et al. 2013; Wong and Wang
2006). The energy landscape can be estimated by calculating 
r/
t as a function of r across a large number of simulation trials. See Wang et al. 2013 for details.
A: in the no-BSI condition, there is a stable baseline state presented by a deep “crater,” or a local minimum (dashed curve), at the center of the landscape prior
to the stimulus onset. A general effect of adding a low ratio BSI is to increase the excitability of the network, represented by increased energy level at the baseline
state (rER � rEL), or a shallower center energy well (black curve) (Wang et al. 2013). As a result, the network becomes less stable, and the particle moves in
a wider range (larger x), which leads to higher baseline r for both decision populations. B: after the stimulus onset, BSI produces a sharper peak of the potential
surface. As a result, the particle falls into one of the basins quickly and leads to a shorter mean response time. C: in contrast, if a high ratio BSI is applied to
the network before the onset of the stimulus, the system becomes more stable and the center energy well is deepened. As a result, the particle moves in a narrower
range during the baseline activity, and smaller mean baseline r are observed. D: after the onset of the stimulus, the high ratio BSI again lowers the energy level
at the center, causing a local energy minimum which greatly stabilizes the network. As a result, it prolongs the time required for the particle to fall into one of
the basins and thus increases the mean response time. In A and C, gray arrows indicate the movement ranges under no-BSI condition, and black arrows are for
those under the BSI condition.
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ramping activity (Fig. 2, top right, bottom panel): a slow
ramping phase (inside the crater) followed by a fast ramping
phase (out of the crater). This property shows an interesting
parallel between BSI and the gated inhibition mechanism in
which an inhibitory control gates the activity of accumulator
units (Purcell et al. 2012). The duration of the early “slow”
phase in our model depends on the size of the crater and is,
therefore, determined by the property of BSI. The start of the
fast ramping phase in our model may correspond to the delay
onset time of movement neurons found in the FEF (Pouget et
al. 2011). Further investigations are needed to identify the
correlation between the different mechanisms.

As demonstrated in other theoretical studies of attractor
networks, changing between different attractor state greatly
affects response times (Deco et al. 2009; Deco and Rolls 2006;
Eckhoff et al. 2011; Miller and Katz 2010). Furthermore, we
have previously shown (Wang et al. 2013) that the existence of
the local stability at the center of the energy landscape is
associated with the long tail of the response time distribution.
This is because the local energy minimum temporally traps the
system in the beginning of each trial and hence partially
contributes to prolonged response times. In the present study,
we show that the long tail can be well fitted by an exponential
function. The result is intriguing, considering that highly
skewed decision time distributions with exponential tails have
been observed in various human behavioral tasks (Heathcote et
al. 1991; Hervey et al. 2006; Luce 1986; Niwa and Ditterich
2008; Ratcliff 1978; Sigman and Dehaene 2005; Usher and
McClelland 2001). On the other hand, in the random-dots
motion discrimination experiment, decision time distributions
of behaving monkeys often appear to be more Gaussian-like
(Ditterich 2006; Roitman and Shadlen 2002). Such differences
might arise for several reasons, such as the details of task
design, the amount of training, and differences across species.
Apart from these factors, our finding reported in this paper
suggests that the skewness of decision time distribution could,
in principle, be explained by a varying degree of top-down
control in the form of BSI. Further studies could be designed to
test our hypothesis.

The attractor dynamics of our model is characterized by
stronger influence of early dynamics than the later dynamics on
an ultimate choice. The property might not seem to be optimal
for a decision neural network because this implies that the
system does not integrate the signal in the entire course of a
trial. However, this property has been confirmed in a monkey
experiment (Huk and Shadlen 2005; Wong et al. 2007). Two
other important characteristics of the attractor dynamics have
also been observed in experiments: 1) the performance cannot
be improved indefinitely by increasing the stimulus viewing
time, i.e., raising the decision bound (Kiani et al. 2008); and 2)
the ramping neuronal activity exhibits a two-phase dynamics
with an early slow-ramping phase followed by a late rapid-
ramping phase (Roitman and Shadlen 2002).

In summary, our work suggests that BSI can serve as a
mechanism of top-down control that performs a rapid modu-
lation on a neural circuit of perceptual decision. One may note
that our proposal of the top-down control in the form of
balanced excitation and inhibition seems to be different from
one of our laboratory’s earlier studies (Lo et al. 2009) in which
a planned movement is suppressed by a purely excitatory
top-down control to a population of “stop” neurons. However,

this difference can be unified under a general framework by
considering our recent study (Wang et al. 2013) in which BSI
can be formed by a pure excitation that targets both excitatory
and inhibitory local neural populations. Therefore, whether the
goal is to stop an action or is to perform SAT, the top-down
control can be realized by excitatory projections to different
part of the circuit. Indeed, various studies have suggested that
the prefrontal cortex plays a critical role in top-down executive
control (Asplund et al. 2010; Isoda and Hikosaka 2007; Miller
and Cohen 2001; Ridderinkhof 2004; Tomita et al. 1999).
Long-range excitatory projections from the prefrontal cortex to
posterior cortical areas target both pyramidal cells and inhibi-
tory interneurons (Barbas et al. 2005; Bunce and Barbas 2011;
Medalla et al. 2007). The recipient inhibitory neurons could in
turn target pyramidal cells and thus instantiate the inhibitory
part of a top-down BSI (Vogels and Abbott 2009). Our work
underscores the importance of understanding the physiological
properties of such long-distance pathways, in microcircuit
details, in particular the excitation and inhibition balance of
top-down signaling by the prefrontal cortex.
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