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Flexible gating between subspaces in a
neural network model of internally guided
task switching

Yue Liu1 & Xiao-Jing Wang 1

Behavioral flexibility relies on the brain’s ability to switch rapidly between
multiple tasks, even when the task rule is not explicitly cued but must be
inferred through trial and error. The underlying neural circuit mechanism
remains poorly understood. We investigated recurrent neural networks
(RNNs) trained to perform an analog of the classic Wisconsin Card Sorting
Test. The networks consist of twomodules responsible for rule representation
and sensorimotormapping, respectively, where eachmodule is comprised of a
circuit with excitatory neurons and three major types of inhibitory neurons.
We found that rule representation by self-sustained persistent activity across
trials, error monitoring and gated sensorimotor mapping emerged from
training. Systematic dissection of trained RNNs revealed a detailed circuit
mechanism that is consistent across networks trained with different hyper-
parameters. The networks’ dynamical trajectories for different rules resided in
separate subspaces of population activity; the subspaces collapsed and per-
formance was reduced to chance level when dendrite-targeting somatostatin-
expressing interneurons were silenced, illustrating how a phenomenological
description of representational subspaces is explained by a specific circuit
mechanism.

A signature of cognitive flexibility is the ability to adapt to a
changing task demand. Oftentimes, the relevant task is not expli-
citly instructed, but needs to be inferred from previous experi-
ences. In laboratory studies, this behavioral flexibility is termed un-
cued task switching. A classic task to evaluate this ability is the
Wisconsin Card Sorting Test (WCST)1. During this task, subjects are
presented with an array of cards, each with multiple features, and
should respond based on the relevant feature dimension (i.e. the
task rule) that changes across trials. Crucially, subjects are not
instructed on when the rule changes, but must infer the currently
relevant rule based on the outcome of previous trials. This is dif-
ferent from cued rule switching paradigms where an external cue
provides information to the subjects about the relevant rule for
each trial (e.g.2,3). Intact performance on un-cued task switching
depends on higher-order cortical areas such as the prefrontal cor-
tex (PFC)4–8, which has been proposed to represent the task rule

and modulate the activity of other cortical areas along the sen-
sorimotor pathway9.

Four essential neural computations must be implemented by the
neural circuitry underlying un-cued task switching. First, it should
maintain an internal representation of the task rule across multiple
trialswhen the rule is unchanged. Second, soon after the rule switches,
the animal will inevitably make errors and receive negative feedback,
since the switches are un-cued. This negative feedback should induce
an update to the internal representation of the task rule. Third, the
neural signal about the task rule should be communicated to the brain
regions responsible for sensory processing and action selection.
Fourth, this rule signal should be integratedwith the incoming sensory
stimulus to produce the correct action. In contrast, in cued rule
switching tasks, the first two computations (rulemaintenance and rule
updating) are not required, since an external cue about the rule is
provided during every trial.
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Prior work has identified neural correlates of cognitive variables
presumed to underlie these computations including rule10,
feedback10–12 and conjunctive codes for sensory, rule, and motor
information13. In addition, different types of inhibitory neurons are
known to play different functional roles in neural computation: while
parvalbumin (PV)-expressing interneurons are suggested to underlie
feedforward inhibition14, interneurons that express somatostatin (SST)
and vasoactive intestinal peptide (VIP) have been proposed tomediate
top-down control15–18. In particular, SST and VIP neurons form a dis-
inhibitory motif19–21 that has been hypothesized to instantiate a gating
mechanism for flexible routing of information in the brain22. However,
there is currently a lack of mechanistic understanding of how these
neural representations and cell-type-specific mechanisms work toge-
ther to accomplish un-cued task switching.

To this end, we used computational modeling to formalize and
discover mechanistic hypotheses. In particular, we used tools from
machine learning to train a collection of biologically-informed recur-
rent neural networks (RNNs) to perform an analog of theWCSTused in
monkeys10,11,23. Training RNN24 does not presume a particular circuit
solution, enabling us to explore potential mechanisms. For this pur-
pose, it is crucial that the model is biologically plausible. To that end,
each RNN was set up to have two modules: a “PFC” module for rule
maintenance and switching and a “sensorimotor” module for execut-
ing the sensorimotor transformation conditioned on the rule. To
explore the potential functions of different neuronal types in this task,
each module of our network consists of excitatory neurons with
somatic and dendritic compartments as well as PV, SST and VIP inhi-
bitory neurons, where the connectivity between cell types is con-
strained by experimental data (Methods).

After training, we performed extensive dissection of the
trained models to reveal that close interplay between local and
across-area processing was essential for solving theWCST. First, we
found that abstract cognitive variables were distinctly represented
in the PFC module. In particular, two subpopulations of excitatory
neurons emerge in the PFC module - one encodes the task rule and
the other shows mixed-selectivity that nonlinearly depends on rule
and negative feedback. Notably, neurons with similar response
profiles have been reported in neurophysiological recordings of
monkeys performing the same task10,11. Second, we identified
interesting structures in the local connectivity between different
neuronal assemblies within the PFC module, which enabled us to
compress the high-dimensional PFC module down to a low-
dimensional simplified network. Importantly, the neural mechan-
ism for maintaining and switching rule representation is readily
interpretable in the simplified network. Third, we found that the
rule information in the PFC module is communicated to the sen-
sorimotor module via structured long-range connectivity patterns
along the monosynaptic excitatory pathway, the di-synaptic path-
way that involves PV neurons, as well as the trisynaptic disin-
hibitory pathway that involves SST and VIP neurons. In addition,
different dendritic branches of the same excitatory neuron in the
sensorimotor module can be differentially modulated by the task
rule depending on the sparsity of the local connections from the
dendrite-targeting SST neurons. Fourth, single neurons in the
sensorimotormodule show nonlinearmixed selectivity to stimulus,
rule and response, which crucially depends on the activity of the
SST neurons. On the population level, the neural population
activity in the sensorimotor module during different task rules
occupy nearly orthogonal subspaces, which is disrupted by silen-
cing the SST neurons. Lastly, we found structured patterns of input
and output connections for the sensorimotor module, which
enables appropriate rule-dependent action selection. These results
are consistent across dozens of trained RNNs with different types
of dendritic nonlinearities and initializations, therefore pointing to
a common neural circuit mechanism underlying the WCST.

Results
Training modular recurrent neural networks with different
types of inhibitory neurons
We trained a collection of modular RNNs to perform the WCST. Each
RNN consists of two modules: the “PFC” module receives an input
about the outcome of the previous trial, and was trained to output the
current rule; the “sensorimotor” module receives the sensory input
andwas trained to generate the correct choice (Fig. 1b). The inputs and
outputs were represented by binary vectors (Fig. 1b, Methods). Each
module was endowed with excitatory neurons with somatic and two
dendritic compartments, as well as three major types of genetically-
defined inhibitory neurons (PV, SST and VIP). Different types of neu-
rons have different inward and outward connectivity patterns con-
strained by experimental data in a binary fashion (Methods, Fig. 1b).
The somata of all neurons weremodeled as standard leaky units with a
rectified linear activation function. The activation of the dendritic
compartments, which can be viewed as a proxy for the dendritic vol-
tage, is a nonlinear sigmoidal function of the excitatory and inhibitory
inputs they receive (Methods). The specific form of the nonlinearity is
inspired by experiments showing that inhibition acts subtractively or
divisively on the dendritic nonlinearity function depending on its
relative location to the excitation along the dendritic branch25.
Therefore, we trained a collection of RNNs, each with either sub-
tractive or divisive dendritic nonlinearity, to explore the effect of
dendritic nonlinearity on the network function.

The task we trained the network on is a WCST variant used in
monkey experiments8,10,11,23 (Fig. 1a). During each trial, a reference card
with a particular color and shape is presented on the screen for 500
ms, after which three test cards appear around the reference card for
another 500ms. Each card can have one of the two colors (red or blue)
and one of the two shapes (square or triangle). A choice should be
made for the location that contains the test card that has the same
relevant feature (color or shape) as the reference card, after which
the outcomeof the trial is given, followed by an inter-trial interval. The
relevant feature to focus on, or the task rule, changes randomly every
few trials. Critically, the rule changes were not cued, requiring the
network to memorize the rule of the last trial using its own dynamics.
Therefore, the network dynamics should be carried over between
consecutive trials, rather than reset at the end of each trial as has been
done traditionally2,26. To this end, the network operated continuously
across multiple trials during training, and the loss function was
aggregated across multiple trials (Methods). We used supervised
learning to adjust the strength of all the connections (input, recurrent
and output) by minimizing the mean squared error between the out-
put of both modules and the desired output (rule for the PFC
module and response for the sensorimotor module). Notably, only the
connections between certain cell types are non-zero and can be
modified. This is achieved using a mask matrix, similar to ref. 27
(Methods).

After training converged, we tested the models by running them
continuously across 80 trials of WCST with rule switches at randomly
chosen trials. The networks made a single error after each rule switch,
and were able to quickly switch to the new rule and maintain good
performance (Fig. 1c, d). Correspondingly, single neurons from both
modules exhibited rule-modulated persistent activity that lasted sev-
eral trials (Supplementary Fig. 1).

Our networks can reliably maintain good performance after a
single correct trial in the new rule, which matches the behavior of
monkeys in some previous studies (e.g. Fig. 1e). However, the perfor-
mance of monkeys during this task showed substantial variability
across different studies as well as different sessions with a study. The
number of error trials that monkeys take to switch to the new rule
ranges from one trial to tens of trials8,10,11,23. One reason is that per-
formance typically reaches a certain criterion (e.g. 80% correct) but
not 100% before rule switching, therefore an error signal could mean
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an erroneous sensori-motor transformation rather than rule change.
Indeed, when training of our model was stopped at 80% rather than
100% accuracy, the resulting network showed gradual switching
(Fig. 1f, Methods). This point will be addressed further in the Discus-
sion section. In the following sections, we will “open the black box”
to understand the mechanism the networks used to perform
the WCST.

Two rule attractor states in the PFC module maintained by
interactions between modules
We first dissected the PFCmodule, which was trained to represent the
rule. Since there are two rules in the WCST task we used, we expected
that the PFCmodulemight have two attractor states corresponding to
the two rules. Therefore, we examined the attractor structure in the
dynamical landscape of the PFC module by initializing the network at
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states chosen randomly from the trial, and evolving the network
autonomously (without any input) for 500 time steps (which equals
5 seconds in real time). Then, the dynamics of the PFC module during
this evolutionwas visualized by applying principal component analysis
to the population activity. The PFC population activity settled into one
of two different attractor states depending on the rule that the initial
state belongs to (Supplementary Fig. 2a). Therefore, there are two
attractors in the dynamical landscape of the PFC module, corre-
sponding to the two rules.

Historically, persistent neural activity corresponding to
attractor states were first discovered in the PFC28–31. However, more
recent experiments found persistent neural activity in multiple
brain regions, suggesting that long-range connections between
brain regions may be essential for generating persistent
activity32–35. Inspired by these findings, we wondered if the PFC
module in our network could support the two rule attractor states
by itself, or that the long-range connections between the PFC and
the sensorimotor module are necessary to support them. To this
end, we lesioned the inter-modular connections in the trained
networks and repeated the simulation. Interestingly, we found that
for the majority of the trained networks (42 out of 52 for the fast
switching networks and 28 out of 28 for the slow switching net-
works), their PFC activity settled into a trivial fixed point corre-
sponding to an inactive state (Supplementary Fig. 2b, c). This result
shows that the two rule attractor states in these networks are
dependent on the interactions between the PFC and the sensor-
imotor modules, although a significant part of the excitation still
comes from local populations (Supplementary Fig. 2d).

Two emergent subpopulations of excitatory neurons in the
PFC module
For the PFC module to keep track of the currently valid rule, the
module should stay in the same rule attractor state after receiving
positive feedback, but transition to the other rule attractor state after
receiving negative feedback. We reasoned that this network function
might be mediated by single neurons that are modulated by the task
rule and negative feedback, respectively. Therefore, we set out to look
for these single neurons.

In the PFC module of the trained networks, there are indeed
neurons whose activity is modulated by the task rule in a sustained
fashion (example neurons in Supplementary Fig. 1 and Fig. 2a, top). In
contrast, there are also neurons that show transient activity only after
negative feedback. Furthermore, this activity is also rule-dependent. In
other words, their activity is conjunctively modulated by negative
feedback and the task rule (example neurons in Supplementary Fig. 1,
red trace and Fig. 2a, bottom).We termed these two classes of neurons
“rule neurons” and “conjunctive error x rule neurons” respectively.

We identified all the rule neurons and conjunctive error x rule
neurons in the PFC module using a single neuron selectivity measure
(see Methods for details). The two classes of neurons are clearly
separable on the two-dimensional plane in Fig. 2c, where the x axis is
the input weight for negative feedback, and the y axis is the rule
modulation, which is the difference in the mean activity between the
two rules (for trials following a correct trial). As shown in Fig. 2c, rule
neurons receive negligible input about negative feedback, andmanyof
them have activity modulated by rule. On the other hand, conjunctive
error x rule neurons receive a substantial amount of input about
negative feedback, yet their activity is minimally modulated by rule on
trials following a correct trial (Fig. 2b). This pattern was preserved
when aggregating across trained networks (Fig. 2c and Supplementary
Fig. 3). Interestingly, neurons with similar tuning profiles have been
reported in the PFC and posterior parietal cortex ofmacaquemonkeys
performing the same WCST analog10,11.

Across different cell types in the PFCmodule, on average 23.1% of
excitatory neurons, 57.3% of PV neurons and 38.1% of SST neurons
were classified as rule neurons in each model. Compared to excitatory
neurons, amuch smaller fractionof inhibitory neurons in the PFCwere
classified as conjunctive error x rule neurons. On average, 22.9%
excitatory neurons were conjunctive error x rule neurons in each
model, compared with 11.5% PV neurons and 5.2% SST neurons.
Therefore, we focus only on the excitatory conjunctive error x rule
neurons in the analysis below.

We alsoperformed the same analysis on the trained networks that
switch rules more slowly (e.g. Fig. 1f). In those networks there is a
weaker separation between the two subpopulations of excitatory
neurons in the PFC module (Supplementary Fig. 6a).

Maintaining and switching rule states via structured con-
nectivity patterns between subpopulations of neurons within
the PFC module
Given the existence of rule neurons and conjunctive error x rule neu-
rons, what is the connectivity between them that enables the PFC
module to stay in the same rule attractor state when receiving correct
feedback, and switch to the other rule attractor state when receiving
negative feedback?

To this end, we examined the connectivity between different
subpopulations of neurons in the PFCmodule explicitly, by computing
the mean connection strength between each pair of subpopulations.
This analysis reveals that the excitatory rule neurons and PV rule
neurons form a classic winner-take-all network architecture36 with
selective inhibitory populations37,38, where excitatory neurons pre-
ferring the same rule aremore strongly connected, and they alsomore
strongly project to PV neurons preferring the same rule (Fig. 3a). On
the other hand, PV neurons project more strongly to both excitatory

Fig. 1 |Model setupandperformance. aThe schematic of theWCST task. Subjects
are required to choose the card that matches the reference card at the center in
either shape or color, depending on a hidden rule that switches after a number of
trials. b The RNN contains a “PFC” module and a “sensorimotor” module. The PFC
module receives an input about the feedback of the previous trial, and was trained
to produce the current rule. The sensorimotor module receives the sensory input
and was trained to produce the correct choice. Each module is endowed with
excitatory neurons and three types of inhibitory neurons: PV, SST and VIP. The cell-
type-specific connectivity is constrained by experimental data (Methods). Bottom
panel shows the decomposition of the model architecture into the input and out-
put connectivity (left, magenta. The dashed line from PFC to rule represents the
fact that the PFCmodule was trained to represent the rule but there are no explicit
rule output neurons in the model), the local recurrent connectivity (middle, black)
and inter-modular connectivity (right, green). Each excitatory neuron is modeled
with a somatic and two dendritic compartments. For visual simplicity only one
dendritic compartment was shown. Inset shows the relationship between the

excitatory input onto the dendrite and the dendritic activity, for different levels of
inhibitory inputs, as well as for the two types of dendritic nonlinearities used. Arb.
units: arbitrary units; Exc: excitatory neurons; Iexc: excitatory input; Iinh: inhibitory
input. cThe performance of themodel during testing, for an example network. The
network made one error after each rule switch (red vertical lines) and quickly
recovered its performance. d Performance as a function of trial position relative to
the first correct trial after rule change, or the “shift” trial, for the same example
network as in c. e Performance of two monkeys while performing the same WCST
analog as a function of trial position relative to the shift trial. Figure adapted from
Kamigaki et al. `Neuronal Signal Dynamics during Preparation and Execution for
Behavioral Shifting in Macaque Posterior Parietal Cortex', Journal of Cognitive
Neuroscience, 23:9 (September 2011), pp. 2503-2520. ⓒ 2011 by the Massachusetts
Institute of Technology. All rights reserved. f The performance of an example
model where training was stopped before it reached perfect performance. This
model exihibits more gradual switching between rules. Error bars represent stan-
dard error of the mean across n = 100 switches.
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neurons and other PV neurons with the opposite rule preference
(Fig. 3a). This winner-take-all network motif together with the excita-
tory drive from the sensorimotor module (Supplementary Fig. 2) is
able to sustain one of the two attractor states.

Next, how are the rule neurons connected with the conjunctive
error x rule neurons such that the sub-network formed by the rule
neurons can switch from one attractor to the other in the presence of
the negative feedback input? Using the same method, we found that
the connectivity between the rule neurons and the conjunctive error x
rule neurons exhibited an interesting structure: the excitatory rule
neuronsmore strongly target the conjunctive error x rule neurons that
prefer the opposite rule; the PV rule neurons more strongly target
conjunctive error x rule neurons that prefer the same rule (Fig. 3b, top
two panels). On the other hand, the conjunctive error x rule neurons
more strongly target the excitatory and PV rule neurons that prefer the
same rule (Fig. 3b, bottom two panels).

This connectivity structure gives rise to a simple circuit diagram
of the PFC module (Fig. 3c), which leads to an intuitive explanation of
the circuit mechanism underlying the switching of rule attractor state.
For example, suppose the network is in the attractor state

corresponding to color rule, and has just received a negative feedback
and is about to switch to the attractor corresponding to the shape rule
(Fig. 3e, left). As shown in Fig. 2b, c, the input current that represents
the negative feedback mainly targets the conjunctive error x rule
neurons. In addition, since the network is in the color rule state, the
excitatory and PV neurons that prefer the color rule are more active
than those that prefer the shape rule. According to Fig. 3b (top two
panels), the excitatory neurons that prefer the color rule strongly
excite the error x shape rule neurons, and the PV neurons that prefer
the color rule strongly inhibit the error x color ruleneurons. Therefore,
the error x shape rule neurons receive stronger total excitation than
the error x color rule neurons, andwill bemore active (Fig. 3e,middle).
Their activation will in turn excite the excitatory neurons and PV
neurons that prefer the shape rule (Fig. 3b, bottom twopanels). Finally,
due to the winner-take-all connectivity between the rule populations
(Fig. 3a), the excitatory andPVneurons thatprefer the color rulewill be
suppressed, and the network will transition to the attractor state for
the shape rule (Fig. 3e, right).

It is worth noting that the same mechanism can also trigger a
transition in the opposite direction (from shape rule to color rule) in

Fig. 2 | Emergence of two subpopulations of excitatory neurons in the PFC
module after training. a Two example rule neurons (top) and conjunctive error x
rule neurons (bottom). The solid traces represent the mean activity across trials
that follow a correct trial, when those trials belong to color rule (blue) or shape rule
(green) blocks. The dashed traces represent the mean activity after error trials,
when those trials belong to color rule (blue) or shape rule (green) blocks. We use
rule 1 and color rule, as well as rule 2 and shape rule interchangeably hereafter.
b Rule neurons and conjunctive neurons are separable. The x axis represents the
input weight for negative feedback, and the y axis is the difference between the

mean activity over color rule trials and shape rule trials (for trials following a correct
trial). As shown, the rule neurons (blue points) receive little input about negative
feedback, but their activity is modulated by rule; The conjunctive error x rule
neurons (red points) receive substantial input about negative feedback, but their
activity is notmodulated by rule (during trials following a correct trial). c The trend
in b is preserved across a collection of trained networks. Here the result is shown
for networks with subtractive dendritic nonlinearity. Networks with divisive den-
dritic nonlinearity show a similar pattern (Supplementary Fig. 3).
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the presence of the same negative feedback signal. This is enabled by
the biased connections between the rule and conjunctive error x rule
populations.

Is the simplified circuit diagram (Fig. 3c) consistent across trained
networks, or different trained networks use different solutions? To
examine this question, we computed a “connectivity bias” measure
between each pair of populations for each trained network. This
measure is greater than zero if the connectivity structure between a

pair of populations is closer to the one in the simplified circuit diagram
in Fig. 3c than to the opposite (seeMethods for details). Across trained
networks, we found that the connectivity biases were mostly greater
than zero (Fig. 3d), indicating that the same circuit motif for rule
maintenance and switching underlies the PFCmodule across different
trained networks.

A similar circuit architecture exists between the excitatory neu-
rons and the SST neurons in the PFC module (Supplementary Fig. 5),

Fig. 3 | An emergent circuit wiring diagram in the PFCmodule enables un-cued
switching between rule attractor states. a The connection weight matrix
between different populations of rule neurons, for an example model. Text indi-
cates the mean connection strength between two populations. Exc: excitatory
neuron. b The connectivity between rule neurons and conjunctive error x rule
neurons, for an example model. Top left: excitatory rule neurons project more
strongly to the conjunctive error x rule neurons that prefer the opposite rule; Top
right: PV rule neurons project more strongly to conjunctive error x rule neurons
that prefer the same rule; Bottom left: conjunctive error x rule neurons project
more strongly to the excitatory rule neurons that prefer the same rule; Bottom
right: conjunctive error x rule neurons projectmore strongly to the PV rule neurons
that prefer the same rule. Exc: excitatory neuron. c The simplified circuit diagram
between ruleneurons and conjunctive neuronsbasedon the result ofb. Theweaker
connections are not drawn. Rule 1 represents the color rule and rule 2 represents

the shape rule. E: excitatory.d The connectivity biases across all trainedmodels are
mostly above 0, both for the connection among rule neurons (top) and the con-
nection between rule neurons and conjunctive error x rule neurons (bottom). Here
the results are shown for all networks with subtractive dendritic nonlinearity.
Networks with divisive dendritic nonlinearity show similar result (Supplementary
Fig. 4). E: excitatory neuron. e A schematic showing how the simplified circuit can
switch from the rule 1 attractor state to the rule 2 attractor state after receiving the
input about negative feedback. When the network is under rule 1 and negative
feedback is received, the convergent excitation onto the error x rule 2 neurons (red
arrows) and the inhibition onto error x rule 1 neurons (blue arrows) make error x
rule 2 neuronsmoreactive (left panel). They then excite the rule 2 excitatory andPV
neurons, which inhibit the currently-active rule 1 populations (middle panel). As a
result, the rule 2 populations become more active than the rule 1 populations and
the network switches to rule 2 (right panel). E: excitatory.
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where SST neurons receive stronger excitatory input from the con-
junctive error x rule neurons that prefer the same rule, and also more
strongly inhibit the error x rule neurons that prefer the same rule. In
addition, they form a winner-take-all connectivity with the rule exci-
tatory neurons by receiving stronger projections from the rule neu-
rons that prefer the same rule andprojectingbackmore strongly to the
rule neurons that prefer the opposite rule. Therefore, they contribute
to rule maintenance and switching in a similar way as the PV neurons.

When the same analysis was performed on the slow-switching
networks (e.g. Fig. 1f), we found that although the rule neurons in these
networks also form a winner-take-all connectivity structure, the con-
nectivity between error x rule neurons and rule neurons does not
exhibit the same structure as in the fast-switching models (Supple-
mentary Fig. 6b, c). Therefore, the slow-switching networks have a
similar sub-network that encodes the rule, but a poorly organized sub-
network between the error x rule and rule neurons, whichmay explain
why switching the rule takes more trial-and-error in these networks.

Top-down propagation of the rule information through struc-
tured long-range connections
Given that the PFC module can successfully maintain and update the
rule representation, how does it use the rule representation to
reconfigure the sensorimotor mapping? First, we found that neurons
in the sensorimotor module were tuned to rule (Supplementary
Fig. 7a), since they receive top-down input from the rule neurons in the
PFC module. The PFC module exerts top-down control through three
pathways: the monosynaptic pathway from the excitatory neurons in
the PFCmodule to the excitatory neurons in the sensorimotormodule,

the tri-synaptic pathway that goes through the VIP and SST neurons in
the sensorimotor module, and the di-synaptic pathway mediated by
the PV neurons in the sensorimotor module (Fig. 1b). We found that
there are structured connectivity patterns along all three pathways.
Along the monosynaptic pathway, excitatory rule neurons in the PFC
module preferentially send long-range projections to the excitatory
neurons in the sensorimotormodule thatprefer the same rule (Fig. 4a).
Along the tri-synaptic pathway, PFC excitatory rule neurons also send
long-range projections to the SST and VIP interneurons in the sen-
sorimotor module that prefer the same rule (Fig. 4b, c). The SST
neurons in turn send stronger inhibitory connections to the dendrite
of the local excitatory neurons that prefer the opposite rule (Fig. 4d).
Along the di-synaptic pathway, the PV neurons are also more strongly
targeted by PFC excitatory rule neurons that prefer the same rule
(Fig. 4e), and they inhibit more strongly the local excitatory neurons
that prefer the opposite rule (Fig. 4f). These trends are mostly pre-
served across trained networks (Supplementary Fig. 8). Therefore,
rule information is communicated to the sensorimotor module
synergistically via the mono-synaptic excitatory pathway, the tri-
synaptic pathway that involves the SST and VIP neurons, as well as the
di-synaptic pathway that involves the PV neurons, as illustrated
in Fig. 4g.

Structured input and output connections of the sensorimotor
module enable rule-dependent action selection
Given the top-down rule information from the PFC module, how does
the sensorimotormodule implement the sensorimotor transformation
(from the cards to the response to one of the three spatial locations)?

Fig. 4 | Structured top-down connections enable the propagation of the rule
information. a Each line represents the mean connection strength onto one
excitatory neuron in the sensorimotor module, from the PFC excitatory neurons
that prefer the same rule and the opposite rule. Bars represent mean across target
neurons. PFCexcitatory neurons projectmore strongly to excitatory neurons in the
sensorimotor module that prefer the same rule (one-sided Student’s t test,
p = 3.0 × 10−5, n = 88 dendritic branches. Only target neurons with a non-zero rule
selectivity were included). Exc: excitatory neurons. b. The same data but for the
connections from PFC excitatory neurons to VIP neurons in the sensorimotor
module (one-sided Student’s t test, p = 4.1 × 10−4, n = 10 VIP neurons). c The same
data but for the connections from PFC excitatory neurons to SST neurons in the
sensorimotormodule (one-sided Student’s t test, p = 4.3 × 10−5,n = 10SST neurons).
d The same data but for the connections from SST neurons to the excitatory

neurons in the sensorimotor module (one-sided Student’s t test, p =0.02, n = 88
dendritic branches. Only target neurons with a non-zero rule selectivity were
included). Exc: excitatory neurons. e The same data but for the connections from
PFC excitatory neurons to PV neurons in the sensorimotor module (one-sided
Student’s t test, p = 1.6 × 10−3, n = 10 PV neurons. f The same data but for the con-
nections from PV neurons to excitatory neurons in the sensorimotor module (one-
sided Student’s t test, p = 6.3 × 10−4, n = 44 excitatory neurons). Exc: excitatory
neurons. g The structure of the top-down connections as indicated by the results in
a–f. The weaker connections are not shown. Results in a–f are shown for an
example network with subtractive dendritic nonlinearity. Networks with divisive
and subtractive dendritic nonlinearity show similar patterns (Supplemen-
tary Fig. 8).
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We sought to identify the structures in the input, recurrent and
output connections of the sensorimotor module that give rise to this
function.

We started by observing that excitatory neurons in the sensor-
imotor module showed a continuum of encoding strengths for task
rule, response location and card features, and many neurons show
conjunctive selectivity for these variables (Fig. 5b, Supplementary
Fig. 7b). Therefore, we assigned each excitatory neuron in the sen-
sorimotor module a preferred rule R, a preferred response location L
and a preferred shared feature F, which is the feature that is present in
both the reference card and the test card at L. For example, neurons
with R = color rule, L = 1 and F = blue have the highest activity during
color rule trials when the correct response is to choose the test card at
location 1, and when that test card shares the blue color with the

reference card (it belongs to the population with the filled green color
in Fig. 5a). Intuitively, for this group of neurons to show such selec-
tivity, they should receive strong input from the input neurons that
encode the F = blue feature of the test card at location L = 1 and the
same feature for the reference card. This would enable them to detect
when the test card at L = 1 and the reference card both have the fea-
ture F = blue.

In general, for neurons that prefer rule R, response location L and
shared feature F, we can define their “preferred features” as the feature
F of the reference card and the same feature F for the test card at
location L. Across all excitatory neurons in the sensorimotor module,
we found that the connections from the input neurons that encode
these preferred features were significantly stronger than the connec-
tions from the input neurons that encode other features (Fig. 5c). In

Fig. 5 | Structures in the input and output weights of the sensorimotormodule
enable rule-dependent actionselection. a Excitatory neurons in the sensorimotor
module were classified according to their preferred rule R, response location L and
shared featureF. For example, neuronswithR = color rule, L = 1 and F = bluehave the
highest activity during color rule trials when the network chooses the test card at
L = 1, and when that card shares the F = blue feature with the reference card. For a
neuronwith a givenR, L and F, its “preferred features” aredefined as the featureFof
the reference card and same feature of the test card at location L. For example, the
preferred features for the above neurons with R = color rule, L = 1 and F = blue are
the blue feature of the reference card and the test card at L = 1. b The joint dis-
tribution of the selectivity for rule (R), response location (L) and shared feature (F)

across all neurons in the sensorimotor module. Result is aggregated across all
trained networks. c Excitatory neurons in the sensorimotor module receive stron-
ger connections from the input neurons that encode their preferred features (as
defined in a). Each line represents one excitatory neuron in the sensorimotor
module. One-sided Student’s t-test, p = 2.4 × 10−15, n = 47 neurons. d Excitatory
neurons in the sensorimotor module send stronger connections to the output
neuron that represents their preferred response location. Each line represents one
excitatory neuron in the sensorimotor module. One-sided Student’s t-test,
p = 2.3 × 10−17,n = 45neurons. Panel a shows anexample trial that illustrates how the
sensorimotor module can generate the correct response. See text for the detailed
mechanism.
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addition, there is also an intuitive structure in the output connections,
where excitatory neurons in the sensorimotor module that prefer a
particular response location send stronger connections to the output
neuron that represents the same response location (Fig. 5d). These
patterns were found to be consistent across trained networks (Sup-
plementary Fig. 9).

These structures in the input and output connections give rise to
an intuitive explanation of how the sensorimotor module can perform
rule-dependent action selection required for the WCST. Here we
illustrate this mechanism with an example trial (Fig. 5a), where the
current rule is color, the reference card is a blue circle, and the test
cards at locations 1, 2 and3 areblue triangle, red circle and red triangle,
respectively. According to the rule of WCST, the correct response
should be location 1, since the test card at that location matches the
reference card in color. This choice can be generated as follows:
the excitatory population in the sensorimotor module that prefers
R = color rule, L = 1 and F = blue will be most strongly activated since
they not only receive strong top-down excitatory input from the PFC
module, but also the strongest excitatory input from the input neu-
rons. Therefore, they are the most strongly activated population
(Fig. 5a). Since they prefer response location 1, they will activate the
output neuron that prefers response location L = 1, which is the correct
response.

Recurrent connectivity and dynamics within the
sensorimotor module
Given that different populations of neurons in the sensorimotor
module receive differential inputs about the external sensory sti-
muli and rule via the structured input and top-down connections,
how are they recurrently connected to produce dynamics that lead
to a categorical choice? To answer this, we first visualized the
population neural dynamics in the sensorimotor module by using
principal component analysis (Fig. 6a, b). As shown in Fig. 6a,
neural trajectories during the inter-trial interval are clustered
according to the task rule. During the response period, the neural
trajectories are separable according to the response locations,
albeit only in higher-order principal components (Fig. 6b). In
addition, the subspaces spanned by neural trajectories of different
rules and response locations are more orthogonal to each other
compared to randomly shuffled data (Fig. 6c, d, Methods).

What connectivity structure gives rise to this signature in the
population dynamics? To answer this, we examined the pattern of
connection weights between excitatory and PV neurons that prefer
different rules (R), response locations (L), and shared features (F) by
computing the connectivity biases between populations of neurons
that are selective todifferent rules (Fig. 6e), response locations (Fig. 6f)
and shared features (Fig. 6g). A greater than zero connectivity bias

Fig. 6 | Recurrent dynamics and connectivity within the sensorimotormodule.
aNeural trajectories during the intertrial interval (ITI) colored by rule, visualized in
the space spannedby thefirst three principal components. Black dots represent the
start of the ITI. Only trials following a correct trial were included. b Neural trajec-
tories during the response period colored by response location, visualized in the
space spanned by higher order principal components. Black dots represent the
start of the response period. Only trials following a correct trial were included.
c The principal angle between the subspaces spanned by neural trajectories during
different task rules (gray distribution represents the principal angle obtained
through shuffled data, see Methods). Each data point represents one trained net-
work. d The principal angle between the subspaces spanned by neural trajectories

during different responses (gray distribution represents the principal angle
obtained through shuffled data, see Methods). Each data point represents one
trained network. e The connectivity biases between different rule-selective popu-
lations across models. Exc: excitatory neurons. f The same as e but for different
response location-selective populations. Exc: excitatory neurons. g The same as
e but for different shared feature-selective populations. Exc: excitatory neurons. h.
The results in e–g show that neural populations selective for different rules,
response locations and shared featuresmutually inhibit each other. Data in c–g are
shown for networks with subtractive dendritic nonlinearity. Networks with divisive
dendritic nonlinearity show similar result (Supplementary Fig. 10).
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means populations that prefer different rules (or response locations or
shared features) form a winner-take-all circuit structure analogous to
the one observed between rule-selective populations in the PFC
module (c.f. top panel of Fig. 3d, details about how the connectivity
biases were computed is described in Methods). We observed that
many of the connectivity biases were significantly above zero
(Fig. 6e–g), especially for the ones that correspond to the inhibitory
connections originating from the PV neurons. This indicates that
populations of neurons in the sensorimotor module that are selective
to different rules, response locations and shared features overall
inhibit each other. This mutual inhibition circuit structure magnifies
the difference in the amount of long-range inputs that different
populations receive (Fig. 5) and leads to a categorical choice.

SST neurons are essential to dendritic top-down gating
The previous sections elucidate the key connectivity structures that
enable the network to perform the WCST. In this final section we are
going to take advantage of the biological realism of the trained RNN
and examine the function of SST neurons in this model.

It has been observed that different dendritic branches of the same
neuron can be tuned to different task variables39–42. This property may
enable individual dendritic branches to control the flowof information
into the local network19,22. Given these previous findings, we examined
the coding of the top-down rule information at the level of individual
dendritic branches. Since each excitatory neuron in our networks is
modeled with two dendritic compartments, we examined the

encoding of rule information by different dendritic branches of the
same excitatory neuron in the sensorimotor module.

One strategy of gating is for different dendritic branches of the
same neuron to prefer the same rule, in which case these neurons form
distinct populations that are preferentially recruited under different
task rules (population-level gating, Fig. 7a, right). An alternative strat-
egy is for different dendritic branches of the same neuron to prefer
different rules, which would enable these neurons to be involved in
both task rules (dendritic branch-specific gating, Fig. 7a, left).

In light of this, we examined for our trained networks to what
extent they adopt these strategies. We found that the rule selectivity
between different dendritic branches of the same neuron were highly
correlated (Fig. 7b). This indicates that the trained networks aremostly
using the population-level gating strategy, where different dendritic
branches of the same neuron encode the same rule.

What factors might determine the extent to which the trained
networks adopt these two strategies? Previous modeling work sug-
gests that sparse connectivity fromSSTneurons to the dendrites of the
excitatory neurons increases the degree of dendritic branch-specific
gating, in the case where the connectivity is random (Fig. 4f in ref. 22).
To see if the same effect is present in our task-optimized network with
structured connectivity, we re-trained networks with different levels of
sparsity from 0 to 0.8 and studied its effect on the dendritic branch
specificity of rule coding (Methods). We found that the degree of
dendritic branch-specific encoding of the task rule increased with
sparsity (see Fig. 7c, d for subtractive dendritic nonlinearity;

Fig. 7 | Examining the role of SST neurons in the sensorimotor module in top-
down gating. a Two scenarios for top-downgating. Blue and green color represent
dendritic branches that prefer one of the two rules. Different dendritic branches of
the same neuron could have similar (right) or different (left) rule selectivity. b The
rule selectivity of one dendritic branch against the other, aggregated across all
models where the connections from the SST neurons to the excitatory neurons are
all-to-all. The rule selectivity for different dendritic branchesof the sameneuron are
highly correlated. c The rule selectivity of one dendritic branch against the other,
aggregated across all models where 80% of the connections from the SST neurons
to the excitatory neurons were frozen at 0 throughout training. Note the rule
selectivity for different dendritic branches of the same neuron are less correlated
than in b. d The degree of dendritic branch-specific encoding of the task rule is
quantified as the difference in the rule selectivity between the two dendritic
branches of the same excitatory neuron in the sensorimotor module. Across all

dendritic branches, this quantity increases with the sparsity of the SST→dendrite
connectivity. Error bars represent standard error of the mean across n = 1890, 350,
490, 560, 980 pairs of dendritic branches for sparsity levels 0, 0.2, 0.4, 0.6, 0.8
respectively. e Task performance drops significantly after silencing SST neurons in
the sensorimotor module. Each line represents a trained network. f The principal
angle between rule subspaces (c.f. Fig. 6c) drops significantly after silencing SST
neurons in the sensorimotor module (One-sided Student’s t-test, p = 2.7 × 10−5,
n = 25 networks). Each line represents a trained network. g The strength of con-
junctive coding of rule and stimulus (as measured by the R2 value in a linear model
with conjunctive terms, see Methods) decreases after silencing SST neurons in the
sensorimotor module (One-sided Student’s t-test, p = 1.7 × 10−175, n = 1750 neurons).
Each line represents one neuron. Results were aggregated across networks. Results
in b-g are for networks with subtractive dendritic nonlinearity. See Supplementary
Fig. 11 for networks with divisive dendritic nonlinearity.
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Supplementary Fig. 11a for divisive dendritic nonlinearity). Intuitively,
when the connection is sparse, a smaller number of SSTneurons target
each dendritic branch, making it more likely that the branch receives
an uneven number of inputs from SST neurons selective for different
rules. Taken together, we observed that the trained networks adopted
a mixture of population-level and dendritic-level gating strategies for
top-down control, and the balance between the two strategies
depended on the sparsity of the connections from the SST neurons to
the dendrites of excitatory neurons.

Indeed, SST neurons play a causal role in relaying the top-down
rule information into the sensorimotor network and reconfiguring its
dynamics according to the task rule. We simulated optogenetic inhi-
bition by silencing the SST neurons in the sensorimotormodule, which
significantly impaired task performance (Fig. 7e, see Methods section
for details of the protocol). In addition, theprincipal angle between the
subspaces for different rules (Fig. 6c) significantly decreased after SST
neurons in the sensorimotor module were silenced for networks with
subtractive dendritic nonlinearity (Fig. 7f). This effect was not sig-
nificant for networks with divisive dendritic nonlinearity (Supple-
mentary Fig. 11c). Silencing of the SST neurons in the sensorimotor
module also significantly diminished nonlinear mixed-selective
coding of rule and stimulus among the excitatory neurons in the
sensorimotormodule (Fig. 7g, Supplementary Fig. 12,Methods), which
has been proposed to be important for rule-based sensorimotor
associations43–45. Taken together, these results highlight the role that
SST neurons in the sensorimotor module play during top-down
control. This analysis also shows that by combining artificial neural
networkwith knowledge fromneurobiology, it is possible to probe the
functions of fine-scale biological components in cognitive behaviors.

Discussion
In this paper, we analyzed recurrent neural networks trained to per-
form a classic task involving un-cued task switching—the Wisconsin
Card Sorting Test. The networks consist of a “PFC” module trained to
represent the rule and interacts with a “sensorimotor” module that
instantiates different sensorimotor mappings depending on the rule.
In order to study the functions of dendritic computation and different

neuronal types, eachmodule is endowed with excitatory neurons with
two dendritic branches as well as three major types of inhibitory
neurons—PV, SST and VIP. After training, we dissected the trained
networks to elucidate a number of intra-areal and inter-areal neural
circuit mechanisms underlying WCST, as summarized in Fig. 8.

Mapping between model components and brain regions
Different components of the trained network can be mapped to dif-
ferent brain regions (Fig. 8). While single neurons in the dorsal-lateral
PFC (DLPFC) are shown to encode the task rule46, neurons in the
anterior cingulate cortex (ACC) are thought to be important for per-
formance monitoring47, and have been shown to receive more input
about the feedback48–51. Therefore, the rule neurons and conjunctive
error x rule neurons in themodel correspond to the putative functions
of the neurons in DLPFC and ACC. The input to the PFCmodule about
negative feedback may come from subcortical areas such as the
amygdala52 or from the dopamine neurons in the substantia nigra pars
compacta (SNc) and ventral tegmental area (VTA)53,54. The sensor-
imotor module may correspond to parietal cortex or basal
ganglia which have been shown to be involved in sensorimotor
transformations55,56. The neurons in the input layer that encode the
color and shape of the card stimuli exist in higher visual areas such as
the inferotemporal cortex57–59. The neurons in the output layer that
encode different response locations could correspond to movement
location-specific neurons in the motor cortex60.

Attractor states supported by inter-areal connections
We observed that in many networks, the interaction between the two
modules was needed to sustain the two rule attractor states (Supple-
mentary Fig. 2b, c), although the majority of the excitatory input to
PFC neurons come from local population (Supplementary Fig. 2d).
Traditionally, it was thought that local interactions within the frontal
cortex are sufficient for the maintenance of the persistent activity28–31.
Recent large-scale electrophysiological recordings, on the other hand,
revealed highly distributed encoding of cognitive variables32,34,61–64. In
addition, distributed patterns of persistent activity emerge in neural
network models of multiple brain regions that are constrained by

Fig. 8 | A summary of themain results.Different components of themodel can be
mapped to different brain regions; The conjunctive error x rule neuronsmay reside
in the anterior cingulate cortex; The rule neuronsmaybe found in the dorsal-lateral
PFC; The input to the PFC module about negative feedback may come from sub-
cortical areas such as the amygdala or the midbrain dopamine neurons; The

sensorimotor module may correspond to parietal cortex or basal ganglia which
have been shown to be involved in sensorimotor transformations; Neurons in the
input layer that encode the color and shape of the card stimuli exist in higher visual
areas such as the inferotemporal cortex; Neurons in the output layer that encode
different response locations could correspond to neurons in the motor cortex.
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anatomical and neurophysiological data65,66. Despite the empirical
evidence, the functional advantages of this multi-areal encoding
scheme remain an open question.

Circuit mechanism in the frontal-parietal network for rule
maintenance and update
We found that the PFC module of the trained networks used a parti-
cular mechanism for maintaining and updating the rule that depends
on the interaction between two distinct populations of neurons that
emerge in the PFC module as a result of training: neurons that only
encode the rule, and neurons that conjunctively encode negative
feedback and rule (Fig. 3c). Neurons that show conjunctive selectivity
for rule and negative feedback have been reported in monkey pre-
frontal and parietal cortices while they perform the same WCST
task10,11. Theoretical work suggests that these mixed-selective neurons
are essential if the network needs to switch between different rule
attractor states after receiving the same input that signals negative
feedback67. In addition, this circuit mechanism is consistent across
dozens of trained networks with different initializations and dendritic
nonlinearities (Fig. 3d and Supplementary Fig. 4).

This circuit mechanism bears resemblance to a previous circuit
model of WCST68. In that model, different rules are maintained by
different “rule-coding clusters” that have self-excitatory connections
and lateral inhibitory connections, similar to the winner-take-all
attractor network between the rule neurons in our trained networks.
On the other hand, these two models use different mechanisms for
rule shifting: while in the Dehaene and Changeux model it is achieved
via synaptic desensitization caused by the convergence of two inputs
(one that signals the recent activation of the synapse, and another that
signals negative feedback), our trained networks use structured con-
nections between rule neurons and a separate population of con-
junctive error x rule to shift between rules states (c.f. Fig. 3c). Notably,
neurons that represent the conjunction of negative feedback and rule
have been reported in the frontoparietal cortices of monkeys per-
forming WCST10,11.

The simplified circuit for the PFC module in Fig. 3c can be
applied not only to rule switching, but to the switching between
other behavioral states as well. For example, it resembles the head-
direction circuit in fruit fly69, where the offset in the connections
between the neurons coding for head direction and those coding
for the conjunction of angular velocity and head direction enables
the circuit to update the head-direction attractor state using the
angular velocity input. In addition, this circuit structure may
underlie the transition from staying to switching during patch
foraging behavior. Indeed, in a laboratory task mimicking natural
foraging for monkeys, it was found that neurons in the anterior
cingulate cortex increase their firing rates to a threshold before
animals switch to another food resource70, similar to the con-
junctive error x rule neurons in our networks.

Connecting subspace to circuits
Methods that describe the representation and dynamics on the neu-
ronal population level have gained increasing popularity and gener-
ated insights that cannot be discovered using single neuron analysis
(e.g.60,71). In themeantime, it would be valuable to connect population-
level phenomena to their underlying circuit basis72. In our model, we
found that silencing of the SST neurons has a specific effect on the
population-level representation, namely, it decreased the angle
between rule subspaces (Fig. 7f). Interestingly, this effect was much
more prominent in networks with subtractive dendritic inhibition
(Fig. 7f) than divisive dendritic inhibition (Supplementary Fig. 11c).
Activating SST neurons can produce both forms of dendritic inhibi-
tion, depending on the exactly protocol used73–75. Future work is
required to understand the mechanistic link between different forms
of dendritic inhibition and the geometry of neural representation.

We also found that silencing the other types of inhibitory neurons
in the model has different effects. Silencing the PV neurons led to
runaway activity in many networks (Supplementary Fig. 11e). Silencing
the VIP neurons, on the other hand, caused no significant changes of
the task performance (Supplementary Fig. 11f). The lack of effect after
silencing the VIP neurons is due to the fact that the VIP neurons were
largely inhibited by the SST neurons in the trained networks. It is
conceivable that VIP neurons would play a more important role if
additional constraints are introduced in training RNN to produce a
robust disinhibitorymotif as observed experimentally16,19–21,76,77. Future
work could study the function of VIP neurons under more realistic
connectivity constraints between different cell types (e.g.78).

Cued versus un-cued rule switching
The task our networks were trained on is an example of un-cued rule
switching task, where the rule is not explicitly cued on each trial but
needs to be inferred from the feedback of previous trials. This differs
from cued rule switching, another commonly studied rule-based task
paradigmwhere the task rule is explicitly cuedduring each trial (e.g.2,3).
Compared to cued rule switching, additional mechanisms and neural
circuitries responsible for inferring the rule shift and maintaining the
relevant rule are needed to perform un-cued rule switching (although
monkeys could employ alternative strategies that require less cogni-
tive load for rule maintenance, as mentioned in ref. 79).

This difference in the required neural mechanisms leads to a dif-
ferenceof taskperformancebetween cued andun-cued rule switching:
while it is possible to shift rules with few errors in cued rule switching
tasks, such behavior is highly demanding in un-cued rule switching
tasks8,10. Below we will further discuss the limitation of our work in
terms of the behavior during rule switching.

Dynamics of behavior during un-cued rule switching
The fast-switching networks in this study switch rules in just one trial
(Fig. 1c, d). This fast switching agrees with the monkey behavior in
some studies11,23,79, but other studies report that monkeys switch rules
using on average tens of trials8,10. For example, in ref. 8, monkeys’
performance is at chance after a single error (Fig. 3D in ref. 8), and they
gradually use positive feedback to reinforce their behavior according
to the new rule (Fig. 4A in ref. 8). When our networkmodel was trained
to achieve less than perfect accuracy, switching after a rule change
now takes a few trials (Fig. 1f) similar to behavioral observations of
many monkey experiments. In this case, the rule-selective neurons in
the PFCmodule still form awinner-take-all attractor network, but their
connectivity pattern with the conjunctive error x rule neurons is not as
clear cut (Supplementary Fig. 6).

Indeed, in WCST and related rule switching paradigms, subjects’
performance is often not perfect even during trials when the rule is
fixed. This is possibly because during training, the rule is switchedwhen
the subjects’performance reaches a certain criterion (e.g. 85% correct in
a sequence of 20 trials in ref. 8). In that case, negative feedback can due
to either a rule switch or the inaccuracy in the sensorimotor transfor-
mation (even under the correct rule). Therefore, subjects need to
integrate information across several trials to decide whether the rule
has actually switched. For example, Purcell and Kiani80 analyzed the
behavior of humans in an environment switching task. The task has a
similar structure to theWCST analog used in this study, except that the
noise level in the stimuli varies from trial to trial. It was shown that the
behavior of subjects can be well described by a Bayesian ideal observer
model, where the evidence towards an environment switch is incre-
mented whenever the subjects make an error, and the amount of
increase depends on the difficulty of the error trial: the easier the error
trial is, themore likely that the environment has switched and the larger
the incremental evidence towards an environment switch is.

Aside from the difficulty of the task under a fixed rule, the rela-
tionship between the different rules may also play a role in how fast
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animals can switch between them. In tasks that involve simple reversal
of motor response or sensorimotor mappings, monkeys usually use a
small number of trials to switch between rules81–83. On the other hand,
for WCST with more than two rules, as is usually used for humans,
subjects typically use more trials to switch to the new rule1,84.

There are other reasons that may contribute to the suboptimality
of behavior during rule switching, including random exploration84,
poor sensitivity to negative feedback84, integration of reward history
across multiple trials12,80,85,86, the gradual update of the value of the
counterfactual rule87 or the cost of cognitive control88. Neuronal
mechanisms on longer timescales such as synaptic mechanisms89 may
be required to produce the slow switching behavior.

Other limitations of the work
The SST neurons in the PFC module of our networks are targeted by
the local VIP neurons. However, since the VIP neurons in our setup do
not receive any excitatory input, their inhibition onto SST neurons is
always released. Indeed, inhibiting the PFC VIP neurons in our the
networks didnot significantly affect task performance (Supplementary
Fig. 5f). In reality, VIP neurons in the PFC module receive long-range
connections from the mediodorsal thalamus90 which carries informa-
tion about task context91. In addition, their activity is also strongly
modulated by negative reinforcement15 as well as arousal level92, which
suggest that they receive long-range projections from subcortical
regions such as ventral tegmental area, locus coeruleus93 and the raphe
nucleus94. Including realistic models of these subcortical regions into
the current model is an interesting direction for future work.

In conclusion, our approach of incorporating neurobiological
knowledge into trainingRNNs canprovide a fruitfulway tobuild circuit
models that are functional, high-dimensional, and reflect the hetero-
geneity of biological neural networks. In addition, dissecting these
networks can make useful cross-level predictions that connect biolo-
gical ingredients with circuit mechanisms and cognitive functions.

Methods
Model setup
The RNN consists of two bidirectionally-connected modules, the PFC
module and the sensorimotor module. Each module consists of 70
excitatory neurons and 30 inhibitory neurons. Each excitatory neuron
has 2 dendritic compartments. The inhibitory neurons are evenly
divided into three types: PV, SST and VIP. Different types of neurons
have different connectivity, inspired by experimental findings77,95: PV
neurons target the somatic compartment of excitatory neurons and
other PV neurons, SST neurons target the dendritic compartment of
excitatory neurons as well as PV and VIP neurons, and VIP neurons
target SST neurons. Excitatory neurons target other excitatory neu-
rons, PV and SST neurons. The connection strength between all other
types of neurons were fixed at zero throughout training.

Only excitatory neurons send long-range projections to other
modules. The long-range projections from the sensorimotor module
to the PFCmodule target the dendritic compartment of the excitatory
neurons and the PV neurons. This is inspired by the experimental
evidence that PV neurons mediate feedforward inhibition14. The long-
range top-downprojections from the PFC to the sensorimotormodule
target the dendritic compartments of the excitatory neurons and all
three types of inhibitory neurons. Finally, external inputs to both
modules target the dendritic compartment of excitatory neurons and
PV neurons.

The dynamics of the somata of the excitatory neurons in the RNN
are described by

τ
dhesoma

dt
= � hesoma + fsomaðW rec

esoma!esomahesoma +W
rec
PV!esomahPV

+
X

dendrites
hdendriteÞ,

ð1Þ

where τ = 100 ms, dt = 10 ms. Somata of excitatory neurons in both the
sensorimotor and PFCmodules obey the same equation. Here “esoma”
stands for the somaof excitatory neurons.W rec

esoma!esoma andW rec
PV!esoma

represent the connection weight matrix between the somata of exci-
tatory neurons and from the local PV neurons to the somata of excita-
tory neurons, respectively. hesoma and hPV are the activity of the somata
of excitatory neurons and PV neurons. hdendrite is the activity of the
dendritic compartment. fsoma is the somatic nonlinear activation func-
tion which was modeled as a rectified linear function:

fsoma =
x, x >0

0, otherwise

�
ð2Þ

The dendritic activity is a nonlinear function of the excitatory and
inhibitory inputs.

hdendrite = f dendriteðIexc,IinhÞ: ð3Þ

Iexc is the total excitatory input to the dendrite. It consists of long-range
inputs from the input neurons (neurons that encode the feedback for
the PFC module and neurons that encode the stimulus for the
sensorimotor module) as well as the long-range input from the
excitatory neurons in the other module. Iexc = Iin + Icross−module. Iinh is
the inhibitory input to the dendrite from the local SST neurons.
Iinh = ISST→edend. Here “edend” stands for the dendrite of excitatory
neurons. The functional formof fdendrite is described in the next section.

The inhibitory neurons are modeled as standard point neurons.
Different types of inhibitory neurons receive different input connec-
tions. In the sensorimotor (SM) module, the dynamics of PV neurons
are described by

τ
dhSM,PV
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SM,PV!SM,PVhSM,PV
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ð4Þ

where W rec
SM,PV!SM,PV, W

rec
SM,SST!SM,PV, W

rec
SM,esoma!SM,PV are the connec-

tion weight matrices between the PV neurons, from local SST neurons
to the PV neurons, and from local excitatory neurons to the PV neu-
rons, respectively. Win→SM,PV is the input weight matrix to the PV neu-
rons, and usensory is the input to the sensorimotor module that
represents the features about the cards. WPFC,esoma→SM,PV is the top-
down connection weight matrix from the excitatory neurons in the
PFC module to the PV neurons in the sensorimotor module.

For the SST neurons,

τ
dhSM,SST

dt
= � hSM,SST + f soma W rec

SM,VIP!SM,SSThSM,VIP

�

+W rec
SM,esoma!SM,SSThSM,esoma

+W PFC,esoma!SM,SSThPFC,esoma

�
,

ð5Þ

whereW rec
SM,VIP!SM,SST andW rec

SM,esoma!SM,SST are the connection weight
matrices from local VIP neurons and excitatory neurons to the SST
neurons, and WPFC,esoma→SM,SST is the top-down connection weight
matrix from the excitatory neurons in the PFC module to the SST
neurons in the sensorimotor module.

For the VIP neurons,

τ
dhSM,VIP

dt
= � hSM,VIP + f somaðW rec

SM,SST!SM,VIPhSM,SST

+W PFC,esoma!SM,VIPhPFC,esomaÞ,
ð6Þ
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where W rec
SM,SST!SM,VIP is the connection weight matrix from the local

SST neurons to the VIP neurons, andWPFC,esoma→SM,VIP is the top-down
connection weight matrix from the excitatory neurons in the PFC
module to the VIP neurons in the sensorimotor module.

The inhibitory neurons in the PFCmodule are described by similar
equations, except only the PV neurons receive long-range bottom-up
inputs from the sensorimotor module:

τ
dhPFC,PV

dt
= � hPFC,PV + f soma W rec

PFC,PV!PFC,PVhPFC,PV

�

+W rec
PFC,SST!PFC,PVhPFC,SST

+W rec
PFC,esoma!PFC,PVhPFC,esoma

+W in!PFC,PVufeedback

+W SM,esoma!PFC,PVhSM,esoma

�
,

ð7Þ

τ
dhPFC,SST

dt
= � hPFC,SST + f soma W rec

PFC,VIP!PFC,SSThPFC,VIP

�

+W rec
PFC,esoma!PFC,SSThPFC,esoma

�
,

ð8Þ

τ
dhPFC,VIP

dt
= � hPFC,VIP + f somaðW rec

PFC,SST!PFC,VIPhPFC,SSTÞ, ð9Þ

where ufeedback represents the external input to the PFCmodule about
the feedback of the previous trial.

In practice, we used a mask matrix to enforce the connectivity
between different cell types.

W rec = j ~W recj*M +W fix, ð10Þ

where ~W rec is the unconstrained connectionweightmatrix updated by
the learning algorithm, M is a matrix consisting of 1, 0 and −1
depending on whether the corresponding connection is excitatory,
inhibitory or nonexistent.Wfix implements the fixed coupling between
the dendrite and the soma. * represents element-wise product.

Only the somata of excitatory neurons send output connections.
The output of each module is generated via a simple linear readout:

ySM =Wout,SMhSM,esoma: ð11Þ

yPFC =W out,PFChPFC,esoma: ð12Þ

Both the input and output connection weights were constrained
to be positive.

Variations in the model hyperparameters
Dendritic nonlinearities. We trained models with two types of den-
dritic nonlinearities fdendrite—subtractive and divisive. They are
inspired by in-vitro and computational studies showing different types
of inhibitory modulation on the dendritic activity depending on the
location of inhibition relative to excitation25. Both types of dendritic
nonlinearities are sigmoidal functions of the excitatory input. Under
subtractive nonlinearity, as the inhibitory input increases, the turning
point of the sigmoid function moves to larger values, consistent with
the experimental observationwhen the inhibitory current is injected at
the same location or more distal than the excitation25. For the divisive
nonlinearity, the turning point of the sigmoid is not affected by the
level of inhibition, but the saturating level of the sigmoid function
decreases with the level of inhibition, consistent with the experimental
observationwhen the inhibitory current is injected close to the soma25.

The equations of the different dendritic nonlinearities are given
by:

f subtractivedendrite ðIexc,IinhÞ= tanh Iexc � Iinh
� �

f divisivedendriteðIexc,IinhÞ= k1ð1 + tanhðIexc � 1ÞÞ+ k2,

where k1 =
1

eIinh
and k2 = � 1� tanhð�1Þ. The form of the divisive den-

dritic nonlinearity was specified such that it is divisively modulated by
Iinh (evenwhen Iexc=0), and that it is 0 onlywhen both Iexc and Iinh are0.

Initializations. The connectivitymatriceswere initialized either using a
normal distribution with mean 0 and standard deviation

ffiffiffi
2
N

q
(where N

is the total number of recurrent units) or a uniform distribution
between �

ffiffiffi
6
N

q
and

ffiffiffi
6
N

q
.

Sparsity of the SST→dendrite connectivity in the sensori
motor module. To study how the degree of dendritic branch-specific
rule encoding in the sensorimotormodule is affected by the sparsity of
the connections from SST neurons to the dendrite of excitatory neu-
rons, we varied this sparsity by fixing a fraction of randomly chosen
connections to be 0 throughout training. The sparsity levels usedwere
0, 0.2, 0.4, 0.6 and 0.8.

Random seeds. For each combination of the hyperparameter config-
uration introduced above (except the sparsity), we trained models
using 50 random seeds for Pytorch (other random seeds were fixed).
For each sparsity level other than 0, we trained models using 10 ran-
dom seeds for Pytorch.

Task
The networks were trained on an analog of theWisconsin Card Sorting
Test (WCST) used for monkeys10,11,23. Each trial starts with the pre-
sentation of a “reference card” for 500 ms, after which three “test
cards” appear around the reference card for 500 ms. Each card con-
tains an object with a specific color (blue or red) and shape (circle or
triangle). Among the three test cards, one of themmatches the colorof
the reference card, another one matches the shape of the reference
card, and the third cardmatches neither feature of the reference card.
Depending on the rule (color or shape), the location where the test
card has the same color or shape feature as the reference card should
be chosen. The choice should be made during the 500 ms when both
the reference card and the test cards are presented. At the end of this
period, a feedback signal is presented for 100 ms, indicating whether
the choice is correct or incorrect. This is followed by a 1 second inter-
trial interval.

The task rule switches after a random number of trials, without
informing the network. Therefore, the network inevitably makes an
error for the first trial after the rule switch since it has not yet received
the information that the rule has switched. The network should then
adjust its behavior to the new rule by utilizing the feedback signal.

Representation of inputs and outputs
Each card is represented as a four-dimensional binary vector, where
different entries represent the presence of the two colors and shapes.
The feedback input is a two-dimensional one-hot vector,where the two
entries represent positive andnegative feedback. The target output for
the sensorimotormodule is a three-dimensional one-hot vector,where
each entry represents one response location on the screen. This target
is non-zero only during the 500 ms response period when both the
reference card and the test cards are presented. The target output for
the PFCmodule is a two-dimensional one-hot vector, where each entry
represents one rule. This target is non-zero during the entire trial.
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Training method
During training, the networks ran continuously across 20 consecutive
trials with 3 random rule switches. Importantly, the network dynamics
were not reset during the inter-trial interval. The loss function was
aggregated across the 20 trials.

L=
X20

trial = 1

X
t

jjyPFCðtrial,tÞ � ŷruleðtrial,tÞjj2
�

+ jjySMðtrial,tÞ � ŷchoiceðtrial,tÞjj2
�
,

ð13Þ

where yPFC(trial, t) and ySM(trial, t) are the activity of the readout
neurons for the PFC and sensorimotor module at time t in a given
trial, respectively. ŷruleðtrial,tÞ is the target output for the PFC
module which represents the rule of the current trial. It is a binary
vector of dimension 2 where each entry represents one rule. The
activation of the entry that represents the correct rule is 1
throughout the entire trial. ŷchoiceðtrial,tÞ is the target output for the
sensorimotor module which represents the correct choice for the
current trial. It is a binary vector of dimension 3 where each entry
represents one of the three response locations. The activation of the
entry that represents the correct choice is 1 during the response
period (500 ms when both the reference card and the tests card
are shown).

The standard backpropogation through time algorithm96 with the
Adam optimizer97 was used to update all connection weights.

We also used curriculum learning to speed up training. Initially,
the stimulus, choice and outcome of the previous trial were all pro-
vided to the PFCmodule as input. This way all the information needed
to perform the current trial was contained within the input, and the
networks did not need to memorize past trials. During the training
phase, the networkperformed20consecutive trialswith 3 randomrule
switches, therefore the maximum performance was 85%. When the
training performance reached above 65%, we started testing the net-
work on longer trial sequences (200 consecutive trials with 10 rule
switches). The maximum performance during testing was 95%. If the
networks reached on average 90% performance during the recent 5
tests, the input about the previous stimulus was removed. When the
networks reached 90% performance again, the information about the
previous choice information was removed. The networks were then
trained until they reached 90% performance.

Lower performance criteria was used for the model trained using
early stopping (Fig. 1f). In particular, curriculum training advanced to
the next stage when the testing performance reached 80%.

Single neuron selectivity metric
The selectivity index (SI) for rule is defined as

SIrule =
hðcolorÞ � hðshapeÞ
jhðcolorÞj + jhðshapeÞj , ð14Þ

whereh(color) andh(shape) represent the trial-averaged single neuron
activity during color rule and shape rule, respectively. Neural activity
was first averaged over the inter-trial interval before further being
averaged across trials.

The error selectivity is defined similarly

SIerror =
hðafter errorÞ � hðafter correctÞ
jhðafter errorÞj+ jhðafter correctÞj , ð15Þ

where h(after error) and h(after correct) are the mean single neuron
activity after error and correct trials, respectively. Neural activity was
first averaged across the feedback presentation and inter-trial interval
periods before being averaged across trials.

The selectivity for response location is defined as

SIresponseðLÞ=
hðLÞ � hð�LÞ
jhðLÞj+ jhð�LÞj , ð16Þ

SIresponse =maxðSIresponseðL1Þ,SIresponseðL2Þ,SIresponseðL3ÞÞ, ð17Þ

where h(L) represents the mean single neuron activity during trials
where the network chooses response location L. hð�LÞ represents the
mean activity across trials when the choice of the network is not
location L. Therefore for each neuronwe can compute three selectivity
indices, one for each response location. The maximum of the three
indices was taken as the response selectivity of that neuron and was
used for Fig. 5b. This selectivity index ranges from 0 to 1. We included
neural activity during the response period when computing this
selectivity index.

Neurons that prefer color/shape rule were further divided
according to their preferred shared feature. The selectivity for the
shared feature is defined as

SIshared feature =
hðblueÞ � hðredÞ
jhðblueÞj + jhðredÞj , ð18Þ

for neurons that prefer the color rule, and

SIshared feature =
hðcircleÞ � hðtriangleÞ
jhðcircleÞj+ jhðtriangleÞj , ð19Þ

for neurons that prefer the shape rule. Here h(blue), h(red), h(circle),
h(triangle) represent the mean activity of a neuron across trials when
the reference card is blue, red (when the current rule is color), circle or
triangle (when the current rule is shape). We included neural activity
during the response period when computing this selectivity index.

Classification criteria for different neuronal populations
Each neuron in the PFC module was classified as a “rule neuron” if the
absolute value of its rule selectivity was greater than 0.5 and the
absolute value of its error selectivity was smaller than 0.5. The rest of
the neurons were classified as “error neurons” if their error selectivity
was greater than 0.5. Error neurons with greater mean activity during
the color rule trials that follow an error trial were defined as error x
color rule neurons, and the other error neuronswere defined as error x
shape rule neurons.

Each neuron in the sensorimotor module was assigned with a
preferred rule, response location and shared feature according to the
condition during which it has the highest activity. There was no
threshold for this classification. Neurons with zero activity during all
trials were excluded from the analyses.

Connectivity bias
The connectivity bias (CB) was defined as the difference in the average
connection weight between different sub-population of neurons. A
positive value indicates an agreement with the simplified circuit dia-
gram(Figs. 3c and6h). For example, the connectivity bias from the PFC
PV neurons to the PFC excitatory neurons is given by

CBðPFCPV�!PFC EÞ= �W ðPFC PV rule1�!PFC E rule2Þ
+ �W ðPFCPV rule2�!PFC E rule1Þ
� �W ð PFC PV rule1�!PFC E rule1Þ
� �W ðPFCPV rule2�!PFC E rule2Þ,

ð20Þ

where for example �W ðPFC PV rule1�!PFC E rule2Þ represents the
average (unsigned) connection strength from the PFC PV neurons that
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prefer rule 1 to PFC excitatory neurons that prefer rule 2. Here rule 1
refers to color rule and rule 2 refers to shape rule.

The other connectivity biases were defined analogously.

CBðPFC E�!PFC EÞ = �W ð PFC E rule1�!PFC E rule1Þ
+ �W ðPFC E rule2�!PFC E rule2Þ
� �W ðPFC E rule1�!PFC E rule2Þ
� �W ðPFC E rule2�!PFC E rule1Þ

ð21Þ

CBðPFC E�!PFCPVÞ = �W ð PFC E rule1�!PFC PV rule1Þ
+ �W ðPFC E rule2�!PFCPV rule2Þ
� �W ðPFC E rule1�!PFCPV rule2Þ
� �W ðPFC E rule2�!PFC PV rule1Þ

ð22Þ

CBðPFCPV�!PFCPVÞ= �W ðPFC PV rule1�!PFCPV rule2Þ
+ �W ðPFCPV rule2�!PFC PV rule1Þ
� �W ð PFC PV rule1�!PFC PV rule1Þ
� �W ðPFCPV rule2�!PFCPV rule2Þ

ð23Þ

CBðPFC E�!PFCerror x ruleÞ = �W ð PFC E rule1�!PFCerrorx rule2Þ
+ �W ðPFC E rule2�!PFC error x rule1Þ
� �W ðPFC E rule1�!PFC error x rule1Þ
� �W ðPFC E rule2�!PFCerrorx rule2Þ

ð24Þ

CBðPFCPV�!PFCerrorx ruleÞ= �W ðPFC PV rule1�!PFC error x rule1Þ
+ �W ðPFCPV rule2�!PFCerror x rule2Þ
� �W ðPFC PV rule1�!PFCerror x rule2Þ
� �W ðPFCPV rule2�!PFC error x rule1Þ

ð25Þ

CBðPFCerror x rule�!PFC EÞ= �W ðPFC error x rule1�!PFC E rule1Þ
+ �W ðPFCerror x rule2�!PFC E rule2Þ
� �W ðPFC error x rule1�!PFC E rule2Þ
� �W ðPFCerrorx rule2�!PFC E rule1Þ

ð26Þ

CBðPFCerror x rule�!PFCPVÞ = �W ð PFC error x rule1�!PFC PV rule1Þ
+ �W ðPFCerrorx rule2�!PFCPV rule2Þ
� �W ðPFC error x rule1�!PFCPV rule2Þ
� �W ðPFCerror x rule2�!PFC PV rule1Þ

ð27Þ

The connectivity biases between SST neurons and excitatory
neurons in the PFC module (Supplementary Fig. 5a–d) was defined
similarly as those for PV neurons.

The connectivity biases between the different response location-
selective populations in the sensorimotor module (SM) are defined as

CBð SM response E�!SM response EÞ = �W ðSME response 1�!SME response 1Þ
+ �W ðSME response 2�!SME response 2Þ
+ �W ðSM E response 3�!SM E response 3Þ
� �W ðSME response 1�! SM E response 2 and 3Þ
� �W ðSME response2�!SME response 1 and3Þ
� �W ðSM E response 3�!SME response 1 and2Þ:

ð28Þ

In the last equation, for example,
�W ð SM response 1�!SM response 2 and 3Þ represents the mean
connection strength from excitatory neurons in the sensorimotor
module that prefer response location 1 to those that prefer response
locations 2 and 3.

The other connectivity biases were defined similarly

CBðSM response E�!SMresponse PVÞ = �W ðSME response 1�!SMPV response 1Þ
+ �W ðSME response2�!SMPVresponse2Þ
+ �W ð SM E response 3�!SMPV response3Þ
� �W ðSME response 1�!SMPVresponse 2 and3Þ
� �W ðSME response 2�!SMPVresponse 1 and3Þ
� �W ðSM E response 3�!SMPV response 1 and2Þ:

ð29Þ

CBðSMresponse PV�!SM response EÞ= �W ðSMPV response 1�!SM E response 2 and 3Þ
+ �W ðSMPVresponse2�!SME response 1 and3Þ
+ �W ðSMPVresponse3�!SME response 1 and2Þ
� �W ðSMPVresponse 1�!SME response 1Þ
� �W ðSME response 2�!SMPVresponse 2Þ
� �W ðSM E response 3�!SMPV response 3Þ:

ð30Þ

CBðSM responsePV�!SMresponsePVÞ = �W ðSMPVresponse 1�!SMPV response 2 and3Þ
+ �W ðSMPV response2�!SMPV response 1 and3Þ
+ �W ðSMPV response3�!SMPV response 1 and2Þ
� �W ðSMPV response 1�!SMPV response 1Þ
� �W ðSMPV response 2�!SMPVresponse 2Þ
� �W ðSMPV response 3�!SMPVresponse 3Þ:

ð31Þ

The connectivity biases between the different rule-selective
populations in the sensorimotor module are defined as

CBðSMrule E�!SM rule EÞ = �W ðSME rule 1�!SME rule 1Þ
+ �W ðSME rule 2�!SME rule 2Þ
� �W ðSME rule 1�!SME rule 2Þ
� �W ðSME rule 2�!SME rule 1Þ:

ð32Þ

The other connectivity biases were defined similarly

CBðSM rule E�!SMrulePVÞ= �W ðSME rule 1�!SMPVrule 1Þ
+ �W ðSME rule 2�!SMPV rule 2Þ
� �W ðSME rule 1�!SMPV rule 2Þ
� �W ðSME rule 2�!SMPVrule 1Þ:

ð33Þ

CBðSMrulePV�!SM rule EÞ= �W ðSMPV rule 1�!SME rule 2Þ
+ �W ðSMPVrule 2�!SME rule 1Þ
� �W ðSMPVrule 1�!SME rule 1Þ
� �W ðSMPVrule 2�!SME rule 2Þ:

ð34Þ

CBðSM rule PV�!SMrulePVÞ = �W ðSMPV rule 1�!SMPV rule 2Þ
+ �W ðSMPV rule 2�!SMPVrule 1Þ
� �W ðSMPVrule 1�!SMPV rule 1Þ
� �W ðSMPVrule 2�!SMPVrule 2Þ:

ð35Þ

The connectivity biases between the different shared
feature-selective populations in the sensorimotor module
are defined similarly. For the populations selective for the two
colors

CBðSMshare feature ðcolorÞ E�!SMshared feature ðcolorÞ EÞ= �W ðSMEblue�!SMEblueÞ
+ �W ðSME red�!SME redÞ
� �W ðSMEblue�!SME redÞ
� �W ðSME red�!SMEblueÞ,

ð36Þ

where for example �W ðSMEblue�!SMEblueÞ is the average connec-
tion strength within the neural population selective for the shared
feature blue.
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The other connectivity biases were defined similarly

CBðSMshared feature ðcolorÞE�!SMshared feature ðcolorÞPVÞ= �W ðSMEblue�!SMPVblueÞ
+ �W ðSME red�!SMPV redÞ
� �W ðSMEblue�!SMPV redÞ
� �W ðSME red�!SMPVblueÞ:

ð37Þ

CBðSMshared feature ðcolorÞPV�!SMshared feature ðcolorÞ EÞ= �W ðSMPVblue�!SME redÞ
+ �W ðSMPV red�!SMEblueÞ
� �W ðSMPVblue�!SMEblueÞ
� �W ðSMPVred�!SME redÞ:

ð38Þ

CBðSMshared feature ðcolorÞPV�!SMshared feature ðcolorÞPVÞ= �W ðSMPVblue�!SMPVredÞ
+ �W ðSMPVred�!SMPVblueÞ
� �W ðSMPVblue�!SMPVblueÞ
� �W ðSMPV red�!SMPV redÞ:

ð39Þ

The connectivity biases between populations selective for differ-
ent shared shapes were defined analogously by substituting blue and
red with circle and triangle.

Simulation of the optogenetic inhibition
Optogenetic inhibition was simulated by clamping the activity of
neurons at 0 throughout the entire trial and the inter-trial interval.

Principal angle between subspaces
The principal angle between two subspaces is a generalization of angle
between lines and planes in Euclidean space to arbitrary dimensions98.
It can be computed by iteratively finding pairs of unit length “principal
vectors”, one from each subspace, that have the greatest inner pro-
duct, subject to the condition that the principal vectors are orthogonal
to all previous principal vectors99.

In computing the principal angles between different rule-selective
and response-selective subspaces, we first determined the dimen-
sionality of the subspaces using the participation ratio100. Then the
principal angles were computed using the “subspace_angles” function
from the Python package Scipy. The largest principal angle was used.

To obtain a shuffled distribution, we first randomly and evenly
split all trials belonging to a particular rule or response into twohalves.
Then, we generated two subspaces from neural trajectories during the
two group of trials. A principal angle between these two subspaceswas
then computed for each rule/response. The angles were then averaged
across all rules/responses to obtain a principal angle from shuffled
data. This processwas repeated 100 times to generate a distribution of
principal angles from shuffled data.

Assessing the strength of non-linear mixed selectivity
The extent to which neurons in the sensorimotor module encode the
conjunction of stimulus and rule in a non-linear fashion was evaluated
using the coefficient of determination of a linear regressionmodel. To
tease apart non-linear and linear mixed selectivity, we first fitted the
mean activity of each neuron during response period using a set of
regressors that represent either the rule or the stimulus alone:

FRðn,trÞ=
X
s

βn,s1ðstimðtrÞ= sÞ+
X
r

βn,r1ðruleðtrÞ= rÞ, ð40Þ

where FRðn,trÞ is the mean firing rate of neuron n during the response
epoch of trial tr. 1 is the indicator function. For example,
1ðstimðtrÞ= sÞ= 1 if the stimulus during trial tr is s, and it is 0 otherwise.

Then, another linear regression model was fitted on the residual
activity unexplained by the linear regression model above, using the

conjunction of rule and stimulus as regressors:

~FRðn,trÞ=
X
s,r

βn,s,r1ðstimðtrÞ= s,ruleðtrÞ= rÞ, ð41Þ

where ~FRðn,trÞ is thefiring rate of neuronnduring trial tr subtractedby
the predicted firing rate from themodel defined by Equation (40). The
R2 value of this regressionmodel was used to represent the strength of
non-linear mixed selectivity.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All trained networks and pre-processed data used in this study in this
study have been deposited at https://drive.google.com/drive/folders/
17LqvmcBynX0a4OtUgnkODGJKK_JFRB2Q?usp=sharing Source data
are provided with this paper.

Code availability
All computer code used to generate the results in this manuscript has
been uploaded to https://github.com/liuyuue/BioRNN_WCST,
archived in https://doi.org/10.5281/zenodo.10183167101.
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