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The synaptic balance between excitation and inhibition (E/I balance) is a fundamental principle of cortical circuits, and disruptions in
E/I balance are commonly linked to cognitive deficits such as impaired decision-making. Explanatory gaps remain in a mechanistic
understanding of how E/I balance contributes to cognitive computations, and how E/I disruptions at the synaptic level can propagate
to induce behavioral deficits. Here, we studied how E/I perturbations may impair perceptual decision-making in a biophysically-based
association cortical circuit model. We found that both elevating and lowering E/I ratio, via NMDA receptor (NMDAR) hypofunction
at inhibitory interneurons and excitatory pyramidal neurons, respectively, can similarly impair psychometric performance, following
an inverted-U dependence. Nonetheless, these E/I perturbations differentially alter the process of evidence accumulation across time.
Under elevated E/I ratio, decision-making is impulsive, overweighting early evidence and underweighting late evidence. Under lowered
E/I ratio, decision-making is indecisive, with both evidence integration and winner-take-all competition weakened. The distinct time
courses of evidence accumulation at the circuit level can be measured at the behavioral level, using multiple psychophysical task para-
digms which provide dissociable predictions. These results are well captured by a generalized drift-diffusion model (DDM) with self-
coupling, implementing leaky or unstable integration, which thereby links biophysical circuit modeling to algorithmic process model-
ing and facilitates model fitting to behavioral choice data. In general, our findings characterize critical roles of cortical E/I balance in
cognitive function, bridging from biophysical to behavioral levels of analysis.

Key words: computational model; decision making; drift-diffusion model; excitation-inhibition balance; NMDAR hypo-
function; psychophysics

Significance Statement

Cognitive deficits in multiple neuropsychiatric disorders, including schizophrenia, have been associated with alterations in
the balance of synaptic excitation and inhibition (E/I) in cerebral cortical circuits. However, the circuit mechanisms by which
E/I imbalance leads to cognitive deficits in decision-making have remained unclear. We used a computational model of deci-
sion-making in cortical circuits to study the neural and behavioral effects of E/I imbalance. We found that elevating and low-
ering E/I ratio produce distinct modes of dysfunction in decision-making processes, which can be dissociated in behavior
through psychophysical task paradigms. The biophysical circuit model can be mapped onto a psychological model of deci-
sion-making which can facilitate experimental tests of model predictions.

Introduction
The synaptic balance of excitation and inhibition (E/I balance) is
a fundamental principle of neural dynamics and computational
function in cortical circuits. At the behavioral level, perturbations
of cortical E/I balance through various experimental methods,
including pharmacology and optogenetics, can induce deficits
across a range of cognitive functions (Yizhar et al., 2011). E/I
alterations are proposed to contribute to cognitive deficits which
are prominent in multiple neuropsychiatric disorders, including
schizophrenia and autism (Krystal et al., 2003; Kehrer et al.,
2008; Lisman et al., 2008; Marin, 2012; Nakazawa et al., 2012;
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Zikopoulos and Barbas, 2013; Gao and Penzes, 2015; Lee et al.,
2016; Sohal and Rubenstein, 2019). However, there remain criti-
cal gaps in across-level understanding of computational mecha-
nisms by which synaptic-level perturbations alter circuit
dynamics to impact cognitive function.

A core cognitive function altered in neuropsychiatric disorders
is decision-making. One theoretical framework for decision-mak-
ing computations is based the accumulation of evidence across
time to form a categorical choice (Gold and Shadlen, 2007; for
nonaccumulation frameworks, cf. Cisek et al., 2009; Stine et al.,
2020). In an influential two-alternative forced-choice (2AFC) dis-
crimination paradigm, the subject must report the net direction of
motion in a random-dot stimulus, which promotes decision-mak-
ing based on integration across time of momentary perceptual evi-
dence (Shadlen and Newsome, 2001; Roitman and Shadlen, 2002;
Gold and Shadlen, 2007; Kayser et al., 2010). Neural recordings
have revealed coding of momentary evidence in sensory cortical
regions (Britten et al., 1992; Gold and Shadlen, 2007), whereas
neural activity in a distributed network including association corti-
cal areas represents accumulation of evidence and choice forma-
tion (Shadlen and Newsome, 2001; Roitman and Shadlen, 2002;
Gold and Shadlen, 2007). Random-dot motion decision-making
paradigms have been tested in patients with schizophrenia and au-
tism, and found that both clinical populations exhibit decision-
making deficits (Milne et al., 2002; Chen et al., 2003, 2004, 2005;
Koldewyn et al., 2010). These behavioral deficits could potentially
arise from differences in the evidence accumulation process in
association cortical circuits.

Computational modeling frameworks have provided valuable
insights into the dynamical mechanisms of decision-making.
The drift-diffusion model (DDM), which describes the integra-
tion of evidence as a diffusion process biased by an evidence-
related drift rate, with decision committed when the accumu-
lated evidence reaches a threshold, has been widely applied to fit
decision-making behavior (Ratcliff, 1978; Ratcliff and Rouder,
1998; Gold and Shadlen, 2007). At the level of neural circuit
mechanisms, biophysically-detailed models of association corti-
cal circuits can capture key behavioral and neurophysiological
features during decision-making (Wang, 2008). In the model of
Wang (2002), populations of selective excitatory neurons receive
separate input streams. Each population accumulates evidence
through ramping activity, because of strong recurrent excitation
mediated by NMDA receptors (NMDARs), and laterally inhibit
each other via a population of GABAergic inhibitory interneur-
ons, resulting in winner-take-all competition and categorical
choice (Wong and Wang, 2006). As biophysical models provide
circuit mechanisms underlying a cognitive function, their syn-
aptic-level detail enables study of behavioral effects of E/I
perturbations.

Here, we characterized how disruptions of cortical E/I balance
affect decision-making function in a spiking circuit model
(Wang, 2002). We found that both elevated and lowered E/I ratio
can similarly impair decision-making function, when assessed by
psychometric performance in a standard fixed-duration para-
digm. However, the two perturbed E/I regimes make dissociable
behavioral predictions for psychophysical paradigms that char-
acterize the time course of evidence accumulation (Huk and
Shadlen, 2005; Kiani et al., 2008; Nienborg and Cumming,
2009). These regimes could be well described by a general-
ized DDM that incorporates an imperfect integration process
for evidence accumulation (Bogacz et al., 2006; Brunton et
al., 2013; Shinn et al., 2020). This study links synaptic disrup-
tions to cognitive dysfunction in well-established perceptual

decision-making paradigms, and makes empirically testable
predictions for cognitive task behavior under elevated versus
lowered E/I ratio in association cortex.

Materials and Methods
Spiking circuit model
A biophysically-based spiking circuit model is used to represent an asso-
ciation cortical circuit capable of decision-making computations. The
model used is specified in full in Wang (2002), with changes from that
model described below. In brief, the circuit model consists of NE = 1600
excitatory pyramidal neurons and NI = 400 inhibitory interneurons, all
simulated as leaky integrate-and-fire neurons, which are recurrently
interconnected to each other. Recurrent excitatory connections are
mediated by both NMDAR and AMPAR conductances, and recurrent
inhibition is mediated by GABAAR conductances. Background and stim-
ulus inputs are mediated by AMPAR conductances with Poisson spike
trains. Within the excitatory neuron population are two nonoverlapping
groups, of size NE,G = 240, which are selective to evidence for a choice A
or B (e.g., left vs right), and compete with each other via lateral inhibi-
tion mediated by a population of local interneurons (Fig. 1A). The
remaining excitatory neurons are nonselective toward either choice.

Reflecting the aforementioned architecture, the connectivity pat-
terns among excitatory neurons follow a “Hebbian” form as used previ-
ously (Brunel and Wang, 2001; Wang, 2002), whereby recurrent
projections to neurons in the same selective group have a stronger syn-
aptic strength, scaled up by a factor w1 . 1. The synaptic strength to
neurons in the competing selective group and to nonselective excita-
tory neurons are scaled down by a factor w� ¼ 1� f ðw� 1Þ=ð1� f Þ

Figure 1. Model architecture and psychometric function of decision-making under pertur-
bations of synaptic E/I balance. A, Recurrent cortical circuit architecture of the decision-mak-
ing model. Within excitatory neurons there are two selective populations, A and B, which
receive stimulus inputs which vary as a function of stimulus coherence (right). Excitatory neu-
rons within each selective population are interconnected via strong recurrent glutamatergic
synapses. Net suppressive interaction between the selective populations is mediated by a
population of inhibitory interneurons (I), which provide feedback and lateral inhibition to the
excitatory neurons. B, E/I perturbations via NMDAR hypofunction at recurrent excitatory syn-
apses. NMDAR hypofunction on excitatory neurons (E), reducing GE!E, lowers E/I ratio.
Conversely, NMDAR hypofunction on inhibitory interneurons (I), reducing GE!I, elevates E/I
ratio via disinhibition.
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for f ¼ NE;G=NE ¼ 0:15, to preserve the total recurrent excitatory pro-
jection strength. The connections from nonselective neurons to all
excitatory neurons are unstructured (w1 ¼ w� ¼ 1). In addition, the
connectivity pattern between excitatory and inhibitory neurons, and
among inhibitory neurons, is also unstructured.

Stimulus
During stimulus presentation, input signals reflecting sensory evidence,
putatively from an upstream area, are projected into the two selective
neuron groups in the form of Poisson spike trains, whose differential
spike rates represent momentary net sensory evidence in experiments.
The strength of perceptual evidence is parameterized continuously by
the coherence of the stimulus; 100%-coherence stimuli, corresponding
to all perceptual evidence in favor of one choice, are simulated by maxi-
mal (minimal) input to the preferred (anti-preferred) population; 0%-
coherence stimuli are simulated by equal input to both populations (Fig.
1A). In the example of the random dot motion stimuli, a 100%-coher-
ence stimulus corresponds to all dots moving coherently in one direc-
tion, whereas a 0%-coherence stimulus corresponds to dots moving
incoherently with no net global motion (Britten et al., 1992; Shadlen and
Newsome, 2001; Roitman and Shadlen, 2002). To simulate the momen-
tary sensory representation of motion signals from a random-dot
motion stimulus, such as in area MT (Britten et al., 1992), spike rates for
sensory inputs to the two groups of excitatory neurons are given by:

mA;B ¼ m0 16r c9ð Þ; (1)

where m0 is the overall stimulus strength, r is the upstream modulation
parameter set to 1 by default, and c9 is the stimulus coherence (Wang,
2002). Of note, this idealization of symmetric coherence dependence in
Equation 1 is not exhibited by many neurons in area MT, which tend to
show a larger increase for preferred motion direction than decrease for
anti-preferred motion direction (Britten et al., 1993).

Choice readout
Simulation of the circuit model outputs spike-train data for the two exci-
tatory populations, which are then converted to population activity, with
a 0.001-s time-step, temporally smoothed by a causal exponential filter.
In particular, for each spike of a given neuron, the histogram-bins corre-
sponding to times before that spike receives no weight, while the histo-
gram-bins corresponding to times after the spike receives a weight
proportional to exp �Dt=t filter

� �
, where Dt is the time of the histogram-

bin after the spike, and t filter = 20ms. The total weights because of each
spike is then normalized to sum to 1.

In general, stimulus input drives categorical, winner-take-all compet-
itions such that the winning population will reach persistent activity of
high firing rate (.30Hz, in comparison to the baseline firing rate of
;1.5Hz), while suppressing the activity of the other population below
baseline via lateral inhibition. To simulate 2AFC decision-making, a
choice is selected when the corresponding population’s firing rate
crosses a threshold level (here, 15Hz). It is also possible on a given trial
that neither population crosses the decision threshold, which we denote
here as an “indecision” trial. In that case, the behavioral response is
selected randomly. This choice readout directly follows the implementa-
tion of Wang (2002). We set the probability of this random response to
A versus B to be equal. If this probability is set asymmetrically, it can
capture a subject’s bias for one response in the absence of stimulus-
driven choice selection. We note that an asymmetric probability of
downstream response on indecision trials does not impact the overall
choices’ time course of sensitivity to evidence.

Synaptic perturbations
The synaptic conductance parameters of the spiking circuit model were
perturbed, from a “control” parameter set, to examine the impact of
alterations in E/I balance. Specifically, E/I perturbations were imple-
mented through hypofunction of NDMARs at two sites: on inhibitory
interneurons (I-cells), or on excitatory pyramidal neurons (E-cells; Fig.
1B). NMDAR hypofunction on I-cells (reduced GE!I) results in elevated
E/I ratio because of disinhibition. Conversely, NMDAR hypofunction

on E-cells (reduced GE!E) results in lowered E/I ratio. The perturbed
models were also compared with an “upstream deficit” model which has
weakened incoming signals of momentary sensory evidence. The
upstream deficit model is the same as the control model, but with r =
0.5 in Equation 1, representing reduced selectivity of sensory coding in
upstream sensory areas.

The remaining details of the model are described in Wang (2002),
with the following adjustments to the original parameters, which were
made to enhance the stability of the baseline and persistent-activity states
when subject to E/I perturbations. To stabilize the persistent-activity
states against reductions of GE!E, we increased w1 to 1.84 from 1.70. To
stabilize the baseline state against reductions of GE!I, we reduced the
external AMPAR conductance (gext,AMPA) to 2.07 nS from 2.1 nS.
Finally, we changed the stimulus strength m0 to 38Hz from 40Hz. For
our default synaptic perturbation magnitudes, GE!I is reduced by 3% in
the “elevated E/I” circuit, and GE!E is reduced by 2% in the “lowered
E/I” circuit. These perturbation magnitudes preserve the stabilities, in
the absence of stimulus input, of the low-activity baseline state and the
high-activity memory state.

Stability criteria
The perturbations to E/I balance are such that both the high-activity
memory states and the low-activity baseline state are stable over time. To
determine the stability of the low-activity baseline state, for various per-
turbations of GE!E and GE!I, we performed 10 sets of 5-s simulations
for each condition of GE!E and GE!I perturbation, with no stimulus
inputs provided to any neurons. The circuit baseline state is labeled
unstable if in the majority of the simulations it destabilizes, i.e., one of
the two groups of excitatory neurons transitions from the baseline state
to the high-activity memory state (.30-Hz firing rate) without stimulus
input; otherwise, the circuit baseline state is considered stable. We note
that these spiking neural circuits are intrinsically unstable over long time
windows, because of finite-size fluctuation effects (as each selective pop-
ulation contains only 240 neurons). That is, given a long enough time,
circuits in the low-activity state will sometimes transition to the high-ac-
tivity state simply because of noise (without external inputs). This fol-
lows from the attractor dynamics nature of the system: the high-activity
memory states seem have deeper and wider basins of attraction than the
low-activity baseline state (see Wong andWang, 2006).

To determine the stability of the high-activity memory states, we per-
formed 500 sets of simulations for each condition of GE!E and GE!I

perturbations, applying a 2-s, 51.2% coherence stimulus also used in the
standard task. For simulations where the stimulus triggered a winning
population, if the memory state is not maintained 2 s after stimulus pre-
sentation (i.e., both population firing rates end at,15Hz) in any of the
500 simulations, it is labeled unstable; otherwise, the circuit memory
state is considered stable. We selected this stringent criterion for stability
of the memory state because of the intrinsic asymmetry of baseline and
memory states and the transitions between them. In contrast to the low-
activity state, from which the system will naturally jump to the high-ac-
tivity state because of noise-driven finite-size fluctuations, the high-ac-
tivity state, as an attractor state is much more stable and the system will
very rarely transition to the low-activity state (unless there a strong
reduction in recurrent excitation).

E/I ratio calculation
The E/I ratio in the spiking circuit is calculated from 10 sets of 5-s simu-
lations for each condition of GE!E and GE!I perturbation, in the stable
baseline state with no stimulus inputs. In the baseline state, the recurrent
AMPAR, NMDAR, and GABAA R synaptic input currents to an excita-
tory neuron group are recorded. The E/I ratio is defined here as the total
recurrent excitatory (AMPAR plus NMDAR) synaptic input current di-
vided by the total recurrent inhibitory (GABAAR) synaptic input
current.

Psychophysical task paradigms
We used four psychophysical 2AFC task paradigms to characterize deci-
sion-making function: one standard task, and three tasks that character-
ize the time course of evidence accumulation. All paradigms are based
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on electrophysiological studies of perceptual decision-making in
monkeys.

Standard task paradigm
Here we refer to the standard task paradigm as one in which a constant-
coherence stimulus is applied for a fixed duration of 2 s (Britten et al.,
1992; Shadlen and Newsome, 2001; Gold and Shadlen, 2007; Kayser et
al., 2010). The coherence varies trial-by-trial from the set of {0%, 3.2%,
6.4%, 12.8%, 25.6%, 51.2%}. The psychometric function, giving the prob-
ability of a choice for one option as a function of stimulus coherence c9

toward that option, is fit by the functional form:

Pðc9Þ ¼ 0:51 0:5 � 1� exp � c9
a

� �b
 ! !

; (2)

where a is the discrimination threshold, which is defined as the coher-
ence level yielding 81.6% correct performance. As a reflects the amount
of evidence needed for a given level of performance, we define discrimi-
nation sensitivity as the inverse of the discrimination threshold. b is the
psychometric order which defines the slope of the psychometric function
at the discrimination threshold. This fit function has been used previ-
ously to fit monkey psychometric functions (Roitman and Shadlen,
2002; Kiani et al., 2008). For each stimulus coherence level, we simulated
1000 trials for each circuit model.

Psychophysical kernel paradigm
The psychophysical kernel paradigm is based on the experimental para-
digm of Nienborg and Cumming (2009). On each trial, stimuli are pre-
sented for 2 s total, with the coherence for each 0.05-s time bin
randomly sampled from a uniform distribution over levels of {66.4%,
612.8%, 625.6%}. The psychophysical matrix (MPK) is computed as
the difference in probabilities between the two choices for each coher-
ence level at each stimulus time bin, normalized by the magnitude of
the corresponding coherence level. The psychophysical matrix is then
multiplied by the sign of the coherence and averaged over coherence
levels to form the psychophysical kernel. The psychophysical kernel is
therefore a form of choice-triggered average. The psychophysical kernel
weight WPK thus characterizes the time course of evidence accumulation,
with larger weight at a given stimulus time corresponding to a larger impact
of stimuli presented at that time to the resulting behavioral choice.
Mathematically, denoting the two choices as A and B (xA and xB):

MPKðc9; tÞ ¼ PðxAjc9; tÞ � PðxBjc9; tÞ
jc9j (3)

WPKðtÞ ¼
X
c9

sgnðc9ÞMPKðc9; tÞ; (4)

where sgn() is the sign function, returning 61 respectively for positive
and negative inputs. The probabilities PðxAjc9; tÞ and PðxBjc9; tÞ in
Equation 3 are computed across all trials in which the stimuli at time-
step t has coherence c9. For this paradigm, we simulated 200,000 trials
for each circuit model.

Pulse paradigm
In addition to a constant 2-s stimulus of coherence levels as used in the
standard task paradigm, a pulse of 615% coherence strength and 0.1-s
duration is applied at various onset times (Kiani et al., 2008). For each
pulse onset time, the psychometric function is then fit according to

Pðc9Þ ¼ 0:51 0:5 � sgnðc91 d Þ � 1� exp � jc91 d j
a

� �b
 ! !

;

(5)

where a, b , and d are respectively the discrimination threshold, order,
and shift of the psychometric function. This fit function is extended

from Equation 2 to include psychometric shift d , reflecting the impact
of the pulse. We characterize the dependence of this shift on pulse onset
time, to infer the time course of evidence accumulation. For each circuit
model, we simulated 2500 trials, for each pulse onset time and each co-
herence level.

Variable duration paradigm
In the variable duration paradigm, stimuli identical to those in the stand-
ard task paradigm are presented, but with durations varying from 0.1 to
2 s across trials (Kiani et al., 2008). For each stimulus duration, the psy-
chometric function (Eq. 2) is computed and fit, yielding a duration-spe-
cific discrimination threshold a. The dependence of the discrimination
threshold on stimulus duration is then characterized as the time-depend-
ent threshold function (Britten et al., 1992; Wang, 2002; Kiani et al.,
2008). For each circuit model, 1000 simulations were performed for each
condition of stimulus duration and coherence level.

Generalized DDM
We tested whether behavioral effects of disrupted E/I balance in the cir-
cuit model can be captured by a generalized DDM (Bogacz et al., 2006;
Roxin and Ledberg, 2008; Brunton et al., 2013; Miller and Katz, 2013;
Shinn et al., 2020). In particular, we hypothesized that E/I circuit altera-
tions would correspond to alterations of the DDM integration process.
We therefore incorporated a self-coupling term l x in the generalized
DDM, so that instead of perfect integration as in the standard DDM
(l = 0), the integration process can be leaky (l , 0) or unstable (l . 0;
Bogacz et al., 2006). In this generalized DDM, a decision variable x starts
at 0 and diffuses according to the stochastic differential equation:

dx ¼ m c9 dt1s dW1 l x dt; (6)

where m is stimulus drift, s is noise, and dW is the infinitesimal Wiener
process (i.e., a Gaussian noise term of mean 0 and variance dt). When x
reaches one of the decision bounds at B =6 1, the corresponding choice
(e.g., left or right) is selected.

Implicit Fokker–Planck method for generalized DDMs
While the standard version of DDM has a semi-analytical solution, most
versions of generalized DDMs, such as one with imperfect integration as
studied here, do not. For efficient simulation of the generalized DDM,
which enables fitting model parameters to spiking circuit model data
and potentially experimental choice data, we used the Fokker–Planck
equation (Brown and Holmes, 2001; Kiani and Shadlen, 2009; Shinn et
al., 2020). In particular, Equation 6 can be recast in terms of the proba-
bility distribution function [PDF; p(x,t)] of the decision variable x at any
time t:

@p
@t

¼ � @½ðm1 l xÞp�
@x

1
1
2
@ðs 2@pÞ

@x2
: (7)

The Fokker–Planck equation has absorbing boundary conditions at
the decision bounds. In the context of the DDM, any probability density
of x that diffuses out of either absorbing bound 6 B adds to the corre-
sponding probability committed to the corresponding choice and is no
longer considered by Equation 7.

For numerical simulation, Equation 7 can be discretized with step
sizes Dx and Dt in (decision variable) space and time. The evolution of
the PDF can then be recursively approximated by computing the PDF at
each position based on the neighboring ones at the previous time-step.
This algorithmic approach is formalized as the explicit method of finite
difference equation, and previous work has used it to study DDMs
(Kiani and Shadlen, 2009). By expressing the right side of discretized
Equation 7 in the previous time-step, only one term in the equation
depends on the current time-step. This allows the PDF at each location
to be entirely determined by those at the previous time-step, allowing for
a relatively straight-forward recursive implementation. However, the
explicit method has a stability criterion (s 2Dt=Dx2,1) that imposes a
strict upper bound for Dt (given a reasonable Dx), making the explicit
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method prohibitively slow for the purpose of fitting generalized DDM
parameters to data (Shinn et al., 2020).

To overcome these limitations of the explicit method, we used the
implicit method for Equation 7, expressing the right side of the equation
at the current time-step. Specifically, letting pji denote the PDF at discre-
tized x = iDx and t = jDt, we have:

pji � pj�1
i

Dt
¼ � ½ðm1 l xÞp�ji11 � ½ðm1l xÞp�ji�1

2Dx

1
ðs 2pÞji11 1 ðs 2pÞji�1 � 2ðs 2pÞji

2Dx2
; (8)

where we denote ½…�j9i9 as evaluating the expression within the bracket at
x= i9Dx and t= j9Dt, for any integers i9 and j9. With multiple terms at the
current time-step, Equation 8 cannot be directly solved for each i.
However, Equation 8 can be expressed in the matrix form:

11� ð��1xÞ=2 0 0

ð�� � xÞ=2 11� . .
.

0

0 . .
. . .

. ð��1xÞ=2
0 0 ð�� � xÞ=2 11�

0
BBBBB@

1
CCCCCA~p

j ¼~pj�1
:

(9)

for � ¼ s 2Dt=ðDx2Þ and x ¼ ðm1l x̂ÞDt=Dx (where x̂ ¼ ĵDx for the
ĵth column of the corresponding x ).~pj is the vector of the PDF across
all spatial grids at t = jDt, and similarly for~pj�1. The matrix, being tri-
diagonal, can be efficiently inverted to solve for the current step distribu-
tion based on the previous step distribution. In contrast to the explicit
method which is essentially a first-order Taylor approximation, the
implicit method solves for the evolution of the PDF, and is always stable
without constraints to Dx and Dt (although the numerical error still
increases with both Dx and Dt, thus constraining the step sizes). This
approach allows for much faster computation of generalized DDMs, suf-
ficient for fitting DDM parameters to data (Shinn et al., 2020).

We thus solve generalized DDMs numerically using the implicit
method with absorbing boundaries (Butcher, 2008; Shinn et al., 2020),
with grid-size Dx= 0.02 and time-step Dt= 0.001 s. This results in a PDF
of the decision variable x within the boundaries B = 6 1, as well as the
probability to cross the boundaries, at each time-step. After 2 s of stimu-
lus presentation, total probability densities which crossed the upper or
lower bounds are considered probabilities of either choices made.
Remaining probability density within the boundaries, which we treat as
analogous to indecision trials in the spiking circuit, is split evenly
between the two choices to fit 2AFC paradigms; results were similar for
whether remaining density was split evenly or proportionally to the total
probabilities at each side of 0.

For the standard task, pulse paradigm, and variable duration para-
digm, the generalized DDM can compute the PDFs of both choices in
each stimuli condition exactly, such that no stochasticity is involved and
only one run of the Fokker–Planck calculation is needed. For the psy-
chophysical kernel paradigm, because of the large number of possible
stimulus conditions, we simulated 100,000 trials for each generalized
DDM.

Fitting generalized DDM parameters
All functions are fit using the method of maximum likelihood estima-
tion. The psychometric fit functions (Eqs. 2, 5) are fit by maximizing the
average log-likelihood:

X
c9

Pc9;A � logð~Pc9;AÞ1 Pc9;B � logð~Pc9;BÞ
� �

; (10)

where c9 is spanned over the coherence levels specified for the particular
task. From the circuit model or generalized DDM, Pc9;A and Pc9;B are the
probabilities to select choices A or B, respectively, for each coherence

level c9. ~Pc9;A and ~Pc9;B are the corresponding values of the psychometric
function being fit to the model data.

The generalized DDMmodel parameters can be fit to the choice and
indecision states of neural activity in the standard task, with the maximi-
zation function:

X
c9

P0
c9;A � logð~P

0

c9;AÞ1 P0
c9;B � logð~P

0

c9;BÞ1 Pc9;0 � logð~Pc9;0Þ
h i

; (11)

where c9 is spanned over the coherence levels specified for the standard
task paradigm. From the spiking circuit simulations, P0c9;A and P0c9;B are
the probabilities that population A or B crosses the decision threshold,
and P0c9;0 is the probability for which neither population crosses the
threshold, for each coherence c9. From the generalized DDM being fit to
the circuit data, ~P

0
c9;A and ~P

0
c9;B are the probabilities that the decision vari-

able crosses the corresponding bounds, and ~P
0
c9;0 is the total probability

densities remaining within the bounds at the end of simulation, for each
coherence c9.

Parameter recovery for generalized DDMs
To demonstrate that the proposed paradigms can be applied in behav-
ioral experiments with resulting choice data used to fit the self-coupling
parameter of the generalized DDM, we performed parameter recovery
analyses. To correspond to behavioral analysis of empirical data collected
in an experiment, we used only simulated behavioral choice data, with-
out any additional knowledge of neural states (e.g., indecision trials). We
simulated discrete trials in the pulse paradigm using generalized DDMs,
then used the resulting psychometric choice data to fit the parameters of
a generalized DDM using the Fokker–Planck method.

Specifically, we simulated multiple generalized DDMs with different
levels of self-coupling (l varied from �10 to 10 s�1, with step size 1).
For simplicity, we usedm = 14.3 s�1 and s = 1.33 s�0.5. For each general-
ized DDM, we numerically simulated trials using the Monte Carlo
method. To be roughly comparable to experimentally feasible trial num-
bers, we simulated 1000 trials for each coherence level and pulse onset
times. With 11 coherence levels and 20 pulse onset times, this resulted in
220,000 total trials per GDDM.

The simulated choice data are then fit with a generalized DDM, using
the implicit Fokker–Planck method. The fitting is performed across co-
herence and pulse onset times, by minimizing

X
c9

X
ton

Pc9;ton � ~Pc9;ton

� �2
; (12)

where c9 is spanned over the coherence levels specified for each psycho-
physical tasks, and ton is spanned over the pulse onset times. Pc9;ton is the
target probability to be correct from simulating a finite number of trials
from the target GDDM, and ~Pc9;ton is the corresponding probability from
the fitted generalized DDM generated by the Fokker–Planck method.
The mean-squared error method is used for fitting, instead of maximum
likelihood estimation, because the total value does not sum to 1. All three
primary parameters of the generalized DDM in Equation 6 were fitted:
l , m, and s . Here, we focus on recovery of l , motivated our findings of
altered integration under E/I perturbation in the circuit model.

Finally, we repeated the above procedure with a simplified pulse par-
adigm, with three pulse onset times at 0.5, 1, and 1.5 s. With 1000 simu-
lated trials for each coherence and pulse onset times, this paradigm had
33,000 total trials per GDDM. Of note, the trial conditions (c9; ton, num-
ber of trials) were not optimized in for efficient parameter recovery, as
would be done for design of experimental data collection.

Code availability
The spiking circuit model was implemented using the Python-based
Brian neural simulator (Goodman and Brette, 2008), with a simulations
time-step of 0.02ms. The Fokker–Planck solver for the generalized
DDM was implemented in custom-written Python code. Simulation
code for the model is publicly available: https://github.com/murraylab/
decisionmaking-perturbation. Code for Fokker–Planck simulation and
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fitting of generalized DDMs is available via the PyDDM package (https://
pypi.org/project/pyddm/; Shinn et al., 2020).

Results
We studied decision-making behavior in a well-established spik-
ing circuit model (Wang, 2002). This model, or ones with similar
circuit architecture (Martí et al., 2008; Roxin and Ledberg, 2008;
Eckhoff et al., 2009), have been used in a large body of computa-
tional modeling research on decision-making. The circuit model
contains two populations of excitatory neurons, each of which
receives an input reflecting evidence for one option (Fig. 1A).
The circuit can integrate evidence to form a decision through
attractor dynamics, which depends on strong recurrent excita-
tory connections within each group (Wong and Wang, 2006).
The two populations also excite a group of inhibitory interneur-
ons, which projects equally to the two excitatory groups and
mediates lateral and feedback inhibition. This lateral inhibition
can implement winner-take-all competition and categorical deci-
sion-making. In particular, stimulus input generally drives the
activity of one population to rapidly ramp up, eventually reach-
ing a high-activity decision state. This ramping of activity simul-
taneously suppresses the other population, allowing for choice
readout based on one population crossing an activity-level
threshold (Wang, 2002; Wong and Wang, 2006). Because of the
inherent stochasticity from Poisson background inputs to all
neurons, the model generates probabilistic choices whose pro-
portions vary in a graded manner with net evidence.

E/I imbalance affects decision-making in a cortical circuit
model
To study the effects of E/I balance on decision-making behavior,
we simulated hypofunction of NMDARs on excitatory and in-
hibitory neurons, as the specific mechanism by which to perturb
E/I balance (Fig. 1B). We selected NMDAR hypofunction as a
synaptic perturbation because it is implicated in the patho-
physiology of schizophrenia, and NMDAR antagonists such
as ketamine are used as pharmacological models of neural
and behavioral features observed in schizophrenia (Krystal et
al., 1994, 2003; Abi-Saab et al., 1998; Greene, 2001; Kehrer et
al., 2008; Lisman et al., 2008; Nakazawa et al., 2012; Weickert
et al., 2013). While disruption of E/I balance can be mediated
by other synaptic mechanisms, potentially depending on the
particular psychiatric disease or pharmacological interven-
tion, the first-order effects of E/I balance disruption are
likely to converge (Murray et al., 2014). In particular, we
considered three circuit models with different E/I ratios:
control; elevated E/I, via NMDAR hypofunction on inhibi-
tory interneurons; and lowered E/I, via NMDAR hypofunc-
tion on excitatory pyramidal neurons (Fig. 1B). Importantly,
all three circuit regimes preserve the stabilities of the low-ac-
tivity baseline state and high-activity memory states in the
absence of stimulus input.

We first characterized choice accuracy of the three spiking
circuit models using the psychometric function in the standard
task paradigm, in which the stimulus on each trial has a constant
coherence throughout a fixed duration. In all three circuit mod-
els, the choice accuracy increases monotonically with coherence.
We found that both the elevated and lowered E/I circuits yielded
comparably impaired performance relative to control (Fig. 2A).
This impairment can be quantified as a higher discrimination
threshold, i.e., the coherence level needed to reach a threshold
level of performance. Therefore, choice accuracy in the standard

task alone is insufficient to behaviorally dissociate these neuro-
physiological regimes of elevated versus reduced E/I ratio in the
model.

To more systematically examine the circuit’s dependence on E/I
ratio, we parametrically decreased both the NMDAR conductances
on interneurons (GE!I) and on pyramidal neurons (GE!E) concur-
rently, while characterizing decision-making performance (Fig. 2B).
For the range of relatively weak perturbations tested here, we found
that if GE!I and GE!E are reduced proportionally, such that E/I

Figure 2. Circuit activity and properties of the decision-making circuit under perturbations
of E/I balance. A, Psychometric function of the control (green), elevated E/I (orange), and
lowered E/I (purple) circuits in a standard fixed-duration decision-making task. B,
Discrimination sensitivity, defined as the inverse of the discrimination threshold of the psy-
chometric function for the standard task, as a function of the NMDAR conductance on inhibi-
tory interneurons (GE!I) and on excitatory pyramidal neurons (GE!E). The black region in
the upper left marks where the high-state memory state loses stability, and the white region
in the lower right marks where the low-activity baseline state loses stability. C, Inverted-U
dependence of decision-making performance on E/I ratio. E/I ratio is defined as the ratio of
the net recurrent excitatory current (AMPAR and NMDAR) to net inhibitory current (GABAA R)
onto pyramidal neurons. Gray circles represent the combinations of {GE!I; GE!E } parameter
values shown in A. The three colored circles label the representative circuit models used in
other analyses.
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balance is maintained, decision-making performance is approxi-
mately unaltered (Fig. 2B). However, we note that large parallel
reductions in synaptic parameters, beyond the ranges shown in
Figure 2B, have been shown to impair decision-making function,
insofar as winner-take-all competition depends on having strong
recurrent E/I (Wong andWang, 2006; Murray et al., 2017b).

We explicitly calculated E/I ratio as the ratio of excitatory and
inhibitory recurrent synaptic input currents in pyramidal neu-
rons (Fig. 2B). We found that E/I ratio provides a concise
description of choice accuracy that approximately collapses the
two-dimensional space of perturbations onto a one-dimensional
curve. Specifically, we found that decision-making performance
exhibits an inverted-U dependence on E/I ratio, wherein per-
formance is maximal at an intermediate value of E/I ratio and
performance degrades with reduction or elevation of E/I ratio
(Fig. 2C). We note that the control circuit is slightly offset from
the sensitivity peak, as the circuit parameters were not fine-tuned
to optimize performance in the standard task. These findings

indicate that the relative E/I ratio is a critical effective parameter
for decision-making function in the circuit, rather than absolute
strengths of particular synaptic connections.

To gain insight into circuit dynamics underlying functional
impairment from E/I perturbations, we characterized neural ac-
tivity during decision-making. Figure 3A shows representative
single-trial activity traces for the zero-coherence stimulus condi-
tion. The circuit exhibits winner-take-all competition and cate-
gorical decision-making: the winning population activity (dark
colors) ramps up, crossing the decision threshold from which
choice is read out and eventually reaching a high-activity attrac-
tor state, while the losing population activity (light colors) is sup-
pressed below baseline.

In the elevated-E/I circuit, ramping of activity to the decision
threshold is faster relative to control (Fig. 3A–C). These circuit
dynamics suggest that decision-making performance is impaired
because the decision formed earlier on the basis of less net per-
ceptual evidence, without improving the effective signal-to-noise

Figure 3. Neural dynamics during decision-making under perturbations of E/I balance. A, Neuronal activity traces for a representative example trial of the control (green), elevated E/I (or-
ange), and lowered E/I (purple) circuits during the standard decision-making task. The winning population (darker shade) typically ramps to a high-activity attractor state, which persists follow-
ing stimulus presentation, while the losing population (lighter shade) is suppressed. Each trace is calculated as the population-averaged firing rate of all neurons within one of the stimulus-
selective populations of excitatory neurons. The displayed trial was selected as the one with median ramp-up rate over 1000 simulated trials. Also plotted in gray are neuronal activity traces
from one trial of the lowered E/I circuit failing to reach the high-activity attractor state, which results in more choices that are stochastic. The black dashed line marks the firing-rate threshold
used to read out choice and decision time. B, Activity ramp-up rate, as a function of stimulus coherence, for the three circuit models. We define ramp-up rate as the mean rate of firing rate
increase for any population to reach the firing-rate threshold (15 Hz) after stimulus onset, excluding trials where neither population reaches the high-activity attractor state. C, Decision time, as
a function of stimulus coherence, for the three circuit models. The decision time is defined as the mean time after stimulus onset for any population to reach the firing-rate threshold (15 Hz),
excluding trials where neither population reaches the high-activity attractor state. The decision time marks the time for the model to commit to a choice. D, E/I ratio of the circuit as a function
of the perturbations of NMDARs conductance on inhibitory interneurons (GE!I) and on excitatory neurons (GE!E). E, Activity ramp-up rate as a function of (GE!I) and (GE!E) perturbations. F,
Decision time as a function of (GE!I) and (GE!E) perturbations.
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ratio through temporally extended accumulation of evidence. By
contrast, the lowered-E/I circuit exhibits slower ramping. As
characterized below (Fig. 4), the lowered-E/I circuit also exhibits
trials in which neither neuronal population crosses the decision
threshold, which we call indecision trials (Fig. 3A, gray traces).
On such trials, the behavioral response is chosen randomly,
which leads to more errors for the lowered-E/I circuit. As with
the behavioral measure of discrimination sensitivity (Fig. 2B,C),
these features of circuit dynamics during decision-making fol-
lowed a dependence on the net E/I ratio as an effective parameter
(Fig. 3D–F). These circuit dynamics make testable predictions
for neural activity in the fixed-duration standard task, that the
timing of decision-related neural activity predicting the behav-
ioral response should be shorter or longer under elevated-E/I or
lowered-E/I regimes, respectively.

As noted above, the lowered-E/I circuit is more prone to fail
to reach a categorical choice state and the behavioral response
being selected randomly. We characterized how the proportion
of these indecision trials, which are classified by neural activity
rather than behavior, depends on coherence and E/I perturbation
(Fig. 4A,B). In the lowered E/I circuit, indecision trials occurred
preferentially at low stimulus coherences (Fig. 4A), which results
in more stochastic choices on low-coherence trials. We can iso-
late in the models only the trials for which the neural activity
does reach a high-activity choice state. Interestingly, if condi-
tioned on these neurally-defined threshold-crossing trials, the
lowered-E/I circuit exhibits better psychometric performance
than the control circuit (Fig. 4C). In this way, the model makes
testable predictions regime for neural activity in decision-making
circuits with lowered E/I ratio, specifically probabilistic failure of
categorical choice-related activity on low-coherence trials (Fig.
4A) and higher accuracy on those trials which do exhibit choice-
related neural activity (Fig. 4C).

Based on these observations, we describe decision-making in
the elevated-E/I and lowered-E/I circuits as “impulsive” and
“indecisive,” respectively, relative to the control circuit. These
findings show that the similarly impaired psychometric perform-
ance arises from distinct dynamical circuit mechanisms in the
two E/I imbalance regimes. The above results also show that psy-
chometric performance alone in the standard task paradigm is
not well suited to disambiguate performance deficits arising

from the circuit regimes of elevated versus lowered E/I ratio in
the model. Which behavioral tasks are well suited to dissociate
between these distinct decision-making impairments? Based on
observations of circuit dynamics, we hypothesized that these cir-
cuit alterations would make dissociable predictions for the time
course of evidence accumulation.

One approach to characterize the time course of evidence
accumulation is to use a “reaction time” variant of the standard
task, which has no fixed stimuli duration and allows the subject
to respond at any time after stimulus onset (Roitman and
Shadlen, 2002), thereby potentially revealing dissociable patterns
in the distribution of response times (Miller and Katz, 2013). As
shown in Figure 3C, the decision time, defined by neural activity
and reflecting internal choice commitment, is sensitive to E/I
balance. Reaction times are typically modeled as a threshold-
crossing decision time plus a nondecision time reflecting affer-
ent and efferent delays (Ratcliff and McKoon, 2008). If nonde-
cision times are unchanged by the E/I perturbation, then the
model predicts that elevated and lowered E/I ratio will results
in faster and slower responses in a reaction time paradigm. A
complication in using response times as a diagnostic measure
for characterizing decision-making alterations by pharmacol-
ogy or neuropsychiatric disorders is that core psychomotor
functions are broadly altered by pharmacology and neuro-
psychiatric disorders (Guillermain et al., 2001; Micallef et al.,
2002; Taffe et al., 2002; Morrens et al., 2007; Kaiser et al., 2008;
Schrijvers et al., 2008; Morsel et al., 2015), which in turn could
impact the durations of nondecision times and even their intra-
individual variability (Vinogradov et al., 1998). Based on these
considerations, a more feasible experimental design in which to
study reaction times as a probe of E/I perturbations would be
within-subject comparison under an acute causal manipulation
of E/I ratio, especially if localized to an association cortical deci-
sion-making circuit as could be done via optogenetic or chemo-
genetic approaches in animals. Such a within-subject design
would not be complicated by between-subject variation in non-
decision times.

The field of decision-making has devised a number of 2AFC
task paradigms which measure the influence of evidence at dif-
ferent time points on the behavioral response. Below, we describe
model behavior in three fixed-duration paradigms which are

Figure 4. Lowered E/I ratio decreases the probability that the decision-making circuit reaches a categorical choice state. A, The proportion of trials in which the circuit crosses the decision
threshold (15 Hz) and transitions to a high-activity attractor states for one choice, as a function of stimulus coherence, for the three circuit models. On indecision trials, in which the circuit fails
to cross the decision threshold, the behavioral response is selected randomly. Indecision trials are likely for the lowered E/I circuit at low stimulus coherences. B, Probability of transitioning to a
choice state, at zero stimulus coherence, as a function of (GE!I) and (GE!E) perturbations. C, Psychometric performance on trials in which the circuit transitions to a choice state. The lowered-
E/I circuit exhibits better performance for the subset of trials conditionally defined based on the neural feature of threshold-crossing to a choice state, indicating that impaired psychometric per-
formance in this circuit is driven by failure to reach choice states.

1042 • J. Neurosci., February 9, 2022 • 42(6):1035–1053 Lam et al. · Circuit Model of Decision Making under E/I Imbalance



grounded in electrophysiological studies of perceptual decision-
making and can characterize the time course of evidence
accumulation.

Psychophysical kernel paradigm
One method to explicitly characterize the time course of evi-
dence accumulation is through the psychophysical kernel task
paradigm (Nienborg and Cumming, 2009), which uses random
time-varying stimuli to quantify the weight stimulus at a given
time point has on behavioral choice (Fig. 5A). The psychophysi-
cal kernel matrix summarizes the net probability that one choice
is selected over the other, across all trials in which the stimulus
was at a given coherence level for a given time-step, normalized
by the magnitude of the corresponding coherence level (Fig. 5C–
E). The psychophysical kernel is then obtained by collapsing the
psychophysical kernel matrix magnitude across coherence levels
(Fig. 5B). The psychophysical kernel thus reflects the impact of
stimuli to the choice as a function of time: stimuli at time points
with a large psychophysical kernel weight have a large influence
on choice, whereas stimuli at time points with weight near zero
have little impact on choice.

We found that for the control circuit, the psychophysical ker-
nel exhibits a rise-then-decay profile (Fig. 5B,C), which is quali-
tatively consistent with what were measured in a number of
primate and mouse behavioral experiments during perceptual
decision-making (Kiani et al., 2008; Nienborg and Cumming,
2009; Wimmer et al., 2015; Odoemene et al., 2018). This shape of
the kernel results from the recurrent dynamics of the circuit dur-
ing decision formation. As shown in Wong and Wang (2006),

when the low-coherence stimulus is presented, the low-activity
baseline state disappears and the state of the system flows along a
stable manifold toward an unstable saddle point. The initial rise
of the psychophysical kernel is because the system because more
stimulus-sensitive to input as it moves closer to the saddle point.
The decline of the psychophysical kernel reflects bounded accu-
mulation (Wong and Wang, 2006; Kiani et al., 2008): after the
state of the circuit diverges toward an attractor state, resulting in
decision commitment, the final state is less sensitive to subse-
quent evidence. The circuit is thus in an “decision state” largely
indifferent to late evidence. We note that in these simulations the
input kernel on the stimulus does not change over time, i.e., early
and late stimulus are represented equally as inputs to the circuit.
Instead, the shape of the psychophysical kernel is determined by
the decision-making process (Okazawa et al., 2018).

Relative to control, the psychophysical kernel for the ele-
vated-E/I circuit assigns much more weight to early time points
and much less weight to late time points (Fig. 5B,D). For the low-
ered-E/I circuit, the psychophysical kernel is flattened and has
lower weights overall (Fig. 5B,E); in this regime, the choice is
generally less driven by evidence (i.e., the integral of the psycho-
physical kernel is low). These findings are consistent with charac-
terizations of impulsive versus indecisive decision-making for
elevated versus lowered E/I ratio, respectively. In contrast to the
standard task paradigm, these two E/I perturbations thereby
make dissociable behavioral predictions in the psychophysical
kernel task paradigm, and demonstrate how alterations in the
temporal weighting of sensory input can be driven by E/I disrup-
tions in decision-making circuits.

Figure 5. Psychophysical kernel paradigm thoroughly characterizes the time course of evidence accumulation and provides dissociate predictions for elevated versus lowered E/I ratio. A,
Schematic of the psychophysical kernel paradigm with an example trial for which the coherence value for each time bin is selected randomly. B, The psychophysical kernel weights, as a func-
tion of time following stimulus onset, for the control (green), elevated E/I (orange), and lowered E/I (purple) circuit models. C–E, The psychophysical matrices, from which the psychophysical
kernel is derived, for the control (C), elevated-E/I (D), and lowered-E/I (E) circuit models.
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Pulse paradigm
The pulse paradigm is another psychophysical task that measures
the impact of stimulus at different times to the committed choice
(Huk and Shadlen, 2005; Wong et al., 2007; Kiani et al., 2008). In
addition to the standard constant stimulus with fixed duration, a
brief pulse of perceptual evidence is added at a variable time
within the stimulus presentation (Fig. 6A). The influence of the
pulse on the decision, as a function of pulse onset time, can be
quantified by a horizontal shift in the psychometric function.
Kiani et al. (2008) found that this pulse-induced shift decreased
at later times.

We found that this pulse-induced shift follows a similar time
dependence as the psychophysical kernel. In the control circuit,
the magnitude of the shift increased over very early onset times
and then decreased later on (Fig. 6B,C). Relative to control, the
elevated-E/I circuit showed a stronger shift for early onset times,
but the psychometric function was much less sensitive to pulses
at later onset times (Fig. 6B,D). In contrast, the lowered-E/I cir-
cuit showed a flattened pattern, indicating a weaker dependence
of stimuli over time in comparison to other circuits (Fig. 6B,E).

While the psychophysical kernel and pulse paradigms
both measure the time course of decision-making and yield
consistent results, we note that there are important differ-
ences between the two paradigms. In particular, results
from the pulse paradigm may be obtained with many fewer
trials than the psychophysical kernel paradigm, which
requires an extensive number of trials to sufficiently sample
stimulus conditions. In addition, the psychophysical kernel
paradigm measures the time course of decision-making
with weak net stimulus strength whereas the pulse para-
digm shift is derived from a wider range of net stimulus
strengths.

Variable duration paradigm
The two paradigms above characterize the time course of evi-
dence accumulation for decision-making, and demonstrate dis-
sociable predictions of elevated and lowered E/I ratio in the
circuit model. This suggests that E/I perturbations might also dif-
ferentially alter decision-making process in relation to stimulus
duration. We therefore examined the variable duration para-
digm, which was previously used to reveal the bounded nature of
evidence accumulation in decision-making (Britten et al., 1992;
Watamaniuk and Sekuler, 1992; Wang, 2002; Kiani et al., 2008;
Tsetsos et al., 2015). The variable duration paradigm consists of
trials with varying stimulus coherence and duration. For each
stimulus duration, the psychometric function is calculated to
derive the discrimination threshold (Eq. 2). The time-dependent
threshold function is defined as the discrimination threshold as a
function of stimulus duration.

If evidence accumulation were perfect and unbounded,
then increasing the stimulus duration should always reduce
the discrimination threshold. Instead, experimental studies
show that such decrease in the time-dependent threshold
function plateaus at long durations (Britten et al., 1992; Kiani
et al., 2008), indicating that late stimuli no longer substantially
improve choice accuracy after total evidence reaches a bound.
The control circuit model demonstrates a similar plateau (Fig.
7B), and is consistent with the observation in the psychophysi-
cal kernel and pulse paradigms that later stimuli have less
influence on choice (Wang, 2002). We therefore examined
how E/I perturbations affect the time-dependent threshold
function. The key feature in this characterization is the dis-
crimination threshold plateau value, and the stimulus dura-
tion at which the plateau occurs, reflecting the time course of
evidence accumulation (Fig. 7B,C).

Figure 6. Pulse paradigm efficiently characterizes the time course of evidence accumulation and provides dissociate predictions for elevated versus lowered E/I ratio. A, Schematic of the
pulse paradigm. B, Psychometric shift as a function of pulse onset time, for the control (green), elevated-E/I (orange), and lowered-E/I (purple) circuit models. C–E, Psychometric functions
with no pulse (black), positive pulse (red), and negative pulse (blue), for the control (C), elevated-E/I (D), and lowered-E/I (E) circuit models. The pulse onset time used here is 0 s.
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Varying the stimulus duration trial-by-trial, we found that the
duration of plateau differs substantially across the E/I regimes, in
a manner consistent with the other task paradigms examined. In
the elevated-E/I circuit, the discrimination threshold plateaus at
a higher value relative to the control circuit (Fig. 7B,D), which
indicates reduced choice accuracy at long stimulus durations.
The plateau also occurs at an earlier stimulus duration, indicat-
ing a shorter integration timescale. Interestingly, the elevated-E/I
circuit has a lower threshold than control for very short stimulus
durations, because at such short durations the control circuit fails
to reach a decision-related attractor state on a greater fraction of
trials. The lowered-E/I circuit shows consistently a higher dis-
crimination threshold than control, indicating lower accuracy,
which declines without plateauing up to 2-s stimulus durations
(Fig. 7B,E).

Comparison to upstream sensory coding deficit
In the sections above, we demonstrated three nonstandard task
paradigms which, by characterizing the time course of evidence
accumulation for decision-making, can behaviorally dissociate
distinct decision-making impairments induced by elevated ver-
sus lowered E/I ratio. In contrast to dysfunction within a deci-
sion-making circuit, as considered above, impairments could
also arise from dysfunction in upstream sensory representations.
Neuropsychiatric disorders such as schizophrenia have long
been associated with deficits in visual perception (Butler et al.,
2008; Silverstein, 2016), which could potentially impair percep-
tual decision-making behavior. In primate studies using ran-
dom-dot motion decision-making paradigms, inactivation of
area MT, which represents momentary motion signals
(Britten et al., 1992; Gold and Shadlen, 2007), has been shown

to bias decision-making processes as well (Fetsch et al.,
2018; Jin and Glickfeld, 2019), demonstrating how
upstream sensory coding deficits can contribute to deci-
sion-making impairments.

We investigated the effects of sensory coding deficits by weak-
ening the modulation of stimulus inputs by stimulus coherence
(Eq. 1; Fig. 8A). We found that in the standard task paradigm, an
upstream sensory coding deficit can impair performance simi-
larly to E/I perturbations (Fig. 8B). However, the nonstandard
task paradigms examined above reveal dissociable predictions
for these distinct circuit perturbations (Fig. 8C–E). Specifically,
the primary effect of the upstream sensory coding deficit on
these measures is a rescaling while preserving their temporal pro-
files. This is expected because the upstream coding deficit does
not alter the dynamics of the decision-making processes in the
circuit, in contrast to the recurrent E/I perturbations.

Of note, in the psychophysical kernel paradigm, the control
and upstream-deficit circuits differ in their magnitudes but not
time courses, as quantified below (Fig. 8C). In principle, it is pos-
sible to compare empirically measured kernel weights between
groups of subjects. However, drawing conclusions between indi-
vidual subjects would be complicated by subjects likely differing
in their overall sensitivity, which would also scale the magnitude
of the kernel. Testing within-subject differences under a causal
perturbation would likely be more feasible in this scenario.

We quantified the similarity of time courses via cosine-simi-
larity. For two time courses w1(t) and w2(t), the cosine-similarity

is defined as
w1 � w2

jw1j jw2j where · is the dot product and jwj is the eu-
clidean norm of w. A cosine-similarity of 1 indicates that the two
time courses are related by only multiplicative scaling. For the

Figure 7. The variable duration paradigm reveals the time course of bounded accumulation in the circuit model and its dependence on E/I ratio. A, Schematic of the variable duration para-
digm. The stimulus duration is varied across trials. B, Discrimination threshold, as a function of stimulus duration, for the control (green), elevated E/I (orange), and lowered E/I (purple) circuit
models. C–E, Time-dependent threshold functions for the control (C), elevated-E/I (D), and lowered-E/I (E) circuit models.
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psychophysical kernel (Fig. 8C), comparison to the control cir-
cuit cosine-similarity values of 0.98 for upstream deficit, 0.79 for
elevated-E/I, and 0.86 for reduced-E/I. Similarly, for the psycho-
metric shift in the pulse paradigm (Fig. 8D), this yielded similar-
ity values of 0.98 for upstream deficit, 0.85 for elevated-E/I and
0.87 for lowered-E/I. This quantification shows that the shape of
the time course is preserved under upstream deficit, and only
rescaled for the psychophysical kernel, in contrast to how the
shape of the time course is altered by E/I perturbation. Alteration
in these time course shapes can be characterized in multiple
ways which may be amenable to experimental measurement. For
instance, in Figure 8C,D, we marked the center of mass for each
of the curves, which shows a shift to the left by elevated-E/I, a
shift to the right for lowered-E/I, and little change for upstream
deficit. A feasible experimental design could test two pulse onset
times in the pulse paradigm, one early and one late, and measure
the ratio of early versus late magnitudes. The model predicts an
increase in that ratio for elevated-E/I, a decrease for lowered-E/I,
and little change for upstream deficit.

Generalized DDM with imperfect integration
Thus far, we have characterized a spiking circuit model of the
association cortex for decision-making, which can provide dis-
sociable predictions to various disease-motivated deficits in E/I
balance and sensory representations. Although biophysically-
realistic models can provide insights to the underlying circuit
mechanisms of behavioral alterations, algorithmic models

defined at the level of psychological processes can provide com-
plementary utility. Such models provide a more parsimonious
and abstracted understanding, as well as greater accessibility to
directly fit to empirical data. In particular, the DDM is a highly
influential and successful framework for modeling 2AFC deci-
sion-making (Ratcliff, 1978; Ratcliff and Rouder, 1998; Gold
and Shadlen, 2007; Roxin and Ledberg, 2008; Farashahi et al.,
2018).

The DDM describes the dynamics of a decision variable that
accumulates noisy evidence over time (Fig. 9A). The decision
variable undergoes a diffusion process biased by evidence-repre-
senting drift, until it reaches one of two predefined bounds above
or below its starting point. An internal decision of one of the two
choices is considered made when the decision variable crosses
the corresponding bound. In the standard DDM, the temporal
integration process is perfect, in the sense that the decision vari-
able is the time integral of its evidence input, such that all previ-
ous evidence inputs will equally contribute to the decision
variable before bound crossing. In other words, the memory
timescale is infinite in the standard DDM. Past decision-making
studies typically assume perfect integration in the DDM, and
have focused on canonical parameters such as drift rate, noise
strength, and bound heights (Ratcliff, 1978; Ratcliff and Rouder,
1998; Smith and Ratcliff, 2004; Gold and Shadlen, 2007).

Based on the differential E/I effects on the decision-making
time course observed in the three paradigms, we hypothesized
that in the DDM framework, E/I alterations may correspond to

Figure 8. Upstream deficit in sensory coding on decision-making performance can be distinguished from E/I perturbation deficits in the nonstandard task paradigms. A, Implementation of
the upstream sensory coding deficit in the control circuit. The dependence of separation of the stimulus inputs on coherence was scaled by a factor r . Here, we used r = 0.5. B, In the stand-
ard task paradigm, psychometric functions of the sensory coding deficit circuit (black) and the other three circuit models. All deficits can similarly impair psychophysical performance. C,
Psychophysical kernel weights, as a function of time, for the sensory coding deficit circuit (black) and the other three circuit models, for the psychophysical kernel paradigm. Colored dots at top
mark the center of mass for each of the kernels. Relative to control, elevated E/I ratio produces a shift to the left, reduced E/I ratio produces a shift to the right, and upstream deficit preserves
the center of mass. D, In the pulse paradigm, psychometric shift, as a function of pulse onset time, for the sensory coding deficit circuit (black) and the other three circuit models. Colored dots
at top mark the center of mass for each of the shift curves. Relative to control, elevated E/I ratio produces a shift to the left, reduced E/I ratio produces a shift to the right, and upstream deficit
preserves the center of mass. E, In the variable duration paradigm, discrimination threshold, as a function of stimulus duration, for the sensory coding deficit circuit (black) and the other three
circuit models.
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changes in the temporal integration process itself. To capture
such effects, we generalized the DDM to include a self-coupling
term l (Fig. 9A; Bogacz et al., 2006; Roxin and Ledberg, 2008;
Brunton et al., 2013; Miller and Katz, 2013; Farashahi et al., 2018;
Shinn et al., 2020). l = 0 corresponds to the perfect integration
of the standard DDM, with an infinite time constant for memory
(t ¼ jl j�1). l , 0 corresponds to a leaky integration, such that
earlier evidence is gradually discounted. t ¼ jl j�1 thus repre-
sents the finite time constant for memory leak (Usher and
McClelland, 2001; Bogacz et al., 2006). Conversely, l . 0 corre-
sponds to unstable integration, in which the decision variable
has an intrinsic tendency to diverge away from zero and toward
the decision bounds (Fig. 9B). Here, t ¼ jl j�1 represents the fi-
nite time constant limiting the window of evidence integration,
before the system diverges to a decision bound. We hypothesized
that decision-making effects of elevated or lowered E/I ratio in
the circuit model could be well captured by unstable or leaky
integration, respectively.

To interpret how imperfect integration shapes the time course
of evidence accumulation, it is important to distinguish between
two related but distinct processes with timescales: the integration
time constant (t ¼ jl j�1), and the threshold-crossing time. The
integration time constant contributes to the instantaneous dy-
namics of the decision variable (Eq. 6). The threshold-crossing
time in a trial terminates the evidence accumulation process, af-
ter which the choice is no longer sensitive to evidence. A longer

threshold-crossing time thereby results in longer time windows
in which the choice is sensitive to evidence. Decreasing self-cou-
pling below zero (l , 0) produces leakier integration, which
decreases the integration time constant (t ¼ jl j�1), yet
increases the threshold-crossing time (Fig. 9F) which lengthens
the time window in which evidence can impact the choice. Our
selection of the self-coupling term l as a key parameter to intro-
duce into a generalized DDM and fit to capture effects of E/I
alterations was motivated by the hypothesis of an altered integra-
tion process, as integration in the circuit model is because of
excitatory-inhibitory recurrent synaptic interactions (Wang,
2002; Wong and Wang, 2006). Future computational modeling
studies can test how alterations to various biophysical parameters
in the spiking circuit can best be mapped onto parameters of
generalized DDMs.

Fitting generalized DDMs
While semi-analytical solutions exist for the standard DDM (i.e.,
with l = 0) and allows efficient model fitting, the same typically
does not hold for generalized DDMs with extensions such as
self-coupling as considered here. Instead, generalized DDMs can
be solved and fit using the Fokker–Planck equation, which
describes the probability distribution of the decision variable as it
evolves over time (Fig. 9D). The net flux across each bound is
considered probability committed to the corresponding choice.
Practically, this requires discretization of the decision variable

Figure 9. A generalized DDM with self-coupling captures the effects of perturbed E/I ratios on decision-making. A, Schematic of the generalized DDM with a self-coupling term l x. B,
Example trajectories of the decision variable x of three generalized DDMs during the standard task. A perfect integrator (l = 0, green), an unstable integrator (l . 0, orange), and a leaky in-
tegrator (l , 0, purple), were fit to the control, elevated E/I, and lowered E/I circuits, respectively. The displayed traces have median bound-crossing time, excluding indecision trials where
neither bounds are reached. Overlaid is an example trajectory from the DDM fit to the lowered E/I circuit, in which neither bound is reached during the simulated duration (gray). In our model
fitting, no individual trial simulations are used (see D–F). The trajectories are shown here to illustrate differences among the DDM models. C, Psychometric functions for the three integrators.
The DDM parameters are quantitatively fit using the neurally-defined choice and indecision proportions of the circuits in the standard task. Fitting yielded l = 6.75 s� 1 (t = 0.148 s, time
constant of unstable growth) for the elevated-E/I circuit and l = –7.77 s� 1 (t = 0.129 s, time constant of leakiness) for the lowered-E/I circuit. Circles and squares mark data from the circuit
model and generalized DDM, respectively, and the curves mark the psychometric function fit to the generalized DDM. D–F, PDF, as computed from the Fokker–Planck equation, for the 0% co-
herence condition, for the perfect (D), unstable (E), and leaky (F) integrators as a function of time and decision variable. Parameter values used are those determined by fitting the spiking cir-
cuit model.
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space and time to small steps, and propagating the Fokker–
Planck equation over these small steps. Across the literature of
neuroscience, the forward-Euler method was commonly used,
because of its intuitive and straight-forward implementation.
However, this method required very small steps in time for sta-
bility in the PDF evolution, and can be prohibitively slow for the
fitting models to data. To overcome this technical challenge, we
calculated the numerical Fokker–Planck equation for the gener-
alized DDM with the backward-Euler method, which has greater
computational performance than forward-Euler, thereby ena-
bling data-fitting of generalized DDMs (Shinn et al., 2020).

To test model hypotheses that effects of E/I imbalance can be
captured by changes in imperfect integration of a DDM, we fit
generalized DDMs with self-coupling to the circuit models using
neurally measured choice and indecision states in the standard
task, and then examined the behavior of those fit DDMs on the
nonstandard tasks of psychophysical kernel, pulse, and duration
paradigms. As shown in results above (Fig. 6), psychometric per-
formance in the standard task does not effectively dissociate
between model regimes. For this reason, we used the psychomet-
ric performance, combined with the neurally-defined indecision
trial proportions, to fit the circuit models, as E/I perturbations
affect both of these model features and dissociate elevated-E/I
and lowered-E/I regimes.

We first fit a DDM without self-coupling (l = 0) model to
the control circuit (Fig. 9C,D). As a standard DDM without self-
coupling is the dominant DDMmodeling framework in the field,
this shows that performance of the control circuit can be
approximated by the standard DDM. This fitting set the other
two DDM parameters of drift rate m = 14.3 s�1 and noise
strength s = 1.33 s�0.5. We then fit the self-coupling parameter
l to each two disrupted E/I conditions. In line with our hypothe-
ses, fitting l to the elevated-E/I circuit yielded an unstable integra-
tor with a large positive value (l elevated ¼ 6:75 s�1), such that the
probability densities of the decision variables are pushed toward a
decision bound once perturbed by early evidence (Fig. 9C,E). On
the other hand, fitting l to the lowered-E/I circuit yielded a leaky
integrator with a large negative value (l lowered ¼ �7:77 s�1), such
that the probability densities decay away from the bounds over time
(Fig. 9C,F). We note that with m and s fixed, the fit self-coupling
term of the control circuit is small (l control = 0.0130). The fit self-
coupling terms of the E/I-perturbed circuits correspond to relatively
short integration time constants (t ¼ jl j�1) of 148 and 129ms for
the elevated-E/I and lowered-E/I circuits, respectively. These results
show that effects of E/I imbalance on decision-making dynamics in
the model can be captured by changes in the self-coupling of a
DDM process, with elevated-E/I mapping onto increased self-cou-
pling for unstable integration and lowered-E/I mapping onto
decreased self-coupling for leaky integration.

The above fitting analysis constrained the control circuit to be
fit by perfect integrator l = 0 to focus on deviations in self-coupling
by the E/I perturbations. For validation, we simultaneously fit the
three circuits together, without the constraint of l = 0 for the con-
trol circuit. In this fitting procedure, each of the three circuits has its
own independent l and they share m and s . This fitting yielded
self-coupling parameters l control ¼ 1:18 s�1; l elevated ¼ 6:33 s�1,
and l lowered ¼ �4:61 s�1, with drift rate m ¼ 11:12 s�1 and noise
strength s = 1.09 s� 1/2. This fitting procedure therefore yields the
same major qualitative results as in the prior analysis with unstable
and leaky integration for the elevated and lowered E/I circuits,
respectively. The control circuit is fit by positive self-coupling
which is much weaker than the that of the elevated-E/I or low-
ered-E/I circuits, indicating weakly unstable integrator, which is

consistent with being offset from the sensitivity peak in Figure
2C. The corresponding integration timescale (t ¼ jl j�1) is sub-
stantially longer for the control circuit (t control = 850ms) than ei-
ther perturbed circuits (t elevated = 158ms, t lowered = 217ms).

Next, we tested these fitted generalized DDMs on the three
paradigms that probe the time course of evidence accumulation
(Fig. 10). We found that these two regimes of self-coupling could
well capture key aspects of how E/I perturbations impact deci-
sion-making behavior across all paradigms. The unstable integra-
tor, fit to the elevated E/I circuit, over-emphasizes early evidence
and discounts late evidence in both the psychophysical kernel
and pulse paradigms. By contrast, for the leaky integrator, fit to
the lowered E/I circuit, those curves are flat and low indicating
less sensitivity to evidence in general. One notable difference
from the spiking circuit results is that the generalized DDM is
sensitive to stimulus immediately following stimulus onset,
unlike the circuit model which has an initial ramp-up in sensitiv-
ity (Wong and Wang, 2006; Roxin and Ledberg, 2008; Wimmer
et al., 2015). This is because the circuit model which takes time
to reach an integrative state through its quasi-two-dimensional
nonlinear dynamics (see above, Psychophysical kernel para-
digm), whereas the one-dimensional generalized DDM can begin
evidence accumulation from the beginning. In principle, this ini-
tial rise could be captured by a further generalization of DDM,
for instance to include a temporal aspect of gain modulation.
However, we consider this feature to be relatively incidental and
not predictive of the alterations of E/I balance.

Finally, we examined how a generalized DDM with self-
coupling could be fit to behavioral choice data from a task
paradigm that enables characterizing the time course of evi-
dence accumulation. Specifically, we tested parameter re-
covery of the self-coupling term l using only choice
behavior in the pulse paradigm (Fig. 10). We varied l in a
generalized DDM, spanning from leaky (negative l ) to
unstable (positive l ) integration regimes. For each value of
l , we simulated probabilistic choices in discrete sets of tri-
als under different pulse onset times and coherences. We
then fit all three of the generalized DDM parameters (l , m,
s ) to the choice behavior for each circuit, using the
Fokker–Planck method (see Materials and Methods). We
found that l could be recovered with high accuracy, when
tested with 20 pulse onset times as used in Figure 6
(SD = 0.41; Fig. 11A), as well as when tested using only
three pulse onset times (SD = 1.51; Fig. 11B). These results
demonstrate the feasibility of fitting generalized DDMs to
choice behavior from appropriate task paradigms, to test
model predictions for alterations in the temporal integra-
tion regime (leaky vs quasi-perfect vs unstable) of evidence
accumulation in perceptual decision-making.

Overall, we found general agreement in decision-making
behavior between the spiking circuits and the generalized
DDMs with self-coupling fit the circuit model. The parsimony
of the generalized DDM, relative to the circuit model, is nota-
ble, as it is only a one-dimensional dynamical process regu-
lated by few parameters. Parameter recovery of self-coupling
in generalized DDMs, when fit to choice behavior in the pulse
paradigm, suggest the potential utility of such task paradigms
and fitting with generalized DDMs to give insight into deci-
sion-making deficits specific to experimental manipulations
or neuropsychiatric disorders. Furthermore, the expanded
flexibility of generalized DDMs allows them to translate
insights from biophysically-based spiking circuit models
across levels of analysis.
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Discussion
We examined alterations of E/I balance in a bio-
physically-based cortical circuit model of deci-
sion-making. Both elevating and lowering E/I
ratio can degrade decision-making performance,
following an inverted-U dependence. Elevated E/I
ratio results in impulsive decision-making through
under-utilization of later available evidence; lowered
E/I ratio results in indecisive decision-making
through weakened evidence accumulation to deci-
sion commitment. Several task paradigms, psycho-
physical kernel, pulse, and variable duration,
dissociate these regimes by characterizing the time
course of evidence accumulation. Generalized
DDMs capture elevation and reduction of E/I ratio
through more unstable and more leaky integration,
respectively. Generalized DDMs provide theoretical
insight and facilitate fitting models to behavioral
data.

The model makes dissociable and testable pre-
dictions for decision-making behavior arising
from distinct E/I perturbations. In animal models, optogenetic
and chemogenetic methods enable manipulation of E/I ratio
with regional and cell-type specificity (Yizhar et al., 2011;
Markicevic et al., 2020), which could test model predictions for
neural activity and behavior in fixed-duration or response-time
paradigms. In humans, perceptual decision-making behavior can
be measured during pharmacological perturbations of cortical E/
I ratio. For instance, Carter et al. (2004) found that psilocybin
impairs perceptual discrimination with random-dot motion stimuli.
NMDAR antagonists, such as ketamine, are of interest because
NMDAR hypofunction is implicated in the neuropathology and

symptomatology of schizophrenia (Krystal et al., 1994; Lahti, 1995).
Subanesthetic ketamine administration impacts various cognitive
functions in humans and monkeys (Skoblenick and Everling, 2012;
Blackman et al., 2013; Ma et al., 2015).

Neuromodulators, including dopamine and norepinephrine,
could regulate decision-making processes through modulation of
cortical E/I ratio (Aston-Jones and Cohen, 2005; McGinley et al.,
2015; Pfeffer et al., 2018), to adjust cognitive behavior according
to task demands (Ueltzhöffer et al., 2015; Urai et al., 2017). Pupil
dilation can reflect noradrenergic modulation of arousal
(Murphy et al., 2014; Reimer et al., 2016). In line with our
model predictions for elevated E/I ratio, Keung et al. (2018)

Figure 11. Parameter recovery of the self-coupling term (l ) in generalized DDMs by fitting psycho-
physical choice behavior in the pulse paradigm task. A, Parameter recovery of l using the same set of
20 pulse onset times as in Figure 6. B, Parameter recovery of l using a set of three pulse onset times
(0.5, 1, 1.5 s). Fitting was performed over all three free parameters: l , m, s . Error bars mark the SD
across simulated sets of trials.

Figure 10. Psychophysical tasks for the generalized DDMs yield results consistent with the circuit models. A, Psychophysical kernel weights, as a function of time, for the perfect (green),
unstable (orange), and leaky (purple) DDMs qualitatively reproduces the spiking circuit model results for the psychophysical kernel paradigm (Fig. 5). B, Psychophysical matrix for the perfect in-
tegrator (l = 0). C, Psychometric shift, as a function of pulse onset time, for the generalized DDMs qualitatively reproduces the spiking circuit model results for the pulse paradigm (Fig. 6). D,
Psychometric functions with pulse at 0 s for the perfect integrator. E, Discrimination threshold, as a function of stimulus duration, for the generalized DDMs qualitatively reproduces the spiking
circuit model results for the variable duration paradigm (Fig. 7). F, Time-dependent threshold functions for the perfect integrator.
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found that larger pupil dilation corresponded with greater
weighting of early evidence in psychophysical kernels. Prior
computational modeling studies have linked E/I effects of
neuromodulation to cognitive deficits (Durstewitz and
Seamans, 2008; Eckhoff et al., 2009; Cano-Colino et al.,
2014). Our study focuses on how E/I regulation by neuromo-
dulators may impact evidence accumulation dynamics, pro-
viding testable predictions for behavioral and neural
experiments.

Random-dot motion discrimination tasks, using a standard
paradigm, have revealed impaired perceptual discrimination
(i.e., higher discrimination threshold) in schizophrenia (Chen et
al., 2003, 2004, 2005) and autism spectrum disorder (Milne et al.,
2002; Koldewyn et al., 2010), both of which are associated with
disrupted cortical E/I balance (Lisman et al., 2008; Marin, 2012;
Nakazawa et al., 2012; Lee et al., 2016). Prior studies primarily
interpreted those impairments as reflecting dysfunction in early
visual cortex, such as area MT (Butler et al., 2008). Our model
suggests a potential complementary impairment in downstream
association cortical decision-making circuits. Task paradigms
which can dissociate different forms of impairments have poten-
tial to reveal concurrent alterations in sensory and cognitive
computations in neuropsychiatric disorders. The model’s neuro-
physiological basis provides interpretation of dissociable behav-
ioral regimes in terms of hypothesized deficits in cortical E/I
balance.

We focused on three fixed-duration task paradigms which
probe the time course of evidence accumulation. Our findings
show that even when the stimulus input filter is constant in time,
the stimulus’s impact on choice can follow a time-varying
profile that is shaped by the internal dynamics of decision
formation in the circuit (Wimmer et al., 2015), and is
thereby shaped by E/I ratio. In line with these findings,
recent studies show that observed temporal weights, in
tasks similar to our psychophysical kernel paradigm, do not
in general reflect only the stimulus’s “sensory filter,” but
instead reflects both sensory and decision-making processes
(Kiani et al., 2008; Yates et al., 2017; Okazawa et al., 2018;
Stine et al., 2020). Although the fixed-duration task para-
digms considered here might not be best-suited to charac-
terize a nonconstant sensory filter, they are useful to probe
decision-making processes across experimental conditions
(Sheppard et al., 2013; Scott et al., 2015; Kawaguchi et al.,
2018), especially in the context of perturbations (Erlich et
al., 2015; Katz et al., 2016).

Depending on task demands, it may be functionally beneficial
to modulate the integration timescale of decision-making to
match stimulus temporal statistics. For example, older informa-
tion might become outdated and can be discounted via leaky
integration. Recent studies show how flexible adaptation can be
implemented to optimize decision-making performance in dy-
namical environments (Ossmy et al., 2013; Glaze et al., 2015;
Veliz-Cuba et al., 2016; Farashahi et al., 2018; Levi et al., 2018).
Our results suggest that impairment in the dynamical range of
modulating E/I ratio could lead to a cognitive deficit of reduced
flexibility in tuning integration timescales.

Our study demonstrates feasibility and utility of relating
classes of computational models that operate at different levels
of abstraction, as here by linking biophysically-based spiking
circuits and generalized DDMs with imperfect integration.
Incorporating a self-coupling term into generalized DDMs can
capture behavioral effects of imperfect integration (Bogacz et
al., 2006; Roxin and Ledberg, 2008; Miller and Katz, 2013;

Farashahi et al., 2018). Biophysically-based circuit models are
highly computationally intensive, which limits their practical
application to fit empirical behavioral data in cognitive tasks. In
contrast, the generalized DDM is computationally tractable
when simulated using the Fokker–Planck formalism, which
enables efficient fitting to empirical and model-generated psy-
chometric choice data (Shinn et al., 2020). A potentially fruit-
ful strategy may be to fit generalized DDMs to empirical
psychophysical data, using sensitive task paradigms, as well as
to circuit models to link to neurophysiological hypotheses.

An underlying hypothesis arising from our model architec-
ture is that on trials when the decision circuit fails to reach a cat-
egorical choice state, a downstream motor circuit produces a
random behavioral response. This architecture, following prior
modeling (Wang, 2002), makes neurophysiologically testable
predictions. The separation between decision and motor circuits
in our model is analogous to distinct roles of neurophysiological
cell types observed in the frontal eye field (FEF) during percep-
tual decision-making tasks, specifically the correspondence
between the decision circuit in our model with FEF visual neu-
rons and downstream motor response in our model with FEF
motor neurons (Schall, 2015). In typical decision-making tasks,
FEF visual neurons produce categorical decision-related activity
in separation of firing rates for selected versus nonselected tar-
gets, after which FEF motor neurons ramp to trigger an associ-
ated saccadic response (Woodman et al., 2008; Purcell et al.,
2010). In tasks with timing pressure and limited sensory evi-
dence, motor neurons can trigger a response without decision-
related selection in visual neurons (Stanford et al., 2010; Costello
et al., 2013). This decision-to-motor architecture has been
instantiated in prior circuit models separating decision and
motor sub-circuits (Soltani et al., 2013; Murray et al., 2017a).
Random response generation on indecision trials can be imple-
mented through nonselective excitatory drive to the downstream
motor circuit at the offset of stimulus presentation, carrying an
urgency-related signal (Wong and Wang, 2006). Future experi-
mental and computational studies can further examine these
model hypotheses for decision-related and motor-related activity
under E/I manipulations.

The circuit model in this study produce decision-making
behavior with integration of evidence through ramping neural
dynamics (Wang, 2002; Wong and Wang, 2006). Other dynami-
cal regimes may be used by different modes of decision-making.
For instance, decision-making may be implemented, in the same
cortical circuit architecture as our model, through stochastic
“jumping” between multiple quasi-stable attractor states (Martí
et al., 2008; Miller and Katz, 2010, 2013). A related dynamical re-
gime is one in which large fluctuations drive frequent transitions
between decision-related attractor states (Albantakis and
Deco, 2011; Prat-Ortega et al., 2021). Recent experiments
by Najafi et al. (2020) demonstrated choice-tuned activity
in inhibitory interneurons, which may support continuous
attractor dynamics as another dynamical regime for deci-
sion circuits (Lim and Goldman, 2013). Inagaki et al. (2019)
found that decision-making activity in frontal cortex
resemble discrete attractor dynamics rather than continu-
ous attractor dynamics. It remains to be studied how pre-
dictions from the present model framework generalize to
other dynamical regimes.

The model predictions are based on a circuit model that is
biophysically grounded yet parsimonious (Wang, 2002).
Multiple model extensions are possible to investigate specific
neurophysiological hypotheses. Effects of neuromodulators can
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be studied in these circuit models (Durstewitz et al., 2000;
Eckhoff et al., 2009; Cano-Colino et al., 2014). Another future
modeling direction is to examine these phenomena in more dis-
tributed circuit models, e.g., with multiple brain regions and
cortical layers (Soltani et al., 2013; Mejias et al., 2016; Murray et
al., 2017b). Finally, the current study considers recurrent inter-
actions with only two cell types. Distinct classes of inhibitory
interneurons exhibit diverse cellular and synaptic properties,
microcircuit connectivity motifs, and neurophysiological
responses (Rudy et al., 2011; Kepecs and Fishell, 2014; Jiang et
al., 2015). Incorporating distinct inhibitory interneuron classes
into circuit models could allow finer-grained investigation of
inhibitory dysfunction beyond the relatively coarse net effect of
E/I ratio (Wang et al., 2004; Yang et al., 2016; O’Donnell et al.,
2017).
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