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Abstract

Burst "ring is a prominent feature of cortical pyramidal cells and is thought to have
signi"cant functional roles in reliable signaling and synaptic plasticity. Modeling studies have
successfully elucidated possible biophysical mechanisms underlying complex bursting in pyr-
amidal cells. Based on these results (Pinsky, Rinzel, J. Comput. Neurosci. 1 (1994) 39}60), we
have built a simpli"ed two-compartment burst model. Using the fast- and slow-variable
analysis method, we show that complex bursting is an instance of square-wave bursting, where
the dendritic slow potassium conductance is the single slow variable. The coupling parameters
between the two compartments change the topological class of bursting thereby altering the
"ring patterns of the neuron. These results explain the diverse set of "ring patterns seen with
di!erent dendritic morphologies (Mainen, Sejnowski, Nature 382 (1996) 363}366). ( 2000
Elsevier Science B.V. All rights reserved.

Keywords: Phase-plane analysis; Complex burst; Bifurcation diagram

1. Introduction

Pyramidal cells in many cortical areas "re stereotyped bursts of action potentials
termed complex spikes or complex bursts. These bursts consist of 2}7 action poten-
tials occurring in a &30 ms window. First observed in hippocampal single-unit
extracellular recordings, these were termed &complex spikes' and were later identi"ed
by intracellular techniques. Burst "ring is thought to play an important role in reliable
signaling [5,15] and synaptic plasticity [2].
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Modeling studies have determined that these bursting oscillations can be generated
by a variety of biophysical mechanisms. The systematic theoretical analysis of burst-
ing was pioneered by Rinzel [10]. Such analysis is useful, since mathematical under-
standing of various burst patterns have given insights into their biophysical character,
their emergence and the switching and resetting of behaviors between di!erent modes
of "ring [16]. Rinzel classi"ed system variables as either `slowa if they changed little
during a single spike but signi"cantly during a burst or `fasta if their primary behavior
was determined by a spike. From a theoretical point of view a burst is an action
potential waveform made up of a slow and a fast component. The fast component
is an autocatalytic type of reaction whereas the slow is a negative feedback to the
system. Analyzing a burst requires one to "nd the right separation of slow and fast
subsystems and to map the fast system while holding the slow system constant and
treating it as a parameter. Based on these methods several prototypical bursting types
have been identi"ed and analyzed (e.g. triangular, square-wave, parabolic and elliptic
bursting [1,16]). Complex bursting, however, has not yet been analyzed in this
sense [16].

Traub's 19-compartment model [13] was the "rst successful modeling attempt to
recreate a complex burst. This was followed by Traub [12], a model built with
branching morphology for hippocampal cells and Rhodes and Gray [9] for neocorti-
cal cells. Intuitive understanding of these models came from Pinsky and Rinzel [8],
who reduced Traub's model to a two-compartment model that captures the essence of
bursting by the spatial segregation of fast and slow currents. Mainen and Sejnowski
[6] showed how certain parameter variations can be understood as changing mor-
phology which then translate the various known "ring patterns from di!erent loca-
tions of the parameter space into morphological space. Here, we introduce an even
more simpli"ed, minimal two-compartment model for complex bursting. Using this
model we show, following Rinzel's method, how this type of bursting emerges in the
framework of dynamical systems.

2. Methods

Our model includes only the minimal biophysical mechanisms necessary to study
the phenomenon of complex bursting [3]. Following Pinsky and Rinzel [8], we
represent the perisomatic region with a single compartment and the dendrites lumped
into another. The somatic compartment includes only the channels necessary for spike
generation (I

N!
and I

K
) while the dendritic compartment includes a slow potassium

I
KS

and a persistent sodium I
N!P

current. The membrane potential follows the
equations below:
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where I
40.!

and I
$%/$3*5%

are current injections to the compartments. The voltage-
dependent conductances are described using standard Hodgkin}Huxley formalism.
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The coupling conductance is varied, the base value is g
#
"1 mS/cm2. The asymmetry

between the areas of the two compartments is taken into account in the parameter
p"somatic area/total area which has a base value of 0.15. The temperature scaling
factors are /

m
"10, /

h
"/

n
"3.33. Other parameter values are: g

L%!,
"0.18,

g
N!P

"0.12, g
KS

"0.7, g
N!

"55, g
K
"20 (in mS/cm2); E

L%!,
"!65, E

N!
"#55,

E
K
"!90 (in mV).
Altogether the model consists of "ve di!erential equations. Simulations were

performed using MATLAB, XPP and AUTO for bifurcation analysis.

3. Results

3.1. Firing patters

The basic bursting behavior of the model is shown in Fig. 1A. By increasing
the injected current, bursting gives way to spiking (Fig. 1C). Note that repe-
titive spiking appears via a chaotic parameter region shown on Fig. 1B. The PoincareH
map of Fig. 1B is a tent map, indicative of square-wave bursting [11,14]. In
similar models [8,6] a range of "ring behaviors were found by modi"ng the
coupling parameters. When the coupling strength, g

#
, is strong, the burst gets

progressively shorter, changing into doublets and "nally to single spikes (Fig. 1D).
Note that this type of single spike shows after-depolarization instead of after-hyper-
polarization.

When the two compartments are weakly coupled (e.g., g
#
"0.1), the bursts take on

an entirely di!erent shape; the dendritic voltage does not fully follow somatic events,
showing only a small hump during a burst (Fig. 1E). The interspike intervals during
this burst show a parabolic pattern, hence this kind of burst has been called nearly-
parabolic burst [7]. For larger current injections the bursting disappears (Fig. 1F).
Spiking is now modulated in frequency by the slow dendritic depolarizations and the
instantaneous frequency is nearly sinusoidal. This type of "ring might be called nearly
parabolic spiking.

By decreasing the relative area of the dendritic compartment (increasing p), the
model can be switched to spike-train adaptation. The degree of adaptation is greater
with larger relative somatic area (compare Fig. 1G and 1H, with p"0.2 and 0.6
respectively).
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Fig. 1. Various xring patterns exhibitied by the model. For A}B the somatic voltage is plotted; for E}F
dendritic voltage is also plotted with dashed lines. Each trace was produced by using following parameter
triplets (g

#
,p, I

40.!
) A (1, 0.15, 3), B (1, 0.15, 19.7), C (1, 0.15, 23), D (5, 0.15, 3), E (0.1, 0.15, 7), F (0.1, 0.15, 20),

G (0.1, 0.2, 15), H (0.1, 0.6, 30).

3.2. Phase-plane analysis

During a burst I
KS

increases gradually, building up with each spike. In the
dendrites, the electrotonic current spreading from the soma is a major determinant of
voltage; it initiates the burst. I

KS
receives help from the leak conductance. In the soma,

electrotonic current from the dendrites is signi"cant after a spike and intitiates the
subsequent somatic spike. The burst terminates when due to the buildup of I

KS
the

dendritic comparment goes below threshold.
In order to look at the dynamics of the system, we "rst calculated the bifurcation

diagram of the fast subsystem with respect to the slow variable q, the activation gate of
I
KS

. The somatic potential is a good representative of the fast subsystem. The
equilibrium states appear as a Z-shaped manifold (Fig. 1A). As q increases, it becomes
unstable at a supercritical Hopf bifurcation. The resulting periodic solution is plotted
as the maxima, minima (thick) and average membrane potential (dash}dotted) within
a burst (Fig. 2). The periodic solution disappears at a homoclinic bifurcation. There is
a bistable regime where a stable resting and a periodic solution coexist. In order to see
where the actual burst is con"ned within this phase-plane, the somatic potential is
plotted against q of I

KS
in the full system. We see the typical, computationally

mutated, many-eared `cat on a planea emerging in the bistable regime. Now, the
question becomes whether we can account for the dynamics of q within this diagram.
The slow nullcline of dq/dt intersects the unstable "xed solution within the bistable
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Fig. 2. Bifurcation diagram A (g
#
"1). The Z-shaped steady-state (solid) becomes unstable (dashed). The

thick cone is the periodic solution. The average membrane potential is dash}dotted. The temporal
evolution of (q,<

4
) pairs of a burst is shown with arrows. The dq/dt"0 nullcline crosses just above the left

knee. B Same with weak coupling, g
#
"0.1 and C Strong coupling, g

#
"5.

states. Along this curve the value of q does not change. Above this (dq/dt'0)
q increases, below this (dq/dt(0) q decreases. Since dq/dt(0 at the lower stable
branch, it moves leftward until it hits the left knee of the Z-curve and switches via
a saddle-node bifurcation to the periodic solution. As the phase-point is now above
the nullcline it moves rightward, oscillating with greater amplitude and longer
period until it hits the middle branch of the slow manifold returning to the resting
stable state. Here it is below the nullcline and works its way back toward the left knee.
Note that the burst terminates at an in"nite period orbit, translating into growing
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interspike intervals within the burst. The q variable is moved by the average potential
or in biophysical terms the slow potassium conductance gets slowly activated by the
voltage over time. Since the entire periodic solution is above the nullcline the average
does the same.

When the two compartments are only weakly coupled a di!erent picture emerges
(Fig. 2B). The periodic solution's lower branch is below the rest state and spikes
`undershoota. However, the average voltage is still above the nullcline thus bursting
remains. The Z-curve is slightly deformed at the right knee where there is a
Hopf bifurcation. At greater coupling strengths the bistable region gradually
shrinks. At g

#
"5, the periodic solution vanishes after a single spike (Fig. 2C). Since

the phase-point gets back to the resting state at once, there is no undershoot or after
hyperpolarization.

4. Discussion

By determining the exact mechanisms of bursting one can gain insights into an
array of "ring behaviors and the nature of transitions between them. This understand-
ing can facilitate the study of how di!erent factors might in#uence "ring patterns. We
found that the complex bursting is a form of square-wave bursting (Fig. 2A). This
requires a single slow variable which in our case is the slowly activating dendritic
potassium channel, I

KS
. The burst occurs in a bistable region, thus it can be reset by

brief stimuli. The di!erent modes of behavior in this model are explained by the way
coupling changes the bifurcation diagram (Figs. 2B and C) that is how the slow
subsystem is coupled to the fast, spiking subsystem. Adjusting the coupling strength,
g
#
, and the relative area, p, switches the model among the following types of "ring

behaviors: bursting, regular spiking, spikes with after-depolarization, parabolic burst-
ing, sinusodial spiking and spike adaptation (Fig. 1).

What are the functional implications of this? Factors that in#uence the coupling
can dramatically change the "ring behavior of a complex bursting cell. The idea that
morphology has a major in#uence on "ring behavior rests on the assumption that
di!erent types of currents are segregated along morphological boundaries. The results
of Mainen and Sejnowski [6] can be now seen in the structure of the bifurcation
diagrams (Fig. 2). In addition, this predicts that factors changing the dendritic slow
potassium current could also change bursting behavior. For example if dendritic
inhibition modulates the slow potassium current, the shape of the burst is a!ected [4].
Specialized actions of di!erently localized inhibitory synapses may also be explained
by this result. As dendritic inhibition changes the speed of the slowly varying
parameter q, it modulates the burst pattern. Somatic inhibition, on the other hand can
only stop or delay the burst [4] but has no access to q to modify the burst waveform.
In summary, complex bursting is a special case of square-wave bursting where the
compartmental segregation of fast and slow systems enables physiological manipula-
tions to dramatically change "ring behavior.
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