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SUMMARY AND CONCLUSIONS 

1. We address the hypothesis of Steriade and colleagues that 
the thalamic reticular nucleus (RE) is a pacemaker for thalamo- 
cortical spindle oscillations by developing and analyzing a model 
of a large population of all-to-all coupled inhibitory RE neurons. 

2. Each RE neuron has three ionic currents: a low-threshold 
T-type Ca2+ current ( lcamT ), a calcium-activated potassium 
current ( IAHP) and a leakage current (IL). JCamT underlies a cell’s 
postinhibitory rebound properties, whereas l*uP hyperpolarizes 
the neuron after a burst. Each neuron, which is a conditional oscil- 
lator, is coupled to all other RE neurons via fast y-aminobutyric 
acid-A (GABA,) and slow GABA, synapses. 

3. For generating network oscillations lAHP may not be neces- 
sary. Synaptic inhibition can provide the hyperpolarization for 
deinactivating ItivT that causes bursting if the reversal potentials 
for GABA, and GABA, synapses are sufficiently negative. 

4. If model neurons display sufficiently powerful rebound excit- 
ability, an isolated RE network of such neurons oscillates with 
partial but typically not full synchrony. The neurons spontane- 
ously segregate themselves into several macroscopic clusters. The 
neurons within a cluster follow the same time course, but the 
clusters oscillate differently from one another. In addition to activ- 
ity patterns in which clusters burst sequentially (e.g., 2 or 3 clus- 
ters bursting alternately), a two-cluster state may occur with one 
cluster active and one quiescent. Because the neurons are all-to-all 
coupled, the cluster states do not have any spatial structure. 

5. We have explored the sensitivity of such partially synchro- 
nized patterns to heterogeneity in cells’ intrinsic properties and to 
simulated neuroelectric noise. Although either precludes precise 
clustering, modest levels of heterogeneity or noise lead to approxi- 
mate clustering of active cells. The population-averaged voltage 
may oscillate almost regularly but individual cells burst at nearly 
every second cycle or less frequently. The active-quiescent state is 
not robust at all to heterogeneity or noise. Total asynchrony is 
observed when heterogeneity or noise is too large, e.g., even at 25% 
heterogeneity for our reference set of parameter values. 

6. The fast GABA, inhibition (with a reversal potential more 
negative than, say, -65 mV) favors the cluster states and prevents 
full synchrony. Our simulation results suggest two mechanisms 
that can fully synchronize the isolated RE network model. With 
GABA, removed or almost totally blocked, GABA, inhibition 
(because it is slow) can lead to full synchrony, which is partially 
robust to heterogeneity and noise. A second possibility, also robust 
to heterogeneity and noise, is realized if the GABA, synapses have 
a less negative reversal potential and provide shunting rather than 
hyperpolarizing inhibition. 

7. We examined the effects of fast excitation from thalamocor- 
tical (TC) cells. The TC output is generated by a synchronous TC 
pool that receives GABA, and GABAB inhibition from the RE 
network and sends back amino-3-hydroxy+methyl-4-isoxazole- 
propionic acid (AMPA)-mediated excitation. The TC pool has 

three ionic currents: &. , IL, and a hyperpolarization-activated 
cation ( “sag”) current, &. 

8. Modest excitation from the TC pool can eliminate cluster 
oscillations and synchronize fully the RE network, with robust- 
ness to heterogeneity and noise. Furthermore, strong AMPA exci- 
tation can create synchronized oscillations in cases where without 
it the RE system is at rest. 

9. The oscillation frequency of the RE-TC network depends 
mainly on the GABA inhibition from the RE cells to the TC pool. 
Blocking GABA, decreases the frequency because of an indirect 
enhancement of the sag current in the TC pool, whereas blocking 
GABA, increases it. 

INTRODUCTION 

It is well known that the 7- to 14-Hz spindle brain waves, 
an electrographic landmark for the onset of sleep, originate 
in the thalamus (Steriade and Deschenes 1984; Steriade et 
al. 1990, 1993). According to Andersen ( Andersen and An- 
dersson 1968), recurrent synaptic inhibition plays an es- 
sential role in the synchronization of thalamic network 
spindle oscillations. More recent work by Steriade and col- 
leagues identified a morphological substrate for providing 
this inhibitory synaptic organization, the thalamic reticular 
(RE) nucleus (Steriade et al. 1990). A thin neuronal sheet 
embracing partially the dorsal thalamus, the RE network 
consists of synaptically coupled GABAergic neurons 
(Deschenes et al. 1985; Houser et al. 1980; Montero and 
Singer 1984; Ohara and Lieberman 1985; Yen et al. 1985) 
that are capable of rhythmic bursting due to the presence of 
a T-type, low-threshold calcium current (Avanzini et al. 
1989; Bal and McCormick 1993; Huguenard and Prince 
1992; Llinas and Geijo-Barrientos 1988; Mulle et al. 1986; 
Shosaku et al. 1989). The RE cells receive axonal collat- 
erals from the thalamocortical (TC) relay cells and project 
back to the relay nuclei with significant divergence. Further- 
more, the TC cells also possess a T-type calcium current 
(Coulter et al. 1989; Deschenes et al. 1984; Jahnsen and 
Llinas 1984a,b) that endows them with the ability to fire 
rebound bursts of spikes in response to inhibitory postsyn- 
aptic potentials (IPSPs) of RE origin. It was found that 
spindles in thalamic nuclei could be abolished by depriving 
them of RE input (Steriade et al. 1985 ) . Moreover, in a few 
nuclear groups that are not connected with the RE, spindle 
oscillations have never been observed (Mulle et al. 1985 ). 

In vivo lesion experiments on cats showed that spindles 
could persist in an RE isolated from major afferents (Ster- 
iade et al. 1987), suggesting that the synaptic organization 
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within the RE nucleus alone is capable of giving rise to A 
coherent rhythmic activities. On the other hand, recent ex- 
periments with a ferret in vitro slice preparation indicate 
that maintained spindle oscillations in RE require two-way 

I Ca-T 

interactions intact between RE neurons and TC neurons in 
the thalamus proper (von Krosigk et al. 1993a). These ex- 
periments therefore yielded important results about and 
provoked further interest in elucidating the respective roles 
in thalamic synchronization for the two possible mecha- 
nisms: the intrinsic RE circuitry and the RE-TC reciprocal 
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havior depends on various biophysical parameters. The ef- 

The present work was designed specifically to address this 
issue using a computational approach. In a previous work 
regarding the synchronization of RE neurons, Wang and 

fects of variability in the cellular properties, e.g., the maxi- 

Rinzel ( 1992,1993) have shown that mutual inhibition can 
synchronize neurons endowed with a rebound property 

ma1 conductance of the T-type Ca*+ channel, and the ef- 

under the condition that the postsynaptic conductance pos- 
sesses a slow decay time constant. In these references the 

fects of time-dependent neuroelectric noise, were also 

notion of synchrony was defined in the idealistic sense of 
phase-locking with zero phase difference. That is, every cell 
behaves in exactly the same way, and the network forms a 
giant cluster of dynamically identical oscillators. Golomb 
and Rinzel ( 1993, 1994a,b) simulated a large network of 
such model neurons and examined how the network’s be- 
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hyperpolarization-activated cation ( sag) current &. B: architecture of our 
network model. The RE cells are interconnected by y-aminobutyric acid- 
A (GABA,) and GABA, synapses. All the RE neurons inhibit the TC pool 
with GABA, and GABA, synapses and are excited by amino-3-hydroxy-5- 
methyl-4-isoxazolepropionic acid (AMPA) synapses from the TC pool. 

FIG. 1. Schematic diagram of our neuron model. The thalamic reticu- 
lar (RE) cell has 3 intrinsic currents: a T-type calcium current ICaVT, a 
calcium-dependent potassium current IAHP, and a leak current IL. The 
thalamocortical (TC) pool also has 3 intrinsic currents: ICaWT, IL, and a 

analyzed. It was found that in the parameter regime where 
the network without heterogeneity would have been fully 
synchronized, an intermediate level of variability could seg- METHODS 

regate the network into two groups that burst alternately in 
time. On the other hand, stochastic neuroelectric noise 

Single cell models 

caused cells to skip bursts; with enough noise a cell fired 
bursts only once in every two or more cycles of the popula- 
tion rhythm. At a high level of variability or noise the net- 
work became asynchronous. 

In this paper we present an improved version of our RE 
network model. The single RE cell model is updated ac- 
cording to new voltage-clamp and current-clamp data (see 
METHODS). In contrast to our previous modeling, here the 
fast y-aminobutyric acid-A (GABA*) and slow GABA, 
synapses are treated separately, so that their different effects 
on the RE network behavior can be examined. The mathe- 
matical expressions for the model synaptic currents are 
compared quantitatively with experimental measurements. 
With this model we describe the different patterns that the 
RE network exhibits, determine their dependence on the 
model’s parameter values, and assess the degree of network 
synchronization at different levels of variability and noise. 
Two possible synchronizing mechanisms intrinsic to the 
RE network are examined: GABAB synapses with a slow 
decay in the absence of GABA* inhibition and GABAA 
synapses with a reversal potential of -65 to -50 mV, less 
negative than usually assumed or estimated. In addition we 
study the effects of the TC cells on synchronization by con- 
sidering a simple model of a single TC pool that acts as a 
source of coherent excitation to the RE network. 

Each cell is represented by a single compartment according to 
the Hodgkin-Huxley-type scheme. Only the ionic currents that 
underlie the bursts are included. Currents for generating sodium 
spikes are not included for simplicity. The model’s dynamic behav- 
ior is completely described in terms of differential equations, so 
stability analysis and bifurcation theory (Guckenheimer and 
Holmes 1983) can be used to analyze the system. In the following 
we present the differential equations that describe the two kinds of 
thalamic cells (Fig. 1 A). The superscript RT denotes synaptic 
currents from the RE cells to the TC pool; no superscript is used 
for other synaptic currents. A cell’s index (i) is also omitted here 
for simplicity. 

RE CELL 

-1 
AHP - IL - IGABA-A - kABA-B - IAMPA (0 

The low-threshold calcium current JcamT causes rebound excita- 
tion on release from long-lasting hyperpolarization (McCormick 
and Huguenard 1992; Wang et al. 199 1). The calcium-activated, 
voltage-independent potassium current IAHP hyperpolarizes the 
cell after a burst. IL is the leak current. The cell receives two kinds 
of inhibitory inputs: fast GABA, IPSPs and slow GABAB IPSPs. 
It also receives fast amino-3-hydroxy-5-methyl-4-isoxazolepro- 
pionic acid ( AMPA) -mediated excitatory postsynaptic potentials 
from the TC pool. The state of the ith RE neuron, i = 1, . . . , N, 

Preliminary results of this work have appeared in Go- is characterized by seven state variables; one is the voltage and’the 
lomb et al. ( 1993). others are gating variables for the intrinsic currents and synapses. 
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TC POOL 

The slow “sag” current & (reversal potential -40 mV) is acti- 
vated at hyperpolarized levels. The other currents are of the same 
types as in the RE cell, but they have different parameter values. 
The state of the TC pool is characterized by four state variables. 

The intrinsic ionic currents are controlled by activation and 
inactivation variables. Such a generic variable x evolves in time 
according to the equation 

where 7,(V) is the time constant that may be voltage-dependent 
and X, ( V) is the steady-state function of x, which has the form 

x,(V) = { 1 + exp[-(I/- Q/uJ}-’ (4) 

The current IAHP is exceptional because its gating variable de- 
pends on the intracellular calcium concentration and not on the 
membrane potential. The equations and the parameters of the 
model are given in the APPENDIX. 

Network architecture 

The RE network model consists of N globally (all-to-all) cou- 
pled neurons. We are interested in the limit of very large N. Self- 
coupling is included because it simplifies the analysis; it has a 
negligible effect when N is large. All the RE neurons are affected by 
the same global synaptic field. This field is produced by fast 
GABA, synapses, each with maximal conductance gGABA-,,J N, 
and slow GABAB synapses with maximal conductance gGABAmB/ N. 
With this scaling the maximal synaptic field is independent of N. 
Each RE cell inhibits the TC pool with GABA, and GABA, syn- 
apses with maximal conductances &zBA+J N and g&&,-J N, re- 
spectively. It is excited by the TC pool with maximal conductance 
gAMPA. The model’s architecture is shown schematically in 
Fig. 1 B. 

At the present time little quantitative data are available for the 
RE nucleus concerning the cell density and intrinsic connection 
patterns. Our rationale for using all-to-all coupling resides in the 
intuitive notion that this type of connectivity favors global syn- 
chronization, so an RE network with realistic wiring properties 
could not sustain a higher degree of synchrony than is found with 
all-to-all coupling. On the other hand, with their extensive den- 
dritic arborizations (up to 1 mm in some directions; see Steriade et 
al. 1990), RE cells within a confined region are presumably 
strongly coupled, and our network model could be considered as 
reasonable for describing at least a sector of the RE nucleus a few 
millimeters in size. 

Existence, stability, and basins of attractions 

In principle, membrane potential time courses of neurons in the 
network are different for different initial conditions. Here we 
mostly limit ourselves to the network’s behavior at long time, after 
transients have died away and it has converged to an attractor 
(Berg6 et al. 1984). Simulations show that the system’s time 
courses usually converge rapidly, i.e., within a few cycles, to time 
courses close to an attractor. Simple examples of attractors are 
resting states (fixed points) and periodic oscillations (limit cy- 
cles). For such a state to be an attractor it first has to it exist, i.e., to 
be a solution of the system of differential equations. In addition, it 
has to be stable, which means that small perturbations of the sys- 
tem’s initial conditions near the solution will decay and the system 
will converge to it. For further explanation, see Berge et al. ( 1984) 
and Guckenheimer and Holmes ( 1983). 

There are parameter regimes in which our network exhibits 
multistability, i.e., more than one attractor exists. In such cases the 
system converges to one of the attractors depending on its initial 
conditions. When the initial conditions are chosen from a specific 
probability distribution we can define the relative volume of the 
stable state’s basin of attraction (which is the set of initial condi- 
tions from which the system goes to the attractor) with respect to 
the probability distribution as follows. The relative volume is the 
fraction of trials in which the system converges to an attractor (or 
a set of attractors) when the initial conditions are chosen at ran- 
dom from this probability distribution. The relative volume de- 
pends on the probability distribution used (Golomb and Rinzel 
1994b). However, by choosing a “reasonable” probability distri- 
bution we can learn about the relative importance of the attrac- 
tors. In our simulations the initial condition for a cell’s membrane 
potential was chosen at random from the interval (-70 mV, -50 
mV). The other variables are initialized with their steady-state 
values corresponding to the chosen voltage. 

Population-averaged variables and synchrony measure 
The RE neural network is treated here as a large dynamic sys- 

tem. It is convenient to describe the properties of such a system by 
looking at population-averaged variables. An important popula- 
tion-averaged variable is the population-averaged voltage 
V&t), which corresponds to the “local field potential” of many 
RE neurons. 

A 
to 

synchrony measure x of the RE network is defined according 

(5) 

1 T 
lim.,, r 

s 4vPoP(t) - Kw,)’ 
2= 0 

x IN 1 T 

s 
C lim.,, - 

N i=l T 0 
dt(Vi(t) - <)’ 

(6) 

where 

1 T 
Vpop = lim - 

s T 0 
d%Yd0 

T-00 
(7) 

1 T 
Vi = lim qy c dtVi( t) (8) 

T-co 1 JO 

This measure (Golomb and Rinzel 1993, 1994b) is the ratio 
between the time-averaged fluctuations of the population-aver- 
aged voltage Vpop and the population average over each cell’s 
time-averaged Vi fluctuations. It is 1 when all the neurons have the 
same voltage time course and 0 for an incoherent state when the 
fluctuations of VPoP are zero. Numerically, these quantities are 
calculated over a sufficiently long time interval, after the system 
has converged to a stable state. Qualitatively, the system is highly 
synchronized if all the burst peaks shown in a rastergram (see 
RESULTS and A and Cin Figs. 5-7 and 11) occur at about the same 
time relative to the oscillation period (for a quantitative measure 
see Pinsky 1993). 

Modeling heterogeneity and noise 
The real RE network is heterogeneous because parameters vary 

from cell to cell. Parameters that likely vary significantly include 
the maximal conductances of different ionic and synaptic 
currents, which relate to the total number of ionic channels per 
cell. In the limit of large N, random distributions of synaptic cou- 
Ph3 ( W. 9 &ABA-A and &ABA-B) are averaged out in our case of 
global connectivity, and the important variabilities are those of the 
intrinsic ionic conductances. Because our main goal is to check 
the robustness of synchronized or partially synchronized solutions 
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to heterogeneity, we chose to introduce it into one parameter only, 
the maximal T-type calcium conductance gca (Golomb and Rin- 
zel 1993). This parameter is important because the cell is consid- 
ered more “excitable” if it has a larger gca value. For simplicity, 
the distribution ofg, is taken to be uniform with a mean gca and a 
standard deviation cg. In reality, the distribution of gca is expected 
to have a “tail” at large values. We expect that the tail neurons 
escape more easily from synchronization, but most of the other 
neurons behave similarly to what we predict with a uniform distri- 
bution. Heterogeneity in the synaptic time constants does not 
have a significant effect on the network dynamics. 

In reality neurons are not deterministic. Synaptic transmission 
is a noisy process, and ion channel dynamics is also stochastic. 
Moreover, an important source of noise is the inputs from other 
brain centers, not included in the network. This factor affects only 
the membrane potential dynamics. It is modeled here as an addi- 
tive noise ti( t) in the current balance equation, whereas the equa- 
tions for the gating variables remain as before. The noise [i( t) is 
Gaussian, white, and uncorrelated (between neurons) with vari- 
ance 2 D (Van Kampen 198 1). 

The level of heterogeneity among cells is measured by the ratio 
a,/&. One way to determine whether the noise level is high is by 
comparing the change of the membrane potential due to the deter- 
ministic versus stochastic terms in the neuron’s current balance 
equation (Eq. Al ). In hyperpolarized voltage regimes the mem- 
brane potential variation due to the deterministic terms (ionic 
currents) is - 10 mV. The stochastic noise variation of voltage 
fluctuations is - (07) ‘j2, where 7 is a typical time constant. For 
example, if the voltage-dependent channels are ignored, 7 is the 
membrane time constant C/g, = 17 ms, and the stochastic contri- 
bution to the membrane potential change is -4 mV if D = 
1 Oe3V 2/s. Thus this noise level can be considered as “strong.” 
Qualitatively, neuronal voltage time courses at hyperpolarized lev- 
els look “noisy” for D - 10s3V 2 /s (see Figs. 6C, 7C, and 1 K), 
but smooth at D - 10e5V2/s (Fig. 5). 

Computational and numerical methods 
Most of this paper’s results were obtained using numerical 

methods. The equations were integrated using the fourth-order 
Runge-Kutta method with time step At = 0.5 ms for noiseless 
equations and the Euler method with At = 0.25 ms for noisy 
equations. Simulations with smaller time steps confirmed the inte- 
gration accuracy. We usually simulated the network with N = 100 
and analyzed finite-size effects by using N = 1,000. 

When the system segregates to one or more clusters (see RE- 
SULTS) it is convenient to investigate the dependence of the sys- 
tem’s behavior on parameters by simulating only the reduced dy- 
namics of the clusters themselves (Golomb and Rinzel 1994b; 
Golomb et al. 1992). The reduced equations of fully synchronized 
oscillations and cluster oscillations were integrated using the soft- 
ware package Dstool (Back et al. 1992). Stability analysis of homo- 
geneous and cluster states was performed using the method devel- 
oped by Golomb et al. ( 1992) and Golomb and Rinzel ( 1994b). 

Strategy for dealing with many-parameter models 
Even a highly idealized nonlinear model of a single neuron may 

display a great variety of response characteristics when a broad 
range of parameters is considered (Rinzel and Ermentrout 1989). 
Thus it is important to consider ranges of the biophysical parame- 
ters and to test different initial conditions. It is, of course, impossi- 
ble to study the entire multidimensional space of parameters, espe- 
cially when the investigation is based mostly on numerical simula- 
tions. We try to limit the range of parameters by taking most of 
their values from the literature. However, the variability between 
different experiments that evaluate a given parameter can some- 
times be large. The maximal conductances of the intrinsic and the 
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FIG. 2. Single cells and single synapses. A : single cell oscillates at 7.5 Hz 
with our reference parameters [AHP maximal conductance (gAHP) = 0.3 
mS/cm2 ( -)I. It is at rest with membrane potential -52.1 mV when 
I AHP is blocked ( l l l ) . B: traces of synaptic conductances in response to a 
brief presynaptic voltage pulse of 10 ms. For this panel the maximal con- 
ductances are fixed at 1 mS/cm2 for each synapse. 

synaptic ionic currents are often hard to determine and are treated 
here as free parameters. 

Knowing these difficulties we used the following strategy. We 
chose a biophysically plausible parameter set as a reference point 
in the parameter space (see APPENDIX). Starting from this point 
we vary one or two parameters at a time to study their effects. 
Exploring the dependence on parameters provides us with an un- 
derstanding of the different dynamic patterns the network can 
exhibit. The details of the neuron dynamics, like the frequency 
and the amplitude of the cell’s membrane potentials, are depen- 
dent on the specific parameters and thus comparison with experi- 
ments is only semiquantitative. 

RESULTS 

Single cells, synapses, and rhythmogenesis 

A single RE cell in our model is a conditional oscillator. It 
either is at rest or it can oscillate, depending for example on 
the value of its leakage reversal potential (V,). With our 
reference parameter set ( VL = -60 mV, see APPENDIX) it 
oscillates at 7.5 Hz (Fig. 24 ; but when VL is reduced to 
-80 mV it is at rest. Oscillations are generated by an ade- 
quately powerful T-type calcium conductance. A hyperpo- 
larization mechanism is needed for deinactivating this con- 
ductance. At the single cell level this mechanism can be 
either due to a sufficiently negative vL or due to an IAHP. 
For example, blocking IAHP abolishes the neural oscillations 
for I/L = -60 mV. However, if V, is decreased to -80 mV, 
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the neuron becomes oscillatory again (at 3 Hz). The fre- 
quency is lower because the kinetics of the T-type calcium 
current at hyperpolarized voltages is slower. The IAHP 
current is thus important to the behavior of the isolated cell, 
as a hyperpolarizing mechanism, to maintain endogenous 
oscillations in an appropriate frequency range. 

In the RE network model, synaptic inputs can provide 
hyperpolarizing mechanisms. GABAB inhibition can hy- 
perpolarize the cell, as can GABA, inhibition with a rever- 
sal potential that is negative enough (below -70 mV). The 
effects of lAi-ip on the network behavior are minimal unless 
there is no other mechanism for providing hyperpolariza- 
tion to the network (then, blockade of IAHP abolishes net- 
work oscillations). Most of the network simulation results 
reported below would be little changed if IAHP were absent. 
Because synaptic effects usually provide enough hyperpolar- 
ization for maintaining oscillations, questions about 
whether the single RE cell is an endogenous oscillator or 
not are mostly irrelevant to the network behavior. 

Time courses of synaptic conductances after a brief pre- 
synaptic voltage pulse are shown in Fig. 2 B. The GABA, 
and A MPA synapt ic condu .ctances decay rapidly after the 
pulse, whereas the G ABA, synaptic cond uctance lasts for 
several hundred milliseconds (Otis et al. 1993). 

Oscillation patterns in an isolated RE network 

PATTERNS OF FULL, PARTIAL, AND NO SYNCHRONY. we Start 

our investigation of the RE network with the simplest case 
of a homogeneous population without neuroelectric noise. 
Here we describe the possible states the system exhibits; 
their dependence on parameter values will be given below. 
Time courses of the membrane potentials of neurons in the 
RE network are shown in Fig. 3. Because neurons are iden- 
tical, “uniform” behaviors exist (but may or may not be 
stable) in which all cells follow the same time course. Such a 
behavior may be a uniform resting state, in which all neu- 
rons have the same stationary membrane potential; a uni- 
form periodic oscillation state, in which all cells oscillate 
together periodically (Fig.3, E and F); or ( not often) a uni- 
form aperiodic state. In addition, the system can be par- 
tially synchronized, because it segregates into clusters. A 
“cluster” denotes a group of neurons that behave in exactly 
the same way (i.e., have the same voltage time course); 
different clusters behave differently. In Fig. 3A there are 
two clusters; one is active and bursting and the other is 
almost quiescent. Other cluster states involve two or more 
active clusters. For instance, in Fig. 3 B one of the two clus- 
ters of cells fires a sequence of three bursts, during which 
cells in the other cluster are inhibited at a hyperpolarized 
level. Then the second cluster takes over and emits five 
consecutive bursts while the first cluster remains inhibited. 
The process repeats itself periodically. In Fig. 3C there are 
three clusters, with a similar fraction of cells within each 
cluster. The three clusters oscillate - 1 20° out of phase. 
Vpop oscillates 3 times faster than every neuron (here 19 Hz 
compared with 6.3 Hz). Each time Vpop( t) reaches a peak, 
about one third of the neurons burst, representing partial 
synchrony in the system. For different values of parameters 
and initial conditions the number of neurons in each clus- 
ter can be less uniform (Fig. 3 D). In general, there can be 

cluster states with two, three, four or more clusters. Usually 
the number of clusters is small even for large N. However, 
in some cases there are several large clusters accompanied 
by several small ones [as found in models of globally cou- 
pled maps by Kaneko ( 1989, 1990)]. In most cases of clus- 
tering, but not always, the system oscillates periodically. 

Note that in the active-quiescent cluster state as well as in 
the fully synchronized state the bursting rate of each active 
neuron is equal to the population rhythmic frequency. The 
quiescent neurons would not be detected in extracellular 
recordings (e.g., Buzsaki 199 1; Fisher et al. 1992). If a mi- 
croelectrode penetrates a quiescent cell (e.g., von Krosigk et 
al. 1993a) and a current pulse is injected, the cell may join 
the active cluster. In contrast, in the case of a network with 
two or more active clusters, each cell’s frequency is only a 
fraction ( 1 / 2, 1 / 3, etc.) of the population rhythmic fre- 
quency. 

The segregation of neurons into clusters depends on the 
system parameters as well as on the initial conditions. For a 
fixed parameter set the system can often exhibit cluster 
oscillations with different numbers of clusters. Even for a 
pattern with a fixed number of clusters, the number of neu- 
rons within each cluster can vary. There may be cluster 
states with the same number of clusters and the same num- 
bers of neurons within each cluster, but with different volt- 
age time courses. In addition, for a specific cluster state, the 
assignment of neurons to clusters depends on initial condi- 
tions, because cells are identical. Thus the system exhibits a 
large degree of multistability and displays an enormous 
number of patterns for the same parameters. A transition 
from fully synchronized oscillations to alternating cluster 
oscillations is often accompanied by an increase of the pop- 
ulation frequency and a reduction of each cell’s bursting 
rate. 

The fully synchronized oscillations and the active-quies- 
cent cluster states of the model may relate to biological be- 
havior only if they are robust to heterogeneity and stochas- 
tic noise, in the sense that under such conditions the neu- 
rons’ voltage time courses would remain similar to the 
homogeneous case. For fully synchronized oscillations the 
synchrony measure x is 1, and when heterogeneity and 
noise are introduced, the system is considered as synchro- 
nous if x remains - 1. The active-quiescent cluster states 
and states with two or more active clusters may have similar 
x values. The measure x is -0 for asynchronous states 
where every neuron bursts independently, virtually unre- 
lated to the bursting of the others. In an asynchronous state 
the averaged population quantities are almost constant in 
time, with fluctuations (as measured by x) that decay like 
N-l/* when the number of cells N becomes large. (e.g., Ab- 
bott and Van Vreeswijk 1993; Golomb and Rinzel 1993, 
1994a,b; Golomb et al. 1992; Hansel and Sompolinsky 
1992; Kuramoto 1984). 
PARTIAL SYNCHRONY (CLUSTERING) WITH HYPERPOLARIZING 

GABA, SYNAPSES. Starting with the homogeneous and 
noiseless network, we identify in Fig. 4 some parameter 
regimes (including the reference case with both GABA, 
and GABAB synaptic conductance) in which different 
stable patterns have been observed, i.e., obtained for our 
choice of random initial conditions. A filled bar represents 
a regime in which a pattern type has a sizeable basin of 
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FIG. 3. Membrane potential time courses of neu- 
rons in an isolated RE network of identical cells (N = 
100). Different parameter values yield periodic oscilla- 
tions in which the neurons exhibit clusters or are fully 
synchronized. The fraction of cells in each cluster is 
specified alongside its trajectory. Parameters of the ref- 
erence case (APPENDIX) are used [maximal T-type cal- 
cium conductance (gti) = 2 mS/cm2, maximal 
GABA, conductance (gGABAmA) = 0.5 mS/cm’, maxi- 
mal GABA, conductance (gGABAmB) = 0.1 mS/cm2, and 
GABA, reversal potential vGABA+, = -75 mV] unless 
specified otherwise. The particular cluster patterns 
shown here co-exist with a huge number of other such 
patterns. Dotted horizontal line (in all figures): refer- 
ence membrane potential of -60 mV. A: 1 cluster is 
active and bursts, whereas the other is almost quiescent 
and does not burst. This pattern coexists with a 2-clus- 
ter pattern in which clusters alternately fire a sequence 
of 5 and 3 bursts (B). C: blockade of GABA, synapses 
(&ABA-B = 0) leads to 3 clusters that have about the 
same number of neurons and that oscillate at - 120” 
out of phase. The population voltage V,, oscillates at 
high frequency (- 19 Hz). D: with g, = 3.5 mS/cm2 
instead of 2.0 mS/cm2, another 3-cluster state is ob- 
served, with a different fraction of neurons in each clus- 
ter. E: with g, = 3.5 mS/cm2 and GABA, synapses 
blocked ( gGABA-* = 0) the network oscillates periodi- 
cally and uniformly. F: with VGABAmA = -60 mV in- 
stead of -75 mV, the network oscillates periodically 
and uniformly. 

1 .os 

-6()mV ___________________.______ ______.____ _______ __....._ __ 

attraction for our choice of initial conditions (see METH- 

ODS). An open bar represents a regime in which this pattern 
type is stable, but the relative volume of its basin of attrac- 
tion is negligible. We calculated the borders of these re- 
gimes only for the uniform states. 

With low values of g,, (Fig. 4, A and B), the system is not 
excitable enough and is stable at rest; maintained oscilla- 
tions were not found. As gca is increased the network starts 
to oscillate, but in general not in full synchrony. Instead the 
system exhibits cluster oscillations, either with one active 
cluster or with two or more active clusters. In some parame- 
ter regimes the fully synchronized oscillation is not a stable 
pattern of the system. In other parameter regimes full 
synchrony is stable, but the system prefers to segregate into 
clusters because these patterns attract most of the initial 
conditions. In many parameter regimes the system shows 
multistability, because several types of patterns were actu- 
ally observed for different initial conditions taken from the 
same distribution (see METHODS). 

With our reference parameter set (see APPENDIX), the 
homogeneous network displays active-quiescent cluster 
oscillations ( Fig. 3 A ) . Various oscillatory patterns with 
multiple-bursting active clusters are also obtained for dif- 
ferent initial conditions (e.g., see Fig. 3 B). Figure 5 shows 
the effects of heterogeneity (A and B) or noise ( C and D) for 
this parameter set. The synchrony measure x drops as the 
level of heteroneneitv is increased, very abrumlv for low 

heterogeneity levels and then more gradually (Fig. 5 B). As 
a,/&, exceeds 0.25, x falls to a level of ~0, corresponding 
with asynchronous behavior. Rastergrams and traces of the 
population voltage Vpop( t) are shown in Fig. 5A for g,/& 
= 0.05. At this heterogeneity level, neurons with low gca 
values are quiescent, whereas those with higher g,, values 
are bursting. vpop has a strong periodic component, even 
though it is not strictly periodic. The neurons tend to burst 
in synchrony with the population voltage, but most active 
cells burst at every second or third cycle. Thus, as for cluster 
states with two or more active clusters, a neuron’s bursting 
rate is a fraction of the global frequency, although not neces- 
sarily a simple fraction like l/2 or 1 / 3. In this particular 
example, although most active neurons burst at half of the 
network frequency, they do not segregate into two well-de- 
fined groups. In a sense, neurons jump from group to 
group. For somewhat different parameters (e.g., GABA-A 
reversal potential (VGABA-A) = -72 mV and a,/&, = 0.02) 
the neurons do segregate into two groups bursting alter- 
nately based on their g,, values (see also Golomb and Rin- 
zel 1993). 

A miniscule amount of stochastic noise precludes the ac- 
tive-quiescent cluster state. Even for 0 < D < 10 -5 V */s, 
the active-quiescent clusters are destroyed, and x drops 
from 0.7 to 0.5 (Fig. 5 D). For D = low5 V */s, Vpop has a 
strong periodic component (Fig. 5C). A typical neuron’s 
voltage time course (Y, ) fluctuates with the same fre- 
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FIG. 4. Existence and basins of attraction sizes for different stable be- 
havior states as functions of parameters. States associated with open bars 
attract a small fraction of randomly chosen initial conditions. In the filled 
bars, patterns have a large attraction basin. The existence and stability of 
these patterns are determined by an independent method (see METHODS). 
To estimate their attraction basins, simulations were performed with 10 
different sets of initial conditions. If  an attractor had been obtained at least 
once, its basin of attraction is assumed to be large. Otherwise it is assumed 
to have a small basin of attraction. The fully synchronized oscillations are 
periodic in time. The network states are divided into 4 categories: uniform 
resting, fully synchronized oscillations ( Fig. 3, E and F) , cluster oscilla- 
tions with only 1 active cluster (Fig. 3A), and cluster oscillations with 22 
active clusters ( Fig. 3, B-D). A : dependence on g, for gGABAmA = 0.5 
mS/cm2 (- - -, gray bar) and !?GABA-A = 0 (-, black bar). At low g, 
values the system is at rest. At higher gc, values ( >2.0 mS/cm”) it oscil- 
lates, generally not in synchrony. Fully synchronized oscillations are ob- 
tained for large gQ and low &ABA-A values. B: dependence on &ABA-A for 
&a = 1 mS/cm2(---, light gray bar), 2 mS/cm2 ( - - - , dark gray 
bar), and 3.5 mS/cm2 (-, black bar). C: dependence on VdABA-A for 
g GAB&B = 0.1 mS/cm2 ( - - - , gray bar) and &ABA-B = 0 (-, black bar). 
With hyperpolarizing inhibition (i.e., sufficiently negative VGABA-A values) 
the system does not oscillate in synchrony. Active-quiescent states are 
found for intermediate I’GABA-A values, usually in coexistence with states 
having 22 active clusters. With shunting GABA, inhibition (VdABA-A > 
-6 1.5 mV) and &ABA-B = 0.1 mS/cm2, the network oscillates uniformly 
and periodically. When &ABA-B is blocked, RE cells do not fire rebound 
bursts if VdABA-A is not negative enough to supply the needed hyperpolar- 
ization, and the network is at rest. 

wency as I/POP, but bursts only once in every few cycles. 
The smoothness of this time course indicates a low noise 
level. This behavior is similar to that observed in a simpler 
model of RE neurons with noise (Golomb and Rinzel 

1994b). Gradual decrease of x with D > 10S5 V 2/s leads to 
the reduction in amplitude of the global population oscilla- 
tions. The system bursts asynchronously for D > 3 X 10e4 
V 2/s (not shown). 
FULL SYNCHRONY WITHOUT GABA, SYNAPSES. Despite the 
fact that the fully synchronized oscillations exist for large 
enough gca values (Fig. 4, A and B), they are actually ob- 
served only when GABA, IPSPs are sufficiently weak (see 
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FIG. 5. Effects of heterogeneity (A and B) and noise (C and D) on the 
oscillatory dynamics of an isolated RE network. The reference parameter 
set is used ( see APPENDIX and Fig. 3, A and B). The rastergrams (A and C) 
show burst times of every other simulated neuron (50 of the total 100 
cells). The neurons are ordered according to their g, values in A (neuron 
100 with the highest gti) and randomly in C. The burst times correspond 
to the membrane potential peaks that exceed -45 mV, the assumed thresh- 
old for sodium spiking. The particular cases A and C correspond to hetero- 
geneity ( ~,/&a = 0.05) and noise (D = 10m5 V 2/s) marked by the arrows 
in B and D, respectively. V,, is plotted below the rastergram. C: time 
course ( V I ) of a single neuron is also plotted. Dotted horizontal line: refer- 
ence voltage level of -60 mV. The synchrony measure x (see METHODS) is 
plotted vs. heterogeneity in B and vs. noise in D. For each value of heteroge- 
neity or noise the system was simulated with 10 sets of different initial 
conditions for 15 s and the x values were calculated using Eq. 6 by averag- 
ing over the last 10 s. At 0 heterogeneity and noise the system exhibits 
either an active-quiescent cluster state (Fig. 3A ) or a 2-cluster state with 
alternating multiple bursting (Fig. 3 B). B: synchrony measure decreases 
abruptly with heterogeneity ~0.05. At small but finite heterogeneity levels 
neurons with large g,, values burst in synchrony with the population volt- 
age, but only once in every 22 cycles. Neurons with small g, values do not 
burst (A). At high heterogeneity levels (~0.25) the system behaves 
asynchronously; V,, (not shown) is nearly constant. The x values are not 
0 because the number of cells N is finite. D : very small noise level reduces x 
sharply from 0.75 to 0.55 (very near the ordinate). All the neurons burst 
together with Vpop, but not at every period ( C). At high noise levels (D > 
3 X 10s4 V 2/s, not shown) the system is asynchronous. 
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FIG. 6. Effects of heterogeneity (A and B) and noise (C and D) on the 
dynamics of the RE network dominated by the slow GABA, inhibition 
(with GABA, blocked and g, = 3.5 mS/cm*). Panel format as in Fig. 5. 
The rastergrams (A and C) correspond with heterogeneity (a,/& = 0.14) 
and noise (D = 5 X 10e4 V */s) marked by the arrows in B and D, respec- 
tively. At 0 heterogeneity and noise the system oscillates periodically and 
uniformly (Fig. 3 E) . It tolerates small levels of heterogeneity (B), but at 
higher levels it goes to the asynchronous state (as shown in A ) with V,, 
almost constant in time. Neurons with small g, values are quiescent; those 
with larger g, values burst periodically, their bursting rates being an in- 
creasing function of g, values. Low noise level maintains high synchrony 
(D), whereas at high noise levels the system is asynchronous; all the neu- 
rons burst but in random phases with each other, and V,, is almost 
constant ( C) . 

Fig. 3 E). At very low GABA* levels they are the unique 
pattern, whereas at a higher level they coexist with cluster 
states having two or more active clusters. 

We studied the effects of heterogeneity and noise on the 
synchronized state while blocking GABA* (&ABA-A = 0) 
and with g,, = 3.5 mS / cm2. The results are shown in Fig. 6. 
At low levels of heterogeneity the system is still highly syn- 
chronized. At a moderate heterogeneity level synchrony de- 
creases sharply and the system goes to the asynchronous 
state (Fig. 6B). An example of the asynchronous state is 
given in Fig. 6A. In this case, macroscopic quantities, like 
V pop and the averaged GABAB synaptic fields, are almost 
constant in time. Thus each neuron is affected by constant 
GABA, inhibition. It bursts periodically if its g, value is 
large enough; otherwise it is at rest. Note that the raster- 
gram looks ordered, but the bursting frequency of individ- 
ual neurons varies weakly with their g,, values, from 5.59 
to 5.15 Hz. Neurons with similar gc, values have similar 
frequencies and become dephased only after a long time. 

Increasing the level of stochastic noise reduces gradually 
the synchrony measure x until the system reaches an 
asynchronous state (Fig. 60). In this state the neurons 
burst asynchronously (Fig. 6C) and the population voltage 
is again almost constant in time (Golomb and Rinzel 
t994b). 

Fun SYNCHRONY WITH SHUNTING GABA, SYNAPSES. Until 
now we have assumed that the GABA, synapses are inhibi- 
tory with a reversal potential of VGABA-A = -75 mV (Bal 
and McCormick 1993). Although this reversal potential is 
difficult to determine accurately in RE neurons (see refer- 
ence 13 in von Krosigk et al. 1993a), there are experimen- 
tal indications that it may be less negative (J. Huguenard, 
private communication; Spreafico et al. 1988). On the 
other hand, GABAB IPSPs among RE neurons have not 
been demonstrated up to date. Therefore we studied the 
dependence of the network behavior on VGABA-A, with or 
without GABAB synapses (Fig. 4C). In the presence of 
CABA, IPSPs the network displays both of the two types of 
cluster oscillations if &ABA-A is sufficiently negative. As 
V GABA-A is increased (just above -65 mV) the only ob- 
served oscillation type is the active-quiescent cluster state; 
this gives way to full synchronization for V GABA-A > -6 1.5 
mV (Fig. 3 F). The fully synchronized oscillations are lost if 
GABAB is completely blocked. In that case, either cluster 
oscillations or the resting state are obtained. 

For V GABA-A = -64 mV the active-quiescent cluster states 
persist as heterogeneity is introduced; the population di- 
vides into two groups, one oscillating periodically with high 
synchrony and the other almost quiescent. Neurons with 
high g,, values burst at the same frequency ( -7 Hz) as the 
population rhythm (Fig. 7A), whereas those with low g, 
values do not burst at all and fluctuate weakly around -66 
mV (similar to the quiescent neurons in the homogeneous 
case). However, in contrast with the previous cases (Fig. 
5A ; Golomb and Rinzel 1993), here the bursting rate is not 
a monotonic function of g,,, because neurons with inter- 
mediate g,, values might be totally quiescent or burst at 
every cycle, depending on the initial conditions. This phe- 
nomenon was confirmed in larger networks with N = 
1,000. As heterogeneity is increased more neurons are re- 
cruited into the active group, and thus we observe the coun- 
terintuitive phenomenon that the synchrony measure x, 
averaged over initial conditions, increases with the heteroge- 
neity level ag (Fig. 7 B). 

The effect of noise is even more dramatic. Low noise 
levels destroy the active-quiescent cluster state. All the neu- 
rons fire in high synchrony with the population voltage, but 
from time to time a neuron skips a burst (Fig. 7C). Note 
that the noise level in this example is large, as demonstrated 
by the fluctuations of neuronal voltage V 1. As the noise 
level increases from low levels, x increase rapidly; the ac- 
tive-quiescent cluster state is replaced by highly synchro- 
nized bursting (Fig. 70). As the noise level is further in- 
creased, the degree of synchrony, as measured by x, de- 
creases as expected but gradually. With both heterogeneity 
and noise (e.g., Q = 0.5, D = 0.5) the network still displays 
rhythmic bursting with a high degree of coherence. In that 
case the bursting rate is a monotonic increasing function of 
g,, values. 
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have the same existence and stability properties as in the 
all-to-all case. The intuitive reason is clear: in these states 
each neuron receives on average the same synaptic field as 
in the all-to-all case. whereas fluctuations from the average 
scale like i( 1 - f )/( fN) and are negligible at largefl\r. H&t- 
erogeneity in the maximal synaptic conductance has simi- 
lar effects as partial connectivity. 

When N is not large enough fluctuations may be impor- 
tant and may reduce the degree of synchrony. These “finite- 
size effects” are stronger when N or f is smaller and for 
fixed N and fthey depend on the other parameter values. 
We have found here that when a synchronized or a partially 
synchronized pattern is more robust to heterogeneity and 
noise it is also more robust to finite-size effects with partial 
connectivity. The fully synchronized state obtained with 

D shunting inhibition (with the GABA, reversal potential 

1.0 - 
around -60 mV, see Fig. 3F) is not sensitive to partial 

1 connectivity. Even for f = 0.1 the synchrony measure x 
l I  0 ,  reduces only modestly, on average to 0.92 for N = 1,000 I “‘*u,,, “@II, 

I and to 0.84 for N = 100, and the membrane potential time 
I 

0.5 1 
courses are essentially the same as for f = 1. The fully syn- 
chronized state obtained with slow GABA, inhibition (with 
the GABA, synapses totally blocked and g,, = 3.5 mS/ 
cm*, see Fig. 3 E)is less robust at small N and f. For f= 0.5, 
x reduces to 0.90 for N = 1,000 but to 0.14 for N = 100. In 
the first case the behavior is similar to the all-to-all situa- 

0.0 ’ ’ ’ ’ ’ n n L t ’ 
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tion; in the latter case only little synchrony remains and the 
neurons burst almost randomly in time. 

HETEROGENEITY LEVEL, o& NOISE LEVEL, D(x1 O-“V’/s) 

FIG. 7. Effects of heterogeneity (A and B) and noise (C and D) on the 
network dynamics of the RE network with shunting GABA, inhibition 
(V GABA-A = -64 mV ) . Panel format as in Fig. 5. The rastergrams (A and C) 
correspond with heterogeneity ( Q/& = 0.25) and noise (D = 5 X 10e4 
V 2/s) marked by the arrows in B and D, respectively. At 0 heterogeneity 
and noise the system exhibits an active-quiescent cluster state. The segrega- 
tion into active and quiescent groups persists also in the heterogeneous 
network. Neurons with large g, values burst in synchrony with the popula- 
tion voltage (A); neurons with small g, values fluctuate weakly around a 
rest state of approximately -66 mV; Neurons with intermediate g, values 
either burst or are silent. As the level of heterogeneity increases, more 
neurons on average become active, and thus x increases slightly (B). Low 
noise level breaks the structure of active-quiescent clusters, and all the 
neurons burst in synchrony with V pop ( C and D). As the noise level in- 
creases further, x decreases because the burst timings become less in phase 
with V,,. 

For &BA-A = -60 mV the homogeneous and noiseless 
network is in full synchrony. Heterogeneity and noise re- 
duce the synchronization level only slightly but monotoni- 
cally over the same ranges as in Fig. 5, B and D . For exam- 
ple, x = 0.8 at a,/& = 0.5 and x = 0.85 at D = 10s3 V */s. 
PARTIAL CONNECTIVITY EFFECTS WITH A SMALL NUMBER OF 
NEURONS. We have studied the RE model for an all-to-all 
architecture. However, the results apply also to the case of 
partial connectivity when I ) the probability that a neuron is 
postsynaptic to another is fand 2) the average numberfN 
of synaptic inputs to a neuron is large. In this case we scale 
the maximal GABA, and GABAB conductances as 
gGABA-A lf N and g GABAmB / f N, respectively, t0 Iknimize the 
synaptic field’s dependence on f and N. Using the methods 
described in Golomb and Rinzel ( 1994b) one can show 
under these conditions that the uniform resting state and 
the fully synchronized oscillations and cluster oscillations 

We checked partial connectivity effects also for our refer- 
ence parameter set (cluster states with all-to-all coupling, 
see Fig. 3, A and B). With f = 0.5 and N = 1,000 or N = 100 
the population voltage is nearly periodic, and cells burst 
once in every two or more cycles; also, some cells are quies- 
cent. The system is sensitive to partial connectivity effects 
when N is small, just as it is sensitive to heterogeneity and 
noise. 

Oscillation patterns in an RE-TC network 

AMPA EXCITATION SYNCHRONIZES THE RE NETWORK. 

Adding the TC pool into the network increases significantly 
the number of parameters that the network’s behavior de- 
pends on. However, a general result was obtained for all of 
the parameters we have tried: the TC pool tends to synchro- 
nize the RE network. A typical case is shown in Fig. 8 for a 
network of identical RE neurons with our reference parame- 
ter set. Without the TC pool the system exhibits cluster 
oscillations, either with one active cluster or two or more 
active clusters. A modest amount of excitation from the TC 
pool causes the RE network to burst in full synchrony (Fig. 
8). The TC pool is also well synchronized with the RE 
network. A careful examination reveals that the TC pool 
starts to burst a short time ( - 1 ms) before the RE cells, 
determining the bursting frequency of the whole network. 

We studied the effects of changing the g, of the RE cells 
and the gAMP,. In Fig. 9 are shown regions of the (g,,, 
gAMPA) -parameter plane where different stable network be- 
haviors exist (regardless of their basins of attraction). The 
fully synchronized periodic oscillations are attractors in the 
gray regime, where g,, is high enough or gAMPA is strong 
enough. The resting state is stable for g, 5 2 mS/cm*, 
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FIG. 8. RE network in reciprocal interaction with a TC pool. Mem- 
brane potential time courses of the RE neurons and the TC pool were 
obtained from a simulation with N = 100 and the reference parameters 
(AMPA maximal conductance g,,,, = 0.1 mS/cm2). The RE network is 
fully synchronized. The TC pool is phased-locked to the RE cells, but it 
starts bursting a short time earlier ( - 1 ms), pacing the oscillation fre- 
quency. 

almost independently of g,,,, . As representative of a clus- 
ter state, we calculated the borders of the regime in which a 
two-cluster state (50% of neurons in each cluster) is stable, 
without discriminating between states showing one active 
cluster and states showing two or more active clusters. The 
regime is limited to low gAMPA values (gAMp, < 0.05 
mS/cm2). 

The synchronous oscillation state induced by AMPA 
synapses is robust to heterogeneity and noise. As shown in 
Fig. 11, the synchronization measure x is reduced only 
slightlyevenfor~J&,=0.5(Fig. llB)orD= 10d3V2/s 
(Fig. 11 D), and the rastergrams exhibit a high degree of 
synchronization (Fig. 11, A and C). Partial connectivity 
among RE cells does not have anysignificant effect on the 
system dynamics. 

DEPENDENCE OF FREQUENCY ON SYNAPTIC COUPLING. we 

have shown that, with fast excitation of TC origin, the RE 
network oscillates in synchrony. The oscillation frequency 
depends on the strength of the TC-RE reciprocal coupling. 
The magnitude of AMPA excitation has almost no effect on 
frequency, as long as it is strong enough to produce coher- 
ent oscillations. Under this condition the frequency depen- 
dence on GABA, and GABAB coupling among the RE neu- 
rons is also weak. On the other hand, the frequency is sensi- 
tive to blockade or enhancement of the inhibition from RE 
neurons to the TC pool. In Fig. 12 the burst frequency is 
plotted versus the coupling strength of GABA* (A) or 
GABA, (B) IPSPs. The frequency increases with the 
GABA, level and decreases with the GABAB level. 

The patterns that are actually observed for our choice of In the network the TC pool determines the frequency by 
random initial conditions are identified in Fig. 10. Al- bursting slightly before the RE cells. The frequency’s de- 
though cluster states are observed at low AMPA, a modest crease with GABAB is expected. More inhibition causes the 
AMPA excitation eliminates them in favor of the uniform TC pool to spend more time at hyperpolarized voltages, 
oscillations. At low gca values the system is still at rest with where the kinetics of the T-current is slow. At a first sight it 

modest gAMp, values, despite the fact that the uniform oscil- 
lations are stable patterns (Fig. 9). AMPA excitation of 
large coupling strength can create synchronous oscillations 
for small g,, values that coexist with the rest state. At even 
larger values ofgAMPA (>0.7 mS/cm2 for g,, = 1 mS/cm’) 
these oscillations become the only stable pattern (not 
shown). 

FIG. 9. Regimes in which different 
patterns exist and are stable are described 
in a 2-parameter phase diagram (8, and 
g,,,, of RE cells) for an RE-TC network 
with identical RE neurons. Basins of at- 
traction are not considered. Fully synchro- 
nized periodic oscillations are stable in the 
grey regime. The uniform resting state is 
stable to the left of the dotted curve. We 
found stable 2-cluster states (of all types) 
with 50% of neurons in each cluster in the 
“thumb” region bounded by the dashed 
line. No such cluster states were found 
outside this region. No discrimination is 
made in this figure between active-quies- 
cent states and states with 2 active clusters. 
However, it is clear that the 2-cluster state 
with equal number of neurons is limited to 
small g,,,, values. Simulations show that 
all cluster states are limited to small g,,,, 
( see Fig. 10 ) ; for modest or high g,,,, val- 
ues the network is uniform (fully synchro- 
nous). 
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seems surprising that increasing the strength of GABA, in- 
hibition increases the frequency. One reason is that when 
GABA, inhibition from the RE cells is enhanced the TC 
pool bursts are quickly cut off by GABAA IPSPs, they be- 
come shorter, and the neuron is reset faster to a hyperpolar- 
ized level; as a consequence, the time period decreases. An- 
other underlying mechanism is related to the kinetics of the 
TC pool’s sag current. During a cycle’s hyperpolarizing 
phase the sag current activates slowly, whereas during the 
depolarizing phase (the burst) the sag current inactivates 
rapidly. How long the hyperpolarizing phase must last de- 
pends on the amount of inward sag current needed to give 
rise to a rebound burst in the TC pool. During a shortened 
burst the sag current has less time to inactivate, so its aver- 
age level remains higher. Consequently, during the next hy- 
perpolarizing phase after a burst, the sag current requires 
less time to reach adequate activation for eliciting another 
rebound burst. Thus faster rhythm results. When the sag 
current is blocked the effect is strongly reduced but still 
exists because of the first mechanism (Fig. 12 ) . 

DISCUSSION 

The isolated RE network model exhibits many modes of 
dynamic behavior. We emphasize qualitative trends in the 
dependence of these behaviors on parameters (which can 
be compared with experimental results) but realize that 
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FIG. 10. Parameter regimes for behavioral states that are stable and 
have sizeable basins of attraction for the RE-TC network. Panel format as 
in Fig. 4. A : dependence on g, for g,MpA = 0 ( - - - , light gray bar), 
gAMpA = 0.03 mS/cm2 ( - - - , dark gray bar), and gAMpA = 0.1 mS/cm2 
t-7 black bar). For low g, values the system is at rest. Without AMPA 
excitation, cluster oscillations are found for higher gca values. At gAMPA = 
0.03 mS/cm2, fully synchronized periodic oscillations coexist with states 
having 22 active clusters. At gAM,A = 0.1 mS/cm2 the system bursts period- 

ically and uniformly for sufficiently large g, values. B: dependence on 
gAMpA for &, = 1 mS/cm2 ( - - - , gray bar) and & = 2 mS/cm2 (-, 
black bar). A sufficiently strong AMPA excitation can produce oscillations 
in a regime where without excitation the RE network is at rest. 
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FIG. 11. Effects of heterogeneity (A and B) and noise ( C and D) in RE 
neurons on the RE-TC network dynamics (with gAMpA = 0.1 mS/cm’). 
Panel format as in Fig. 5. The rastergrams (A and C) correspond with 
heterogeneity (a,/& = 0.5) and noise (D = 10v3 V2/s) marked by the 
arrows in B and D, respectively. At 0 heterogeneity and noise the RE 
neurons oscillate periodically and uniformly ( Fig. 8 ) . A high degree of 
synchronization is maintained even with high levels of heterogeneity (A 
and B) and noise (C and D). 

their quantitative features may change with other parame- 
ters that are kept constant. Still, from our computational 
results of this model and from those of simpler models stud- 
ied previously (see INTRODUCTION), we draw several con- 
clusions that are generic and that are not dependent on the 
specific parameter values. First, the postinhibitory rebound 
response generated by the T-current is crucial for the neural 
oscillations (Steriade et al. 1990). Second, there should be a 
mechanism for hyperpolarizing the RE cell to deinactivate 
the T-current. This can be achieved by a sufficiently nega- 
tive leak reversal potential, by IAHP, by GABA, inhibition, 
or by GABA* inhibition with a sufficiently negative rever- 
sal potential. Third, clustering behavior (partial synchrony, 
here mediated mainly by GABA*) is found in many param- 
eter regimes. The isolated RE network especially tends to 
show clustering patterns (including states with multiple 
bursts), as the parameters vary. Fourth, two mechanisms 
can robustly synchronize an inhibitory network. One way is 
with inhibition dominated by slow GABAB with only weak 
hyperpolarizing GABA,. In addition, we discovered here 
that shunting GABAA inhibition can robustly synchronize 
the network. Fifth, by extending the model to include the 
TC pool, we have shown the synchronizing effect of AMPA 
excitation on the RE cells and the possibility of rhythmo- 
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FIG. 12. Dependence of the oscillation frequency on the maximal con- 
ductance of GABA, (A ) and GABA, ( B) synapses from RE cells to the TC 
pool and to other RE cells. Abscissas: ratios between GABA maximal 
conductances and their corresponding reference values (g&*-* = 0.1 mS / 
cm2, fGzBAmB = 0.05 ms/cm2, gGABA-i = 0.5 ms/cm’, gGABAmB = o-1 ms/ 
cm2). The ratios &ABA-A/g&A-A = 5 and &ABA-B/g&A-B = 2 remain 
constant. The maximal conductance of the TC pool’s sag current (g,,) is = 
0.04 mS/cm2 for the solid curve and 0 for the dashed curve. The rhythmic 
frequency decreases with enhanced GABA, inhibition but increases with 
enhanced GABA, inhibition. Blockade of the sag current in the TC pool 
leads to a small change in the GABA, effect, whereas the effect of GABA, 
to increase frequency is strongly reduced but still exists. Changing the 
maximal conductances from the RE cells to the TC pool without changing 
the intra-RE coupling yields essentially the same results. 

genesis by a strong RE-TC reciprocal connection in the tha- 
lamic network. 

Steriade’s hypothesis and our model 

Steriade and colleagues hypothesized that the RE is a 
generator of spindle rhythmicity ( Steriade et al. 1987). Fur- 
thermore, they stated that “the RE nucleus is the only fac- 
tor accounting for the synchronization of spindling activity 
throughout the thalamus, because there is little, if any, 
cross-talk between various dorsal thalamic nuclei” (Con- 
treras et al. 1993 ) . Using our model we found that the iso- 
lated RE network might indeed oscillate. However, full 
synchrony was generally not observed in the presence of 
GABA, IPSPs, unless the latter’s reversal potential was 
high enough (say less negative than -65 mV). Our results 
invite a more detailed experimental analysis of the reversal 
potential for GABA, inhibition in the RE. Similar results 
regarding the difficulties in fully synchronizing an RE net- 
work were reported by Destexhe et al. ( 1994a). Our com- 
puter simulations showed that partially synchronous oscil- 
lations, such as the cluster states, were typically generated 
by intrinsic synaptic mechanisms in the RE network. In a 
cluster oscillation state individual cells fire rebound bursts 
at a lower rate than the population rhythmic frequency; the 
latter is generally high (520 Hz). The fact that the fre- 
quency of “spindle waves” observed in the deafferented RE 
by Steriade et al. ( 1987) was often in the upper range ( 14 
Hz) and sometimes even higher-( 15-16 Hz) is consistent 
with the clustering phenomenon. We suggest that the par- 
tial synchrony (clustering) hypothesis could be tested exper- 
imentally by computing mean firing rates of single RE cells 
and comparing them with the field oscillation frequency. 

Furthermore, our RE model network was found to be 

easily synchronized by excitation from the TC pool. Thus 
our results are consistent with the view of McCormick and 
colleagues (von Krosigk et al. 1993a) and of Steriade and 
colleagues ( 1987) concerning the importance of connec- 
tions between the RE and relay cells inmaintaining spindle 
waves. Moreover, rhythmic corticothalamic volleys, im- 
pinging during spindling onto RE cells, are also important 
in facilitating and synchronizing these oscillations. 

We emphasize that specific patterns of neuronal popula- 
tion activity generally depend on the values of intrinsic 
membrane parameters and synaptic inputs as determined 
by modulating agents. In our model of an isolated RE net- 
work, sustained oscillations occur only when the maximal 
conductance of the T-type Ca2+ current and the leakage 
current take values in appropriate ranges. It is known that 
neuromodulators, such as acetylcholine or noradrenaline, 
act on RE cells largely by varying the conductance of a 
“leak” potassium conductance ( McCormick 1992 ) . Seroto- 
nin has been found to enhance the T-type Ca2+ current in 
spinal motoneurons (Berger and Takahashi 1990), and 
might act in a similar manner in thalamic cells. Therefore 
oscillations in an isolated RE nucleus may be observed in 
an in vivo preparation only when optimal neuromodula- 
tory conditions are realized. Similarly, in in vitro slice ex- 
periments we suggest that a conclusive assessment of 
whether an isolated RE network is capable of generating its 
own synchronous oscillations requires a systematic varia- 
tion of relevant membrane parameters using pharmacologi- 
cal methods. 

Partial synchrony of the isolated RE network 

When a noiseless and homogeneous RE network oscil- 
lates it exhibits a certain degree of synchrony. Neurons are 
totally asynchronous only if there is a high level of heteroge- 
neity or noise. In the current model synaptic coupling 
strength between two neurons does not depend on the dis- 
tance between them, because each neuron is coupled to all 
the others with the same efficacy. Clustering behavior with 
such coupling in a system of identical neurons means 
breaking away spontaneously from uniform behavior to 
subgroups with different temporal patterns. This is in con- 
trast with symmetry breaking in spatially distributed sys- 
tem, which leads to spatiotemporal patterns (Destexhe et 
al. 1994a). 

Alternating cluster states are characterized by two proper- 
ties. First, Vpop oscillates with a frequency that is 2, 3, or 
several times faster than the frequency of a single cell. Sec- 
ond, each neuron belongs to a specific group. Each neuron 
is correlated with others in its group with zero phase shift 
and with a nonzero phase shift with neurons from other 
clusters. This property is not preserved under the influence 
of large noise and sometimes heterogeneity, because neu- 
rons shift temporally from one cluster to another. However, 
such shifting can be observed if the measurement time is 
smaller than the time characterizing the transitions of neu- 
rons between clusters. Because the segregation of neurons 
into clusters depends on initial conditions and on transient 
external inputs, any given pair of cells may sometimes be in 
phase, sometimes out-of-phase. Therefore, we expect that 
the phase shift in the cross-correlation function between 
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two given neurons may be nonzero for some initial condi- 
tions and zero for others. Different initial conditions can be 
realized experimentally by briefly stimulating the network 
and then letting its response relax to the attractor. Fisher et 
al. ( 1992) reported from in vivo measurements on rats that 
cross-correlations between simultaneously recorded RE 
neurons revealed periods of both in-phase and 180’ out-of- 
phase behaviors. Spontaneous switching between in-phase 
and out-of-phase oscillations was often seen. More experi- 
mental and theoretical work is needed to assess the implica- 
tions for RE network behavior of the cluster phenomena 
obtained from our theory. 

Patterns similar to these found in our noiseless and homo- 
geneous, isolated RE network (i.e., fully synchronized and 
cluster oscillations) are reported also in simpler models of 
coupled RE cells (Golomb and Rinzel 1994b), in models of 
other neural networks (Ermentrout 1992; Pinsky 1994; 
Kopell and LeMasson 1994)‘) and in general models of cou- 
pled simple oscillator units (for example, see Golomb et al. 
1992; Hakim and Rappel 1992; Hansel et al. 1993a,b; Na- 
kagawa and Kuramoto 1993; Schwartz and Tsang 1992; D. 
Hansel, G. Mato, and C. Meunier, unpublished data) and 
chaotic maps (Kaneko 1989, 1990). Our partially synchro- 
nized patterns are different from those obtained by Kura- 
moto ( 1984; Kuramoto and Nishikawa 1987) in simple 
phase models with heterogeneity. In our system the neu- 
rons are well-synchronized with the population voltage, but 
burst only once in every few cycles. In Kuramoto’s system 
oscillators that are not locked to the population rhythm 
have different frequencies and cycle asynchronously. 

Mechanisms for full synchronization of an RE network 

Two mechanisms for fully synchronizing a network of 
GABAergic neurons are found. One is based on the slow- 
ness of the GABAB inhibition, as discussed in previous 
works (Wang and Rinzel 1992, 1993; Golomb and Rinzel 
1993, 1994a,b). However, this mechanism can be over- 
whelmed by hyperpolarizing GABA, IPSPs. It is robust to 
modest, but not large, amounts of heterogeneity and noise. 
In addition, the system with GABAB only oscillates at low 
frequencies ( -5 Hz). When the oscillation frequency is 
increased, for example by increasing the conductance or the 
reversal potential of the leak current, the system is less ro- 
bust to heterogeneity and noise, and at high enough fre- 
quency this mechanism does not work at all. Intuitively, if 
the oscillation frequency is too fast, the GABA, conduc- 
tance (rise time 100 ms; decay time 200 ms; Otis et al. 
1993) contributes an almost constant inhibition that can- 
not synchronize the system. 

A second mechanism utilizes GABA, synapses with a 
less negative reversal potential. The GABA, conductance 
then leads to shunting inhibition or even excitation for an 
important part of the neuron’s trajectory. For our parame- 
ter values, some GABA, is also needed to hyperpolarize the 
neurons and to deinactivate the T-current. However, we 
cannot exclude the possibility that full synchrony could be 
realized by shunting GABA* inhibition in the absence of 
GABA, IPSPs, with other parameter choices such as a 
stronger IAHP or a more negative leak reversal potential. We 
have observed network oscillations at 4.5-6.5 Hz (Figs. 3 F 

and 7, A and C). Although by changing parameter values 
we may accelerate somewhat the coherent oscillations, we 
conclude that the fully synchronized oscillations in our iso- 
lated RE network model are limited to a low-frequency 
range (say t7 Hz), mainly due to the slow time scale of the 
T-current inactivation at hyperpolarized levels (Huguen- 
ard and Prince 1992 ) . It would be of interest to experimen- 
tally determine more accurately the reversal potential of 
GABA, IPSPs between RE cells and to assess whether the 
shunting inhibition mechanism discussed here might be rel- 
evant to synchronous spindles in the RE network. 

Robustness of the fully synchronized oscillations to heter- 
ogeneity and noise cannot be increased simply by increas- 
ing the synaptic strength; the effects of this increase could 
even be the opposite. For instance, increasing the GABA, 
inhibitory synaptic coupling among neurons reduces the 
burst duration. When the burst duration is small, noise-in- 
duced changes in exact timing reduce the temporal overlap 
between bursts of different neurons; if the bursts do not 
overlap at all, the neurons are not synchronous. Similar 
comments apply to the robustness to heterogeneity. 

Another possible mechanism involves the interaction be- 
tween relay nuclei and the RE. A modest amount of TC-to- 
RE divergent synaptic excitation was found to synchronize 
the RE network. In that case the oscillation frequency was 
sensitive to the coupling strength of the TC-RE reciprocal 
connection, and could be as high as 20 Hz ( see Fig. 12). 

Frequency dependence on RE-to- TC inhibition 

We have shown that the spindle frequency is sensitive to 
the GABA, and GABAB inhibition from RE to TC cells. As 
expected, an increase in GABA, synaptic coupling strength 
slows the spindle rhythm because the TC pool is hyperpo- 
larized for a prolonged time in every oscillatory cycle. For 
strong enough GABA, IPSPs the oscillation frequency re- 
mains in the range of 3-5 Hz (Fig. 12 B). At the same time, 
increasing the inter-RE GABAB conductance has little ef- 
fect on spindle frequency in our model. It is interesting to 
note that an enhancement of recurrent GABAB synaptic 
inhibition has been shown to be capable of triggering petit 
ma1 (absence epilepsy) in the thalamic circuitry as an ab- 
normal form of spindle oscillations (Hosford et al. 1992; 
Liu et al. 1 992) . The frequency of absence spike-and-wave 
discharges t-3 Hz in humans, 8 Hz in rats) is lower than 
that in normal spindles ( - 10 Hz in humans, 14 Hz in 
rats). The GABA,-induced frequency decrease that we 
have found (specific to the RE-to-TC connections) could 
possibly explain the frequency change that concurs with the 
transformation from normal spindle oscillations to patho- 
logical absence seizure. 

On the other hand, surprisingly, enhancing the fast 
GABA* inhibition causes the network oscillatory fre- 
quency to increase. We explain that phenomenon mainly 
in terms of the TC pool’s sag current kinetic properties. 
Consistent with our theoretical findings, experimental re- 
sults of von Krosigk et al. ( 1993b) showed that blocking 
GABA* receptors reduces the frequency of spindle oscilla- 
tions. However, a word of caution is needed here. The 
GABA* effect on our model’s oscillation frequency de- 
pends on the inactivation property of the sag current during 
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depolarizing bursts of the TC cells. In the present work the 
TC cell population is treated as a neuronal pool, which 
bursts repetitively. In reality, TC cells during spindling fire 
rebound bursts only occasionally in time, at a much lower 
rate than the population rhythmic frequency (cf. Steriade et 
al. 1990). Thus the sag current in individual TC cells 
should not inactivate strongly in every oscillatory period, 
and we do not know whether in that situation the GABA, 
effect on the oscillation frequency would still occur, possi- 
bly as a collective network phenomenon. 

Possible consequences of approximations 

Despite the fact that the present model is biophysically 
more realistic than our previous ones (e.g., Golomb and 
Rinzel 1993, 1994b; Wang and Rinzel 1992, 1993), it still 
contains several idealizations to make it tractable and con- 
sistent with our minimal approach. This approach allows 
us to dissect the system’s dynamics and understand better 
what are the main factors that affect its behavior. One ap- 
proximation is that neurons are all-to-all coupled. A ran- 
domly partially connected network behaves like an all-to- 
all network at large fN. In reality, the probability that two 
neurons are coupled decays with the distance between 
them. Suppose that this decay has a characteristic length X. 
We expect that our results on synchronization will be valid 
for distances of at least X, but that synchrony between neu- 
rons at larger distances may be small. In this case, complex 
spatiotemporal patterns may emerge (Destexhe et al. 
1994a) instead of our cluster oscillations, which are only 
temporal patterns. Accurate anatomic and physiological 
data regarding the connectivity are not yet available. An- 
other approximation is introduced by considering the heter- 
ogeneity only in g,,. Effects of heterogeneity in other pa- 
rameters are presumably similar; the effect of changing 
many parameters simultaneously would be difficult to in- 
terpret. Several simplifications were also made concerning 
the modeling of single cells. First, the dendritic morphology 
of the neurons is ignored, as justified by McCormick and 
Huguenard ( 1992); however, note that Contreras et al. 
( 1993) reported that RE cells are endowed with an excit- 
able dendritic tree, and dendritic spikes were recorded in 
10% of these cells. Second, we have neglected the calcium- 
activated cation current &, ( Bal and McCormick 1993 ) . 
It plays a role in single RE cell behavior like the rebound 
response on release from hyperpolarization. The slower 
time scale depolarization of IcAN leads to a finite train of 
rebound bursts followed by a tail of some sodium spikes. 
For maintained rhythms, as under study here, the time- 
averaged or nontransient effects of IcAN may be viewed as 
incorporated by the leak current. Third, currents for so- 
dium spike generation are also not included in the model. 
This approximation is not expected to affect the network’s 
behavior on the time scale of bursting ( - 100 ms) because 
the synaptic coupling averages over the fast spikes (which 
are not expected to be synchronized themselves). Such 
currents were incorporated in models of single cells (Hu- 
guenard and McCormick 1992; McCormick and Huguen- 
ard 1992; Rush and Rinzel 1994; Wang 1994) and net- 
works (Destexhe et al. 1994a). By selectively neglecting 
some of these intrinsic cell properties we obtained a valid 

and tractable model for studying network rhythmogenesis 
and burst synchronization at a semiquantitative level. For 
considering transient behaviors on a faster time scale, or 
details of a cell’s integration of synaptic inputs distributed 
over the dendritic tree, a description of precise interactions 
among cells with cable properties would be needed, and 
therefore further development of models should be impor- 
tant. 

RE network as a large dynamic system 

In this study we have formulated a biophysical, conduc- 
tance-based RE network model and then treated it as a large 
dynamic system. The intrinsic neuronal properties and the 
synaptic coupling kinetics are expressed as a system of cou- 
pled differential equations. This framework enabled us to 
investigate the long-time behavior of the network in terms 
of the existence, stability, and basins of attraction of differ- 
ent dynamic patterns. In the current model no geometry is 
included because the neurons are all-to-all coupled. Despite 
this fact oscillation patterns in many cases are far from be- 
ing homogeneous. Therefore models in which the RE is 
represented by only one cell (Destexhe et al. 1993) should 
be used with qualification for investigating the cooperative 
dynamic properties of the RE network. Such models corre- 
spond with fully synchronous patterns in our model. The 
reduced dynamics may be helpful for investigating the de- 
pendence of properties of the neuron time courses, such as 
frequency, on different parameters. However, whether the 
computed solution is attracting as a homogeneous solution 
to the network model should be checked. Furthermore, in 
certain cases stability considerations are not enough, be- 
cause the system exhibits multistability and the patterns 
that are selected depend on the relative volume of their 
basins of attraction. Considering heterogeneity and noise, 
we have found cases in which the system is fairly robust to 
heterogeneity and noise and other cases in which it is very 
sensitive. The active-quiescent cluster state, although an at- 
tractive candidate for a synchronized state, is highly sensi- 
tive to noise. A small amount of noise can transform it into 
a state in which all the neurons are well, but not fully, syn- 
chronized. In other cases weak noise causes the neurons to 
burst once in every several periods of the population 
rhythm. 

TC network versus TC pool 

In this model the TC cells’ output is represented as com- 
ing from a single pool. This is a major simplification, be- 
cause the TC cells are far from being fully synchronized. 
During spindles the TC cells skip bursts (Steriade et al. 
1990; von Krosigk et al. 1993a), and their degree of 
synchrony is lower than that of the RE cells. However, our 
main purpose in this paper is to investigate the synchroniz- 
ing properties of RE cells. Our conclusion that periodic ex- 
citation from the TC cells can synchronize the RE network 
should be valid even if only a subpopulation of TC cells 
bursts at each period. Because RE cells have overlapping 
dendritic fields, each one should be receiving a fairly homo- 
geneous excitatory synaptic field from a possibly partially 
synchronized TC network. The mechanisms that could syn- 
chronize a large population of TC cells in the first place are 
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unaccounted for in the present work. To better understand 
the dynamics of thalamic spindle oscillations it is important 
to build a self-consistent model of the coupled RE and TC 
networks and to consider also the effect of the neocortex on 
the thalamus. A more elaborated model will have to explain 
the waxing and waning pattern of spindle oscillations (Ster- 
iade et al. 1993). 

Despite the fact that the effects of a distributed TC net- 
work have not yet been analyzed in our computer simula- 
tions, it is interesting to relate the clustering phenomena to 
in vitro intracellular recordings of a TC cell during spindle 
oscillations (Figs. 1 and 2 in von Krosigk et al. 1993a). As 
seen by comparing the intracellular recording with the ex- 
tracellular one, a TC cell bursts approximately on alternate 
periods of the population field rhythm, and sometimes it 
bursts at every third cycle. This TC network possibly ex- 
hibits a two-cluster state; noise and heterogeneity could 
cause neurons to skip bursts and join the other cluster. 
More generally, however, TC cells burst at even lower rates 
and remain subthreshold for many of the spindle cycles (cf. 
Steriade et al. 1990). This kind of clustering phenomena 
might not be entirely the effect of heterogeneity or noise. A 
specific cellular property, namely time integration of IPSPs 
by the intrinsic sag ion current, has been suggested to con- 
tribute to such sparse bursting phenomenon in thalamic 
neurons during spindles (Wang 1994) and in the general 
context of neural firing patterns (Kopell and LeMasson 
1994). 

When an RE network oscillates in isolation, the coupling 
among RE cells determines the network behavior, in partic- 
ular its synchronization properties. However, when the RE 
network is coupled to the TC pool, the TC pool can synchro- 
nize it even if there is no coupling at all between the RE 
neurons. Our model network oscillates synchronously 
when we block all intra-RE synapses. The oscillation fre- 
quency does not change significantly (from what is com- 
puted in Fig. 12) because it is determined mainly by the 
excitability of the TC pool. On the other hand, experimen- 
tal evidence indicates the existence of inhibitory coupling 
among RE cells ( Huguenard and Prince 1993 ) . The role of 
intra-RE coupling for spindle rhythmogenesis and synchro- 
nization can be important if each TC cell is coupled only to 
a small number of RE cells. Mutual coupling within the RE 
may also have significance for TC processing in the relay 
mode. Such questions deserve more experimental study, as 
well as theoretical study of models of RE and TC networks 
that take into account the geometry of these nuclei. 
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APPENDIX: MODEL EQUATIONS AND PARAMETERS 

We use the Hodgkin-Huxley formulation for both the RE cells 
and the TC pool. Except for the membrane potential I’i, all the 

other variables that describe an RE cell depend explicitly only on 
variables of the same cell. For simplicity the index i is omitted in 
the equations that describe them. 

RE cells 
Current balance equation 

-1CiAJ3A-*(vi9{S*j}) - JCSAB*-B(vi9{~Bj}) -I/WlPA(~,SP) + C[i(t) 

C = 1 pF/cm2. 
I Ca-T 

ICa--l-K h) = &m2,(V)h(V- hh> W) 

dh 
--& = W,(V) - W%(V) (fw 

m,(V) = [I + exp(-(V - t&)/0,)]-’ (A4) 

h,(V) = [I + exp(-(V- t&.,)/a,)]-’ W) 

T~( V) = 100 + 500 X [I + exp( -(V - O,,)/CJJ-’ VW 

gG = 2 mS/cm’, V,, = 120 mV, 8, = -52 mV, urn = 7.4 mV, oh 
= -78 mv, gh = -5 mv, flht = -78 mv, oht = -3 mv, 4 = 4.2 
(Huguenard and Prince 1992). 

An estimate of gca is obtained from the whole-cell voltage- 
clamp data of Huguenard and Prince ( 1992). In their Fig. 3B the 
voltage-pulse-elicited T-type current has a measured peak of 
~0.21 nA. By using Eq. A2 and substituting m, = 1, h x 1, and 
v- v, = 120 mV, the measured current maximum can be 
matched with gca X cell area = 1.6 X lo-l2 S. Approximating the 
RE neuron by a sphere with a 30 pm diam (Steriade et al. 1990) 
yields gca = 0.6 mS/cm’. This estimate is rough because some of 
the calcium channels are likely located in dendrites (Contreras et 
al. 1993 ). As our reference parameter we chose gca = 2 mS/cm2 to 
produce oscillations. 

4 = gdV- VIJ WV 

g,, = 0.06 mS/cm’, V, = -60 mV (Avanzini et al. 1989). 
I AHP: the kinetic properties of this current in RE cells have not 

been experimentally determined. We utilize a simple expression 
Of IAHP similar to that in Yamada et al. ( 1989) but with faster 
kinetics (Destexhe et al. 1993, 1994a) 

r,HPK ?4HP) = g*HPmAHPw - w (A@ 

4w - = -z&q 
dt - rD1 bw 

dm AHP -= Q[Cal(l - m~Hp)-Pm~w dt WO) 

gAHp = 0.3 ms/cm’, vK = -90 mv, a = 0.02 ms-‘, p = 0.025 
ms-‘, u = 0.0 1 ms-‘, y  = 0.08 ms-‘. 

I GABA-A 

I 
1 N 

GABA-A( ‘7 { sAj > ) = gGABA-A( v - vGABA-A) - c sAj 
N j=l 

(All) 

dsAj 
- = kfAxco(vj)( 1 - SAj) - kASAj dt (Am 

x,(V) = [ 1 + exp( -( V - O&J,)]-I W3) 

where l/j is the presynaptic membrane potential. 0, = -45 mV, us 
= 2 mV (for both GABA, and GABAB), &ABA-A = 0.5 mS/Cm’, 
V GABA-A = -75 mv, kfA = 2.0 ms-‘, and /&A = 0.08 ms-‘. This 
representation of synaptic current was developed by Wang and 
Rinzel ( 1992, 1993 ) and Destexhe et al. ( 1994b). For the kinetics 
of GABA, see Otis and Mody ( 1992) and Ropert et al. ( 1990). 
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I GABA-B 

I GABA-B(K isBj)) = gGABA-BtV- vGABA-B)$ g SBj (Al41 
J-1 

sm(xB) = [ 1 + exp( -(xB - 1 /e)/o.o2)]-’ (Am 

&ABA-B = 0.1 mS/cm’, VGABA-B = -90 mV, kfX = 5.0 ms-‘, k, 
= 0.0 1 ms-’ , km = 0.0 1 ms-’ , and krB = 0.005 ms-’ . Note that we 
have introduced an auxiliary variable XB to model the slow rise in 
GABA, conductance. Equation A15 with kf, $ k, implies that XB 
is activated by a brief presynaptic pulse very rapidly, then decays 
at a finite rate k,. It thus stays above the value of 1 /e for a time 
interval of - 1 /k,. According to Eq. A16, during the time when 
XB is above 1 /e, the synaptic variable SB increases; thus its rise time 
is given by 1 Jk, (note that k fB = k,). Later, SB decays with a time 
constant 1 / krB. The synaptic conductance mimics the GABA, 
kinetics measured by Otis et al. ( 1993 ) . 

AMPA current 1AMPA 

&,,A = 0.1 mS/cm2, VAMpA = 0 mV. The gating variable sp 
depends on the membrane potential of the TC pool, and its kinetic 
equation is given below (Eq. A35 and A36). 

Heterogeneity: gc, is assigned from a uniform distribution 
p(g& (Golomb and Rinzel 1993) 

1 
p(g~) = 2f30g &a - 3a, 5 &a 5 &a + \15Q \r (A191 

0 otherwise, 

whose mean is & = 2 mS/cm2. 
Noise: [i(t) is white, Gaussian, and local (different from neuron 

to neuron) 

(ti(t)fj(t’)) = 2D6ij6(t - t’) (A20 

where(. . .)d eno es t average over realizations (Golomb and 
Rinzel 1994b). 

Tc pool 

The parameters of the TC pool (representative “neu- 
ron”) were chosen such that the “cell” bursts at every time 
period when coupled to the RE cells. This pool idealizes a 
population of TC cells, each of which usually burst only 
once in every few population cycles (Steriade et al. 1990, 
von Krosigk et al. 1993a). All the variables, expressions, 
and parameters from now on are related to the TC pool 
unless stated differently. 

Current balance equation 

CdV -= 
dt %a-TK h) - IL(V) - I,(V, r) ww 

- I%BA-A tv, {sAj>) - IgiBA-B (K {SBj}) 

C = 1 pF/cm2. 
l Ca-T 

ICa-l-w, h) = &khm2,(V)h(V- Kza) (Am 
dh 
x = W,W) - W%(V) ww 

m,(V) = [l + exp(-(V- &J/G,)]-’ WV 

h,(V) = [l + exp(-(V- &)/a,)]-’ (AN 

q.JV) = 30 + 220 X [I + exp(-(V- 0,,)/qJ]-’ WV 

&a = 2.5 mS/cm”, V, = 120 mV,0, = -59 mV, orn = 6.2 mV, 
oh=-81mV,~r,= -4.4 mV, ohl = -78 mV, kht = -3 mV, and 6 = 
4.2 (Huguenard and McCormick 1992). 

IL 

IL = 8dV- VI&) (Am 
gL = 0.025 mS/ cm2, VL = -75 mV. This represents a combina- 

tion of a sodium leak current (with a reversal potential of +45 
mV) and a potassium leak current (with a reversal potential of 
- 105 mV) (McCormick and Huguenard 1992). 

I sag 
Lag( v r> = gsagr( v - bag) (A‘w 

$ = (L(V) - NGagW WO) 

r,(V) = [l + exP(-(V- Lgwsag)l-’ (A30 
T=~(V) = 20 + lOOO/[exp((V+ 71.5)/14.2) 

+ exp(-(V+ 89.0)/11.6)] (A32) 

g = 0.04 mS/cm2, l& = -40.0 mV, 6, = -75 mV, osag = -5.5 
rn? ( Huguenard and McCormick 1992 ) . 

The isolated TC pool is also a conditional oscillator. It is at rest 
with our reference parameter set, but oscillates at low frequency 
(2-3 Hz) for more negative values of the leak reversal potential. 
These endogenous oscillations in the delta frequency range are 
created by an interplay between the T-type Ca2+ current and the 
hyperpolarization-activated cation (“sag”) current (Leresche et 
al. 199 1; McCormick and Pape 1990). 

RT I GABA-A from RE cells to TC pool 

IRT GABA-A ( ‘7 { SAj > ) = gEiBA-A( v - VGABA-A) k $ SA j (Aw 
J-1 

if G:BA-A = 0.1 mS/cm2; see Eq. A12 and A13. 
I G&A-B from RE cells to TC ~001 

lziBA-A(v~ { sBj > ) = g&tBA-Btv - h3ABA-B) $ z sBj (Aw 
J-1 

gR G:BA-B = 0.05 mS/cm2; see Eq. AU-A17. 
AMPA gating variable 

& x = bs,(V)( 1 - SP) - kl+ (A39 

s,(V) = [1 + exp(-(V- &)/a,)]-’ (Aw 

8, = -45 mV, gs = 2 mV, kfP = 2.0 ms-‘, and krp = 0.1 ms-‘. 
We use the formulation of Wang and Rinzel ( 1993) and estimate 
parameters on the basis of the experimental data of Stern et al. 
( 1992) and McBain and Dingledine ( 1992). Changing the decay 
time of GABAA and AMPA synapses by a factor of 2 does not have 
any significant effect on the results, because these decay times are 
much faster than the oscillation period. In most cases even assum- 
ing these synapses as instantaneous is a very good approximation. 
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