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fast oscillations in the local field potential (40–100 Hz gamma,
100–200 Hz sharp-wave ripples) single cortical neurons typically fire
irregularly at rates that are much lower than the oscillation frequency.
Recent computational studies have provided a mathematical descrip-
tion of such fast oscillations, using the leaky integrate-and-fire (LIF)
neuron model. Here, we extend this theoretical framework to popu-
lations of more realistic Hodgkin–Huxley-type conductance-based
neurons. In a noisy network of GABAergic neurons that are connected
randomly and sparsely by chemical synapses, coherent oscillations
emerge with a frequency that depends sensitively on the single cell’s
membrane dynamics. The population frequency can be predicted
analytically from the synaptic time constants and the preferred phase
of discharge during the oscillatory cycle of a single cell subjected to
noisy sinusoidal input. The latter depends significantly on the single
cell’s membrane properties and can be understood in the context of
the simplified exponential integrate-and-fire (EIF) neuron. We find
that 200-Hz oscillations can be generated, provided the effective input
conductance of single cells is large, so that the single neuron’s phase
shift is sufficiently small. In a two-population network of excitatory
pyramidal cells and inhibitory neurons, recurrent excitation can either
decrease or increase the population rhythmic frequency, depending on
whether in a neuron the excitatory synaptic current follows or pre-
cedes the inhibitory synaptic current in an oscillatory cycle. Detailed
single-cell properties have a substantial impact on population oscil-
lations, even though rhythmicity does not originate from pacemaker
neurons and is an emergent network phenomenon.

I N T R O D U C T I O N

Spike trains of cortical neurons are usually very irregular
and close to a Poisson process, even when the local field
potential recordings exhibit coherent fast oscillations such as
gamma oscillations (40–80 Hz) (Destexhe et al. 1999; Fries et
al. 2001b; Pesaran et al. 2002) and sharp-wave ripples (100–200
Hz) (Buzsáki et al. 1992; Csicsvari et al. 1998, 1999a). In such
oscillatory episodes, single-cell discharge rates are typically
much lower than the oscillation frequency of the field potential.

Theoretical studies have demonstrated that such population
rhythms appear in randomly connected networks of leaky
integrate-and-fire (LIF) neurons, when the synaptic inhibitory
feedback is strong and noise is sufficiently large (Brunel 2000;
Brunel and Hakim 1999; Brunel and Wang 2003). Brunel and

Wang (2003) showed how the population rhythmic frequency
of networks of inhibitory LIF neurons depends on the time
constants of the recurrent synaptic currents. With physiologi-
cally reasonable time constants, the population frequency is
�100 Hz and can be as high as 300 Hz, whereas single cells
fire irregularly and at a much lower rate than the population
frequency. It was then shown that in a two-population network
of inhibitory and excitatory LIF neurons the population fre-
quency depends both on the time constants of excitatory and
inhibitory currents and on the relative strength of recurrent
excitation and inhibition: the population frequency is decreased
by the synaptic excitation. In the absence of recurrent excita-
tion among pyramidal cells the population can oscillate at 200
Hz (as observed in the CA1 area of the rat hippocampus); if the
recurrent excitation is sufficiently strong, the network fre-
quency is decreased to 100 Hz.

In a network of LIF neurons, the frequency of coherent
oscillations is essentially independent of the intrinsic single-
cell properties because the spiking response of an LIF model to
sinusoidal input in the presence of temporally correlated noise
depends only weakly on the input oscillation frequency (Brunel
et al. 2001). In particular, the phase shift of the instantaneous
firing rate with respect to the periodic input is very small at any
input frequency. Thus through the static current–frequency
relationship, single-cell properties affect the degree of synchro-
nization of the network but not the frequency of the network
oscillation.

In this paper, we examine the generality of this conclusion
and show that this no longer holds true for Hodgkin–Huxley-
type conductance-based neurons. The LIF neuron integrates
the synaptic inputs linearly until the membrane potential
reaches a threshold and a spike is triggered instantaneously.
This rigid threshold behavior of LIF neurons is only a rough
approximation for the actual spike-generating mechanism.
Real neurons do not have a unique spiking threshold (Azouz
and Gray 2000). Even if one defines a spike threshold empir-
ically, subthreshold membrane dynamics is highly nonlinear,
unlike that in the LIF model. Furthermore, after crossing the
threshold the depolarization takes about 0.2–1.5 ms to reach
the voltage maximum (Buhl et al. 1994; Connors et al. 1982;
Lacaille and Williams 1990; Nowak et al. 2003; Zhang and
McBain 1995), in contrast to the LIF model that has no spike
time to peak. The precise shape of the action potential is
determined by the detailed kinetic properties of the spike-
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generating sodium and potassium currents (Lien et al. 2002;
Martina and Jonas 1997; Martina et al. 1998). These biophys-
ical properties of action potential generation give rise to strong
frequency modulation of the single neuron responsiveness to a
noisy sinusoidal input (see below and Fourcaud-Trocmé et al.
2003). Consequently, for the conductance-based models, sin-
gle-neuron properties can be expected to play an important role
in determining the frequency of network-generated fast coher-
ent oscillations. The purpose of the present paper is to under-
stand how single-neuron properties affect collective oscilla-
tions in the strong noise regime.

M E T H O D S

Model neurons

INTERNEURON. Unless stated otherwise, the interneuron model used
in the simulations is a conductance-based model that is slightly
modified from Wang and Buzsáki (1996). It is a one-compartment
model with a total surface area of 0.02 mm2. The current balance
equation obeys

CmdV/dt � � IL�INa � IK � Isyn � Iext (1)

The capacitance of the membrane is Cm � 0.2 nF. The leak current
IL � gL(V � VL) has the conductance gL � 0.02 �S and reversal
potential VL � �67 mV. Isyn is the synaptic input current and Iext is
an external applied current. The spike-generating ion currents INa �
gNam�

3 h(V � VNa) and IK � gKn4(V � VK) are of the Hodgkin–
Huxley type (Hodgkin and Huxley 1952). The voltage-dependent
gating variables h and n are time dependent dx/dt � �x[�x(V)(1 �
x) � �x(V)x] with x � {h, n}, the voltage is measured in mV, and the
rate functions �x(V) and �x(V) are in ms�1; �h � 0.07 exp[�0.05(V �
58)], �h � 1.0/{exp[�0.1(V � 28)] � 1} and �n(V) � �0.01(V �
34)/{exp[�0.1(V � 34)] � 1}, �n(V) � 0.125 exp[�0.0125(V �
44)]. The activation variable m is assumed to be fast and is substituted
by its steady state m� � �m/(�m � �m); �m(V) � �0.1(V �
35)/{exp[�0.1(V � 35)] � 1} and �m(V) � 4 exp[�(V � 60)/18].
The maximal conductances are gNa � 14 �S and gK � 1.8 �S. The
reversal potentials are VNa � 55 mV and VK � �90 mV. The
temperature factors are �n � �h � 5.

INTERNEURON WITH A-TYPE CURRENT. In hippocampal interneu-
rons a large variety of ion channels have been found including A-type
potassium currents that are activated at subthreshold voltage (Erisir et
al. 1999; Lien et al. 2002; Martina et al. 1998). This finding has
motivated investigations of a neuronal model containing an A-type
potassium current. It is a one-compartment model with a total surface
area of 0.02 mm2. The current balance equation obeys

CmdV/dt � � IL�INa � IK � IA�Isyn�Iext (2)

The capacitance of the membrane is Cm � 0.2 nF. The dynamics of
the leak current IL and the spike generating currents INa and IK are the
same as those given for the interneuron except �h � 0.07
exp[�0.05(V � 48)], �h � 1.0/{exp[�0.1(V � 18)] � 1} and
�n(V) � �0.01(V � 45.7)/{exp[�0.1(V � 45.7)] � 1}, �n(V) �
0.125 exp(�0.0125(V � 55.7)), �m(V) � �0.1(V � 29.7)/
{exp[�0.1(V � 29.7)] � 1} and �m(V) � 4 exp[�(V � 54.7)/18].
The maximal conductances are gL � 0.06 �S, gNa � 24 �S and gK �
4 �S. The reversal potentials are VL � �17 mV, VNa � 55 mV, and
VK � �72 mV. The temperature factors are �n � �h � 3.8. The
kinetics of the A-type potassium current IA � gAA�

3 B(V � VA) is the
same as described in Connor et al. (1977), with dB/dt � (B� � B)/�B,
where A� � 0.0761�exp[(V � 94.22)/31.84]/{1 � exp[V � 1.17)/
28.93]}�(1/3), B� � 1/{1 � exp[(V � 53.3)/14.54]}4, �B � 1.24 �
2.678/{1 � exp[(V � 50)/16.027]}. The maximal conductance is

gA � 9.54 �S and the reversal potential is VA � �75 mV. The
steady-state value of the conductance gAA�

3 B� is nonzero over a large
voltage range and the current IA contributes a significant outward
current above its reversal potential. The high reversal potential of the
leak current VL � �17 mV is chosen such that the resting potential of
the model neuron is �68 mV.

PYRAMIDAL CELL. In contrast with fast-spiking interneurons, pyra-
midal cells are characterized by pronounced spike-frequency adapta-
tion. A two compartment model with a total surface area of 0.05 mm2

(the surface area for soma and dendrite is 0.025 mm2 each) accounts
for adaptation properties of pyramidal cells (Wang 1998). The voltage
balance equations for the soma and dendrites are, respectively

CmdVs/dt � � IL�INa � IK � �gc/p	�Vs�Vd	 � Isyn � Iext

CmdVd/dt � � IL�ICa � IAHP � 
gc/�1 � p	��Vd�Vs	 (3)

The capacitance of the membrane is Cm � 0.25 nF. The dynamics of
the leak current IL and the spike generating currents INa and IK are the
same as those given for the interneuron except �h � 0.07
exp[�0.1(V � 50)], �h � 1.0/{exp[�0.1(V � 20)] � 1} and �m(V) �
�0.1(V � 33)/{exp[�0.1(V � 33)] � 1} and �m(V) � 4 exp[�(V �
58)/12]. The maximal conductances are gL � 0.025 �S, gNa � 11.25
�S and gK � 4.5 �S. The reversal potentials are VL � �65 mV,
VNa � 55 mV and VK � �80 mV. The temperature factors are �n �
�h � 4. The high-threshold calcium current in the dendrite
ICa � gCam�

2 (V � VCa), where m is assumed fast and is replaced by
its steady state m� � 1/{1 � exp[�(V � 20)/9]}. The maximal
conductances are gCa � 0.25 �S and the reversal potential is VCa �
120 mV. The voltage-dependent, calcium-activated potassium current
IAHP � gAHP[Ca2�]/([Ca2�] � Kd)(V � VK) with Kd � 30 �M. The
intracellular calcium follows [Ca2�]/dt � ��ICa �[Ca2�]/�Ca, where
� � 4 �M/(ms � �A) and �Ca � 80 ms. The maximal conductance
gAHP � 1.25 �S.

EXPONENTIAL INTEGRATE-AND-FIRE MODEL. Fourcaud-Trocmé et
al. (2003) recently showed that a simplified model, the exponential
integrate-and-fire (EIF) model, can accurately reproduce the dynamics
of the Wang and Buzsáki (1996) model. The advantage of this model
is that its response to oscillatory input at high frequencies can be
computed analytically (Fourcaud-Trocmé et al. 2003). The dynamics
of the model is described by

CmdV/dt � � gL
V�VL � �Te
(V�Vth)/�T��Isyn�Iext (4)

where Cm � 0.2 nF, the leak conductance gL � 0.02 �S, the resting
potential VL � �67 mV and Isyn is the synaptic current and Iext is an
external applied current. The exponential term represents a simplified
“fast sodium current” responsible for spike initiation. The parameters
of this current are chosen so that its firing rate–current relationship is
identical to that of the conductance-based interneuron model (Wang
and Buzsáki 1996) for currents close to the current threshold. This
gives Vth � �62.45 mV and �T � 3.48 mV. The reset potential
Vreset � �70.2 mV and the refractory period of 1.4 ms are chosen so
that the firing rate–current relationship also matches closely for large
input currents.

Single-cell studies

INPUT CURRENT. Firing rate responses of single cells are computed
following Brunel et al. (2001). A conductance-based single neuron
receives an input current I(t), which mimics the synaptic plus external
input [Isyn(t) � Iext(t)]. The current I(t) � I0 � I1 cos (2	ft) � Inoise,
such that the current I(t) oscillates around a mean I0 with frequency f
and amplitude I1. The noise current is modeled as low-pass-filtered
Gaussian white noise dInoise/dt�[
(t) � Inoise]/�noise where 
(t) is a
Gaussian white-noise random variable with zero mean and SD �noise,
chosen so that the SD of the subthreshold membrane potential is �v �
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5 mV, which is comparable with physiological data (Destexhe and
Paré 1999). The time constant �noise � 0–40 ms. This noisy input
yields a highly irregular single neuron spike train, in all cases
investigated in this paper. The instantaneous firing rate of the neuron
(instantaneous probability of emitting a spike per unit time) is aver-
aged over 3,000 trials and the function r(t) � r0 � r1( f ) cos [2	 ft �
�cell( f )] is fitted to it using a least-square fit, where r0 is the mean
firing rate, r1( f ) is the amplitude of the modulation, f is the frequency
of the input current, and �cell( f ) is the phase shift between the input
current and the output firing rate. The mean (I0) and amplitude (I1) of
the input current are chosen so that r1( f )/r0 � 0.9 at f � 1 Hz. The
length of each trial (2 s) allows a fit over at least two periods of the
oscillatory input. With I0 and I1 fixed, the normalized amplitude
r1( f )/[r1(f � 1 Hz)] and the phase shift �cell( f ) of the instantaneous
firing rate are computed for different frequencies f.

EFFECTIVE MEMBRANE TIME CONSTANT. Synaptic input modulates
the membrane conductance and therefore the membrane time con-
stant. The membrane time constant determines how fast the membrane
can integrate synaptic input, and it can be used as a measure to
characterize the membrane dynamics. The effective membrane time
constant is defined as the inverse of the total conductance of the cell
�m–eff(t) � Cm/[gL � gion(t) � gsyn(t)], where gion is the total
conductance including all ionic currents and gsyn is the sum over all
synaptic conductances. In the noise-dominated regime, when the
oscillation amplitude of the conductance is small, we approximate the
effective membrane time constant by its time average. We exclude the
spikes by excluding the conductances of the spike-generating sodium
and potassium currents, which contribute to the total conductance
significantly only during the spike and are small otherwise compared
to the synaptic conductance

�m–eff � �Cm/
gL � g� ion � gsyn�t	��t (5)

where g� ion is the sum of all ionic conductances excluding the spike-
generating sodium and potassium conductances and � � �t denotes the
time average. In the case of single-cell simulations where we add a
shunting conductance to mimic synaptic input, the effective mem-
brane time constant for the conductance-based interneuron used here
is simply

�m–eff � Cm/�gL � gshunt	 (6)

Network simulations

NETWORK ARCHITECTURE. Network simulations are carried out
with either one population of NI � 1,000 interneurons, or two
populations of NI � 1,000 interneurons and NP � 4,000 pyramidal
cells. The architecture of the network is that of a sparsely and
randomly directed graph: for each neuron pair, the connection prob-
ability is 10% in either direction, except in Fig. 7 where the connec-
tivity is 5%. Thus on average, with a connectivity of p � 10% a given
cell receives MF � pNI � 100 inhibitory synapses, and (in a two-
population network) MP � pNP � 400 excitatory synapses.

SYNAPTIC CURRENTS. The synaptic currents are described by Isyn �
gsyns(t)(V � Vsyn), where gsyn is the synaptic conductance, s(t) is the
fraction of open channels at time t, and Vsyn is the reversal potential.
The time course of s(t) is faster for �-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA)–mediated excitation than for
GABAergic inhibition and can be characterized by the three time
constants: synaptic latency (�l), rise time (�r), and decay time (�d)

s�t	 � exp��
�t � �l	

�d
�� exp��

�t � �l	

�r
� for t � �l (7)

where the time t � 0 corresponds to the voltage maximum of the
presynaptic spike. The peak conductance is given by g�syn � gsyn(�r/
�d)�r/(�d��r)(1��r/�d). The synaptic conductances are chosen such that

the postsynaptic potential has an amplitude of 1 mV at a holding
potential of �60 mV for pyramidal cells and �63 mV for interneu-
rons just below threshold (Buhl et al. 1997; Markram et al. 1997;
Tamas et al. 1997, 1998; Vida et al. 1998) and such that the ratio of
the peak conductance g�GABAA

/g�AMPA 
 7.5 (Bartos et al. 2001, 2002;
Gupta et al. 2000; Markram et al. 1997). The time constants for
AMPA are �Pl � 1.5 ms, �Pr � 0.5 ms, and �Pd � 2 ms (Angulo et
al. 1999; Zhou and Hablitz 1998). For 
-aminobutyric acid type A
(GABAA) they are �I l � 0.5 ms, �Ir � 0.5 ms and �Id � 5 ms (Bartos
et al. 2001; Gupta et al. 2000; Kraushaar and Jonas 2000; Xiang et al.
1998). The reversal potential of AMPA is Vsyn,AMPA � 0 mV and of
GABAA Vsyn,GABAA

� �75 mV. The peak conductances are
g�AMPA3P � 1.3 nS, g�GABA3P � 8.75 nS, g�AMPA3I � 0.93 nS, and
g�G ABA3I � 6.2 nS.

EXTERNAL INPUTS. Each neuron receives external synaptic input,
modeled as a high-frequency Poisson spike train with a rate �. The
external input is mediated by AMPA synapses with conductances of
15.8 nS in pyramidal cells and 1.5 nS in interneurons. In Fig. 10 we
used additional external inhibitory GABAergic input to interneurons
with a conductance of 8.8 nS.

THE INSTANTANEOUS FIRING RATE. The spike times from all neu-
rons are binned in a sliding window with �t � 0.2 ms. The spike times
are taken at the voltage maximum. The instantaneous firing rate at
time t, r(t), is then the number of spikes in the time window [t, t � �t],
divided by the number of neurons and by �t.

MEASURE OF SYNCHRONY. To characterize the synchrony in the
network we compute the autocorrelation function of the instantaneous
population firing rate, normalized by the square of the average rate. In
all cases described herein, the autocorrelation function is well de-
scribed by a damped cosine function, with a narrow peak at the zero
time lag bin, which is ascribed to the finite size of the network. To
remove this finite size effect, we fit the autocorrelation function with
a damped cosine, excluding the zero time lag bin. The measure of
synchrony is the value of the damped cosine that best fits the data at
zero time lag. This measure quantifies how much spike trains of
different neurons are correlated.

Single spike train

SPECTRUM AND AUTOCORRELATION FUNCTION. To analyze the
rhythmicity of a single spike train during network oscillations we
calculate the power spectrum and autocorrelation function of one
single spike train and of the combined spikes of a group of cells
(Gabbiani and Koch 1998). The representative spike trains are se-
lected randomly from the neural population.

SPIKE-TRIGGERED AVERAGE (STA) OF GLOBAL ACTIVITY. The spike
triggered average is the cross-correlation between the spike train of a
single neuron and the global activity. The instantaneous firing rate of
a population during a 300-ms time window surrounding a spike (150
ms before and 150 ms after the spike time) is averaged over all spikes
of the spike train of a single neuron.

Numerical methods

All equations are computed using a scheme based on the Runge–
Kutta algorithm (fourth order for the network and second order for the
single cell simulations) to solve the coupled differential equations
(Press et al. 1992). Integration time step is �t � 0.02 ms.

R E S U L T S

Response of a single cell to noisy sinusoidal current

The transformation of the incoming synaptic inputs into an
output spike train by single neurons is classically described in
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terms of a current–frequency relationship. However, the pre-
diction of the collective response of a neuronal population to
time-varying inputs requires a more detailed characterization
of the firing properties of single cells. A standard procedure
when dealing with nonstationary inputs is to characterize
neurons by the linear firing rate response, i.e., the instanta-
neous firing rate response to noisy inputs with a weak sinusoi-
dal modulation at an arbitrary frequency f (see e.g. Brunel et al.
2001; Gerstner 2000; Knight 1972). The idea is that during a
network oscillation at frequency f, the combined external and
recurrent synaptic current in a neuron can be modeled as a
high-frequency inhomogeneous Poisson process, which is ap-
proximately described as

I�t	 � I0 � I1 cos ��t	 � Inoise (8)

where I0 is a constant mean current and I1 is the amplitude of
the modulation at frequency f � �/2	 (see METHODS). Fluctu-
ations arising from random arrival of spikes can be well
approximated by low-pass-filtered Gaussian white noise with a
time constant �noise (corresponding to the synaptic decay time
constant). The neuron’s response to such a current can be
characterized by its instantaneous firing rate r(t), obtained by
an average of the response over many trials (Fig. 1A). The
instantaneous firing rate follows the current with a phase shift
�cell(�)

r�t	 � r0 � r1��	 cos 
�t � �cell��	� (9)

This linear approximation is valid for small enough I1 and, in
particular, for the values of I1 used in Fig. 1, A and B, as shown
in Fig. 2 for several representative frequencies. The amplitude
of the modulation r1(�) and the phase �cell(�) depend on the
frequency f of the input current. We compute the normalized
amplitude r1(�)/[r1( f � 1 Hz)] and the phase �cell(�) for
different values of the frequency f, whereas all other parame-
ters in the input current remain unchanged. Here, we use the
convention that a negative phase corresponds to a late firing in
the oscillatory cycle. In simulations, the mean current I0 is
adjusted such that the mean firing rate is fixed (r0 � 40 Hz), so
that the rate r0 does not depend on the input frequencies f. The
amplitude I1 is chosen so that r1( f )/r0 � 0.9 at f � 1 Hz input
frequency and r(t) is always nonzero.

It has been shown for LIF neurons that the response of a
neuron to a noisy sinusoidal current strongly depends on the
time constant of the noise �noise (Brunel et al. 2001 and Fig.
1C). The phase lag decreases and the amplitude increases for
larger noise time constants. When the time constant �noise is
sufficiently large, the LIF model responds to sinusoidal input
superimposed on synaptically filtered noise with negligible
phase shift, independent of the input frequency. This salient
feature of the LIF model neuron is crucial for neurons to follow
fast transients and to enable a network of LIF inhibitory
neurons to generate very fast (up to 300 Hz) coherent oscilla-
tions (Brunel and Wang 2003; Brunel et al. 2001).

In sharp contrast to the LIF neuron, we found that a con-
ductance-based neuron responds to the noisy oscillating current
with a phase lag that depends very weakly on the time constant
of the noise (Fig. 1B). The phase and amplitude behave
essentially in the same way whether the input is Gaussian white
noise (�noise � 0 ms) or filtered with a large time constant
(�noise � 40 ms) (Fig. 1B). When the input current varies
slowly so that f is well below the average firing rate r0, the

FIG. 1. Firing properties of a single model neuron in response to a noisy
sinusoidal input current. A: response of a single cell to 100-Hz oscillations: noisy
sinusoidal current (the smooth curve is the deterministic part of the current)
occasionally induces spikes, as shown in the membrane potential V(t) trace.
Instantaneous firing rate r(t), averaged over 3,000 trials, oscillates at 100 Hz but is
phase shifted by �cell [the smooth curve is the least-square fit to the function r(t) �
r0 � r1 cos (�t � �cell)]. Top: spike raster of 10 trials (time constant of the noise
is �noise � 5 ms, the average firing rate is 40 Hz, I0 � 0.12 pA, and I1 � 0.175 pA).
B: phase and normalized amplitude of the trial-averaged firing rate, as a function
of input frequency for conductance-based neurons. Phase and normalized ampli-
tude depend only weakly on the time constant of the noise (�noise). Normalized
amplitude of the rate r1(�)/r1( f � 1 Hz) (left) and the phase shift �cell (right)
decrease with increasing frequency of the input current. C: phase and normalized
amplitude as a function of frequency for leaky integrate-and-fire (LIF) neurons.
Phase and normalized amplitude depend on the time constant of the noise (�noise).
When �noise is sufficiently large, the LIF model neurons respond to the noisy
sinusoidal input current without attenuation (left) and without a phase lag (right).
Note that a negative phase corresponds to late firing during the oscillatory cycle.
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response of the cell follows the modulation without a phase lag
and the oscillation amplitude stays constant. For larger fre-
quencies f � r0, the firing rate lags behind the current with a
phase lag �cell(�) and the amplitude of the modulation r1(�)
decreases. For example, at f � 100 Hz the instantaneous firing
rate r(t) lags behind the current by about �cell � �90°, whereas
the averaged firing rate r0 � 40 Hz is constant for all input
frequencies f (Fig. 1B). The neuron acts as a low-pass filter.

A more quantitative description of the phase shift �cell(�)
can be achieved by fitting a function to the simulation data that
captures the important features of the response. We find that
the phase shift �cell(�) as a function of the frequency of the
input current f � �/2	 can be well described by a function of
the form (see Fig. 3A)

�cell��	 � ���spike � atan ���filter	 (10)

The first term on the right-hand side of Eq. 10 is a constant
delay arising from the finite spike time to peak (see Fig. 3B).
After the membrane potential has reached a certain depolar-
ization threshold (about �45 mV), the membrane dynamics is
dominated by the Na� and K� currents and is largely inde-
pendent of the fluctuations in the input current. Thus the shape
of the spike is independent of the inputs. The constant delay
�spike corresponds to the time to peak of the action potential,
that is, the time it takes from the point when the spike is
already well initiated to the voltage maximum where the spike
time is defined. The second term is related to the voltage
dynamics near spike initiation and below the depolarization
threshold. It can be well described by a linear filter with time
constant �filter, and is best understood in the context of the
simplified EIF neuron (see below). In the example given in Fig.
3 we found that �spike � 0.24 ms and filter time constant
�filter � 4 ms.

How do these two time constants �filter and �spike depend on
the properties of the neuron? As already mentioned, �spike
depends exclusively on the interplay of the Hodgkin–Huxley
currents leading to spike generation, independently of the
inputs. On the other hand, �filter does depend on the synaptic
inputs. Our single-cell simulations allow us to identify two
crucial parameters that control �filter: the single-cell mean firing
rate and the input conductance.

MEAN FIRING RATE. We computed the phase shift �cell(�) as a
function of the input frequency f for different mean firing rates
r0. Different single-cell firing rates are achieved by adjusting

the mean input current I0. Simulations show that the phase shift
depends substantially on the average firing rate of the single
cells (Fig. 4A). The filter time constant �filter decreases with
increasing mean firing rate, whereas �spike is independent of r0
(Fig. 4B). The instantaneous firing rate follows the input
current with a smaller phase lag for larger average firing rates.

INPUT CONDUCTANCE. Synaptic inputs as well as intrinsic cur-
rents that are active in the subthreshold voltage range introduce
changes in the input conductance of the neuron. If the fluctu-
ations in the conductance are small, the synaptic conductance
can be approximated by a constant term. Thus we introduce a
shunting term into the input current that mimics the total
synaptic conductance (external and recurrent) during network
activity. This allows us to vary the neuron’s input conductance
and, equivalently, the neuron’s effective membrane time con-
stant �m–eff (see also Eq. 6)

I�t	 � I0 � I1 cos ��t	 � Inoise�gshunt�V�VL	 (11)

For different values of gshunt we adjust the SD of �noise so that
the fluctuations in the membrane potential are kept at about
�V � 5 mV. As shown in Fig. 4C the addition of a shunting
conductance gshunt leads to a reduction in the cellular phase lag
�cell(�) in the firing response to a noisy sinusoidal input. The
time constant characterizing the spike time to peak �spike is
unaffected by changes in gshunt, and the changes in �cell(�) are
attributed entirely to changes in �filter (Fig. 4D). A small
effective membrane time constant leads to a smaller phase lag
and allows the neuron to follow high-frequency inputs better.

The exponential integrate-and-fire neuron

Are the results presented in the previous section specific to
models with Hodgkin–Huxley mechanisms or can they be
obtained with a simpler integrate-and-fire–like model? The
exponential integrate-and-fire (EIF) model (see METHODS) was
recently introduced to incorporate the dynamics of spike initi-
ation in the LIF model (Fourcaud-Trocmé et al. 2003). In the
EIF model, the activation kinetics of the fast sodium current is
assumed instantaneous and the voltage-dependent activation
voltage dependency is assumed to be exponential (controlled
by the parameter �T, Eq. 4). The EIF model does not include

FIG. 2. Power spectrum of the averaged firing rate r(t) is clearly dominated
by a sharp peak at the input frequency f. Instantaneous firing rate of a neuron
responding to a noisy sinusoidal current with frequency f � 10, 50, 150, and
250 Hz, respectively, is averaged over 3,000 trials. Mean firing rate of the
neuron is 40 Hz. I0 and I1 are the same as in Fig. 1.

FIG. 3. Phase shift curve fitted by a simple delayed filter. A: single-cell
simulations (full squares) and the fitted function (solid curve). Function fitted
to the data is �360f�spike � (180/	) atan (2	f�filter), with �spike � 0.24 ms and
�filter � 4.0 ms. Single-cell firing rate is 40 Hz; the synaptic time constant
�noise � 5 ms; SD of the noise is �noise � 5 mV. B: interpretation of fixed delay
�spike: spike time to peak is the time from threshold to the maximum of the
spike. For the conductance-based interneuron (see METHODS) �spike � 0.24 ms.
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the repolarizing mechanism of the potassium current but,
instead, the voltage is set to a reset potential after reaching a set
peak value. The parameters of the EIF model neuron are
chosen such that the firing rate–current relationships of the EIF
and the conductance-based model neurons are almost indistin-
guishable (Fig. 5B), as are the voltage traces in response to
noisy currents, except for a short interval after spike initiation
(Fig. 5A and Fourcaud-Trocmé et al. 2003).

The linear response of the EIF model neuron was obtained in
the same way as for the conductance-based model (see previ-
ous section and METHODS). Simulations show that the single
cell’s response to the noisy sinusoidal current is essentially
independent of the time constant of the noise �noise (Fourcaud-
Trocmé et al. 2003), as it is for the conductance-based model.
As shown analytically by Fourcaud-Trocmé et al. (2003), the
phase shift �cell( f ) goes to 90° for large input frequencies f.
Indeed, Fig. 5C shows that, in addition, the phase shift can be
well fitted with an arctangent function (Eq. 10). The time
constants �spike and �filter are taken from a fit with the function
in Eq. 10 to the simulated data. The fact that the phase goes to
90° at large frequencies implies that for the EIF model �spike �
0. The remaining term is the low-pass filter with time constant
�filter. The values of �filter for different shunt conductances, or
equivalently for different �m–eff, are similar to those of the
conductance-based model (compare Figs. 4C and 5C). Thus,
all the results obtained with the conductance-based models can
be reproduced quantitatively by the simpler EIF model. The
use of the simpler model confirms that the phase shift in the
single cell response arises from the dynamics of the spike
initiation that is well captured by the exponential term of the
EIF, and that the effective membrane time constant has a major
influence on the single-cell phase shift.

FIG. 4. Dependency of the phase shift on membrane time
constant and mean firing rate. A: single-cell phase shift
�cell(�) decreases with increasing single-cell mean firing
rate r0 at high frequencies. Firing rate is increased by
increasing the mean current I0. B: intrinsic time constant
�filter decreases with increasing r0. Filled triangles are �filter

calculated from the asymptotic behavior of the exponential
integrate-and-fire (EIF) neuron and the gain of the r0–I curve
�filter � (Cm�Tdr0/dI)/r0. Delay �spike is not affected by r0.
Effective membrane time constant is �m–eff � 10 ms. C:
single-cell firing rate phase shift �cell(�) decreases with
increasing shunting conductance at high frequencies. D:
intrinsic time constant �filter (obtained by fitting the phase
data in A with Eq. 10) decreases with �m–eff � Cm/(gL �
gshunt). Filled triangles are �filter calculated from the asymp-
totic behavior of the EIF neuron and the gain of the r0–I
curve �filter � (Cm�Tdr0/dI)/r0. Delay �spike is not affected by
�m–ef f. The slope dr0/dI is computed numerically. Single-cell
firing rate is r0 � 40 Hz.

FIG. 5. EIF model reproduces quantitatively the behavior of a conductance-
based model neuron. A: subthreshold potentials of conductance-based and EIF
neurons match well with each other, except for a short time interval right after the
spike discharge. B: parameters of the EIF neuron can be chosen such that the r0–I
curves of the EIF model neuron and conductance-based neuron are comparable. C:
phase of the single cell’s response to noisy sinusoidal current input depends on the
effective membrane time constant �m–eff and can be fitted by a linear filter. Smooth
curve is �atan (2	f�filter), where �filter � 4 ms. D: time constant �filter can be
estimated from the cutoff frequency fc, defined as the intersection between the low-
and high-frequency limits of the response amplitude (also see text).
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A simple analytical estimate of �filter for the EIF model
neuron can be obtained from the low- and high-frequency
limits investigated by Fourcaud-Trocmé et al. (2003) (see also
Fig. 5D). In the low-frequency range, the linear response
amplitude is essentially constant and proportional to the gain of
the r0–I curve at the corresponding mean frequency, i.e., dr0/dI.
In the high-frequency range, the amplitude decays as r0/
(Cm�T2	f ). This behavior is reminiscent of a simple low-pass-
filter rate model of the type � dr/dt � �r � �[I(t)]. For such a rate
model, in response to a sinusoidal input, the amplitude of the
firing rate modulation decays with f as r1� f 	 � 1/�[1�(f/fc)

2],
and the phase shift of the rate modulation is atan ( f/fc), where
the cutoff frequency is related to the time constant � of the rate
model by fc � 1/(2	�). For such a rate model, the cutoff
frequency corresponds to the frequency at which the asymp-
totic expressions for r1( f ) in the low (r1 � 1) and high (r1 �
fc /f ) frequency limits are equal. We can define the cutoff
frequency in a similar way for the EIF model, which gives fc �
r0/(2	Cm�Tdr0/dI) (Fig. 5D). This in turn gives an estimate of
the filter time constant, �filter � 1/(2	fc), or �filter � (Cm�Tdr0/
dI)/r0. This estimate turns out to be very close to the one
obtained by the fitting procedure, as shown in Figs. 4, B and D.
Note that one deduces directly from the analytical formula that
the filter time constant decreases when the firing rate increases.
Furthermore, it shows that the filter time constant is also
proportional to the slope (gain) of the r0–I curve, and to the
spike activation parameter �T. The input conductance affects
�filter through its effect on the slope of the r0–I curve (not
shown) (Chance et al. 2002). In the high-noise regime consid-
ered here, increasing input conductance decreases the gain of
the r0–I curve, when the mean firing rate is maintained con-
stant. As a result, the filter time constant is decreased.

To summarize the single cell results, we found that, unlike
the LIF model, the firing-rate response of a conductance-based
model neuron to synaptically filtered noisy sinusoidal input is
highly dependent on the input frequency. The phase shift in the
firing rate can be described as the sum of two terms: the
near-threshold voltage dynamics give rise to a filter term with
�filter, and the threshold-to-peak spike width leads to an intrin-
sic latency �spike. The time constant �filter is highly dependent
on the effective membrane time constant and mean firing rate,
whereas �spike is not. Unlike LIF neurons, which can follow fast
transients, the response of conductance-based neurons is
strongly dependent on the single cell firing rate and the input
conductance. The response properties of the conductance-
based neuron can be well captured by the EIF neuron.

Theoretical determination of the population frequency
of a network of inhibitory neurons

We now incorporate the response properties of single neu-
rons in a theoretical framework that allows us to determine
quantitatively the frequency of network oscillations. This rep-
resents an extension of the analysis of Brunel and Wang
(2003), which assumed that single neurons respond instanta-
neously to inputs at all frequencies. To start with, we assume
that during collective oscillatory population activity, the aver-
aged instantaneous firing rate rI(t) can be roughly described as
a sinusoidal function. Single cells fire irregularly in time
with a discharge probability equal to this sinusoidal function.

Thus, the activity of each neuron in the population can be
described by

rI�t	 � rl,0
1 � � cos ��t	� (12)

where rI,0 is the mean firing rate of the cell, � � rI,1/rI,0 is the
relative amplitude of the sinusoidal modulation in the firing
rate, and � � f/2	, where f is the frequency of the sinusoidal
modulation and corresponds to the population frequency (Figs.
1A and 6), yet to be calculated.

First, we consider the time course of GABAergic currents in
the inhibitory neurons of the network. A sinusoidally varying
presynaptic firing rate leads to the average fraction of open
channels at GABAergic synapses varying as a sinusoidal func-
tion of time. However, because of temporal characteristics
(latency �Il, rise time �Ir, and decay time �Id) of GABAergic
synapses, there is a phase shift of the time course of the
fraction of open channels with respect to the presynaptic firing
rate. For synapses described by Eq. 7 this phase shift �I,syn(�)
is given by (Brunel and Wang 2003)

�I,syn��	 � � ��Il � atan ���Ir	 � atan ���Id	 (13)

Note that a negative phase shift corresponds to a phase lag. The
synaptic current is the product of the fraction of open channels
at GABAergic synapses multiplied by the driving force. As-
suming that the temporal variations in the driving force are
small compared to the temporal variations in the fraction of
open channels, the phase shift of the GABAergic current is
given by �I,syn(�) � 	, where the factor 	 comes from the
inhibitory nature of GABAergic currents.

The next step is to determine the time course of the firing
rate of a postsynaptic neuron that receives an oscillatory
current with a phase shift �I,syn(�) � 	. We have seen in the
previous section that such a postsynaptic neuron will respond
to a noisy sinusoidal current with a phase shift �I,cell(�), which
also depends on the input frequency f. Thus the total phase shift
of the postsynaptic firing rate with respect to the presynaptic
one is �I,syn(�) � 	 � �I,cell(�). Because the instantaneous
firing rate of pre- and postsynaptic neurons must be in phase
for network oscillations to emerge, this total phase shift must
be equal to �2	, i.e.

�	 � �I,syn��	 � �I,cell��	

� � ��Il � atan ���Ir	 � atan ���Id	 � �I,cell��	 (14)

Equation 14 gives the predicted population frequency. It shows
that long synaptic time constants increase the phase and de-
crease the population frequency (see also Brunel and Wang
2003). When the phase shift arising from the single-cell re-
sponse is negligible as in the case of LIF neurons, �I,cell(�) �
0, the population frequency can be computed by solving the
equation 	 � ��Il � atan (��Ir) � atan (��Id) (Brunel and
Wang 2003). An additional phase lag [�I,cell(�) � 0] reduces
the population frequency as shown in Fig. 6B.

To obtain a prediction of the network frequency, we insert
the phenomenological description of the phase shift �I,cell(�)
of the single cell’s response to noisy sinusoidal current (Eq. 10)
in Eq. 14. The condition for the total phase in an oscillating
network can then be written

	 � ��Il � atan ���Ir	 � atan ���Id	 � ��I,spike � atan ���I,filter	 (15)

Thus, the population frequency of a network of inhibitory
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coupled neurons can be calculated by knowing the inhibitory
synaptic time constants and the two cellular time constants
�I,spike and �I,filter . For example, when the phase shift is negli-
gible for all input frequencies [�I,cell( f ) 
 0, corresponding to
LIF neurons], Eq. 15 predicts a population frequency of almost
f � 300 Hz, assuming the standard synaptic time constants
(�Il � 0.5 ms, �Ir � 0.5 ms, �Id � 5.0 ms). A delay �I,spike �
0.24 ms corresponding to the spike time to peak lowers the
population frequency to about f � 230 Hz. The single-cell
filtering time constant �I,filter has a much stronger effect on the
population frequency. For a firing rate of 40 Hz and an
effective membrane time constant of 10 ms, we have seen in
the previous section that �I,filter � 4 ms. This leads to a decrease
of the population frequency to f � 95 Hz. However, the
effective membrane time constant is significantly reduced dur-
ing network activity as a result of the synaptic conductance
change and we expect a higher population frequency. For
example, if the effective membrane time constant changes
tenfold (from �m–eff � 10 ms to �m–eff � 1 ms) and the average
firing rate of the neurons is rI,0 � 40 Hz we predict a
population frequency f 
 140 Hz.

Emergent oscillations in a population of conductance-based
inhibitory interneurons

How does the analysis compare with simulation results?
Simulations of a network composed of a single population of
mutually connected inhibitory GABAergic Hodgkin–Huxley-
type conductance-based cells show a prominent fast rhythm
when the external drive is sufficiently large and recurrent
inhibition is strong (Fig. 7A). A similar result was shown for a
network of LIF neurons (Brunel and Wang 2003). During
network activity single cells are subjected to synaptic currents,
external excitation (Poisson rate � of the AMPA-receptor–
mediated synaptic inputs), and recurrent inhibition. The recur-
rent inhibition has an oscillatory component stemming from
the emerging network oscillations. The synaptic inputs to each
cell of the network induce a noisy subthreshold oscillation in
the membrane voltage; fluctuations around the average sub-
threshold time course of the voltage occasionally cause a cell
to spike. The spike pattern differs from cell to cell and the
single-cell firing rates are heterogeneous across the network

because external drive is Poisson and recurrent connections are
random and sparse. The power spectrum of a single spike train
does not indicate any rhythmicity (Fig. 7B), even though
“multiunit” activity averaged over a group of 10 cells during
the same time interval shows a peak in the power spectrum at
125 Hz (Fig. 7C). This narrow peak in the power spectrum
indicates that the network activity is indeed dominated by a
single frequency component. Similarly, the autocorrelation of a
single spike train does not show an oscillatory pattern (Fig.
7D); thus oscillations are hardly apparent in a single cell’s
spike train, because the probability of firing in any given cycle
is small. On the other hand, the population firing rate, averaged
over a large number of cells, clearly reveals the network
oscillation at a much higher frequency than the averaged single
cell firing rate (Fig. 7A). Although single cells do not discharge
rhythmically, they fire at a preferred phase of the population
oscillation, as can be seen in the cross-correlation between the
spike train of a single cell and the population activity (spike-
triggered average of the population firing rate, Fig. 7E).

The oscillation frequency of 125 Hz (Fig. 7A) can be
predicted from the single-cell analysis in the following way.
First, given the synaptic time constants the synaptic phase shift
can be computed as a function of the population frequency
�I,syn(�) (Eq. 13). The next step is to determine the single-cell
phase shift �I,cell(�), which depends on the average single cell
firing rate (40 Hz) and the effective membrane time constant.
Each neuron receives on average an inhibitory input of 2 kHz
[average single cell firing rate (40 Hz) multiplied by the
number of connections (50)] and an excitatory input of 5 kHz.
Considering the conductances of recurrent inhibition
(g�GABA31 � 6.2 nS) and external excitation (g�ext3I � 1.5 nS)
and the time constants of each synapse, the total synaptic
conductance can be computed to be 0.11 �S. The neuron has
therefore an effective membrane time constant of 1.5 ms.
Using a single cell with a shunt conductance of 0.11 �S, the
single-cell phase shift can be determined. The time constants
�I,filter � 1.6 ms and �I,spike � 0.24 ms can be obtained with a
fit to the phase shift. The last step is to evaluate the self-
consistent solution (Eq. 15), which leads to a population
frequency of 127 Hz, remarkably close to what we observe
(125 Hz) in network simulations.

FIG. 6. Theoretical prediction of the rhythmic
frequency of an interneuronal population. A: il-
lustration of the analytical method. An inhibitory
neuron has an average firing rate rI(t). Because of
synaptic filtering, the fraction of open channels
sI(t) lags behind the firing rate with a phase
�I,syn( f ). Synaptic current II(t) is antiphasic to
sI(t) because it is an inhibitory current. The
neuron lags behind the synaptic current by
�I,cell( f ). For network oscillations to emerge the
phase must satisfy �	 � �I,syn( f ) � �I,cell( f ),
where f is the population frequency. B: total
phase shift vs. frequency: population frequency
is the intersection of the total phase shift [dashed
line, synaptic phase �I,syn( f ); solid line, synap-
tic � single-cell phase �I,syn( f ) � �I,cell( f )]
with the horizontal line at �180°. In the presence
of synaptic filtering only, the population fre-
quency is almost 300 Hz. Single-cell filtering
reduces the population frequency to 125 Hz.
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How does the network frequency depend on the external
excitation? The increase in external excitation leads to an
increase in the single cell’s firing rate and a decrease of the
effective membrane time constant (resulting from increased
external and recurrent synaptic conductance). Brunel and
Wang (2003) showed that the oscillation frequency of a pop-
ulation of LIF neurons is independent of the external excitatory
input because the response of the single LIF neuron to noisy
oscillating synaptic current does not depend on the single-cell
properties. In contrast, Fig. 8 shows that the conductance-based
neuron’s response to noisy oscillating synaptic current does
depend on the single-cell properties. Indeed, when the external
drive is varied gradually, the single-cell firing rate as well as
the population frequency increase almost linearly. The popu-
lation can oscillate at frequencies ranging from �100 to �200
Hz. This frequency range is significantly lower than the pop-
ulation frequency of a network of LIF model neurons (300 Hz),
when the comparison is made with the same synaptic param-
eters (latency �Il � 0.5 ms, rise time �Ir � 0.5 ms, and decay
time �Id � 5.0 ms). Because the synaptic conductance affects
the single-cell properties, and thus the phase shift with which
the conductance-based neuron responds to the synaptic current,
the population frequency of conductance-based neurons can be
modulated by the synaptic afferents.

Role of membrane time constant of single neurons

An important conclusion from the single-cell study is that
the effective membrane time constant of the single cell has a
strong influence on the phase shift and therefore on the oscil-
lation frequencies. We predict that fast oscillations can be
obtained by a small single-cell effective membrane time con-
stant. This raises the question as to whether physiologically
observed frequencies of very fast oscillations (around 200 Hz)
are realizable. We now discuss two possible scenarios by
which a small effective membrane time constant might be
obtained and, consequently, fast network oscillations might
emerge. In the first scenario an intrinsic current activated in the
subthreshold range is used, whereas in the second scenario
large synaptic inputs lead to a decrease in the effective mem-
brane time constant.

FIG. 7. Fast (�100 Hz) oscillations in a network of inhibitory neurons. A:
single cells fire randomly and sparsely at a much lower frequency than the
population activity. Network oscillations are apparent in the population activity
rather than on the single-cell level. Network oscillates at 125 Hz, whereas the
mean firing rate of single cells is 40 Hz: (a) spike raster of 10 cells; (b)
membrane potential of a single cell; (c) instantaneous population firing rate; (d)
distribution of single-cell firing rates across the population; (e) power spectrum
of the instantaneous population firing rate. External excitatory input is 5 kHz.
B: oscillations are not detectable with the power spectrum of single-cell spike
trains (the single-cell spectrum is averaged over 10 cells). C: power spectrum
of “multiunit” activity (combined spike trains from 10 cells) shows a clear
peak at 125 Hz. D: autocorrelation of a single spike train does not show an
oscillatory pattern. E: spike-triggered average (STA) of the population rate
shows oscillations at 125 Hz. Spike-triggered population rate is averaged over
the spikes of one neuron (42 spikes). Length of spike trains is 2 s. Parameters:
connection probability 0.05; synaptic time constants for 
-aminobutyric acid
(GABA) �Il � 0.5 ms, �Ir � 0.5 ms, �Id � 5.0 ms.

FIG. 8. Network oscillation frequency and neuronal firing rate as function
of the input amplitude. A: population frequency increases with increasing input
strength. Each cell receives an external excitatory Poisson input with rate �.
With increasing � the single-cell frequency (filled diamonds; averaged over all
cells) and the population frequency (triangles) increase. B: network synchrony
increases rapidly when the input rate � crosses a threshold (5 kHz) and
saturates for larger input. Parameters as in Fig. 7.
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The A-type potassium current is an example of a membrane
current that is activated below threshold and contributes to the
effective membrane time constant (Connor et al. 1977) (see
METHODS). When the voltage is close to threshold, an activated
A-channel conductance increases the total membrane conduc-
tance, thus decreasing the effective membrane time constant
�m–eff . We find that an inhibitory network of conductance-
based neurons endowed with an A-type potassium current
(Connor et al. 1977) can oscillate at very high frequencies (Fig.
9). With the same synaptic time constants and the same
average single-cell firing rate (40 Hz) as in Fig. 7 A, the
population oscillates at 220 Hz instead of 125 Hz. This dra-
matic increase of the population frequency compared to the
network of cells without an A-type current (Fig. 7A) is ex-
plained by the fact that the effective membrane time constant
is very small, �m–eff � 0.15 ms in this model.

Another way to reduce �m–eff is to increase the synaptic
inputs. An additional external inhibitory synaptic conductance
gI,ext is added to the neuron model used in Fig. 7. The resulting
larger effective inhibitory conductance grecurrent � gI,ext is
compensated by a larger external excitation gE,ext, so that the
average neuronal firing rate remains the same (40 Hz). Under
this condition and with the same synaptic parameters, the
network’s rhythmic frequency becomes 180 Hz (Fig. 10A),
which is significantly higher than 125 Hz in Fig. 7A. When the
external excitatory and inhibitory inputs are increased in a
balanced manner, the total membrane conductance gtot � gL �
grecurrent � gI,ext � gE,ext increases, and �m–eff � 1/gtot de-
creases (Fig. 10C). Concomitantly, the population frequency
increases to up to 200 Hz, whereas the single-cell firing rate
stays constant (Fig. 10B).

Is the change of �m–eff sufficient to account for the increase
in the population frequency in these two scenarios? This
question can be addressed by comparing network simulations
with the theoretical prediction (Fig. 11). To predict the popu-
lation frequency we first need to know the synaptic phase shift

�I,syn(f), which can be calculated from the synaptic time con-
stants. Second, the single-cell phase shift �I,cell( f ) depends on
the time to peak of the spike (�I,spike � 0.24 ms) and the filter
time constant �I,filter . The latter depends on the effective
membrane time constant �m–eff and on the single cell firing rate
�I,0 (here �I,0 � 40 Hz) (Fig. 4). Using the relationship between
�m–eff and �I,filter obtained from the EIF neuron model (Fig. 4D)
we can predict the population rhythmic frequency of a neural
network, as a function of �m–eff (Fig. 11, solid curve). The
theoretical prediction agrees well with results from direct
network simulations (Fig. 10B), in which the synaptic conduc-
tance was varied so that the single cell’s effective membrane
time constant changed from �m–eff � 1.5 ms (Fig. 7) to �m–eff �
0.3 ms (corresponding to large synaptic bombardment, Fig.
10). The agreement is also good for a simulated network of
neurons endowed with an A-current (�m–eff � 0.15 ms, popu-
lation frequency of 220 Hz).

FIG. 9. A population of conductance-based neurons with a small effective
membrane time constant can oscillate at 220 Hz. Single cells contain an A-type
potassium current that contributes to reducing the effective membrane time
constant at subthreshold potentials. During network activity, the membrane
time constant �m–eff � 0.15 ms: (a) spike raster of 10 cells; (b) membrane
potential of a single cell; (c) instantaneous population firing rate; (d) distribu-
tion of firing rates across neurons; (e) power spectrum of the instantaneous
population firing rate. External excitatory input is 9 kHz. Parameters: connec-
tion probability 0.1; synaptic time constants as in Fig. 7.

FIG. 10. A: population frequency depends on the background synaptic
conductance: neurons receive strong external excitatory (40 kHz) and inhibi-
tory (6.5 kHz) synaptic input; the network oscillates at 180 Hz, whereas single
cells fire on average at 40 Hz: (a) spike raster of 10 cells; (b) membrane
potential of a single cell; (c) instantaneous population firing rate; (d) distribu-
tion of single cell firing rates across the population; (e) power spectrum of the
instantaneous population firing rate. B and C: each cell receives external
excitatory and inhibitory Poisson inputs. Inhibitory input is adjusted so that the
single-cell firing rate remains constant. B: population frequency increases with
increasing input, whereas the single-cell firing rate stays constant. C: as the
external inhibitory and excitatory conductances increase, the effective mem-
brane time constant �m–eff decreases. Parameters: connection probability 0.1;
synaptic time constants as in Fig. 7.
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To summarize, we found that the membrane time constant of
single cells strongly affects the frequency of a collective
network oscillation. Because the effective membrane time con-
stant �m–eff depends on the synaptic and intrinsic ion conduc-
tances, coherent oscillations as an emergent network phenom-
enon can have a range of frequencies that are determined and
modulated by cellular and synaptic dynamics, even though
single cells are dominated by noise and do not behave like
oscillators.

Oscillations in a two-population network of excitatory
and inhibitory neurons

We have shown that an interneuronal network can by itself
generate very fast rhythms. In cortical networks, interneurons
are reciprocally connected to pyramidal cells. How do the
interactions with pyramidal cells affect the patterns and, in
particular, the frequency of such fast oscillations? To address
this question we investigate synchronous oscillations in a
two-population network of inhibitory interneurons and excita-
tory pyramidal cells. With this type of architecture, two pos-
sible scenarios for rhythmogenesis are present: the interneuro-
nal network and the loop between interneurons and pyramidal
cells. Brunel and Wang (2003) showed that in a two-population
network of LIF neurons, the oscillation frequency depends on
the synaptic time constants, the relative strength between the
excitatory and inhibitory synaptic currents and the connectivity
among pyramidal cells. Increasing the relative strength of
excitation versus inhibition typically decreases the population
frequency. Including recurrent connections among pyramidal
cells reduces the population frequency further.

Do these results hold for conductance-based neurons as
well? Based on the single-cell simulations shown in Figs. 1–4,
we expect that in a two-population network of conductance-
based cells, the population frequency should also depend on
the phase response of single interneurons and pyramidal cells
to the synaptic current. We expect the population frequency to
be lower than that of a network of LIF neurons. To understand

in more detail how the oscillation frequency depends on
single-cell and synaptic parameters, the population frequency
can be computed from both synaptic parameters and single-cell
phase-shift curves, using calculations similar to those pre-
sented for a one-population network (see Fig. 12 and Appendix
A). The calculation proceeds according to the following steps:

● The population firing rates of interneurons and of pyra-
midal cells are approximated by sinusoidal functions.
These functions are characterized by the mean firing rates
of interneurons (�I,0) and pyramidal cells (rP,0), the rela-
tive amplitude of the sinusoidal modulation (�I for inter-
neurons and �P for pyramidal cells), and the population
frequency f � �/2	. The firing rates of pyramidal cells
and interneurons are not necessarily in phase.

● The fraction of open channels at the postsynaptic mem-
brane follows the presynaptic firing probability with a
phase delay as a result of synaptic filtering. The phase
delay of the inhibitory (excitatory) synaptic currents
�I,syn(�) � 	 [�P,syn(�)] depends on the latency, rise, and
decay time constants of the synaptic currents.

● Each neuron receives a total current that is the sum of
inhibitory and excitatory synaptic currents. For the sake of
simplicity, we consider here the special case when the
relative strength of excitatory and inhibitory synaptic cur-
rent (IAMPA/IGABA ratio) is the same for interneurons and
pyramidal cells. The phase of the total current depends on
this relative strength and on the phase difference between
excitation and inhibition.

● In general, a neuron responds to the total synaptic current
with a phase shift, which depends on the single-cell prop-
erties, such as firing rate and effective membrane time
constant. The phase shifts of interneurons �I,cell(�) and
pyramidal cells �P,cell(�) depend on the time constants
�I,spike, �I,filter and �P,spike, �P,filter, respectively, and can be
determined from single cell simulations.

● Self-consistency between the presynaptic and postsynap-
tic firing rates, which are both the source and recipient of
the recurrent synaptic input, leads to equations for the
phases of excitatory and inhibitory neurons. These two
equations give the frequency f of the global oscillation and
the phase shift between the two populations.

The prediction is that the population frequency will be strongly
affected by the effective membrane time constants of both cell
types and their average firing rates, and by the relative strength
of excitatory and inhibitory current.

Effect of balance between synaptic excitation and inhibition
on the population frequency

We found that a wide range of frequencies can be realized in
a network with the same set of synaptic time constants and the
same architecture. Critical determinants of the network oscil-
lation frequency are the level of balance between synaptic
excitation and inhibition (the time-averaged IAMPA/IGABA ratio,
which was imposed to be the same in pyramidal cells and
interneurons in our simulations) and the phase shift between
the excitatory and inhibitory synaptic currents. When the
IAMPA/IGABA ratio is low, which can be achieved by very low
firing rates of pyramidal cells compared to interneurons (e.g.,

FIG. 11. Population frequency increases with decreasing effective mem-
brane time constant. Solid curve: analytical prediction from Eq. 14 using the
EIF model and the relationship between �filter and the gain of the r0–I curve
�I,filter � (Cm�TdrI,0/dI)/rI,0 (see text and Fig. 4D); we assume the standard
synaptic time constants (�Il � 0.5 ms, �Il � 0.5 ms, �Id � 5.0 ms) and a finite
spike width (�I,spike � 0.24 ms). Open triangle: simulations of networks with
additional external excitatory and inhibitory synaptic input (Fig. 10B). Star:
simulations of a network of interneurons with A-type potassium current
(Fig. 9).
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interneurons fire at 35 Hz, whereas the firing rates in pyramidal
cells is 1 Hz), the population frequency is mainly determined
by the interneuronal network. The pyramidal cells are basically
paced by the rhythmic inhibition and the population frequency
is �110 Hz (Fig. 13A). On the other hand, with a high
IAMPA/IGABA ratio, the network displays synchronous gamma
frequency (40 Hz) when the firing rates of pyramidal cells are
high compared to interneurons (e.g., interneurons fire on aver-
age at 8 Hz and pyramidal cells on average at 3 Hz, and see
Fig. 14). In that case, the oscillations are mainly maintained by
the loop between interneurons and pyramidal cells.

As the IAMPA/IGABA ratio was increased gradually starting
from a low value, we observed that the population frequency
can increase to up to 190 Hz (Fig. 13B), or decrease �100 Hz
(data not shown). We found that a simple criterion that deter-
mines whether the population frequency increases or decreases
with increasing IAMPA/IGABA ratio is the following: if the
excitatory synaptic current precedes the inhibitory synaptic
current in the oscillatory cycle, then increasing IAMPA/IGABA
ratio increases the frequency; in the opposite situation (the
excitatory current follows the inhibitory current), increasing
IAMPA/IGABA ratio decreases the frequency. Thus the next
question is under which conditions does excitation precede or
follow inhibition? These conditions are simpler to establish in
the situation when the IAMPA/IGABA ratio is the same in
interneurons and in pyramidal cells and thus we restrict our
discussion to this scenario. When the IAMPA/IGABA ratio is the
same in interneurons and in pyramidal cells, the total synaptic
currents received by interneurons and pyramidal cells are in
phase. The relative phase shift between the inhibitory and the
excitatory synaptic current is (see APPENDIX B)

��current��	 � �P,syn��	 � �P,cell��	 � 	 � �I,syn��	 � �I,cell��	 (16)

The phase shift ��current(�) (Eq. 16) depends on the synaptic

time constants through the synaptic phase shifts of excitation
�P,syn(�) and inhibition �I,syn(�) � 	, and on the single-cell
properties of pyramidal cells and interneurons through
�P,cell(�) and �I,cell(�), respectively.

In Fig. 15A, we illustrate different scenarios by plotting the
relative locations of the peaks of AMPA and GABA currents in
an oscillatory cycle of the total synaptic current, when the
IAMPA/IGABA ratio is �1. If in such a cycle ��P,cell � �P,syn� �
��I,cell � �I,syn� (respectively ��P,cell � �P,syn� � ��I,cell �
�I,syn�) IAMPA follows (respectively precedes) IGABA. As a first
example, consider the case in which �P,cell(�) � �I,cell(�),
and excitatory time constants are shorter than inhibitory
time constants, ��P,syn(�)� � ��I,syn(�)� [Fig. 15A(i)]. Then
��current(�) � 180°, excitation follows inhibition, and there-
fore an increase in excitation strength will decrease the oscil-
lation frequency. This is the scenario that was considered in
Brunel and Wang (2003). On the other hand, if the single-cell
phase shift of pyramidal cells is sufficiently larger than that
of interneurons, due to a larger �m–eff and/or �P,spike, then
��current(�) can become �180°, and excitation now precedes
inhibition [Fig. 15A(ii)]. Thus, somewhat counterintuitively, a
larger neuronal phase shift of pyramidal cells would favor the
regime where an increased IAMPA/IGABA ratio accelerates the
network oscillation.

Another scenario that leads to excitation preceding inhibi-
tion is a scenario in which the latency of AMPA currents is
larger than the latency of GABA currents. If �AMPA–latency �
�GABA–latency but the sum of all synaptic time constants is shorter
for AMPA than for GABA, then we observe a frequency-depen-
dent effect: for low frequencies ��I,syn(�)� �� �P,syn(�)�, and con-
sequently inhibition precedes excitation [Fig. 15A(iv)], whereas
for sufficiently high frequencies the latency dominates the synap-
tic phase shift, ��I,syn(�)� � ��P,syn(�)�, and consequently excita-
tion precedes inhibition [Fig. 15A(iii)]. Thus depending on the

FIG. 12. Predicting the population frequency in a
two-population network of interneurons and pyramidal
cells: the synaptic current II(t) of an oscillating averaged
instantaneous firing rate of interneurons rI(t) is phase
delayed by �I,syn( f ) � 	. Synaptic current IP(t) of an
oscillating averaged instantaneous firing rate of pyrami-
dal cells rP(t) is phase delayed by �P,syn( f ). Cells re-
spond to the total synaptic current II(t) � IP(t) with a
phase lag �I,cell( f ) (interneurons) and �P,cell( f ) (pyra-
midal cells).
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latency of AMPA currents, increasing the IAMPA/IGABA ratio can
lead to a monotonic decrease of the oscillation frequency (if
latency is sufficiently short), or an increase followed by a decrease
of the oscillation frequency (if latency is sufficiently large). Figure
15B illustrates the situation with a short latency of AMPA cur-
rents, �AMPA–latency � 0.5 ms. The excitatory current follows the
inhibitory current for all values of the IAMPA/IGABA ratio. The
frequency of the oscillations is 130 Hz for IAMPA/IGABA � 0 and
decreases to gamma oscillations (40 Hz) at IAMPA/IGABA � 1. In

the second case, the excitatory current precedes the inhibitory
current and the population frequency increases with increasing
IAMPA/IGABA ratio for small IAMPA/IGABA ratios. An increase in
excitation leads to a larger phase advance of the total current
compared to inhibition, which shortens the oscillatory cycle and
leads to a higher population frequency. However, the range of the

FIG. 13. A two-population network can oscillate at different frequencies
depending on the balance of excitatory and inhibitory synaptic currents. In both
cases are shown the membrane voltage of a single pyramidal cell (a) and
interneuron (b); the instantaneous population firing rate of pyramidal cells
(gray) and interneurons (black) (c); the distribution of the single cell firing
rates across the population (d); and the power spectrum of the instantaneous
population firing rate of pyramidal cells (e). A: high-frequency oscillations
(125 Hz). IAMPA/IGABA ratio is essentially zero and the population frequency
is mainly determined by the interneuronal network. Average single-cell firing
rates: pyramidal cells 1 Hz, interneurons 35 Hz. External input to pyramidal
cells 3 kHz, to interneurons 4.5 kHz. B: high-frequency oscillations (190 Hz).
When the IAMPA/IGABA ratio is not zero but low, the population frequency is
determined by the interneuronal network and the interneuron–pyramidal cell
loop. Average single-cell firing rate: pyramidal cells 15 Hz and interneurons 40
Hz. External input to pyramidal cells 5.06 kHz and to interneurons 5.6 kHz.
Synaptic time constants: GABA �Il � 0.5 ms, �Ir � 0.5 ms, �Id � 5.0 ms;
AMPA �Pl � 1.5 ms, �Pr � 0.5 ms, �Pd � 2.0 ms; connection probability 0.1.

FIG. 14. A two-population network oscillates at gamma frequency (40 Hz). A:
membrane voltage of a single pyramidal cell (a) and interneuron (b), the instan-
taneous population firing rate of pyramidal cells (gray) and interneurons (black)
(c), the distribution of the single cell firing rates across the population (d), and the
power spectrum of the instantaneous population firing rate of pyramidal cells (e).
Average single-cell firing rates: pyramidal cells 3 Hz, interneurons 8 Hz. External
input to pyramidal cells 0.82 kHz, to interneurons 0.4 kHz. B: oscillations are not
detectable in the power spectrum of single-cell spike trains. C: power spectrum of
multiunit activity averaged over 50 spike trains shows a clear peak at 40 Hz. D:
autocorrelation of a single spike train (averaged over 50 cells) does not show a
clear oscillatory pattern. E: STA of the population rate shows oscillations at
gamma frequency. Spike-triggered population rate is averaged over the spikes of
one neuron (52 spikes). Length of spike train: 10 s. Synaptic parameters as in Fig. 13.
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IAMPA/IGABA ratio within which the excitatory synaptic current
precedes the inhibitory synaptic current is limited. Starting with a
network in which only interneurons are active, an increase in
excitation leads to an increase in the population frequency, but

only until the oscillation cycle is shortened such that the excitatory
current turns from preceding into following inhibition. The ex-
citatory current precedes the inhibitory current [0 �
��current(�) � 180] for a range of small IAMPA/IGABA but follows
the inhibitory current [180 � ��current(�) � 360] for large
IAMPA/IGABA (Fig. 15C). This leads to two well-separated fre-
quency regimes: population frequencies �120 Hz for small
IAMPA/IGABA ratios and �80 Hz for larger IAMPA/IGABA ratios for
the parameters of Fig. 15C. When the excitatory current peaks
before the inhibitory current (with a synaptic latency of excitation
�AMPA–latency � 1.5 ms), the population frequency can reach the
200-Hz range, with single cells remaining at much lower rates
(Fig. 13B). We note again that IAMPA preceding IGABA does not
necessarily require longer synaptic latency for excitation than for
inhibition; slower intrinsic time constants in excitatory neurons
would also be sufficient to give rise to this phenomenon.

The phase shift between the firing rates of interneurons and
pyramidal cells depends only on single-cell characteristics

��rate��	 � �P,cell��	 � �I,cell��	 (17)

when the IAMPA/IGABA ratio is the same in interneurons and
pyramidal cells (APPENDIX B). When ��rate � 0 interneurons fol-
low pyramidal cells. For LIF neurons ��rate � 0, because inter-
neurons and pyramidal cells respond to oscillating synaptic cur-
rent with negligible phase lag and, as a consequence, both popu-
lations oscillate in phase. On the other hand, conductance-based
neurons generally respond to oscillating synaptic currents with a
phase lag that is larger for pyramidal cells than that for interneu-
rons. When the IAMPA/IGABA ratio is the same in pyramidal cells
and interneurons, pyramidal cells tend to follow interneurons.
However, when recurrent connections among pyramidal cells are
absent, or more generally when the ratio of excitation to inhibition
is weaker in pyramidal cells than in interneurons, pyramidal cells
tend to precede interneurons (Brunel and Wang 2003).

D I S C U S S I O N

During certain behavioral states, neocortex and hippocam-
pus display fast (40–200 Hz) oscillations that are detected in
the local field potential, but not easily in spike trains of
individual neurons that are typically very irregular (Engel et al.
1992; Fries et al. 2001a,b; Logothetis et al. 2001). This is at
odds with most theoretical studies of network synchronization,
in which neurons are coupled oscillators (Borgers and Kopell
2003; Ermentrout and Rinzel 1984; Gerstner et al. 1996;
Hansel et al. 1995; Kopell and LeMasson 1994; Marder 1998;
Nomura et al. 2003 ; Traub et al. 1996; van Vreeswijk et al.
1994; Wang and Buzsáki 1996). On the other hand, rhythmic
phenomena that mimic the phenomenology of fast oscillations
occur in networks in which single neurons are subject to large
amounts of noise, which can be attributed either to external
inputs or to intrinsic network dynamics in networks with sparse
and random connectivity (Brunel 2000; Brunel and Hakim
1999; Brunel and Wang 2003). The present study represents a
further step along this line of research, and extends the theo-
retical framework to networks of Hodgkin–Huxley-type con-
ductance-based models. We showed that the frequency of
network oscillations is determined by the interplay between
synaptic kinetics and the single cell’s spiking properties. We
extended a theoretical framework for predicting the population

FIG. 15. Population frequency depends on the balance (IAMPA/IGABA) and
on the relative phase shift between the excitatory and inhibitory synaptic
currents ��current � �P,syn( f ) � �P,cell( f ) � �I,syn( f ) � �I,cell( f ) � 	. A:
illustration of different scenarios that can lead to excitatory current IAMPA

following (i) and (iv) or preceding (ii) and (iii) inhibitory current IGABA,
respectively (see text). B, left: population frequency decreases with increasing
recurrent excitation when excitation follows inhibition. Right: phase shift
��current is �180° for all values of IAMPA/IGABA. Excitatory synaptic cur-
rent follows the inhibitory synaptic current, as illustrated in the top trace
(�AMPA–latency � 0.5 ms; all other synaptic parameters as in Fig. 13). C, left:
population frequency increases with increasing recurrent excitation when
excitation precedes inhibition. Right: for small values of IAMPA/IGABA the
excitatory synaptic current precedes the inhibitory synaptic current, as illus-
trated in the top trace. There is a critical IAMPA/IGABA ratio, above which a
second stable solution becomes possible and the trend is reversed: the oscil-
lation frequency shows a discrete drop from ripple frequency to gamma
frequency range (solid line: stable solution; dotted line: unstable solution).
(�AMPA–latency � 1.5 ms; all other synaptic parameters as in Fig. 13). Solid/
dotted curves: analytical prediction; open circle: network simulations.
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frequency, on the basis of quantitative synaptic kinetic prop-
erties and the response properties of single cells.

Collective network rhythmic frequency depends on single-
cell spiking properties

In sharp contrast to the LIF model, the firing response of a
single conductance-based model neuron to a noisy sinusoidal
input strongly depends on the stimulus frequency (see also
Fourcaud-Trocmé et al. 2003). This cellular response property
has a major impact on the frequency of synchronous network
oscillations. In interneuronal networks, with the same network
connectivity, same synaptic time constants, and same average
firing rates of single neurons, varying the single-cell properties
alone can change the network rhythmic frequency by a signif-
icant amount (e.g., from 100 to 200 Hz). The present study
shows that, when single neurons fire irregularly and fast
coherent oscillation is an emergent network phenomenon,
synchronization properties (in particular the frequency) depend
critically on the membrane dynamics that control the upstroke
of action potentials. This is explicitly demonstrated by the
exponential integrate-and-fire model that, with just one non-
linear voltage dependence, is shown to adequately account for
the single cell’s impact on the network oscillation frequency.

Moreover, we show that the membrane time constant of
single cells greatly affects the frequency of network oscilla-
tions. An increased total membrane conductance, described
either to spontaneous synaptic activity (Borg-Graham et al.
1998; Chance et al. 2002; Destexhe and Paré 1999; Häusser et
al. 2001) or to intrinsic ion channels (Connor et al. 1977;
Softky 1994) leads to a smaller effective membrane time
constant, which favors a higher population rhythmic frequency.
Thus the general conclusions of Brunel and Wang (2003) that
an interneuronal network of inhibitory cells can give rise to
�100 Hz coherent oscillations with irregular neural discharges
still holds. However, the effective membrane time constant
needs to be �0.5 ms in the models we considered here to
achieve a 200-Hz oscillation. It is not known whether such a
short effective membrane time constant is realized in real
neurons in vivo. Another parameter that strongly influences the
phase lag of single cells at high frequency is the sharpness of
spike initiation, as measured by the parameter �T of the EIF
model (Fourcaud-Trocmé et al. 2003). Thus if real neurons
have significantly sharper spike initiation than the Hodgkin–
Huxley-type models considered here, 200-Hz oscillations
could be sustained with larger effective membrane time con-
stants.

To predict the frequency of weakly synchronous rhythms in
a noise-dominated network, it is necessary to quantitatively
characterize the responsiveness of single cells to a noisy
sinusoidal input (see also Fuhrmann et al. 2002). We showed
that a Hodgkin–Huxley-like conductance-based neuron has a
smaller response amplitude and larger phase lag with increas-
ingly higher input frequency. This modulation is independent
of the synaptic time constant, in contrast to the LIF model for
which the frequency dependency becomes negligible when the
synaptic time constant becomes comparable to or larger than
the neuronal membrane time constant (Brunel et al. 2001). The
phase lag can be approximately described by the sum of a
linear filter, related to the membrane dynamics for the upstroke
leading to a spike threshold; and a constant phase shift related

to the spike time to peak. The time constant for the linear filter
is shorter with smaller effective membrane time constant and
higher single-cell firing rate. This leads to a smaller phase lag
of single cells, which implies faster population frequency in the
network. Note that our approach with a filter is only a phe-
nomenological description. Other single-cell conductance-
based models display phase advance at low frequencies arising
from negative feedback mechanisms (Fuhrmann et al. 2002;
Richardson et al. 2003; Shriki et al. 2003). However, these
phase-advance phenomena are generally observed at much
lower frequencies than the network frequencies investigated in
this paper, and they should not interfere with the mechanisms
giving rise to the fast network oscillation, although they could
modulate such an oscillation slowly.

Fast oscillations in two-population network of pyramidal
cells and interneurons

In this paper, we examined rhythmogenesis both in a one-
population network of inhibitory interneurons and in a two-
population network of interneurons and pyramidal cells. The
oscillation frequency in a two-population network of conduc-
tance-based neurons depends strongly on the current balance
(IAMPA/IGABA ratio) and time constants of excitatory and in-
hibitory synaptic interactions, as has been shown in the net-
work of LIF neurons (Brunel and Wang 2003). It has been
shown that strong recurrent excitation typically reduces the
oscillation frequency in a two-population network of LIF
neurons, compared to the purely interneuronal network (Brunel
and Wang 2003). We observed that intrinsic and/or synaptic
dynamics of excitatory neurons, which are slower than those of
inhibitory interneurons, can lead to faster rhythmic frequencies
in the two-population network, compared to the purely inter-
neuronal network. Intuitively, this happens when the combined
(synaptic and cellular) phase lag for excitation exceeds that for
inhibition by �180°, so that excitation appears to be in ad-
vance of inhibition. Under this condition, 200-Hz oscillations
can be realized even with reasonable effective membrane time
constants (
1.2 ms), unlike the purely interneuronal network.
Moreover, because the population frequency is larger with
higher single-cell firing rates, it is easier to realize 200-Hz
network rhythms with increased neural activity. This is in
consonance with the experimental observation that single-cell
firing rates increase significantly during 200-Hz sharp-wave
ripples compared to non–sharp-wave episodes (Csicsvari et al.
1999b). In the scenario in which recurrent excitation increases
the population frequency at low IAMPA/IGABA ratios, one can
distinguish two well-separated frequency bands: a high-fre-
quency band (120–250 Hz) at low IAMPA/IGABA ratios; and the
gamma frequency band (40–80 Hz) at larger IAMPA/IGABA
ratios.

Our analysis of rhythmogenesis in a recurrent network of
noisy neurons requires knowledge of synaptic kinetics and
strength, as well as of how a single cell responds to noisy
sinusoidal inputs. Thus it is crucial to examine experimentally
how cortical neurons (both pyramidal cells and interneurons)
respond to a weak oscillatory input in the presence of a large
amount of noise, and especially how the response amplitude
and phase depend on the input frequency. The present study
also highlights the importance of measuring the ratio of the
mean excitatory and inhibitory currents (Anderson et al. 2000;
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Borg-Graham et al. 1996; Compte et al. 2003; Shu et al. 2003)
and, in particular, examining whether this ratio is roughly the
same in interneurons and pyramidal cells.

If the IAMPA/IGABA ratio is the same in two cell types, the
phase lag of firing rates between the two populations is solely
determined by the single cell’s properties. Recently, it was
found that pyramidal cells precede fast-spiking interneurons by
90° during fast oscillations (Csicsvari et al. 1999b; Klausberger
et al. 2003). In a network in which the excitation–inhibition
balance is the same in two cell types, such an experimental
finding could be accommodated only if interneurons have a
larger cellular phase shift than that of pyramidal cells. On the
other hand, such a phase shift between firing rates can be
accounted for in a network in which the excitation–inhibition
balance is lower in pyramidal cells than that in interneurons
(Brunel and Wang 2003). In this scenario, the high network
frequency could be compatible only with very small single-cell
filter time constants, which could be obtained by a massive
increase of input conductance, and/or a very sharp spike
initiation.

To conclude, we have developed a theoretical framework for
predicting the rhythmic frequency and relative phase relation-
ship between cell populations for a noisy neural network, in
terms of cellular and synaptic biophysical properties. This
work helps to reconcile the apparent dichotomy between os-
cillatory local field potentials and almost Poisson-like stochas-
tic spike discharges of single neurons, a characteristic of fast
coherent oscillations observed in the neocortex of awake be-
having animals (Averbeck and Lee 2004; Baker et al. 2001;
Fries et al. 2001b).

A P P E N D I X A

Oscillation frequency of a two-population network

The presynaptic firing rates of interneurons and pyramidal cells are

rP�t	 � rP,0 
1 � vP e i�t�

rI�t	 � rl,0 
1 � vI e
i�t� (A1)

where rP,0 and rI,0 are the mean rates of interneurons and pyramidal
cells, respectively, and vP and vI are relative deviations from the mean.
The fraction of open channels follows the firing rate with a phase lag
as a result of the synaptic filtering

sAMPA�t	 � sAMPA,0�1 � vPSP��	e
i�t�i�P,syn��	�� � noise

sGABA�t	 � sGABA,0�1 � vISI��	e
i�t�i�I,syn(�)�� � noise (A2)

where the attenuation in the amplitude of the oscillation induced by
synaptic filtering

SP��	 �
1

��1 � �2�Pd
2 	�1 � �2�Pr

2 	

SI��	 �
1

��1 � �2�Id
2 	�1 � �2�Ir

2 	
(A3)

and the phase introduced by synaptic filtering

�P,syn��	 � � ��Pl � atan���Pr	 � atan���Pd	

�I,syn��	 � � ��Il � atan���Ir	 � atan���Id	 (A4)

depend on the synaptic time constants: latency �Pl, rise �Pr, and decay
�Pd time for excitation; and latency �Il, rise �Ir, and decay �Id time for

inhibition. Neglecting fluctuations in the driving force, the synaptic
current can be written as

IAMPA�t	 � IAMPA,0�1 � vPSP��	e
i�t�i�P,syn(�)�� � noise

IGABA�t	 � IGABA,0�1 � vISI��	e
i�t�i�I,syn(�)�	�� � noise (A5)

The factor �	 comes from the fact that IGABA(t) is an inhibitory
current and is therefore phase-reversed compared to the fraction of
open channels sGABA(t). The total synaptic current for interneurons
and pyramidal cells is a superposition of excitatory and inhibitory
current

IP�t	 � IAMPA3P � IGABA3P � IP,ext � noise

� Itot3P,0�1 � IPPvPSP��	e
i�t�i�P,syn(�)� � IIPvISI��	e
i�t�i�I,syn(��i		� � Inoise

II�t	 � IAMPA3I � IGABA3I � IIext � noise

� Itot3I,0{1�IPIvPSP��	e
i�t�i�P,syn(�)� � IIIvISI��	e
i�t�i�I,syn(�)�i	�} � Inoise

(A6)

where

IPP �
IAMPA3P,0

Itot3P,0

IIP �
IGABA3P,0

Itot3P,0

IPI �
IAMPA3I,0

Itot3I,0

III �
IGABA3I,0

Itot3I,0

(A7)

The postsynaptic firing rate follows the synaptic current, but with an
additional phase shift

rP�t	 � rP,0�1 � �PAP��	ei�t�i�P,cell(�)

� [IPPvPSP��	ei�P,syn(�) � II,PvISI��	ei�I,syn(�)�i	]}

rI�t	 � rI,0�1 � �IAI��	ei�t�i�I,cell(�)

� [IPIvPSP��	ei�P,syn(�) � IIIvISI��	ei�I,syn(�)�i	]} (A8)

where �P,cell(�) and �I,cell(�) are the phase shifts attributed to
intrinsic cell properties. AP(�) and AI(�) are normalized oscillation
amplitudes of the firing rates, and �P and �I are the gains of the r0–I
curves at the frequency r0.

To find the self-consistent solution we equate the pre- and postsyn-
aptic firing rates (Eqs. A1 and A8, respectively) of pyramidal cells and
of interneurons

vP � ei�P,cell(�)
vPXPP��	ei�P,syn(�) � vIXIP��	ei�I,syn(�)�i	� (A9)

vI � ei�I,cell(�)
vPXPI��	ei�P,syn(�) � vIXII��	ei�I,syn(�)�i	� (A10)

which leads to

1 � XII��	ei�̃I(�)�i	 � XPP��	ei�̃P(�)

� �XIP��	XPI��	 � XPP��	XII��		ei�̃P(�)�i�̃I(�)�i	 (A11)

where the amplitude X
�(�) and phase �̃
(�) are given as

X
���	 � �� A���	I
�S
��	 and �̃
��	 � �
,syn��	 � �
,cell��	

(A12)

with 
, � � {P, I}. In general the ratio of excitation and inhibition is
not the same for interneurons and pyramidal cells but might differ by
a factor �

IPP

IIP

� �
IPI

III

(A13)

Note that this is equivalent to XPP(�)/XIP(�) � �XPI(�)/XII(�). We
can now write down the condition for the phase that determines the
population frequency
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IPP

III

�
�IAI��	SI��	

�PAP��	SP��	

sin �̃I��	

sin �̃P��	

� �1 � �	AP��	�PSP��	
IPIIIP

IIl

sin 
�̃P��	 � �̃I��	�

sin �̃P��	
(A14)

When the ratio of excitation and inhibition is the same for interneu-
rons and pyramidal cells (� � 1), the population frequency is simply
given by

IPP

III

�
�IAI��	SI��	

�PAP��	SP��	

sin �̃I��	

sin �̃P��	
(A15)

In this case, the population frequency depends only on the ratio of
excitatory and inhibitory current (IPP /III) and the synaptic and single-
cell properties of interneurons and pyramidal cells.

A P P E N D I X B

The relative phase between excitatory and inhibitory neurons

The postsynaptic firing rate (Eq. A8) can be written in the form

rP�t	 � rP,0
1 � vP��	ei�t�i��rate(�)�

rI�t	 � rI,0
1 � vI��	ei�t� (B1)

which allows a direct comparison of the two firing rate probabilities.
The phase difference ��rate(�) and the amplitude can be calculated
from Eqs. A9–A11. The amplitude is

vP � vI

XIP��	

XII��	

�
1

�1 � �1 � �	2�XIP��	XPI��	

XII��	
�2

� 2�1 � �	
XIP��	XPI��	

XII��	
cos 
�̃P��	�

(B2)

and the phase is given by

��rate��	 � �P,cell��	 � �I,cell��	

� atan � �1 � �	
XIP��	XPI��	

XII��	
sin �̃P��	

1 � �1 � �	
XIP��	XPI��	

XII��	
cos �̃P��	� (B3)

The phase shift between excitatory and inhibitory currents can be
derived from

IAMPA�t	 � IAMPA,0�1 � vPSP��	e
i�t�i��rate(�)�i�P,syn(�)�� � noise

IGABA�t	 � IGABA,0�1 � �ISI��	e
i�t�i�I,syn(�)�i	�� � noise (B4)

and is then

��current � ��rate��	 � �P,syn��	 � �I,syn��	 � 	

� �P,cell��	 � �P,syn��	 � �I,cell��	 � �I,syn��	 � 	

� atan � �1 � �	
XIP��	XPI��	

XII��	
sin �̃P��	

1 � �1 � �	
XIP��	XPI��	

XII��	
cos �̃P��	� (B5)

In the balanced case, when � � 1, the phase differences reduce to

��rate � �P,cell��	 � �I,cell��	 (B6)

��current � �P,cell��	 � �P,syn��	 � �I,cell��	 � �I,syn��	 � 	 (B7)
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Buzsáki G, Urioste R, Hetke J, and Wise K. High frequency network
oscillation in the hippocampus. Science 256: 1025–1027, 1992.

Chance FS, Abbott LF, and Reyes AD. Gain modulation from background
synaptic input. Neuron 35: 773–782, 2002.

Compte A, Sanchez-Vives MV, McCormick DA, and Wang X-J. Cellular
and network mechanisms of slow oscillatory activity (�1 Hz) and wave
propagations in a cortical network model. J Neurophysiol 89: 2707–2725,
2003.

Connor JA, Walter D, and McKown R. Neural repetitive firing—modifica-
tions of the Hodgkin–Huxley axon suggested by experimental results from
crustacean axons. Biophys J 18: 81–102, 1977.

Connors BW, Gutnick MJ, and Prince DA. Electrophysiological properties
of neocortical neurons in vitro. J Neurophysiol 48: 1302–1320, 1982.

Csicsvari J, Hirase H, Czurko A, and Buzsáki G. Reliability and state
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