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Abstract:
The degreeof dynamicalrandomnessof differenttime processesis characterizedin termsof the (a,v )-entropyperunit

time. The (a, r)-entropyis the amountof informationgeneratedperunit time, at different scalesr of time anda of the
observables.This quantity generalizesthe Kolmogorov—Sinaientropyper unit time from deterministicchaoticprocesses,to
stochasticprocessessuchas fluctuationsin mesoscopicphysico-chemicalphenomenaor strongturbulencein macroscopic
spacetimedynamics.

Therandomprocessesthatarecharacterizedincludechaoticsystems,Bernoulli andMarkov chains,Poissonandbirth-and-
deathprocesses,Ornstein—UhlenbeckandYaglom noises,fractionalBrownianmotions,different regimesof hydrodynamical
turbulence,andthe Lorentz—Boltzmannprocessof nonequilibriumstatisticalmechanics.We also extendthe (a, r)-entropy
to spacetimeprocesseslike cellularautomata,Conway’s game of life, lattice gasautomata,coupledmaps,spacetimechaos
in partial differential equations,as well as the ideal,the Lorentz, andthehardspheregases.Throughtheseexamplesit is
demonstratedthat the (a, r)-entropyprovidesa unified quantitativemeasureof dynamicalrandomnessto both chaosand
noises,andamethodto detecttransitionsbetweendynamicalstatesof different degreesof randomnessas a parameterof
the systemis varied.
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1. Introduction

In the last decade,therehavebeenmany discussionson the differencesandsimilaritiesbetween
deterministicchaos andstochasticnoises.In order to introducethe problem, let us show typical
trajectoriesof two famousprocesses,on onehand,achaoticone,andon theotherhand,a stochastic
one.

In fig. 1 a, we haveplotted a solution of the set of ordinary differential equationsproposedby
Rössler

= - x3, x2 = x1 + aX2, X3 = bX1 - cX3 + X1 X3, (1.1)

for the parametervaluesa = 0.32, b = 0.3, andc = 4.5 [11. This trajectorybelongsto the chaotic
attractorshownin fig. lb.

In fig. 2, a trajectory is plotted from the Omstein—Uhlenbeckstochasticprocessgiven by the
Langevinequation[21

= —aX + c~(t), (1.2)

for a = 2—8 andc = 50 where~(t) is aö-correlatedwhite noiseof zero meanandunit variance.
(Seebelowfor amoredetaileddefinition.)

Both trajectoriesappearirregular in time. However, there are important differencesbetween
them and, in particular,the secondis often recognizedas being more irregular than the first. In
this regard, the chaotictrajectory is a differentiable curve accordingto Cauchy’stheorem;while
the stochasticsignal is nowheredifferentiable, irregularon arbitrarily small scalesif we refer to
the strict mathematicalconstructionof the process.Already, the visual comparisonreveals that
stochasticnoisesarequalitativelymorerandomthanthe chaoticsignals.Fromthisobservation,we
may wonderif there exists a quantitativemeasureof randomnessthat would captureour visual
intuition.

Such a questionis of crucial importancein the natural scienceswherethe time evolution of
manyphysico-chemicalandbiological phenomenais describedby randomprocesses.The Brownian

4~ (pj)J~Xl
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Fig. 1. (a) Trajectory of the Rössler chaotic system (1.1) integratedfrom the initial conditionsX~= 0, X2 = —4, and
= 0. (b) The correspondingchaoticattractoris depictedin its phasespace(Xi, X2, X3) in the inset.
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Fig. 2. Typical trajectoryof theOrnstein—Uhlenbeckprocessof stochasticequation(1.2) as anexampleof anoisesignal.

motion hasbeenknown for more thanacenturyandhasbeenmodelledat the beginningof this
centuryby stochasticdifferential equationslike the Langevinequations [2]. The foundationsof
stochasticprocesseswere firmly establishedin the thirties andthe forties by Wienerandotherswho
showedthe importanceof the white noise [2].

It was largely recognizedonly recently that deterministicnonlinear differential equationslike
Newton’s equationsalso admit random solutions in the phenomenoncalled chaos [3]. Here,
randomnesshas its origin in the exponentialseparationof nearby trajectories.In this context,
dynamicalrandomnessis charaterizedby the Kolmogorov—Sinai (KS) entropyper unit time [4].
This quantity was first introduced by Shannonin what becameinformationtheory [5]. In this
theory, each natural systemis a sourceof information. A measuringdevice of finite resolution
recordsthe time evolution of the processgoing on in the systemandencodesits observationsin
binary or decimalform. In general,the amountof datanevergrowsfasterthanlinearly with time.
Dataaccumulateat acertainrate C which characterizesthe measuringdevice(seefig. 3).

On the other hand, the KS entropyper unit time is the intrinsic rate at which informationis
producedby the dynamicalsystemandgivesthe numberof bits which is necessaryandsufficient to
recordwithout ambiguity atrajectoryof thechaoticsystemduringaunit time interval.So it setsa
lower boundfor the requireddataaccumulationrate C. If ameasuringdevicehasapoor resolution
and a dataaccumulationrate which is below the KS entropy we shall not be able to recover
the precise trajectory of the systemfrom the recordeddata. On the other hand, this recoveryis
possibleif theaccumulationrateof the observingdeviceis equalto or greaterthanthe KS entropy.
This generalreasoningis not limited to the chaoticsystemsbut canbe extendedto moregeneral
stochasticprocesses.

Our purposein this paperis to generalizethe conceptof KS entropyper unit time to a new
conceptcalled (e, x )-entropyper unit time andto showthat it canbe appliedto avery large class

measuring~ o system

~ dataacquisition

I 0011010001011010

Fig. 3. Schematicrepresentationof the observationof a naturalprocessby a measuringdeviceandof the recordingof
thedata.Theobservationof thesystemis optical. Thesystemis a sourceof information.The intrinsic rateof production
of information by the systemis the entropy per unit time h. The dataare printed on the advancingbandof paperor of
magneticsupportat the encodingrate C.
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of processesthat includesbothchaoticandstochasticones.
The idea is the following. In the definition of the KS entropyper unit time, the phasespaceis

partitionedinto small cells. The entropyper unit time is then calculatedfor the probabilitiesto
visit successivelydifferentcells at times separatedby a lapse t Afterwards, the supremumof the
entropyis takenfor smallerandsmaller partitions. This supremumis finite only in deteministic
systems,but it is infinite for stochasticprocesses.It is thereforenecessaryto supposethat the cells
of partition haveadiameterc. The entropyper unit time of the processesfor such c-partitionsis
essentiallywhatwe call the (c, i)-entropyper unit time. For stochasticnoises,the (e, r)-entropyis
thus a function that divergesas e —~ 0 or as ‘r —~ 0. The dependenceof the divergenceon e or ~
characterizesthe stochasticprocessas will be shownbelow.In continuousprocesses,thedependence
on the time lapse~ disappearsso thatwe recoverthe conceptof c-entropyper unit timewhich has
beenintensivelystudiedin the mathematicalliterature [5—10].In this paper,oneof our purposes
will be to placethe conceptof c-entropyin its physicalcontext.

The paperis organizedas follows. In section 2, we shall introduce severalconceptsfrom the
algorithmic complexity to the (c, ‘r )-entropy per unit time. In section 3, we calculatethe (e, ‘r )-

entropy for different chaotic and stochasticprocesses.In section 4, we briefly summarizethe
applicationof the c-entropy in fluid turbulence.In section 5, we discussthe importanceof the
(c, ~)-entropyin nonequilibriumstatisticalmechanics.Section6 is devotedto spacetimeprocesses.
In section7, we carry out the classificationof the different physico-chemicalprocessesaccording
to their degreeof randomness.Finally, discussionsandconclusionsarepresented.

2. (8, r)-enfropy per unit time

2.1. Dynamicalprocesses

A randomprocessis asequenceof randomvariablesdefinedat successivetimes. Weshalldenote
the randomvariablesby upper caselettersX, Y, Z,... The randomvariablestake their values —

denotedby lower caselettersx, y, z,... — in ~
The processmay be discreteor continuousin time. When it is continuouswe proceedto a

discretizationof the signal at small time intervals~r.A new multi-time randomvariable is then
definedaccordingto

I = [X(t~),X(t~ + r),X(t~+ 2r),. . . ,X(t
3 + Nt — r) 1~ (2.1)

which belongsto RNd and which correspondsto the signal during the time period T = Nt. We
usebold face lettersto emphasizetheir vectorialcharacterinto N components.Eachcomponentis
itself a d-dimensionalvectorcorrespondingto one of the N successivetimes. t~is the initial time
of the sequence.

Fromthepointof view of probabilitytheory,the processis definedby theN-time joint probability

P(x;dx,t,N) = Pr{x <X <x + dx} = p(x)dx, (2.2)

wherep (x) is the probability densityfor I to takethe valuex e ~ If the processis stationary,
thejoint probability (2.2) doesnot dependon the initial time l~.

In the following section,we shallalsousethe probabilityfor the randomvariableX to be within
a distancec of thevalue x

P(x;e,t,N) = Pr{dist[x,X] <e}. (2.3)
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This other N-time probability involves the definition of a distancedist [.,.] in IR~~d,which will
be specifiedlater. The joint probabilities (2.2.) and (2.3) are closely relatedandtheir knowledge
providesin principle a full characterizationof the randomprocessover the time interval T = Nt.
In this regard, the integer N is equivalentto the time T during which the randomprocessis
observedby the measuringdeviceandwe shalloften replaceN by T andvice versa.

Whenthe randomvariablesof the processtakediscretevalues like in birth-and-deathprocesses
wherethe randomvariablesarenumbersofparticles— X (t) E or Zd — the signalis not continuous
anymoreandthereis no needto introducethe infinitesimalquantitiesdx or e. Similarly, whenthe
processis discrete in time the infinitesimal time t is not necessaryandcan be dropped.In that
casethe total time of observationT is relatedto the numberN of randomvariablesin (2.1) by
the averagetime 7 betweentheoccurrencesof theserandomvariables:T = NT.

In physics,chemistry,or biology, thejoint probabilitiesarenot the quantitieswhich areprimarily
available in the definition of a dynamicalprocess.More often, the dynamicalprocessis defined
in termsof ordinary or stochasticdifferential equationsfrom which we needto calculatethejoint
probability which is invariantunderthe time evolution, as shownbelow.

2.2. Algorithmiccomplexity

It is usefulto considera randomprocessfrom the constructivepoint of view wherean algorithm
or computerprogram is usedto build or draw a trajectory representativeof the process.When
the systemis randomthe programmakesuseof a pseudorandomnumbergeneratorat somestage
of its run. The more often the generatoris called, the more randomthe signal is. The call of
a pseudorandomnumbergeneratormay be very subtle. For instance,during the integrationof a
typical trajectoryof adeterministicchaoticsystemslike (1.1),arbitrarydigits arecoming out from
belowthe truncationlimit of themachineandthe programactsitself like as pseudorandomnumber
generator*)~However, the simulationof stochasticsystemslike (1.2) requiresthe explicit calls of
apseudorandomnumbergenerator.

Anotherpoint of view that we take as basically equivalentto the precedingoneis providedby
algorithmiccomplexitytheory [11, 12]. In this theory,atrajectory overatime T will be considered
as asetof N = T/t integernumberswherer is the intervalbetweenthe instantswhenthe program
issuesnew coordinatesof the trajectory.The algorithmic complexityof atrajectory overa time T

is the lengthof the smallestprogramP(T) ableto reproducethe trajectoryon a universalTuring
machine [11, 12]

K(T) = miniP(T)I, (2.4)

where I I denotesthe binary lengthof the codeor program.
The algorithmic point of view is also very closely relatedto the point of view of information

theorydescribedin the introduction,wherethe observationof anaturalprocessduringa time T

producesin a first stageCT bits which are afterwardsdecoded.In this secondstage,the amount
of data is compressedto 1(T) bits by taking into accountthe eventualregularitiesin the signal.
We havealreadymentionedthat the information1(T) is proportionalto the KS entropyper unit

~)Onadigital computer,thedigits coming from belowthetruncationlimit arenot arbitrarysincethe computeris purely
deterministicandhasa finite numberof states.However,thesedigits should bearbitraryin a reliableintegrationrespecting
the invariantmeasureof the dynamicalsystem.Thepurposeof ourremarkwasto point out theorigin of randomnessin
theintegrationof a chaoticsystem.
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timein chaoticsystems:1(T) ~ h~T. This informationcanbe more rigourouslydefinedwith the
algorithmiccomplexity (2.4).

Dynamicalrandomnessand informationcompressiondueto the regularitiesdeterminehow the
algorithmiccomplexityincreaseswith time. If thetrajectoryis periodic,the programonly needsto
memorizethe patternof the periodandto repeatthis patternoverthe total time T so that

K(T) log T (periodicity). (2.5)

Let us remarkthat, in fact, (2.5) appliesalsoto quasiperiodicandmany otheraperiodicpatterns.
As examples,we can mention the binary or decimalexpansionsof the numberir aswell as time
series generatedby the Feigenbaumattractorat the threshold of chaos in the period doubling
scenario[13].

On the otherhand, if the trajectory is randomso that the pseudorandomnumbergeneratoris
called regularlyin time, thereis no way to reproduceit otherthanto memorizethewholetrajectory.
In this case,

K(T) T (regularrandomness). (2.6)

We then seethat the informationin the trajectorycannotbe compressed.
However, there exist randomprocesseswith strongcorrelationin time where the signal shows

long periods of order interspacedby bursts of randomnessin such a way that the algorithmic
complexityis not extensivewith the time T. We definesporadicityor sporadicrandomnessby the
condition thatK (T) is of the form [14]

K(T) T~ (0 < a < 1) or T/(log T)~ (fi > 0) (sporadicrandomness). (2.7)

Sporadicitymanifestsitself in the Manneville—Pomeauintermittentmaps [15]. In sporadicpro-
cesses,theinformationcontainedin a trajectoryof length T canbe compressedto anumberK ( T)

of bits by taking advantageof the redundancyin the trajectory.However, this compressioncannot
be as completeas it is the casefor periodicprocesses.Consequently,a certaindegreeof randomness
remainsin the sporadicsignals [14].

We concludehereby sayingthat agiven processis randomif
urn K(T)/log T = oc (randomness). (2.8)
T-+oo

2.3. Entropyofa processover a time interval T anda partition A

We now considera dynamicalprocessdefinedby a joint probability like (2.2). The time signal
is a functionX (t) in the phasespace

We partition the phasespaceinto cells, A = {A1,.. . , AM}. Eachcell is labelledby an integer
{ 1, 2, . . . , M}. Wecalculatethe probabilitiesto visit successivelythe cells aoai . . . ~ atthe times
0, ‘r, ..., (N — 1 )r. Theseprobabilitiesaregiven by

P(wowl...coN_l)=Pr{X(0)EAWO,X(r)EAWL,...,X(Nr—r)EAWN_I}

= fIAwo(X0)...IAwNI(XN1)P(X)dX~ (2.9)

RNd

wherep(x) is the joint probability densityin (2.2) and‘A,,, (x) denotesthe characteristicfunction
of the cellA~.
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The entropyof the processwith respectto the partitionA is thendefinedasusualby [4, 16]

H(A,r,T) = — ~ P(wo...wN1)logP(wo...w~....1), (2.10)

wherewe recall that T = rN.
If the partition A is used to write the algorithm of reconstructionof the randomprocess,the

entropyH (T) gives an evaluationof the algorithmiccomplexity

K(T) ~ H(T), (2.11)

for almostall trajectories[17].

2.4. Entropyper unit timeover a partition A

The entropyH ( T) growsat mostlinearly with time [16]

H(T) ~ TlogM, (2.12)

whereM is the numberof cells in the partition A. The entropyper unit time of the systemwith

respectto the partition A is thendefinedby the limit [16]
h(A,r) = lim H(A,T,r)/T. (2.13)

T-.oo

Theentropyper unit time candistinguishbetweenthe regularlyrandomprocessesandthe other
processeswhereinformationis producedmore slowly thanproportionallywith time sincewe have

h (A, ‘r) = 0 (periodicity or sporadicrandomness), (2.14)

h(A, r) > 0 (regularrandomness). (2.15)

In deterministicsystems,the KS entropyper unit time is definedaccordingto [4, 16]

= limSupAh(A,r), (2.16)

wherethe supremumis takenover all countablepartitionsA. A systemis thensaidto be chaotic
if hy.s is positiveand finite. In particular,it is knownthat

hKs = lim K(T)/T, (2.17)
T—~oo

for almost all trajectoriesof achaoticsystem[17].
Let usmakethe remarkthat the basisof the logarithmsusedin eq. (2.10) fixes the unit of the

entropyper unit time accordingto

log2 : bits/second,
loge = ln: flats/second,
log10 : digits/second. (2.18)

2.5. Partition (P) (c, ‘r)-entropyper unit time

However, as we shall see in the nextsection,no supremumexistsfor stochasticprocesseswhich
appearto haveahigherdegreeof randomnessthanchaoticsystems.Thereis no supremumbecause
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the entropyper unit time h(A, r) grows indefinitely as the cells of the partition becomesmaller
andsmaller. To control this growth, let us supposethat the diameterof the cells {A1} is smaller
thanc

diam(A1) � c, (2.19)

anddefine the (c, r )-entropyper unit time accordingto

hp(c,t) = Inf h(A,r), (2.20)
A: diam(A,)(e

which is a functionof c andt andwherethe index P refersto the word partition. We remarkthat
such a functiondependson the definition of the diameterwhich is adopted.Accordingly,different
criteria maybe adoptedas will be discussedlater.

2.6. Shannon—Kolmogorov(SK) (c, r ) -entropyper unit time

2.6.1. Generaldefinition
Variantsof the previousdefinitionarepossibleif othercriteria areusedto introducethe quantity

e. A particularly important variant is the Shannon—Kolmogorovc-entropy per unit time which
was originally called the rate distortion function by Shannonand was renamedthe c-entropyby
Kolmogorov.For continuousamplitudestationarysources,its definition is the following [6, 7].

Let us supposethat we want to reproducethe time signal of aprocessup to aprecisionc. The
exact time signal X(t) is thenapproachedby an approximatecopy Y (t). The distortion between
them is measuredby acostfunction

PN(I,Y) = !~~p[X(kr) - Y(kr)] ~ !~Jp[X(t) - Y(t)] dt, (2.21)

wherethe distancep (X, Y) is chosento dependonly on the difference (X — Y). It can be for
instancethe absoluteerror function, p (z) = z , or the squared-errorfunction, p(z) = z

2. The
costfunctionmeasuresthedistancebetweenthe copy Y(t) andthe actualprocessX (t). Werequire
that their separationmeasuredwith the cost function is not larger thanp(e). Thereremainsthe
importantquestion:what is the generalmethodusedto constructthe copyY(t) from ourknowledge
of the actualprocessX (t). The following schemeis adopted.

The probability densityfor the actualsignal X(t) to take successivelythevalues

x = [x(0),x(r),...,x(Nr—r)], (2.22)

is given by p (x). The approximatesignal Y(1) is constructedaccordingto ajoint probability for

X(t) to takethe valuesx while Y(t) takesthe values
y = [y(0),y(r),...,y(Nr—r)]. (2.23)

Its conditionalprobability density is a generalfunction q(y Ix). The averagemutual information
betweenx andy is then

J[q] = f fdxdyP(x)q(yIx)logq(yIx)/q(y), (2.24)
nNd RNd
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where

q(y) = f dxp(x)q(ylx). (2.25)

RNd

The averagecostdue to the distortion of y with respectto x is evaluatedby

pN[q] = f fdxdyp(x)q(yIx)PN(x,y), (2.26)
RNd RNd

usingthe definition (2.21). This averagecostdependson the way the processY(t) is constructed.
This dependenceappearsthroughthe conditionalprobability densityq(y x) which hasbeenarbi-
trary up till now in a similar way as the partition A was arbitraryin (2.10). To deal with this
arbitrariness,weconsiderthe set Q(e) of all conditionalprobabilitiessuchthat the averagecostis
lessthanp(c),

Q(c) = {q(yix): 1~jy[q} ~ p(c)}. (2.27)

The Shannon—Kolmogorov(e, t)-entropyis thendefinedby

HSK(c,t,T) = Inf J[q]. (2.28)
qEQ(e)

Whereuponthe SK (c, t )-entropyper unit time is

hsK(e,r) = lim HSK(c,r,T)/T. (2.29)
T—.oo

An importantpropertyof the (c, r ) -entropyper unit time is that it is monotonicallynon-decreasing
inc.

2.6.2. TheKolmogorovformulafor stationaryGaussianprocesses
Whenthe processis stationaryandGaussianit is possibleto calculateexplicitly the c-entropy

per unit time thanksto a formulaobtainedby Kolmogorov.
For stationaryGaussianprocessesin one dimension(d = 1), the joint probability density is

givenby

p(x)=exp(—~x
T.C~’.x)/(21r)’~t2(detCN)’t2, (2.30)

whereCN is the matrix of the correlations

[CN]jJ = (X
1X~)= C(Ii—jI) with (X1) = 0. (2.31)

For time continuousprocesses,X1 denotesthe randomvariable X(t1) at the discretizedtime
= it. Sincethe processis stationary,the correlationfunctiondependsonly on i — fI and CN is a

symmetricToeplitzmatrix. For Gaussianprocesses,the amplitudeis alwaysacontinuousrandom
variableand the dependenceon x of the (c, ‘r)-entropy per unit time disappearsin the limit r —‘ 0.

For time-discreteprocesses,the spectraldensityis definedby

= ~exp(—iwn)(XnXo), (2.32)
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which is definedin the frequencyintervalw E (—7r, +ir). On the otherhand, for time-continuous
processes,the spectraldensityis

~ (w) = f exp(—icot)(X(t)X(0)) dt, (2.33)

wherecv E R.
The Shannon—Kolmogorovc-entropy can be estimatedin the caseof the squared-errorcost

function. Thisfidelity criterion requiresthat the approximatesignal Y (t) is closeto the exact signal
X(t) accordingto

lim I J([X(t) — Y(t)]2) dt < c2. (2.34)
T—~ooT

0

The following Kolmogorov formula [6] then gives an exact evaluationof hsK(c) for stationary
Gaussianprocesses

= ~—fmin[O,~(w)] dcv, (2.35)

hsK(c) = ~—fmax[0,log~(w)/O] dcv, (2.36)

in termsof the spectraldensity(2.33).For time-discreteprocessesthe integrationshouldbe carried
out from —ir to + ir and the spectraldensity (2.32)used.The geometryinvolved in the calculation
of the integrals (2.35)—(2.36) is schematicallydepictedin fig. 4. A derivationof this fascinating
formulacanbe found in thebook by Berger[10].

2.7. Cohen—Procaccia(CF) (c, t )-entropyper unit time

A numericalmethodto evaluatean (c, t)-entropyperunit time isprovidedby amethoddescribed
by Cohenand Procaccia[18]. A realization of the processX (t) over avery long time interval
Li>> T = Ni is given by the time series{x (ki) } ~ Within this long time series,sequencesof
length N are comparedwith eachother. A set of R << L referencesequences,which are also of
lengthN, is considered

x~=[x(it),...,x(ir+Nr—r)], ~E{l1,...,iR}. (2.37)

The distancebetweena referencesequenceandanothersequenceof lengthN is definedby

distN[xI,xJ] = max{Ix(it) —x(jr)I,...,Ix(it + Nt—i) —x(jr + Ni— r)I}, (2.38)

forj=l,... ,L’=L-N+1.

The probability (2.3) for this distanceto be smallerthanc is thenevaluatedby

P(x
1c,r,N) = (l/L’) Number{x3: distN[x,,xJ] <c}, (2.39)
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5

0

Fig. 4. Geometryof the integralsusedto calculatethe Shannon—Kolmogorova-entropy from the spectraldensity tP(w) of
a stationaryGaussianprocesswith the Kolmogorovformula (2.35), (2.36). The upperdiagramcorrespondsto the first
integral (2.35) whichgivesa in termsof theintermediatequantity0. Thelower diagramcorrespondsto thesecondintegral
(2.36) giving the a-entropy.

whereL’ = Number{x~}.The averageof the logarithm of theseprobabilitiesover the different
referencepointsx is thencalculated

fl(e,r,N) = —~~logP(x1c,i,N), (2.40)
{Xj}

whereR = Number{x,}. The Cohen—Procaccia(c, r )-entropyper unit time is then

hcp(c,i) = lim lim [fl(c,r,N + 1) —fl(c,’r,N)]. (2.41)
i N—~ooR,L’—~oo

Contraryto the Shannon—Kolmogorov(c, i )-entropyper unit time, no infimum is heretakenbut
the entropyis definedby the average(2.40).

For chaoticsystems,it is knownthat

hy~s= lim hcp(c,r). (2.42)

We shall showthatthe Cohen—Procacciamethodcanalsobe appliedto noisesignalswhereha’ (e, r)
divergesat c, r —~ 0 in the sameway as the Shannon—Kolmogorov(e, r)-entropyper unit time but
with a differentprefactor.

In the following section,weshallevaluatethe (c, r)-entropyper unit time for differentstochastic
processesin orderto comparetheir degreeof dynamicalrandomness.
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3. Evaluationof the (8, r)-enfropy for randomprocesses

3.1. Deterministicprocesses

Let ussupposethat the processis governedby the differentialequationsystem

dX/dt=F(X), XEl~~, (3.1)

in the phasespace~ The flow inducesamapping

X(t) = ~t(X
0), (3.2)

in the phasespaceaccordingto Cauchy’stheorem.
A statisticalensembleof systemscanbe representedby a nonstationarydensitywhich evolvesin

time accordingto the Liouville equation

O1~u+ divF~.t= 0. (3.3)

The solutionof this equationcanbe written as

,u(x;t) =Jo[x_11(xo)]uo(xo) dxo, (3.4)

in termsof the mapping (3.2) andof the initial density~u0.ô (z) denotesthe d-dimensionalDirac
distribution.

In order to obtain the joint probability (2.2) we need an invariant probability, the densityof
which is solution of 9~4u5~= 0. This density may be a continuousfunction as in Hamiltonian
systems.In dissipative systems,the density is a distribution sincethe support of the invariant
probability is a chaoticattractorof zero d-volume in phasespace[4].

Among themanyergodicprobabilities,weselectthe naturalinvariant probabilitywhich is defined
as the noiselesslimit of the uniqueinvariantprobability of the Langevinprocessgiven by adding
a white noise to the right hand side of (3.1) [19]. In Axiom A systems,this natural invariant
probability is also obtainedby weightingeachunstableperiodic orbit with amassof probability
inverselyproportionalto its stability eigenvalues[19].

The joint probability densityis thengiven by a distributionas follows:

P(x;dx,i,N) = Pr{xo< X(0) <x0 + dxo,...,xNl <X(Nr— r) <x~ + dxN_1}

=~[xN_1_Pr(xN..2)]...ô[xl —~
T(xo)]jt~

1(xo)dxo...dxN..1. (3.5)

The mapping (3.2) can thenbe usedto calculatethe (c, i ) -entropy per unit time. The function
h(c) = ~ h~(c, ~r)presentsaplateauso thatthe partition (c, i )-entropyperunit timeconverges
to the KS entropyper unit time in the limit

= lim hp(c,r) (3.6)

(seefig. 5).
The Pesintheorem[20] statesthat the KS entropyper unit time of boundedsystemsis equalto

the sumof the positiveLyapunovexponents{..%~},

= >I~,. (3.7)
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h(r)
Chaoticattractor

log C

Fig. 5. Schematicbehavior of the a-entropyper unit time for deterministicchaos.For small a, the a-entropy reachesa
plateauat the value of hy~s.

This theoremestablishesa relationshipbetweensensitivity to initial condition and dynamical
randomness.When~ is positive we talk aboutchaoticsystems.

Figure 6 showstwo examplesof numericalevaluationof the c-entropyfor the 1D logistic andthe
2D Hénonmap [21] usingthe the Cohen—Procacciamethod.

The c-entropy per unit time is useful to describesystemswith very different scales. As an
illustration let us considera mappinglike

= 1 —4(X~—l)(X1— 1—a), (3.8)

We assumethat a ~ 1, so that a chaoticattractorconfined in 1 < X1 < 1 + a is very thin (fig.
7). Consequently,very small cells are necessaryto resolvethe chaosin this system:the diameter
of the cells must be c << a << 1. This leads to the following apparentparadox:as long as our
observingdevicehasa resolutionc > 2a, the trajectorywould alwaysappearto visit the samecell,
X E (1 — c/2, 1 + c/2). Hencetheattractorwould seemperiodic,andthe c-entropywould thenbe
nil. Nevertheless,the c-entropyreachesthe valueh~3= log 2 whenc <<a (seefig. 7).

0.4 - 0.4

~ ..~,.. E ,~

io~ iø-~ iO-
3 10~ 10’ 10° 101 i0~ iO’ l0~ 102 101 10° 101

C C

Fig. 6. (a) Numericalevaluationof the KS entropyperunit time for theone-dimensionallogistic map X~.
1= 4X: (1 — X,)

usingtheCohen—Procacciamethod.Theknownvalueof theKS entropyis hKS = A = log2 = 0.30digits/iteration.(b) The
samefor theX-componentofthetwo-dimensionalHénonmapX~.1= 1 + i’z — 1 .4X~, ~ = 0.3X1 wherehy,s = A = 0.18
digits/iteration.Thedifferent curvescorrespondto thecalculationof the entropyfor time sequencesof lengthsN = 2 — 7
[cf. (2.37)—(2.4l)].Since thetotal lengthof the time seriesis limited to L = 131072,the probability to find a stringof
length N decreasesas N increases.As a consequence,the statisticsof long strings diminishesat small aandtheplateauof
the correspondingcurveshrinks as seenin the figures.
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1+a

~x2 1/
(a)

0 1 1+a

xl

h(a)
Thin chaoticattractor

~ (c)

lo~a logC 0

Fig. 7. Schematicbehaviorof the a-entropyin thecase of an extremelythin chaoticattractor. (a) Schematicthin attractor
in phase space. (b) One-dimensionalfirst return map (3.8) in a Poincarésectiontransverseto the thin attractor(a). (c)
Behaviorof the a-entropywhichbecomespositive only belowa = a whereit takesthe valuehgs = log2.

3.2. Bernoulli andMarkov chains

Theserandomprocessesaredefinedby amatrix of transitionprobabilitiesPafi satisfying

> P0p = 1, ~p0P0p = Pp, (3.9)

where {Pn } is the invariant probability vector giving the probabilitiesto find the systemin the
statesa E {l,...,M} [22].

Markov chainsare time andamplitudediscreterandomprocesses.The randomeventsoccur at
time intervalsseparatedby the non-infinitesimalaveragetime constantT.

Bernoulli chainsare particularMarkov chainsfor which

= Pp. (3.10)

Thejoint probability to visit successivelydifferentstatesis

P(co0...CONI) = pW0PWOWI •PWN_2WN.1• (3.11)

Accordingly, the (e, r ) -entropyper unit timeis aconstantgiving the KS entropyper unit time [16,
221

= —~‘ ~p~logp~ (Bernoulli chains), (3.12)
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_____ 1, 4
12345 3

123 45

Fig. 8. Two-dimensionalmap of the unit squarewhich is isomorphicto the Bernoulli processof probabilities {pa}.

= f’ ~pnPaplogPap (Markovchains). (3.13)

The finiteness of the entropy per unit time has its origin in the discretenessof theserandom
processesin time: the randomchoicesbetweenthe different statesgeneratea finite amount of
informationper time stepT.

The (c, r ) -entropy per unit time is boundedbecauseMarkov chainsbelongto the sameclass
as the previousdeterministicsystemswith acontinuousphasespace.Indeed,Markov chainsare
equivalentto area-preservingmappingsof the unit squareonto itself.

Let us first prove the simpler statementthata Bernoulli chainis equivalentto an area-preserving
map of the unit square.We supposethat the unit squareis divided into M vertical rectanglesRn

of areaPa andcorrespondingto the M statesof the chain (see fig. 8). The mapacts on these
rectanglesby horizontalstretchinginto horizontal rectangles~ (R,,) of unit width in such a way
thattheareaof eachof them is preserved.The heightof the horizontalrectangle~ (Re) is therefore
Pa. The first horizontalrectangleis placedat the bottom of the square.The nextone on top of it
andsoon. Let us denoteby Rp the verticalrectangleson the right-handsquarewhich correspond
to the states/1 after one iteration~. Thejoint probability to visit successivelythe statesa andfi
is the areaA0p of the rectangle(a,fl) = ~(Ra) fl Rp. This rectangle(a,fi) hasaheightPa anda
width pp. Whereupon,the transitionprobability from the statea to the state fi is

P0~= Aap/pa = PcsPfl/Pa = Pp, (3.14)

which agreeswith the definition (3.10) of the Bernoulli chain.
The constructionis similar for the Markov chains (seefig. 9). Vertical rectanglesRn of unit

height are associatedwith the different statesa. The areasof theserectanglesare given by the
invariantprobabilities{Pa}, which arethus equalto their widths. The verticaldivision linesof the

1E~

12345 ~

(a~)
p1 p2p3 p4 p5 1 2 3 4 5

Fig. 9. Two-dimensionalmap of the unit squarewhich is isomorphicto the Markov chain (3.9) of probabilities {pa} and
oftransition matrix ~afl•
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rectanglesare reportedon the right-handsquarewherethey now representthe statesfi after the
transition. Let us considerthe transitionfrom the statea = 1 to the state fi. Sincethe transition
probabilitiesPafi are now dependingon both a and fi, the stretchingcan no longer be uniform
within the rectangleR1. This vertical rectangleR1 is thereforemappedon a seriesof M small
rectangles,eachoneof them occupyingthe bottomof eachverticalrectanglesRp but with different
heightsthat we must now determine.The areaof the rectangle(a,/3) = (() (Rn) fl Rp divided by
the areaof the rectangleR~should be equalto the transitionprobability Pafi as for the Bernoulli
chains

Pap = Acxp/pa. (3.15)

Since the rectangle (a,/3) hasawidth equalto Pp by our previousconstruction,its height should

be equalto
Aap/pp= (Pa/Pp)Pap, (3.16)

which endsthe constructionof the equivalentarea-preservingmap.Summingover the heightsof
all the rectangles(a,/3) in the samevertical rectangle/3, we mustrecoverthe unity

~(Pa/Pp)Pap = 1, (3.17)

which is the caseaccordingto the definition (3.9) of the invariant probability vector.
The precedingconstructionshowsthat everyMarkov chain on acountablenumberof statesis

isomorphicto a deterministicarea-preservingmapof the unit square.This result is the converse
of a seriesof resultsobtainedby Sinai [16], Ornstein [23], andotherswho showedthat certain
uniformly hyperbolicmappingslike the bakertransformationor the Arnold catare isomorphicto
a Markov chain [24].

Theseresults are fundamentalin showing that Markov chains and deterministicsystemsare
equivalentsourcesof information.This statementwas reinforcedby Kolmogorovwho provedthat
the KS entropy is an invariantquantity for isomorphismsbetweentwo dynamicalprocesses,i.e.
the KS entropyof the Markov chain is equalto the KS entropyof the isomorphicdeterministic
system [16]. Both dynamicalprocesses,the randomMarkov chainsand the deterministicchaotic
systems,arethereforesourcesof informationof the samedegreeof dynamicalrandomness.

For long, a fundamentaldifferencewas madebetweendiscreteMarkov chainsanddeterministic
systems.In particular, it was shownthat Markov chainsobeya H-theorem.Nowadays,it is clear
that this H-theoremis basedon the coarsegrainingof the chain into its statesa ata single time
[25]. If we refine the partition into multiplet states (WO,C01,...,WN1) the H-theoremloses its
validity if it is appliedafter the point limit N —~cc is takenand the well-known paradoxof the
time-invarianceof the standardentropyis recoveredfor the Markov chains.

Thereciprocalof the abovestatementis true.If a deterministicmappingis shownto beequivalent
to a Markov chain for an appropriatepartition thena H-theoremappliesto this coarse-grained
partition [26].

From the precedingdiscussion,we see that a totally new point of view mustbe adopted.Both
Markov chainsanddeterministicsystemsmustbe consideredas randomprocesses,if bothhavea
positiveKS entropyper unit time. We shallbe ableto saythatoneis more randomthanthe other
if thereis adifferencebetweenthe KS entropiesper unit time of two randomprocesses.Whether
the dynamicalprocessis definedby adeterministicmapor by a Markov chainbecomesirrelevant
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to the questionof randomnessunderthe conditionthat the KS entropiesof the mapand of the
Markov chain takethe samevalue.

3.3. Birth-and-deathprocesses

Theseprocessesare often encounteredin kinetic theories [25, 27]. Certainly, the simplestand
most well-known amongthem is the Poissonrandomprocesswhich is definedas follows [28].

The time axis is divided into small time intervals i. During eachsmall interval, severalevents
may occur. There is a randomvariable Nk which is the numberof eventsin agiven time interval
k andwhich is definedby the probabilitiesPn = Pr{Nk = n},

Po = 1 — wi + 0(i2), Pi = Wi + 0(i2), P2 = = ... = O(~r~), (3.18)

wherew is the rate at which the eventsoccur. Finally, it is assumedthat the randomvariablesNk
are independentso that the discretizedprocessforms aBernoulli chain. Sincethere is a random
variablefor eachinfinitesimal time interval r, the processhasa i-entropyper unit timewhich will
divergeas r —+ 0. We cancalculateit using (3.12) with T herereplacedby r

h(i) = —i ~p~lnp~, (3.19)

andwe obtain

h(r) = wln(e/wi) + 0(i), (3.20)

wheree is the basisof naturallogarithms.
The sameresultcan be obtainedin anotherway usingthe propertythatthe randomvariable Tk,

which is the time betweentwo successiveevents,hasan exponentialdistributionof parameterw

Pr{Tk > t} = exp(—wt). (3.21)

Thedifferentrandomtimes Tk areindependent.Theexpectationvalueof thesetimesis (T) = 11w.
The probability densityis p(t) = w exp(—wt). A i-entropy per unit time canbe evaluatedusing
a discretizationof this continuousvariable distribution along the t-axis. Each cell centeredon

= ii hasaprobability massequalto P
1 = p(tt ~‘r andwecan usethe following definition for the

i-entropyper unit time:

ii(i) = _~y~PilnPi~ (3.22)

wherethe tilde is thereto recall that this definition is a priori different from the precedingone
(3.19). If we introducethe definitions we madeinto eq. (3.22) it is easyto seethat (3.22) gives
the sameleadingterm as (3.20) with the logarithmicdivergenceas i —+ 0.

The previousanalysiscanbeextendedto generalbirth-and-deathprocessesgovernedby the Pauli
masterequation[27],

dpp/dt = ~P0Wafl, (3.23)
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40

fr~j\~

~ ~
0~1~j ~ ~ ,

Fig. 10. Typical trajectory of the birth-and-deathprocessI ~ Y with reaction rates k±.Thetotal numberof particlesis
assumedto be constantI + Y = N. The masterequationis j

3~= k~(I + l)px+j + k_ (N — I + ~ — [k+X +
k_ (N — I) ipx. Theconstantswere chosento bek~= 0.2, k_ = 0.3, andN = 50. The horizontalline indicatesthe mean
value (I) = Nk_/(k_ + k+) = 30.

wherePa(t) is the continuoustime probability to be in the statea while W~pis the rate for a
transitionbetweenthe statesa and /3. Theseratesare hereassumedto be constantin time. The
conservationof probability implies

Wan = — ~ W~p. (3.24)
fi (~a)

Accordingly, the solutionof the masterequationis

>Pa(0)Pap(t) = pp(t), (3.25)

with

Pap(t) = [expWt}ap, (3.26)

whereW is the matrix composedof the elementsWap. Figure 10 showsa typical trajectory of a
birth-and-deathprocess.

For the purposeof calculatingthe i-entropy per unit time, we shall follow the first method.If
we discretizethe time axis the probability to be in the stateaat the time tk = k’r obeysaMarkov
chainaccordingto (3.25). The transitionprobabilities(3.26) areexpandedin Taylor series

Pap(i) = ôafl + Wapi + 0(i2). (3.27)

As for the Poissonprocess,the i-entropy per unit time is definedusing (3.13) with T replacedby
i,

h(i) = i~~p~Pap(i)lnPap(i), (3.28)
aft

wherep~°arethe stationaryprobabilities,solutionsof

>P~Wap = 0. (3.29)
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In thelimit of small i, we get

h(i) = ~ ln(e/i) - >p0°WaplflWap + 0(i), (3.30)
a~ft a~fl

so that the divergenceis logarithmicin i

h(i) ‘~ln(l/i), (3.31)

like for the Poissonprocess.
Hence,we are in the presenceof a i-entropy per unit time. The discretenessof the random

variablessuppressesthe needof any dependenceon c. However, the processbeing continuousin
time we needto keepthe dependenceon the small time interval r. As i —~ 0, the entropyper unit
time slowly increasestoward infinity so that the birth-and-deathprocessesare morerandomthan
the Markov chainsandthe chaoticsystems.

3.4. Time-discrete,amplitude-continuousrandomprocesses

Let us now supposethat the randomprocessis discretein time but continuousin space.The
random variables {. . . , X1,Xo,X1,X2,. . . } take their values in R~

1and are definedby the joint
probability

Pr{xo <X
0 <x0 + dx0,. . . ,X~j <XN_l <XN_1 + dxNl}

=p(xo,...,xNl)dxo...dxN...l. (3.32)

3.4.1. Independentvariables

Let us first supposethat thevariablesare independentin time sothat

p(xo,...,XN....1) =p(xo).•p(xN...1). (3.33)

We calculatethe c-entropyper unit time (2.13) for apartition of l~into smallhypercubesC3 of

sidec,

hp(e) = —E[JP(x) dx] log[fp(x) dx]~ (3.34)
j ci ci

whereP refers to the particularpartition into hypercubes.We see that the (c, i ) -entropy per unit
time is hereindependentof i.

Assumingthat the densityp(x) admitssecondderivatives,we have

fp(x) dx = c1ip(x~)+ 0(c’~’~
2), (3.35)

wherex
3 is the centerof the hypercubeC3. The partition c-entropyper unit time is therefore

hp(c) = dlog(l/c) _JdxP(x)logp(x) + 0(c). (3.36)
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We recall thatd is the dimensionalityof the spacewherethe randomvariablesXk taketheir values.
Comparedwith the chaoticprocesses,we seethatthe time-discreteamplitude-continuousprocesses
aremorerandomsincetheir c-entropyper unit time divergesas e —+ 0. This divergenceoriginates
from the fact that the probability distribution is continuous. Indeed, the outcomeof each new
randomeventcan arise in any small interval of 01” irrespectiveof the previousoutcome.This is
in contrastwith chaoticsystemswhich are constrainedby the deterministicdifferential equationso
that if the trajectory is passing in an infinitesimal ball of size c of a Poincarésurfaceof section,
the nextpassageis constrainedto occurwithin a ball which is determinedby the flow andwhich
is still of infinitesimal size c exp(..2~T).The Lyapunov exponent2 limits the c-entropyto a finite
value,independentof c.

The result (3.36)canbe generalizedto processescomposedof independentrandomvariablesXk
whoseprobability measurehas a fractal set for support.If we supposethat d

1 is the information
dimensionof this measurethe partition c-entropyper unit time (3.34) is thengiven by

hp(c)~d1log(l/e). (3,37)

The result (3.37) canalsobe interpretedas the limit of the (c, i )-entropyper samplingtime i of a
chaoticattractorwhen thetime interval i betweenthe successiveobservationsis takento be larger
than the relaxationtime of the chaoticattractorand when c is not too small. The time seriesis
thenasequenceof quasi-independentrandomvariablestaking their valueson afractal set.

When the processis moreoverassumedto be Gaussian,the Shannon—Kolmogorovc-entropy
(2.29) canbe calculatedfor asquared-errorcostfunction p (z) = z

2. We have [9]

hsK(c)=dlog(l/c)_fdxp(x)logp(x)_dlogV’~~+O(c), (3.38)

wherep (x) is the d-dimensionalGaussiandensity.
When d = 1, this result can also be obtainedby virtue of (2.35), (2.36). Since the random

variablesare independentwe have(XkXO) = so that P (cv) = (X2) for all frequenciesin
(—iv, + it) accordingto (2.32). We get

hsK(c) = log((X2)”2/e). (3.39)

For time-discreteprocesseswith independentvariables,we canalsoevaluatethe Cohen—Procaccia

c-entropyper unit time. When d = 1, the joint probability (2.3) appearingin (2.39) is given by
P(x;c,N) = Pr{dist[xo,Xo] � e. . . dist[XN

1,XN1] � c},

=11 f ~ (3.40)kOc(xk,8) k=0

wheredist [.,.] is the maximumdistance(2.38) but herein ~. C(Xk, c) denotesthe hypercubic
cell dist[xk, Xk I � c of side 2c. The c-entropyis now

hcp(c)~dlog(l/2c)_Jdxp(x)logp(x), (3.41)

which appears to be approximately equal to hp(2c) up to 0(c). For one-dimensional Gaussian
random variables, we have hcp(c) ~log[(2ite(X

2))1/2/(2c)]. (Seefig. 11.)
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Fig. 11. Numericalevaluationof the CP a-entropyperunit time for the randomprocessof independentone-dimensional
Gaussianvariablesof variance(12) = 1. The numerical CP a-entropy is compared with its theoretical value (3.41) (solid
line) as well as with the P (long dashed line) and the SK (short dashed line) a-entropies respectively given by (3.36) and
(3.39) (d = 1). The different curves correspond to the calculation of the entropy for time sequences of lengths N = 1—8
[cf. (2.37)—(2.4l)].

Comparingeqs. (3.36), (3.38) and (3.41) for Gaussianprocesses,we havethereforethe inequal-

ities

hsK(c)� hcp(c) � hp(c), (3.42)

for small c. In spite of their differences,thesec-entropieshavethe samedominantbehaviorin

d log(1/c). In this regard,the variousdefinitionsof c-entropyareequivalentsince

limhp(c)/hcp(c) = limhcp(c)/hsK(c)= limhsK(c)/hp(c) = 1. (3.43)

As aconsequence,the divergence

hp(c) ~ hcp(e) ~ hsK(c) ~ dlog(1/c), (3.44)

is intrinsic to the random processand it characterizes the time-discrete amplitude-continuous

randomprocesses.
3.4.2. CorrelatedGaussianvariables

The Shannon—Kolmogorovc-entropycanalsobe calculatedfor time-discretestationaryprocesses
with correlatedGaussianrandomvariablesfor which thejoint probabilitydensityis givenby (2.30).
We assumethat the randomvariablesare one-dimensional,d = 1. The Shannon—Kolmogorovc-
entropyper unit time is here [9]

hsK(c) = log(1/c) + ~_flog~(cv) dcv, (3.45)

in termsof the spectraldensity (2.32). The divergenceis againin log(1/c).
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3.5. Time-discrete noisy mappings

We supposethata deterministicmappingis perturbedby somenoisedescribedby atime-discrete
amplitude-continuousGaussianrandomprocess.The following exampleillustratesthe complexity
of this case:

Z~= X~+ aYe, where X~.i= 4X
1(l — Xe), (3.46)

while the randomvariablesY~are independentGaussiansof zero meanandunit variance.
When a = 0, the randomprocessis purely deterministicso that the c-entropy per unit time

presentsaplateauatthe constantvalueofthe KS entropyhy~s= log2 (seefig. 12). However,when
a is not vanishingbut small the signalbecomesnoisyat small scalesc wherethe c-entropyper unit
time now increaseslike log(a/c) accordingto (3.39). Nevertheless,at valuesof c which are larger
thanthe size a of thefluctuationsthe noisecannotbe resolvedso that thereremains the plateau at
h(c) ~ hy~.For larger noise amplitudes a, the rise in the c-entropystartsat largervalues of c SO
that the plateaushrinks.

1.2 (a)

~1

10~’ i0
3 102 10~’ 10°

C

i0~ 10° 102 10.1 10°
C

Fig. 12. NumericalCP a-entropyfor the noisy maps (3.46) with (a) a = 0.002; (b) a = 0.01. The arrows show the
correspondingvaluesof the noise amplitude a. Note the plateauat the value of the KS entropy of the logistic map
(h~= log 2 = 0.30 digits/iteration) (cf. fig. 6a) followed by the rise as log(1/a) for smaller a. The different curves
correspond to the calculation of the entropy for time sequences of lengths N = 1—4 [cf. (2.37)—(2.41 )].
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3.6. Timeandamplitudecontinuousrandomprocesses

3.6.1. Langevinprocesses
Theseprocessesare definedby stochasticdifferential equationslike [4]

dX/dt = F(X) + ~(t), (3.47)

whereX E r~and thecomponents~, (t) of ~ (t) arewhite noiseswith

(~
1(t))= 0, (~~(t)~~(t’))= 2D1~ô(t— t’). (3.48)

When theseprocessesare stationarythereexists an invariant probability measure,the densityof

which is the uniquestationarysolutionof the Fokker—Planckequation
d

ô~JL+ divF~u= ~ D~OtOj~u. (3.49)
i,j= 1

The general solution of (3.49) is given by

~u(x;t) =JG(x,xo;t)euo(xo)dx0, (3.50)

in termsof the Greenfunction G (x, x0t) andof theinitial density u~.The joint probability (2.3)
is then

P(x;dx,r,N) = Pr{xo < X(0) <xo + dxo,...,xNl <X(Ni— i) <XN...1 + dXN..l}

=G(xN..l,xN..2;i)•’.G(xl,xo;i)~uS~(xo)dxo.•.dxN1. (3.51)

The factorizationof the joint probability showsthat the stationaryLangevinprocessesare Marko-

vian.

3.6.2. Ornstein—Uhienbeckprocess
In order to fix the generalideas,we considerthe Ornstein—Uhlenbeckprocesswhich describes

the velocity of a Brownian particle. It is a stationaryGaussianprocessdefinedby the Langevin
equation[2]

dX/dt + aX = c~(t), (3.52)

where~(t) is awhite noiseof zero meanandof correlation(~(0)c~(t))= 5(t). The corresponding

Fokker—Planckequationruling the time evolutionof adensityof particlesis [2]

O~u/Ot—a8(x~.i)/Ox = ~c
2O2~u/t9x2, (3.53)

with the diffusioncoefficient D = c2/2. The Greenfunction of (3.53) is the probabilitydensityfor
the particleto travel from X0 to x during the time t,

G(x,xo;t) = ).....~exP{_[x —x
0exp(—at)]

2/2c2b}, (3.54)
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with

b= (l/2a)[l—exp(—at)]. (3.55)

Consequently, the variance of X is

(X(t)2) = c2/2a, (3.56)

while the correlation function is

(X(t)X(0)) = (c2/2a) exp(—aItI), (3.57)

so that the spectraldensity (2.33) is

~(cv) = c2/(cv2 + a2). (3.58)

The process may also be decomposed into its frequencies according to [29]

X(t) =fexp(icvt)g(w) dC(cv), (3.59)

where dC (cv) is a complex random variable such that dC *(cv) = dC (—cv) and

(dC/dcv) = 0, ([dC(cv)/dcv]dC*(cvl)/dcvl) = 5(w—cv’). (3.60)

The complex function g(cv) satisfiesg(cv) = g*(_cv) and is given by

g(cv) = c/v1~(a + icv). (3.61)

It is related to the spectral density according to ~ (cv) = 2irlg(cv)12.
The process can be described equivalently in terms of the response function which is the Fourier

transform of g(w) [29]

h(t) = =f e~c~tg(cv) dcv = { cexp(—at) ~ (3.62)

so that

X(t) =fh(t_s~(s) ds. (3.63)

The c-entropy can be evaluated by different methods. First, we derive its general behavior by a
qualitativeargument.The c-entropywill probethe fine scalesof the noisecorrespondingto the high
frequencieswherethe spectraldensitydecreaseslike ~ (cv) ~ c2/w2.Thus,for smalle, thec-entropy
doesnot dependon the relaxationrate a. We baseour first qualitativeargumenton Einstein’s
relation ((i.~X~)2) ~ 2Dt, which holds on arbitrarily small scales.Cells of size e are crossed on
average in a time tg ~ c2/2D = c2/c2. Since the c-entropyper unit time hasthe physicalunit of
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Fig. 13. NumericalCP (a, r)-entropyperunit time for the Ornstein—Uhlenbeckprocesswith a = 2~, c = 50, andr = 1.
Thenumericalvaluesarecomparedwith the SK (shortdashedline) andtheFP (longdashedline) a-entropiesrespectively
givenby (3.65) and (3.76)for the Ornstein—Uhlenbeckprocess.The different curvescorrespondto the calculationof the
entropyfor time sequencesof lengthsN = 25—30 [cf. (2.37)—(2.41)].

the inverseof a time andmeasuresthe numberof transitionsfrom cell to cell duringoneunit of

time, we have

h(c) 1/ta ‘-.-‘ c2/c2. (3.64)

We seethat the c-entropydivergeslike r2, muchmore rapidly that the previousrandomprocesses.
Since the Ornstein—Uhlenbeckprocessis Gaussian,the Shannon—Kolmogorovc-entropycan be

be estimatedby virtue of the Kolmogorov formula (2.35), (2.36). We fmd

hSK(c) ~ 2c2/ir2c2, (3.65)

in natsper unit time, which confirms thec2 dependence.
We havecarriedout the numericalevaluationof the c-entropywith the Cohen—Procacciamethod

(see fig. 13). The scaling is confirmedthere, but the prefactorturns out to be different because
the CP c-entropyis not identical to the SK c-entropy.Indeed,the CP c-entropy is basedon the
considerationof the probabilities

Pr{IXo—xo~� c... IXN_1 XN_lI ~c}

~ (3.66)

wherethe variablesx
1 = x(ii) representagiven realizationof the process,while X = X(it) are

the randomvariables.The correlationmatrix is of the form [2]

1 a a
2 a3 ... aN_l

2 a 1 a a2 ...

CN = ~ a2 a 1 a ... a~3 , (3.67)

~ a1~ QN_2 QN-3 ..:
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where a = exp (—at). The inverse matrix is

1 —a 0 0 ... 0 0

CN’ = c2(l-a2) [~a 1 ~2 1 t~2 ~ 1 ~]‘ (3.68)

in agreementwith the Markovian property (3.51). Its determinantis therefore

detCN = (c2/2a)N(l _a2)N_l, (3.69)

so that, for small i,

detCN~(c2i)N/2ai. (3.70)

Wethen obtain the following estimate for the CP (c, ‘r)-entropy:

hcp(c,i)~i’ln(cV’~~/2c) for i>>c2/c2. (3.71)

However, this result cannotbe extendedto i —~ 0 becausethe assumption(3.66) is too crude.
The approximateequalityin (3.66) mustbe takencautiouslybecauseit ignorescorrelationeffects
betweenthe randomvariablesat successivetimes. If the time i is smallerthanthe crossingtime
c2/c2of acell of sizec, the particleremainsin the cell c because of the correlations CN. The ellipsoid
of correlations may be elongated so that the actual probabilities may then be larger than in the
right-handmemberof (3.66). The assumption(3.66) will thus overestimatethe actual c-entropy
when r is smaller than the crossingtime c2/c2. Consequently,for i smaller than c2/c2, (3.71)
cannotbe valid otherwisethe (c, i)-entropy would grow indefinitely as ‘r —~ 0. Nevertheless,the
precedingcalculationprovidesa crudeestimateof the c-entropyif i is replacedby its valuec2/c2
at thelimit of validity of (3.71). We get

hcp(c) —c2/c2, (3.72)

as expected.

Numerically,we found that

hcp(c) = (l.l5±0.lO)c2/c2, (3.73)

in natsper unit time (fig. 13).
Still anotherevaluationof the c-entropyis basedon the first-passagemethodwhich is concerned

with the randomevents causedby the first passageof a trajectory of the processat a particular
boundaryof the system[28, 31]. Indeed,the Cohen—Procacciamethodhassomesimilarity with the
problemof escapeof a pair of Ornstein—Uhlenbeckparticlesfrom the interval IX (t) — Y(t) � e.
Sincethe two particlesareindependentthis is equivalentto the escapeof an Ornstein—Uhlenbeck
particle from theinterval X(t ) I � c/V’~.Moreover, we have [30]

Pr{IX(t)I ~ S;0 < t < T} -.~exp[ —2
0(S)T] , (3.74)
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where2~(5) is the smallesteigenvalueof the Ornstein—Uhlenbeckstationaryoperator(3.53) with
absorbingboundariesat x = ±5wherethe densityof particlesis requiredto vanish.We have

~ ir2c2/852, (3.75)

so that this c-entropycalculatedfrom a first-passageargumentis

hrp(c) ~ ir2c2/4c2, (3.76)

in natsper unit time.

The c-entropies per unit time we calculated differ by their prefactor so that we have the inequalities
hsK(c) � hcp(c) � hFp(c), (3.77)

for smallc. However, they are equivalentin the sensethat they all havethe samedivergencein
D2

hsK(c) hcp(c) -~hFp(c) ~ 1/ca, (3.78)

which characterizes the dynamical randomness of the Ornstein—Uhlenbeck process.

3.6.3. Yaglomnoises
Theserandom processesform a whole family of time and amplitude continuous stationary

Gaussianprocesseswhich embedand generalizethe Ornstein—Uhlenbeckprocess.They are the
stationaryanaloguesof Mandelbrot’sfractionalBrownian motions [311.Their correlationfunction
is takenas [29]

(X(t)X(0)) = (c2/a\’~)IatI”KH(IatI), (3.79)

whereK~(z) is the modified Besselfunction of the third kind andof order ii. The exponent H
satisfies0 < H < 1, a and c are positive constants. Examples of Yaglom noises for different values
of the exponentH are given in fig. 14.

The spectraldensityis

~(w) = c22~’’12a211’F(H+ ~)/(a2 + cv2)”~t12, (3.80)

so that the spectraldensity (3.58) of the Ornstein—Uhlenbeckprocessis recoveredin the limit
H = 1/2.

The function g (cv) enteringinto the formula (3.59) is given by

g(cv) = A/(a + iw)”~’/2, (3.81)

wherethe constantis

A = cit_l/22hh/23I4ah1h/2~/F(H+ ~). (3.82)

The response function for (3.63) is then

(0, t<0,
I 2hu/2_~/4

h(t) = c (at)”’I2exp(—at) t>0 (3.83)

~
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Fig. 14. Typical time signalsof Yaglomnoisesfor differentvaluesofthe exponentH.

which reducesto the responsefunction (3.62) of the Ornstein—Uhlenbeckprocessin the limit
H = 1/2.

Let usalsomentionthat the Yaglom noisesarecontinuousin probabilitywith aHolder exponent
H,

IX(t + i) — X(t)I ~ constantx ~ (3.84)

for almost all realizationsX (t) and for small i.
Applying the Kolmogorov formula (2.35), (2.36) to this stationaryGaussianprocesswe find its

c-entropyper unit time to be

2H + 1 12”1/2F(H + 3/2)\ l/2Hf c \ 1/H
hsK(c) ~ a 2ir Hit ) ~ , (3.85)

in natsper unit time, so that (3.65) is recoveredwhenH = 1/2.

We observethat the exponentof c’ increasesindefinitely as H —~0. In that limit, the power
spectrumgiven by (3.80) approachesthe 1/f-noiselimit. In this sense,the 1/f noisemaybe said
to havethe highestdegreeof dynamicalrandomness,or to be of maximalcomplexity.

We have carriedout numericalevaluationsof the Cohen—Procacciac-entropyfor H = 0.4, 0.5,
and0.8 (seefigs. 15—18).Theexpectedexponent1/H is fairly well reproducedwhen 1/2 < H < 1.
However, the fluctuationsbecomevery largewhen0 < H � 1/2 and the exponentis more difficult
to obtain. Nevertheless,we observethat, in the caseH = 0.4, the exponentis significantly larger
than 2, the valuefor the Ornstein—Uhlenbeckprocess(fig. 18).

The Yaglom noisesalso exist for the Holder exponentH largerthan 1. The trajectoriesof these
processesbecomesmootheras the exponentH increases.

3.6.4. Fractional Brownian motions
The c-entropyper unit time can alsobe estimatedfor thesenonstationarytime andamplitude

continuousGaussianprocesses[31]. The Brownianmotion in onedimensionis obtainedfrom the
Ornstein—Uhlenbeckprocessesin the limit a = 0

dX/dt = cc~(t), (3.86)
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Fig. 15. NumericalCP (a, r)-entropyper unit time for the Yaglom noise with H = 0.4. Thedifferentcurvescorrespondto
the calculation of the entropy for time sequences of lengths N = 31,33,35,37,39 [cf. (2.37)—(2.41 ) J.
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Fig. 16. Sameas fig. 15 when H = 0.5. Fig. 17. Sameas Fig. 15 when H = 0.8.
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Fig. 18. Scalingexponentof the a-entropyversusthelengthN of thesequencesusedin (2.41) for thethreedifferentYaglom
noises with H = 0.4, 0.5, 0.8 of figs. 15—17.

for which theFokker—Planckequationis simply thediffusion equation

ô~u/8t= ~c2a2~/ax2. (3.87)

The nonstationarity manifests itself in the fact that the particle wanders in space at arbitrarily large
distances so that there is no normalizable invariant probability density in space.

The averagesquareof the signal is

([X(t) — X(0) ]2) = c2ItI, (3.88)

for the Brownianmotion with H = 1/2, but

([X(t) —x(o)]2) = c2v’~ (~t~2H (3.89)a~/~sin(irH)F(H+ 1) \~/~J

in generalfor 0 < H < 1, which is obtainedin the limit IatI << 1 of the correlationfunction (3.79)
of the Yaglom noises.

MandelbrotandVan Nessgavethe following definition for the fractionalBrownianmotion [31]

XH(t) = V(H± 1/2) (J (It -

51H-l/2 - s~~h1
2g(s)ds

+ fit — sI~hI2~sds)~ (3.90)

in termsof the white noise~ (t) andwhere/3 is an appropriateconstant.The correlationfunction

is then

(XH(t)XH(5)) = C(ItI21’ +
512H— — 512H), (3.91)

whereC = B
21’(l — 2H) cosirH/(2irH) [32].
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The fractional Brownian motionshavepower spectrain cv—(2H+ 1), Accordingly, their c-entropy
per unit time satisfy

h(c) (l/
8)l/H (3.92)

BergerhascalculatedhsK(c) for the Brownianmotion H = 1/2 and found the same result (3.65)
as for the stationaryOrnstein—Uhlenbeckprocess[33]. We explainthis feature by the fact that the
small scalesof the Ornstein—Uhlenbeckprocessare identicalwith thoseof the Brownian motion.
We concludethis sectionwith the commentthat the stationarityor nonstationarityof thesetime
andamplitudecontinuousGaussianprocessesdoesnot modify the c-entropyper unit time.

3.7. Whitenoise

The white noise is a stationary Gaussian random process which is a distribution, rather thana
function,with respectto time. The randomvariable~(t) of thewhite noiseis of zeromeanandits
correlationis (~(0)~(t))= 5(t).

We havealreadyseenthat processeswhose realizationsare continuousfunctionshavean (c, i
entropywhich is independentof i. On the other hand, for the birth-and-deathprocesseswhose
realizationsare discontinuousfunctions of time, the (c, i )-entropy depends on i, in that case
smoothlylike log(1/i). We maythusexpectthat thewhite noisewill haveastrongdependenceon
i.

A randomprocessapproximatingthe white noisecanbe constructedby discretizationof the time
axisinto small intervalsi andby consideringthatXk = ~(ki) areindependentGaussianvariables
of zero meanandunit variance.Therefore,using the result (3.44) of section3.4 which gives the
entropyper time interval i, we find the entropyper unit time to be

h(c,i) ~ v’log(l/c) (white noise), (3.93)

which increases indefinitely as i —+ 0.
Anothermethodto generaterandomfunctionswhichapproximatethe white noiseis to consider

a Gaussianprocesswith aconstantspectraldensityin a largebut finite bandwidth IcvI <w~up to
an ultraviolet cutoff beyondwhich the spectraldensity is zero (cv~= it/i). The SK c-entropyof
this processleadsto the sameresultas (3.93) [10].

3.8. Levyflights

We haverecentlystudiedamodel of anomalousdiffusion by Levy flight, dueto Klafter, Blumen
and Shlesinger[34]. In the model, a particleundergoesrandomwalks which consist of straight
stepsinterruptedby jumps. The probability densityfor a singlestep r in time t is given,

!P(r,t) = ~(r)S(r—t
1’), (3.94)

andthestepsareindependentof eachother.Thefunction w presentsapowerlawdecayy’ (r) -~r~
as r —~ oc and the process is assumed to occur in a d-dimensional space. The realization of these
processes is a trajectory in space which is continuous and piecewise linear. The velocity is then
piecewise constantwith discontinuitiesat the jumps. Different regimesexist according to the
exponenta = v(~u— d + 1) — 1.
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The c-entropyH (e,T) for the velocity processduring atime interval T was foundto be

f Tdlog(1/c) for a> 1,

H(c, T) = ~ 1T~dlog(1/c) for a = 1, (3.95)

I Tadlog(1/c) for a < 1.

Accordingly, the processis regularlyrandomfor a> 1 with apositive c-entropyper unit time, but

it is sporadicallyrandomfor a � 1 wherethe c-entropyper unit time vanishes

h(c) — fdlog(1/c) for a>!, (396
for a< 1.

We see thatwhena > 1 the processhas the samedegreeof randomnessin log (1/c) as the time
discreteprocessconsideredin section3.4. We remark alsothat, accordingto (3.94), the choiceof
a randomvector r in Rd is equivalentto a randomchoiceof a time interval t and to a random
direction on the (d — 1)-sphere.Thereforec’~ ~ 5d1 where i is an infinitesimal time interval
while S is the diameterof an infinitesimal cell of the (d — 1)-sphere.Whend = 1 and a> 1, we
haveequivalencewith thetype of processesof section3.3 like the Poissonprocess.

4. Applicationto hydrodynamicturbulence

Fluid turbulence is an important random processwhich has recently attractedconsiderable
interest. It is usually assumedthat the fluid obeysthe Navier—Stokes(NS) equationsand that
the thermodynamicfluctuationsdo not play a role in the randomcharacterof fluid turbulencein
incompressiblefluids. The fluid randomnessis thoughtto haveits origin in the nonlinearityof the
NS equationsthemselves.

The NS equationsaresupposedto havean attractorwhosedimensionincreaseswith the Reynolds
number.While the attractormaybe of low dimensionalitynearthe thresholdof turbulence,in the
regimeof chaos,thedimensionsoonbecomesvery largein the regimesof developedturbulences.If
an attractorexists in the statespaceof the fluid, it would be characterizedby a finite KS entropy
per unit time sothat an c-entropyper unit time shouldultimately saturateat the valueof the KS
entropy [35].

However, if this value is very largeandif many degreesof freedomare active in the fluid, the
actual measure of the KS entropy or of the Hausdorff dimension of the attractor turns out to
be practically not possible,becausethat measurewould require to probe a time signal with high
resolution on very small temperatureor velocity variations andon an extremely long time. On
the contrary, with the resolutionsand the time seriesthat are currentlyavailable experimentally,
the c-entropycan be evaluatedfrom the measurements.It turns out to presentscalingbehaviors
showingthat the fluid can be effectively describedas a stochasticprocesswherethe deterministic
characterhasdisappeared.

When this noisy characterof developedturbulencebecomesdominant, the c-entropy is very
useful.Moreimportantperhapsis the fact that the crossoverfrom thechaoticregimetowardvarious
turbulentregimescanbe followed with the c-entropy,revealingthe way in which the deterministic
characterdisappears.We haveapplied this idea to the recentexperimentson Rayleigh—Bénard
convection;where chaos,and two turbulent regimes(soft and hard) havebeenobservedas the
Rayleighnumberwas increased[36]. Our main results reportedin ref. [37] maybe summarized
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Fig. 19. (a) Temperature versus time in Rayleigh convection in He in a chaotic regime at Ra= 1.78 iO~ and inverse
diffusivity time ic/L2 = 9.4 iO~ Hz. The total length of the time series is of 327 680 points separated by & = 1/10 s.
The experimental data have been kindly provided us by Prof. A. Libchaber (ref. [36]). (b) Numerical CP (a, r)-entropy
per unit time of the signal (a) calculated over 256 reference points with r = 25&. The different curves correspond to the
calculation of the entropy for time sequences of lengths N = 1,4,7—15 [cf. (2.37)—(2.4l )]. A plateau appearsat largeN
after a decrease due to aliasing effects. (c) CP (a, r)-entropy per unit time versus the length N of the time sequencesat
different values of a in the a-interval where the plateau appears.
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Fig. 20. (a) Temperature versus time in Rayleigh convection in He in a chaotic regime at Ra= 1.97 x l0~ and inverse
diffusivity time ~c/L

2= 9.3 x i0~ Hz. The total length of the time series is of 327 680 points separated by & = 1/10
s (data of Prof. A. Libchaber [36]). (b) Numerical CP (a, r)-entropy per unit time of the signal (a) calculated over 256
reference points with r = 20&. Note that the plateau appears at a larger value of the entropy so that this regime is more
chaotic than the one of fig. 19. (c) CP (a, r)-entropy per unit time versus the length N of the time sequences at different
values of a in the a-interval where the plateau appears.
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Fig. 21. (a) Temperatureversustime in Rayleigh convectionin He in a regimeof soft turbulenceat Ra= 9.9 x i05
andinversediffusivity time ic/L2 = 3.13 l0~ Hz. The total length of the time seriesis of 204800points separated
by & = 1/25.6 s (dataof Pipf. A. Libchaber [36)). (b) Numerical CP (a,r)-entropyper unit time of the signal (a)
calculated over 256 referencepoints with r = 20&. The different curvescorrespondto the calculationof the entropyfor
time sequences of lengths N = 8—18 [cf. (2.37)—(2.41)]. Note that the plateau hasdisappeared whereasthe curvesare
increasing where they coincide, like in fig. 11. (c) Same as (b) but with a logarithmic scale for the entropy axis. Three
different fits of the form h(a) = a[log(ao/a)]V with the exponents y = 2,2.5, and 3 are superimposed.
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Fig. 22. (a) Temperature versus time in Rayleigh convection in He in a regime of hard turbulence at Ra= 1.134 x 1010
and inverse diffusivity time ic/L2 = 5.127 x 1 o—~Hz. The total length of the time series is 409 344 points separated by
& = 1/640 s (data of Prof. A. Libchaber [36]). (b) Numerical CP (a,r)-entropy per unit time of the signal (a) calculated
over 640 reference points with x = &. The different curves correspond to the calculation of the entropy for time sequences
of lengths N = 20, 25, 30, 35, 40, 45, 50, 55 [cf. (2.37)—(2.41)]. (c) Same as (b) but with a logarithmicscale for the
entropy axis. The line hasa slope —2showing the corresponding scaling behavior in this range of values of temperature
variations a, like in fig. 13.
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as follows. In order to estimatethe c-entropy for a temperaturesignal, c denotesthe size of the
temperaturefluctuationsof ameasuredtime series.In the chaoticregimesatlow Rayleighnumbers
(figs. 19 and20), the c-entropypresentsaplateau,correspondingto afinite KS entropy

h(c)~hy~(chaos). (4.1)

In soft turbulence,the plateauhasdisappearedat high valuesof the entropyandon fine scalesof

c. Then, the entropyslowly increaseswith c —~ 0 like

h(c) -~ [ln(1/c)]c~ (soft turbulence), (4.2)

with an exponenta ~ 2 — 3 (fig. 21).
At still higherRayleighnumbersin hardturbulence(fig. 22), the c-entropyincreasesevenmore

rapidly like

h(c) 1/c2 (hardturbulence), (4.3)

in someintermediaterangeof valuesof c.We gavein ref. [37] argumentssupportingthe behaviors
(4.2) and (4.3).

The generalincreasein the c-entropyshowshow the scaleswheredynamicalrandomnessis active
in the fluid changeswith the Rayleighnumber.If this randomnessis small in the chaoticregimes
but uniformly distributedon the different scales,it soonbecomes much higher in more developed
turbulentregimes.A turbulentfluid is characterisedby a cascadeof dynamicalinstabilitiesfrom
large to smaller eddies, the scale-dependent (c, ‘r)-entropy can then be used to measuredynamical
randomnessinducedby theseinstabilitiesatvariousscalesof the process.Ourconclusionoughtalso
to be applicableto othersystemsof developedfluid turbulence,like the Couette—Taylorcylinder,
or openshearflows.

With the adventof the theoryof chaos,the KS entropywas introducedwhich is ableto express
quantitativelythe intuitive conceptof dynamicalrandomnesswhich hasbeeninvokedfor long in
the observationof turbulence.However,with the growing interestin the regimesat higherRayleigh
or Reynoldsnumbers,the quantitativemeasureof randomnesshasonceagainbeenoverlookedfor
lack of appropriate concepts. We think that the c-entropyhelpsus to bridge this gap. It allows to
generalizethe KS entropyper unit time toward those regimesof higher randomness,while still
maintainingthe possibilityof comparisonwith regimesof lower degreesof randomness(suchas
low-dimensionalchaos).

5. Applicationto statisticalmechanics

In the precedingdiscussionwe viewed turbulenceas adeterministic,macroscopicphenomenon
of strongspacetimechaos,anddid not considerthe effectsof thermodynamicnoise.We are now
turning to mesoscopicprocessesof physicsandchemistry,like Brownianmotion,whererandomness
is producedby thermodynamicfluctuations.Here, the situation is profoundly different although
it presentssimilarities with the exampleof turbulence.Comparedwith laboratoryturbulence,the
numberof activedegreesof freedomis vastly superiorin amole of gas(1023).Therefore,although
the motion of atomsor moleculesin agasor a liquid is ultimately describedby the deterministic
Newtonequations,the extremelylargenumberof particlesrendersastochasticdescriptiondesirable.

We gaveelsewherean estimationof the KS entropyper unit time in a gasof interactingparticles
[38]. We also discussedelsewhereabout the c-entropy in the classical gasof free particles and
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(2

Fig. 23. (a) Schematic representation of a typical collision betweentwo hardspheresof ingoingvelocities a1 anda2,andof
outgoingvelocitiesa1’ anda2

1. c is the impact unit vector along the line joining the two discontinuities in the trajectories
of the particlesNo. 1 andNo. 2. (b) Schematicrepresentationof atypical trajectory of the Boltzmann—Lorentzrandom
process.The trajectory changesits directionat eachcollision c. From collision to collision, the processuses six random
variableswhich arecontinuouslydistributed: (1) the intercollisionaltime to whichcorrespondsthe infinitesimal r; (2) the
velocitya

2ofthe particleNo. 2 comingandreturningto thethermalbathwith a Maxwell distributionandcorrespondingto
theinfinitesimal&v2 (3) theangles9 = (0, ~,) of theimpact unit vectorto which correspondtheinfinitesimal I~Q. Each
continuousrandomvariablecontributesto the (a, r)-entropyby alogarithmicdivergenceof its correspondinginfinitesimal.

how it compareswith the entropyper unit time of the quantumgasesof free particles [39]. In
this paperon the (c, i)-entropy,we would like to illustrate our method with the calculation of
the (c, i)-entropyper unit time for the relaxationof the velocity distribution function towardthe
equilibrium Maxwellian as describedby the Boltzmannequation.

For simplicity, we assumethat the relaxationoccursuniformly in space.The linear Boltzmann
equation is then [40]

Of(v1) = ~fd3v
2d

2~?Ivi — v
2Ia(O,~i,l’l,V2)feq (v2)[f(v~) — f(v1)], (5.1)

wherep is theparticledensity,a is the differentialcrosssectionof the binary collision, and

feq(v) = (mfl/2ir)
3/2exp(—.~/3mv2). (5.2)

Equation(5.1) describesthe time evolution of the probability densityof the velocity of a test
particleNo. 1 undergoingmultiple collisionswith other particlesNo. 2 in the gas.The outcoming
velocitiesv

1’ andv2 ‘after eachbinary collision is uniquelydeterminedby the velocitiesv1 and v2
of the two particlesenteringthe collision togetherwith the impactunit vectorlocatingthe relative
positionsof the particlesNo. 1 andNo. 2 at the point of the closestapproach(fig. 23a).

The Boltzmann—Lorentzequationdescribesthe successivecollisionsassuccessiverandomevents
wherethevelocity 2 of the bathparticleas well as the solidangleQ = (0,q~)of the aforementioned
impactunit vectorarerandomvariables(fig. 23b).Besides,theBoltzmann—Lorentzequationhasthe
form of abirth-and-deathprocessin the continuousvelocity andsolid anglevariables.Discretizing
the velocity andthe solid angle, it hasthe form

= ~ ~ (5.3)

where

Pt,i = f(v1)iX
3v. (5.4)
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Moreover,

W~1,’= pA
3vi~2Qlvi — v

2la(Q, V1,V2)feq (v2), (5.5)

wherev1’ is a function of v2 and Q. We shall now estimatethe (c, r)-entropyper unit time for
the stochasticprocessof the Boltzmann-Lorentzequationin the caseof a hard spheregas. The
differential cross sectionis thenconstanta = a

2/4 wherea is the radius of the particles. The
(c, i ) -entropy per unit time for abirth-and-deathprocessis given by (3.30). In the presentcase,
E~3v&Qplays the role of c. We find

h(i,&v~2Q)= (—~P;~w~
1~1)ln(e/i)— ~ ~ + 0(i), (5.6)

a1

where

= ~fd2Q d
3v

1 d
3v

2lvi V2~feq(Vi)feq(V2), (5.7)

while

> ln W~1~’= ~— Jd~Qd
3v

1 d
3v

2 lvi —

xln[~pa
2L~~3vL~2Qlvi V2Ifeq(V2)]. (5.8)

The evaluation of these integrals gives

h(iE~3vL~2Q)= 4pa2~/~7~tflln(398.8/pa2mfliA3vA2Q)+ 0(i). (5.9)

We see that this (c, i )-entropyper unit time has the form of the c-entropyper unit time corre-
spondingto the randomchoiceof six continuousrandomvariablesat time intervalsseparatedby
themeanintercollisional time, 2~nte~ofl~ l/iJ. 1 ~ 1/pita2 is themeanfree pathwhile ii -~(mfl) — 1/2

is the averagevelocity. The six continuousrandomvariablesarethe threevelocity componentsv
2

of the particlesof the bath, the two anglesQ = (0, qi) of the impactunit vector, andthe random
intercollisional time.

The precedingreasoningwas donefor thelinearBoltzmann—Lorentzequationfor simplicity but it
canalsobe appliedto the Boltzmannequationunderthe conditionthatwe first maptheBoltzmann
equationontoastochasticprocess.Indeed,the Boltzmannequationcannotbe the masterequation
of astochasticprocessbecauseit is nonlinearwhereasamasterequationmust be linear in order
to havean interpretationin termsof arandomprocess.Suchamasterequationfor the Boltzmann
equationwas obtainedby several authors,it hasthe form of abirth-and-deathprocesswherethe
randomvariablesare the numbersN1 of particleshavingthe velocity v~. The averagevaluesof N
arerelatedto the probability densityof the velocityaccordingto N1 = pf (vt)~

3v.The problem is
now mappedontoabirth-and-deathprocessfor the binary collisions (seevanK.ampen [28]). The
(c, i )-entropyper unit time canthenin principle be calculatedas beforewith asimilar logarithmic
divergencein cr.



P. Gaspardand1.-f. WangNoise,chaos,and(a,r) entropy 331

6. Spacetimeprocesses

6.1. (c, i)-entropy per unit time andvolume

For processesevolving in time and in space,dynamicalrandomnesscan occur not only at each
time step but also at eachspacepoint. Let us considerasimple exampleof achain of spins 1/2
which evolvesin time accordingto a pure Bernoulli process.Each spin takesthe values ±1/2
independentlyof thestateof its neighborsandindependentlyof its own previousstate.The amount
of dataproducedby this systemwill be proportionalto the time T of observationbut also to the
spacevolume V underobservation.Sincetheprocessis of Bernoulli typeno compressionof datais
possibleandthe recordof the spacetimemapwill require a total of TV bits. This quantitydefines
the entropyH ( T, V) of the processovera time T anda volume V.

The resultsof section2 can be generalizedby replacingthe group of time translationsusedin
that sectionby the the group of translationsin time and in space.In this way, we can definethe
entropyH (c, i, T, V) for spacetimeprocesses.This entropygrows at most like TV so that we can
definethe (c, i )-entropyper unit time andvolume accordingto

h(time,space)(ci) = lirn .~4~H(c,i, T, V), (6.1)

as ageneralizationof h (time) (c, i) definedwith (2.13)or (2.29).We shallspeakof spacetime chaos
if h (time,space) (c, i) is positive, andboundedas c and i go to zero.

Let usnow review severalspacetimeprocesses.

6.2. Evaluationof (c, i )-entropy for spacetime processes

6.2.1. Deterministiccellular automata
In thesespacetimeprocessesreactualizedby Wolfram [41] in the early eighties,the systemis

definedin discretestatesat discretepositionsin space.The dynamicsis given by logic rulesthat
resetthe configurationof the systemfrom onetime stepto the next. Theseprocessescanbeviewed
as degenerateMarkov chains,wherestatesare spatialconfigurations,and the matrix of transition
probabilities (3.9) containsonly zerosandones.As a consequence,no dynamicalrandomnessis
producedwith time. The dynamicssimply propagatesthe initial configurationof the systemwhich
can eventuallybe randomin space.The randomnessis dueeither to the initial conditionsor to
unknowninformationcoming from outsidethe observedvolume V.

Let us considerfor instancethe elementarycellularautomatawherethe couplingis setbetween
nearestneighboringsites. We haveH ( T, V) Vlog T for Wolfram’s rule 132. For otherruleslike
0, 32, 250, or 254, theinitial stateis attractedtowarda spatiallyuniform or periodicconfiguration,
in which casethe entropy H ( V, T) increaseslike log (TV). Besides,thereis numericalevidence
obtainedby Grassbergerthat the rule 22 hasa sporadicbehavior in time like H ( T, V) ~‘0.82
without dependenceon V � 2 [42]. In all cases,the entropyper unit time andunit volume (6.1)
is vanishing.The sameconclusionappliesto Conway’sgameof life [43] as well asto the automata
of NowakandMay [44].

6.2.2. Lattice gasautomata
Theseprocessesarediscretein time andin space,wherephysicalquantitieslike the velocity take

discreteamplitudes [45—47].Contrary to the deterministiccellularautomata,however,the lattice
gasautomataarenon-degenerateMarkov chainswith transitionprobabilitiesbetweenzeroandone.
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Accordingly, randomnessis generatedat eachspacetimepoint andthe entropyis proportionalto
the spacetimehypervolumeTV as in the exampleof subsection6.1. Theseprocesseshavein general
apositive entropyper unit timeandvolume which doesnot dependenton eitherc or r due to the
discretenessof thesemodels.The sameconclusionappliesto probabilistic cellularautomata.

6.2.3. Coupled maps
Thesedynamicalsystemsaredefinedby deterministicmappings[48, 49]. A continuousvariable

is assignedto eachspaceposition on a lattice. Therefore, the processis discretein time and in
spacebut havecontinuousamplitudes.For a finite numberof coupledmaps,the entropywill then
be givenby

H(T,V) = T~21, (6.2)

accordingto Pesin’stheorem[201. The numberof positiveLyapunovexponentsis proportionalto
thenumberof degreesof freedomwhich itselfgrowsproportionallyto thevolume.As aconsequence,
we have that H(T, V) TV. This rapid increaseof the entropyis the featureof the dynamical
regimesof spacetimechaos.

6.2.4. Nonlinear partial differential equations
Suchequationsdefine dynamicalsystemsof infinite dimensionalphasespaces,with continuous

spacetimeandobservables.Well-known examplesare the Navier—Stokesequations [35], theBrus-
selatorreaction-diffusionequations[50], or the Kuramoto—Sivashinskyequation[51]. For PDEs
or coupledmaps,it is possibleto introducethe densityg~) of Lyapunovexponentsas the number
of exponentshavingtheir valuein the range~, 2 + dA) for asystemof unit volume.The entropy
is thengivenby

~1~max

H(T, V) = TV / 2 g(2) dA, (6.3)

where
2m~ is the largestLyapunov exponent.This resultholds for everydeterministicsystemof

arbitarily large spatialextension.In a regimeof spacetimechaos,the entropyper unit time and
volume (6.1) is thenpositive.

6.2.5. Stochastic spin dynamics
Glauber and Kawasaki introduced kinetic models describing the stochastic dynamics of spins in

a solid [52, 53]. Thesemodelsare definedas birth-and-deathprocessesof largespatialextension.
Accordingto the resultsof section3.3, their entropydivergeswith i —* 0 accordingto

H(T,V) —‘ TVlog(l/r). (6.4)

The extra randomness has its origin in the assumption that the time is continuous. If we rather
adopt aversion of the dynamics which is discretein time the spin dynamicsreduce to Markov
chainslike in latticegasautomata.

6.2.6. SpacetimeGaussianfields
Theseprocessesarethespacetimegeneralizationsof theBrownianmotionsof section3.6. Pinsker

and Sofrnan have generalized the Kolmogorov formula (2.35), (2.36) to those stationary Gaussian
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processes[54]. If the spectraldensityis

~P(k,w) = J e kr+Wt)(X(rt)X(0,0)) drdt, (6.5)

Rd+ I

the SK c-entropyper unit time andvolume is givenby

= (
2~d+i f min[0,~(k,w)] dk dw, (6.6)

h~mP~)(c) = 2(2~)d+i f max[0,log~(k,w)/0]dkdw. (6.7)

Rd+ I

Forinstance,let ussupposethat the spectraldensitydecreasesat largefrequenciesandwavenumbers

like

~(k,w) (w~+ k~Y” (6.8)

with (1/a + d/fl) <ii, so that the integral of the power spectrumis bounded.The spacepower

spectrumis

~(k) = f~(k,w)dw.-..k_”1, ~i =/3(~—l/a); (6.9)

andthe time power spectrum

= JP(k,w) dk -~W~2, v2 = a(v — d/fl). (6.10)

Thec-entropythendivergeslike

h~me’sP5re)(c)--~ (l/c)~’, ~‘ = (i/d//3Y (6.11)

With d = 0, a = 2 and ii = H + 1/2, (6.11) is reducedto eq. (3.92) for the Yaglom noise.
A possible spacetimegeneralizationof the Yaglom noise is definedwith a = fi = 2, and ii =

H + (1 + d)/2, sowe have

h~me~5P~)(c)-~(1/c)~”~~1” (6.12)

[comparewith eq. (3.92)].
In fact, onecan show that the exponenty dependsonly on the scaling propertiesof the power

spectrum~ (k, w). Let us assumethat ~ (k,w) hasthe generalform

X.(k,w) —~k~F(w/kz), (6.13)

whereF is a scalingfunction. Then, we have

h~mP~)(c) -~ (1/c)~, y = 2(d + z)/[y— (d + z)]. (6.14)
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For instance, let d = 3, y = 13/3 and z = 2/3, so that

= k~”I-(k) —k513 and c1(w) -.-w2, (6.15)

which mimic the well-known power spectraof thehomogeneousand isotropicturbulencein three-

dimensionalfluids in the limit of infinite Reynoldsnumber.Then,
h~mP~)(c) -~(l/c)~. (6.16)

This result is quite interestingsince it is solely determinedby the scaling propertiesof ~ (k,w)
of the fully developedturbulence. It is hencein this senseunique and universal. Nevertheless,
let us emphasizethat the result (6.16) is basedon the assumptionthat the processis Gaussian.
Non-Gaussianeffects (intermittency)might not only leadto a (small) correctionto the exponent
y = 11, but also to the non-uniquenessof the exponent. In the caseof hard turbulence, the
possibilityof non-Gaussianbehaviorswas discussedin ref. [37].

We concludewith the commentthat the continuousrandomfields describedin this subsection
appearto haveavery high degreeof randomnesscomparedwith the otherexamples.

6.2.7. Spacetimeprocessesofstatistical mechanics
Most systemsof statisticalmechanicshavea largespatialextension.Thereexistdifferent classes

of systems(seefig. 24).
Thesimplestsystemsarethe ideal gaseswherethe particlesarenot interactingwith eachother.As

aconsequence,thereis no local dynamicalrandomnessgeneratedin thesesystemsand the entropy
per unit time andvolume vanishessinceall the Lyapunovexponentsarezero. However, the ideal
gasesare not completelydevoidof randomnesssincenewparticlescontinuouslyarrive from large
distanceswith arbitrary positionsandvelocities within the Maxwellian distribution.The entropy
H ( T, V) is thenproportionalto thesurfaceof the observedvolumeV~ 1 )/d as well as to the time
T. Moreover,eachnew position andvelocity are randomvariableswith continuousdistributions
so that the entropyhasa divergencein log(1/c) wherec = t~f1xE,~v [39, 55—56].

If the particles are interactingeither with fixed scattererslike in the Lorentz gas or with each
others like in the hard spheregas the dynamicsbecomeslocally random and there appearsa
spectrumof positiveLyapunovexponentslike in (6.3).The entropyperunit time andvolumemay
thenbe positivegiving a quantitativemeasureof the microscopicchaosat the origin of the thermal
agitation [38—39, 55].

It is possibleto illustrate the transitionbetweenthe noninteractingand the interactinggases
with the Lorentz gas composedof a gas of independentparticleswhich are scatteredby a lattice
of hard spheresfixed in spaceand occupyingavolume V. Since the collisional dynamicsof the
particlesis defocusingin the region V of thescattererthe entropyH ( T, V) containsatermwhich is
proportionalto TV andto the positive Lyapunovexponentof the Lorentzgas.However,particles
are continuouslycoming from large distancesandenterthe scattereron the surfaceof the lattice.
This shower of new particlesis anothersourceof randomnesswhich is now proportionalto the
time T, to the surfaceV(~~~)/dof the scatterer,and to a factorwith a logarithmicdivergencelike
in the ideal gases.Therefore,the entropyH ( T,V) containstwo terms,

H(T,V)-.-~ TV+cTV)I~l’log(1//~uixAdp) (6.17)

wherec is apositive constant.Whenthe volume is largethe first term dominatesandthe system
is the stageof spacetimechaoslike in thehard spheregas.
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(c) ~ ~ (d)

Fig. 24. Schematicrepresentationof the four examplesof spacetimeprocessesof statistical mechanicsgivenin subsection
6.2.7: (a) the ideal gas; (b) the finite Lorentz gas; (c) the hard spheregas; (d) the Boltzmann—Lorentzgaswhere each
collision is a randomprocesslike in fig. 23 andcontraryto thegasesa, b, andc whicharedeterministic.

Modelshavebeenintroducedin nonequilibriumstatisticalmechanicswhich haveahigherdegree
of dynamicalrandomnessthanspacetimechaos.This is the casefor the Boltzmann—Lorentzprocess
with many particles. Since an extendedsystemhas a numberof particles which is proportional
to the volume, the total entropyof all the particles is obtainedby multiplying the single particle
entropy (5.9) by the particle densityand by the volume. As a consequence,the entropydiverges
like (5.9).

7. Discussions andconclusions

7.1. Classificationofthe randomprocesses

In the precedingsections, we have obtainedthe (c, i)-entropyper unit time for a variety of
stochasticprocesses(and per unit volume for spacetimeprocesses).We observedthat thereexist
two ways to classifythe processesusingthe general (c, r ) -entropy H (c, r, T) overa time interval
T.

First, there is the dependencein the time T. We have seen that H (c, r, T) is extensivein
T for most processes,a propertywe called regular randomness.In contrast,for someprocesses
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Table 1
Periodicandsporadicallyrandomprocesses.

Process H(a,r,T)

periodic log T
Feigenbaumattractor log T
intermittentmaps(z � 2) Tc~(a < 1)
intermittentmaps(z = 2) T/ log T
Englishor Germantexts T” (a 1/4 — 1/2)
DNA sequences T’ (a < 1)
Levy flights (a < 1) T”d log(l/a)
Levy flights (a = 1) (T/logr)dlog(l/a)

that we called sporadicallyrandom,H (c, i, T) grows more slowly than the time T according to
H (c, ‘r, T) T” where0 < a < 1 is the exponentof sporadicity.Recently,Ebeling,Nicolis and
othershave shownthat such sporadicbehavioris a featureof languagetexts [57—59]as well as
of someDNA sequences[60, 611. This phenomenoncanbe interpretedby the presenceof new
broadercomprehensiveschemesor Kantiansynthesesemergingon longerand longer periodsof
time in humanor biological informationsequences.

Secondly,thereis the dependenceof H (c, i, T) on c and r, which constitutesthe main contri-
bution of the presentpaper. This dependencedisappearsfor the chaotic deterministicprocesses
becausetheir trajectoriesare smooth.On the contrary,the dependenceremainsfor processeswhich
havenon-smoothtrajectories.For instance,the trajectoriesN1 (t) of abirth-and-deathprocessare
discontinuousin time; the Ornstein—Uhlenbeck,the Yaglom, andthe Brownian processesare con-
tinuousbut nondifferentiableso thatthe dependencein c remains.Hence,all thesenoiseshavean
(c, i ) -entropyper unit time which divergesas c or i -~ 0. As aconsequence,theyare muchmore
randomthanthe chaoticprocesses.Furthermore,we cancompareoneprocesswith another,as we
do with Yaglom noisesof differentexponentsH, to showthat someof them aremorerandomthan
others. In the sameway, we can establishequivalencesbetweenthe degreesof randomnessof the
processes.

In summary, we have compiled in table 1 the entropiesH(c, i, T) for various periodic and
sporadicprocesses.In table 2, we gatheredthe entropiesper unit time h(c, r) for the random
processesconsideredin sections3—5. The entropiesH (c, r, T, V) for spacetime processes discussed
in section6 arelistedin table 3. Sincewe haveonly considered a limited number of known random
processes,the list is far from beingexhaustive.

7.2. Theprinciple ofentropyinvarianceand someconsequences

The principle of entropyinvarianceby Kolmogorov,Sinai [16], Ornstein[23], andothersstates
that the KS entropy per unit time is invariant under an isomorphismwhich maps a process
onto another.For instance,in section3, we constructedan isomorphismbetweena time-discrete
Markov chain and a deterministic chaotic mapping. The KS entropy is the samefor both processes
showing that informationon the time evolution of the processesis strictly preservedgoing from
one descriptionto the other.

The invarianceof the KS entropy generalizesto the (e, r)-entropyper unit time if we admit
some differencesdueto the different definitionsof (c, i) in the two processesbetweenwhich we
want to establishan isomorphism.This generalidea is of applicationin kinetic theory wherewe
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Table 2
Time random processes.

Process h(a,r)
periodic 0
Feigenbaum attractor 0
intermittent maps 0
Englishor German texts 0
DNA sequences 0
Levy flights (a� 1) 0
Levy flights (a> 1) dlog(1/a)
deterministic chaos hgs
Bernoulli and Markov h~
birth-and-death log( 1 /r)
time-discrete, amplitude-continuous d log (1/a)
Ornstein—Uhlenbeck (1/a )2

Yaglom (1/a)
1!”

Brownian (1/a)2
fractional Brownian (1/a) 1/H

white noise (1/t)log(l/a)
soft turbulence (exp. range) (log a~)3

hard turbulence (exp. range) (1/a)2
Boltzmann—Lorentz (1 particle) log( l/th3vi~2Q)

want to map the deterministicdescriptionby Newton’sequationsontoaprobabilistic description
that we hopeto be faithful, if not for all, at least for a restrictedset of physicalobservables.The
descriptionremainsfaithful for the physical observablesof interestif the (c, i )-entropyper unit
time is essentiallypreservedduring the changeof description.

The (c, i)-entropyis thenableto checkif thedynamicalrandomnessof the kinetic modeltakes
the correct values in the range of (c, i) considered.If the (c, i )-entropy of the kinetic model
overestimatesthe (c, i)-entropyof the deterministicmode,aprogramwhich simulatesthe process
accordingto the kinetic model will call the pseudorandomnumbergeneratormore often than
necessary.On the other hand, if the (c, r)-entropy of the kinetic model underestimatesthe true

Table 3
Spacetime random processes.

Process H(e,r, T, V)

cellular automata < TV
Conway’s game of life <TV
latticegas automata TV
coupledmapsin spacetimechaos TV
nonlinearPDE’s in spacetimechaos TV
Glauber or Kawasakispin dynamics TV log( l/r)
(d + 1)-dimensionalYaglomfields TV(1/a)(’~+1)/”
d-dimensionaiidealgas(many particles) TV(d )/d log (1 /i~.”xE~”p)
Lorentz gas (fixed scatterers) TV + cTV(d)/dlog(1/i.Y~xbJ~p)
Hard sphere gas TV
Boltzmann—Lorentz(manyparticles) TV log( l/th3vi~2Q)
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value, the signal of the simulationwill be more regularthanit should be andthe conclusionwill
be thatsomesourceof randomnesshasbeenoverlooked.

Let us remark that the limitations of the kinetic models have alwaysbeendiscussedin the
literaturealonglines thatare parallelwith ours. Both discussionshavein commontheir useof the
conceptsof meanfree path andof meanintercollisional time. Thesequantitiesgive the scalesof
e or of ‘r wherethe kinetic model mayneedto be amendedbecauseof the deterministiccharacter
of the moleculardynamics.It is also the scale wheredifferencesmay appearbetweenthe actual
(c, r ) -entropy calculatedfrom Newton’s equationsand the (e, i )-entropy of the kinetic model.
An exampleof amendmentwhich hasbeenconsideredis to include memory effects [62]. The
consequenceof suchmodificationson the c-entropyis that the c-entropywould grow more slowly
at small c. Finally, if the deterministicNewtonequationsare usedwithout stochasticassumptions
but only chaoticassumptions,the c-entropywould saturateat the valueof the KS entropy.

Let us mentionafew examplesto illustrateour point.

7.2.1. Equilibrium states
Supposea classicalstatisticalmechanicalsystemis describedan equilibrium probability density

which is Gaussian,such as the Maxwellian velocity distribution of a gas. If its microscopic state
is monitoredat samplingtimes muchlonger thanthe relaxationtime, thenthe observationof this
systemconsistsof a discretesequenceof independentGaussianrandomvariables, thereforeits
c-entropyper samplingtime is equalto h(c) givenby (3.36). It divergesfor the reasonexplained
in subsection(3.4.1). This divergenceis at the origin of the famous Gibbs paradoxin classical
equilibrium statisticalmechanics,wherethe thermodynamicentropyis not fixed in absolutevalue
but only in relative value with respectto the entropyof a referencethermodynamicstate.The
divergentterm is in generalomittedandonly the next term — which is oftencalledthe differential
entropyin the mathematicalliterature — is consideredin equilibrium thermodynamics.Contrary
to the c-entropy,the differential entropyis empty of any operationalinterpretationin termsof
randomness.In quantumstatisticalmechanics,the size c’~of the cells in phasespacecannotbe
smallerthan (2ith)~’,sincethe quantumstatesare discreteand fully determinedbelowthis limit
by thewavefunctions.As aconsequence,the constantof the thermodynamicentropyappearsto be
fixed by quantummechanics,whichis expressedby Nernst’s third lawof thermodynamics.

7.2.2. Kinetic equations
A dilute hardspheregasis governedby deterministicNewton’sequationsof interactingparticles.

The dynamical chaos producedby these interactionsis characterizedby an (c, r)-entropy per
unit time and per particle of the gas, and providesa justification for the randomnessaspect
of Boltzmann’sfundamentalstosszahlansatzof the kinetic theory of gases.An estimationof the
maximal Lyapunovexponentper particleof the gasis given by the finite quantity [39]

1 ln(l/a), (7.1)
2intercoii

where a is the radiusof the particles, 1 the meanfree path, and 2~ntercoll the mean intercollision
time.

In section 5, we havecalculateddirectly the (c, r)-entropyper unit time for the Boltzmann—
Lorentz equationdescribingthe collision processof one particle in a dilute hard spheregas.
We obtaineda result similar to (7.1), except that, for the Boltzmann—Lorentzprocess, some
infinitesimal ci appearsin the (e, i )-entropyper unit time. As we discussedbefore,theBoltzmann—
Lorentz processis stochasticand, as a consequence,hasa degreeof randomnesssuperior to the
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chaoticprocessof the deterministiccollisions in a gas. Sincethe (c, r)-entropydivergesas c andi
becomesarbitrarily small, theremustbe a limiting value wherethe randomnessof the stochastic
processstarts to overestimatethe randomnessof the gas particle motion. (7.1) is equalto the
(c,r)-entropyper unit time (5.9) for small i~andc = L~3vE~2Qwhen

.-.~aii~/~3vi.~2Q, (7.2)

which is thelimit of applicabilityof the stochasticprocesswhen comparedwith the chaoticprocess

of the Newtoniandynamics.

7.2.3. Langevinequations
A similar discussionappliesto the Langevinequations,which provide avery good description

of the Brownian motion of particles in a fluid or of other relatedprocesses.Theseprocessesare
characterizedby an c-entropyper unit time which grows like (cf. subsection3.6.2)

h(c) -~1/c2. (7.3)

Ultimately, however, this c-entropyshould saturateat a finite value as soonas c is small enough
to resolvethe deterministicmotion of the moleculesin collisions.Therefore,for c small enough,
the c-entropyof the Langevinequationwhich assumesthe irregularity of the signalon arbitrarily
small scaleswill overestimatethe actual c-entropyof the process.In that regime, the stochastic
assumptionsof the kinetic model would haveto be revised.

That is the casein modelsof deterministicdiffusionwith only two degreesof freedomwherethe
saturationis rapid. As an example,we considerthe following mapof the real line [631

X~ =X,+psin2irX
1, (7.4)

which presentsdiffusion, in particular,at the valuep = 0.8 with adiffusion coefficient D = 0.18
[63]. Figure 25b depictsthe c-entropyper unit time calculatednumerically wherethe saturation
towardthe KS entropy~ = 2 = 0.49 digits/iteration is visible at smallvaluesof c.

We seethat the c-entropyis thus ableto revealsubtledistinctionsin the stochasticassumptions
of a particularkinetic model.

7.2.4. Masterequations
Masterequationslike (3.23) are often usedto model rate processesin physicalchemistry. One

exampleis the transport in the phasespaceof chaotic systemswith a finite numberof degrees
of freedom [64]. Another exampleis provided by macroscopicreaction-diffusion in far-from-
equilibrium systemswith a very large numberof degreesof freedom [27]. In both cases,the
statisticalassumptionsof the kinetic modelusuallycontainsa time scalei~underwhich thekinetic
model is not valid anymore. This time scale i” is somerecurrencetime like the crossingtime
of the Poincarésurfaceof section in chaotic systemsor the intercollisional time in macroscopic
far-from-equilibrium systems.On this small time scale,the underlyingdeterministicdynamicsstart
to show its effects. Below thistime scale,thedynamicalrandomnesscomesfrom the chaoticnature
of the motion so that the i-entropyper unit timeis alwaysboundedby the valueof the KS entropy
per unit time of the full deterministicdynamics

h(i)�h~. (7.5)

In the regimewherei>> i~,the i-entropyper unit timecalculatedusingthe deterministicdynamics
togetherwith apartition of its phasespaceinto the states{a} should take the samevalueas the
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102 ~~pe2 (b)

x 10.2 10’ 100 101 102 ~
t C

Fig. 25. (a) The map (7.4) as a model of deterministic diffusion. (b) Numerical evaluation of the (a, r)-entropyof the
nonstationary process on the real line for different values of r = 1 (filled circles),r = 10 (squares),andr = 100 (filled
diamonds). For each value of r, the different curves correspond to time sequences of lengths N = 1, 4, 7, 10, 13, 16,
19 [cf. (2.37)— (2.41)]. The crossedsquaresgive the entropycalculatedwith periodic boundaryconditionover 50 lattice
cells (0 � I < 50) which coincides with the value of the mean Lyapunov exponent hy,~= A = 0.49 digits/iteration. The
envelope of the different curves decreases like (1/a )2 at large a but saturates at the value of the KSentropy at small a.

i-entropyof the masterequation,providedthat the masterequationgivesa faithful descriptionof
the time evolutionof the states{a} (seefig. 26).

This statementis generalandconstitutesan extensionof the principle of invarianceof the entropy
per unit time underan isomorphismby Kolmogorov,Sinai,andOrnstein [16, 23].

7.2.5. Turbulence
In developedturbulence,the applicationof the precedingreasoningleadsto asimilar situation.

Although turbulenceis describedby the deterministicNavier—Stokesequations,it turns out that
the regimesat large Reynoldsnumberscan effectively be describedby noisy stochasticprocesses
on largeandintermediatescales.In this case,the aim is the obtentionof an effectiveisomorphism

h(’r) “..., Birth-and-deathprocess

hKs~.

log ‘t

Fig. 26. Schematic behaviorof the actual r-entropy per unit time (solid line) compared with the r-entropy of the birth-and-
death processes. Wesee the crossover around r = r~’ and the saturation to the KS entropy [cf. eq. (7.5)].
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betweenthe dynamicalsystemof the Navier-Stokesequationsandsomestochasticprocess.

7.3. Perspectives

Our purposein this paperhasbeento presentthis theory of the (c, r)-entropy per unit time
in a systematicway and in its modernphysico-chemicalcontext wherea lot of different random
processesare considered.We think that it is particularly important to comparetheir degreeof
randomnessin order to understandtheir limit of validity and their origin in the deterministic
chaoticdynamics maybeat remotely small scales.About this question, the equivalenceprinciple
by Kolmogorov,Sinai [16], Ornstein [23], andothersis apowerfulguidingprinciple to relate the
stochasticprocessesusually consideredin nonequilibriumstatistical mechanicsto the underlying
deterministicchaotic dynamicsof thesemany-body systems.On the other hand, the stochastic
modelsmay be taken for what they are to model experimentalresults. It is then important to
control the transitionsthat mayoccur in their degreesof randomnesslike in fluid turbulence.

Moreover, we have shown that the concept of entropy over a time interval and a space volume
is uniquelyable to establishaclassificationof the different spacetimerandomprocessesaccording
to their degreeof dynamicalrandomness.We believethat the very broad perspectivethat is so
provided hasfar reachingconsequencesin the naturalsciences.First of all, it gives aquantitative
measure of the randomness of a system. For instance, a chaotic model is sqggested if thec-entropy
per unit time presentsaplateau.In this case,we find [65]

H(c,i,T) ~ Thy,~+ d1log(1/c), (7.6)

and the divergence with c -~ 0 in the term which is independentof the time T provides us with
the information dimension of the chaotic attractor.

However, if the c-entropy per unit time diverges as c —~ 0, a stochastic model will be more
appropriate

H(c, i, T) ~ Th(c). (7.7)

In that case,the type of the divergencemay point towardthe kind of noiseto consideraccording
to table 2. We remark that the divergenceappearsin the term which is proportionalto the time
contraryto (7.6) so that the dependenceon c of the next term is hidden in (7.7).

Furthermore,in fields like statisticalmechanicswherethereexistchainsof modelsor theories,the
c-entropycandetectthe degreeof dynamicalrandomnesswhich is introducedwith the assumptions
used to go from one model or theory to another. In particular, we haveshown here, that the
Boltzmann—Lorentzkinetic modelassumesahigherdynamicalrandomnessthanpresentat the level
of the chaotic Newtonian dynamics, which restricts the domain of validity of the kinetic model to
the mesoscopicscales.

Thereare also important applicationsin biology or artificial intelligence, for instance,to the
stochasticgating dynamicsof the ion channels[66] or to the activity of neuralnetworks [67].
Other applicationsexist in communicationproblems[5].

As we enterinto the dynamicsof microscopicsystems,we think that it is importantto extend
the precedingconsiderationsto quantummechanics.The reasonsare twofold. First, the quantum
effects are importantin many physico-chemicalrandomprocesses,specially, at low temperature
and in quantumoptics. In particular, the characterizationof the degreeof randomnessof these
processesconsideredas sourceof information is a major preoccupationin quantumelectronics
and telecommunication[68, 69]. Moreover, the origin of randomnessin quantummechanicsis
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a central problem and we think that a quantitativemeasureof the dynamicalrandomnesslike
the entropyper unit time providesa unique opportunity to makeprogresson this fundamental
question.We have alreadyobtainedelsewheresignificant resultsaboutdynamicalrandomnessin
quantumsystemswhich shedanewlight on this problem[39, 55].
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