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ABSTRACT We define the class of sporadic dynamical
systems as the systems where the algorithmic complexity of
Kolmogorov [Kolmogorov, A . N. (1983) Russ. Math. Surn.
38, 29-40] and Chaitin [Chaitin, G. J. (1987) Algorithmic In-
formation Theory (Cambridge Univ. Press, Cambridge, U.K.)]
as well as the logarithm of separation of initially nearby trajec-
tories grow as n'*Qog n)e with 0 < Po < 1 or Po = 1 and v1 < 0
as time n -- x. These systems present a behavior intermediate
between the multiperiodic (Po = 0, vl = 1) and the chaotic
ones (Po = 1, v1 = 0). We show that intermittent systems of
Manneville [Manneville, P. (1980) J. Phys. (Paris) 41, 1235-
1243] as well as some countable Markov chains may be sporad-
ic and, furthermore, that the dynamical fluctuations of these
systems may be of LUvy's type rather than Gaussian.

1. Introduction

Exponential separation of trajectories of nearby initial condi-
tions is a very general feature shared by a large variety of
dissipative and conservative dynamical systems. This prop-
erty has become in the last decades a theoretical cornerstone
to understand irregular time evolutions in natural phenome-
na and in their models. Several quantities have been defined
to characterize the exponential instability of a dynamical
system 1D with an invariant measure u, such as the expo-
nents of Lyapunov and Oseledec and the entropy per unit
time of Kolmogorov and Sinai h(4, A). When the entropy is
positive, the system is called chaotic and at least one Lya-
punov exponent is then positive. The entropy is vanishing
when the system is periodic or multiperiodic (1).
The connection between the exponential dynamical insta-

bility and the randomness of trajectories is provided by the
algorithmic complexity of Kolmogorov (2) and Chaitin (3).
After partitioning the phase space into cells {AO, Al, . . ..
Am-i}, a given trajectory can be represented by a sequence
of integers or symbols

S = 5O5152 . [1.1]

if the position x, at time n belongs to the cell A,.. The algo-
rithmic complexity K(Sn) of the string Sn composed of the n
first symbols of S is defined as the binary length of the short-
est possible program P able to reconstruct the string S, on a
universal machine A; i.e.,

K(S,,) = min IPI,
Sn=A(P)

[1.2]

where 1.1 denotes the binary length. A periodic string can be
constructed by specifying only the length n of the string and
the pattern of one period so that

K(S,,) - log2n (periodic trajectory). [1.3]

However, if no regularity is observed in the string, as is the

case for a random sequence, we have no possibility other
than memorizing the whole string S,,, so that (3, 4)

K(Sn) - n (random trajectory). [1.4]

The following relation to the entropy per unit time shows
that random trajectories prevail in chaotic systems,

lim - K(Sn) = h(Q, ,u)
n---x n

[1.5]

for As-almost all trajectories (5).
The question arises whether intermediate dynamical be-

haviors could exist between multiperiodic and chaotic ones
in the sense that the complexity K(S,) increases asymptoti-
cally as

nvO(log n)lwith 0 < v0< 1 or vo = 1 and r1< 0 [1.6]

for almost all trajectories of initial condition in a given cell Ai
of the partition provided that 1(Ai) < a. This latter condi-
tion is necessary because the invariant measure At may be
nonnormalizable. We call strongly sporadic such a dynami-
cal system. If the asymptotic behavior (expression 1.6) holds
for the average complexity E(K(Sn)), we shall say that the
system is weakly sporadic. In such systems, the dynamical
instability would not be exponential anymore. So we could
also use the logarithm of separation between nearby trajec-
tories to define the sporadic systems when they are differen-
tiable. In one-dimensional chaotic systems, the Lyapunov
exponent A is given asymptotically by As/n with

An=E log2 d (xi)|. [1.7]

In sporadic systems, A is vanishing and A,, behaves as
expression 1.6. The exponent of sporadicity v0 is then given
asymptotically by In A,,/ln n. We shall then speak of
stretched exponential instability. The advantage of such a
definition is that it can be generalized to differentiable dy-
namical systems in a phase space of dimension larger than
one.
We shall show that the intermittent systems of Manneville

(6)

Xn+ = ¢F(x") = xn + cxn (mod.1) (z . 1) [1.8]

are sporadic when z 2 2. The invariant density of Eq. 1.8
behaves near the origin as p(x) = x1 . It is not normalizable
when z . 2, so that the invariant measure A defines a proba-
bility for z < 2, but only a conditional probability for z -2 as
proposed by Mandelbrot in the context of continuous sto-
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Xn+1

1
chastic processes (7). We consider the countable partition of
the unit interval as constructed on Fig. 1. The measure of
one of the subintervals {Ak} and the transition probability
between AO and Ak behave as

A(Ak) -

(k + l)z - 1
[1.9a]

and

Pr(AO > Ak) = Pok- - Z

(k + 1)z-1
[1.9b]

respectively. Then we assume that the system is equivalent
to the countable Markov chain defined by the transition ma-
trixt

/POO P01 P02 P03 ...

1 0 0 0 ..

0 1 0 0 .... . [1.10]
0 0 1 0 ..

A similar assumption was used with success by Ben-Mizra-
chi et al. (8) and Geisel et al. (9), where the Fourier spectral
density s(f) was shown to diverge in the infrared. Then, the
autocorrelation function C(n) and the variance of the dynam-
ical fluctuations rn obey power laws

C(n) -

nj_, (n --, [lo), l AW

s(f) (f-- 0), [1.llb]

n
1 n+y (n °° o), [l.llc]

0
0

Xn

... A3 A2 Al Ao

FIG. 1. Construction of the countable partition {AO, A1, A2, ...I
of the unit interval for Manneville's intermittent systems (6) defined
by Eq. 1.8.

Let us denote the expectation and the variance of the recur-
rent time by T and a2, respectively, when they exist. Let
Ga(x) be the distribution function of Ldvy's stable law of
parameter a with 0 < a < 2, a #& 1 and of characteristic
function

(ha(s) = exp{-ISjaF(1 - a)[Cos( 2 )

- isgn(s)sin(Z2 )]}. [2.2]

G2(x) is the standard Gauss distribution function. We can
then prove the following results. a and A are given by func-
tion 2.1.

(i) If 1 - z < 3/2, the fluctuations are Gaussian with

Pr{Nn -- x
a, nl/2 nfa. G2(x) [2.3]

where 0 < y - 1. These results suggest that the fluctuations
of intermittent systems may be non-Gaussian. This fact is
important for our purpose here.

2. Non-Gaussian Dynamical Fluctuations

By using theory of recurrent events (10, 11), we construct
the probability distribution of the random variable N,,, which
is the number of passages by the cell AO during n units of
time. Then, the variance of N,, gives oJ2, and Nn/n is asymp-
totically the time average of the observable IA(x), which is
the indicator of the cell AO. The probability of a first passage
at time n by Ao is given by the transition probability POn-1
and its distribution function is

F(t) = 1 -At-a (t oo) with a =
1 [2.1]

and

E(Nn) n/T, Var(N,,) - a2fl/T3. [2.4]

In the critical case z = 3/2, the fluctuations are still Gaussian
but

E(N.) - n/, Var(Nn) - n ln n. [2.5]

(ii) If 3/2 < z < 2, the fluctuations are non-Gaussian with

[ Xn(An < <)2

and

E(Nn) nl/,
3z - 4

Var(N,,) - nz - 1. [2.7]

tSuch an equivalence is exact for the piecewise linear map of the
unit interval, x,,,+ = 4(x,,), defined with

6k-2 _fk-1 (X - ek) + &k- &k X < k-1

W
(X)-uk1 ek

x - a
a' a x 11

with fk= 1 k= 1, 2, 3
(k + 1)z-1

In the critical case z = 2, the fluctuations have a Cauchy-like
distribution with

E(Nn) - n/A ln n, (In n/n)2Var(Nn) = o(1). [2.8]

(iii) If 2 < z, the fluctuations are non-Gaussian with

PrtNn 2 Axa} n Ga(X) (O < a < 1) [2.9]
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and
1

EN)-nz -19
2

Var(N,) - n '.

A

[2.10]

These probability distributions provide us with examples
of violation of the Gaussian character of fluctuations in dy-
namical systems. Fig. 2 presents a numerical calculation of
Var(Nn) for different values of exponent z. Let us remark
here that the fluctuations of observables other than IAO(X)
could have different probability distributions. For instance,
Ben-Mizrachi et al. (8) considered the position x rather than
the indicator IA4x(x) and obtained a variance o2 as given by
expression 1.11 from their spectral density, which is identi-
cal to ours when z < 2 but different when 2 - z. This result
suggests that the class of observables with the same fluctua-
tions is larger in the first case, where we could speak of uni-
versality, than in the second case, where the fluctuations
may depend on the observable.

3. Sporadicity and Stretched Exponential Instability

Now, we turn back to the problem of dynamical instability.
The entropy per unit time and the Lyapunov exponent of the
intermittent systems (Eq. 1.8) are given by

2 3 4

FIG. 3. Lyapunov exponent A calculated by An/n at time n = 227
with a trajectory of initial condition x0 = 0.4. As expected, A is van-
ishing when z - 2.

S is compressible in the sense of Chaitin (4). Indeed, S can
be represented by the sequence of the recurrent times by AO,

R = 02517304.... [3.3]

AI(?, A) = h(4, A) =
f9og2 |(x) p(x)dx

I1 x
p(x)d

S is uniquely recovered from R. So we can associate to the
[3.1] string S,, of the n first symbols of S, the string

RN. = SkSk2...SkN. 9

where p(x) is the invariant density. The numerator is finite
for all z 2 1, although the denominator is finite for z < 2 but
infinite for z 2 2. Thus the entropy is positive for z < 2 but
vanishes as h(Q, A) - (2 - z) near z = 2 and is zero for z 2 2
(see Fig. 3). So intermittent systems are chaotic when z < 2
but neither chaotic nor periodic when z 2 2.
The algorithmic complexity is then able to characterize the

trajectories. Let us consider the symbolic sequence 1.1 pro-
duced by a given trajectory with s,, = k if x,, belongs to the
cell Ak. An example compatible with the transition matrix
1.10 is

S = 021054321010765432103210043....

20 25

[3.2]

log2 n

FIG. 2. Plot of In Var(Nn)/ln n versus log2n for z = 2, 2.5, 3. The
average was performed with 20 samplings by cutting a single trajec-
tory of initial condition xO = 0.4 and time length of 20 x 225 into 20
pieces. At the right is plotted the exponent 2/(z - 1) predicted by
formula 2.10. Because of the trapping of trajectories near the origin,
the statistics become very poor as exponent z increases (about 10
events when z = 3). We observe, as expected, a decrease of the
asymptotic value when exponent z is increased, although a quantita-
tive agreement cannot be concluded.

with Sk.-i = 0 for all i. RN realizes a compression of S,,. N,, is
the number of recurrences by AO in Sn,. The binary length of
RN. is an estimation of the complexity of Sn

Nn

K(S,) = E log2sk.
i=l

As a consequence, the average complexity behaves like

E(K(Sn)) - E(Nn).

From formulae 2.4, 2.5, 2.7, 2.8, and 2.10,

E(K(S,,)) - n if 1 < z < 2,

as expected because the system is then chaotic. However,

E(K(S,,)) - n/In n if z = 2,

and

-1E(K(S,,)) -~n -1 if z > 2.

Here the growth of complexity is slower than linear and the
system is thus weakly sporadic. The exponent of sporadicity
is

a = when z > 2, and 0< a < 1. [3.10]
z - 1

Similarly, using the Markovian assumption, we can show
that the intermittent systems have a stretched exponential
instability when z - 2. Indeed, averaging expression (Eq.
1.7) over trajectories of associated strings (Eq. 3.4), we can

write
n-1

E(A,,) E m1A1, [3.11]
l=0

[3.4]

1.5 -

[3.5]

[3.6]

1.0

0.5

0

z 2

z=.2.5.

In. rN,/nn 21z.

In Var N, / In n 2/z-1

[3.7]

15

[3.8]

[3.9]
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1.0 z ....._.._..

0.5~~~~~~~~~~~~.

* 'K~~~z=4.O0 ~~~
z =5.0 ~.= * A..

0.O , _

5 10 15 20 25

1092 n

FIG. 4. Plot of In A,/ln n versus log2n for different values of exponent z. The predicted exponent of sporadicity vo = 1/(z - 1) is plotted at
the right. The initial condition of the trajectory is xO = 0.4. The effect of a trapping of the trajectory near the origin is a decrease of the curve,
whereas a rise occurs when the trajectory is away from x = 0.

where ml is the average number of symbols Ski equal to 1 in
RN. We have

mI - E(N.)pol [3.12]

and

JAf >i; log2 d (xi) p(xo)dxo. [3.13]

AI i=O dx

An estimation of Al yields

Al I ag2101 (- o). [3.14]

Combining these results, we obtain

E(An) CE(Nn), [3.15]

where C is a positive constant bounded when n -* oo. Conse-

quently, E(An) has the same asymptotic behavior as E(K-
(Sn)). When z < 2, the divergence of two nearby orbits is
thus exponential. However, when z - 2, we are in the pres-
ence of a stretched exponential divergence of trajectories.
Numerical calculations of An are displayed on Fig. 4. In spite
of the extremely slow convergence of ln An/ln n due to non-
Gaussian fluctuations when z 2 2, we observe that the pre-
dicted exponents of sporadicity (Eq. 3.10) are approached by
above, suggesting a strong sporadicity.

4. Other Countable Markov Chains

Non-Gaussian fluctuations and sporadicity are also present
in a particular countable chain on a tree defined by Meiss
and Ott (12). The possible states of the tree are {0, 1, 2, 11,
12, 21, 22, . . .}. Each state is labeled by a string s = olo02*.*.N
with oi = 1 or 2. Following Meiss and Ott, Ds, sl, and s2
denote, respectively, the strings 1o2. . *.N-1, 102 .ONWL
and cl02... o-N2. The allowed transitions in the Markov
chain are s -* Ds, s -* s, s -- sl, s -- s2. The first one is not

allowed if s = 0 (see Fig. 5). The number of 1 and 2 in the
string s will be denoted by Isli and Is12, respectively. The

transition probabilities are then defined as follows (12), in
terms of the parameters {PO, E1, E2, w1, w2} with El, E2 < 1,

Pr(sl -- s) = Poe11+1S1E2,

Pr(s2 -+ s) = PoeI1e 6S12+2,
Pr(s -- sl) = PoWle 1E2 92,

Pr(s -- s2) = POW2i162 2,

[4.1a]

[4.1b]

[4.1c]
[4.1d]

and they satisfy

I Pr(s s') = 1.

sI
[4.2]

Generalization to trees with M branchings at each state rath-
er than 2 is straightforward. Meiss and Ott (12) proved that
the probability of recurrence at time t by the first state 0 of
the tree behaves asymptotically like t- "+1), where z is de-

FIG. 5. Tree of states of the countable Markov chain defined by
Meiss and Ott (12). The branching is here equal to M = 2.
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Table 1; Classification of the different dynamical behaviors
Levy parameter 0 < a < 1 1 < a < 2 a = 2

Fluctuations Levy Levy Gauss
Instability Sporadic Chaotic Chaotic
In Manneville systems (6) for z > 2 2 > z > 3/2 3/2 > z > 1
In Meiss-Ott systems (12) for 0 < z < 1 1 < z < 2 2 < z

fined by
M

E wjefz = 1 [4.3]

According to the theory ofrecurrent events (10, 11), the fluc-
tuations in the number of recurrences by the state 0 during a
given time interval will have Ldvy probability distributions
like formulae 2.3, 2.6, and 2.9 with a = z if z < 2 and a = 2 if
z > 2 here.
The invariant measure is easily calculable and is given by

gi S) = (Wi(W)[4.4]

It is normalizable and defines a probability at the condition
that z > 1, which is equivalent to (w,/e1 + w2/e2) < 1. The
normalizing constant is then

=; 1 _ (iM + W2) [4.5]

When z c 1, the invariant measure is not normalizable and
only conditional probability can be defined. We can show
that the entropy per unit time of the Markov chain,

hQF), --,) ,(s) Pr(s -* s')log2Pr(s -- s'), [4.6]

is finite and positive when z > 1 but is zero when z - 1. As
the Markov chain is not periodic, it is sporadic when z - 1,
with a = z as the expected exponent of sporadicity.
The parallelism with the different dynamical behaviors of

the intermittent systems is striking and suggests that the the-
oretical scheme summarized in Table 1 is very general. Let
us remark that two-dimensional Hamiltonian mappings seem

to correspond to the case 1 < z = a < 2 in the model ofMeiss
and Ott (12). The fluctuations would then be of Ldvy's type
but the system would still be chaotic. This example shows
that non-Gaussian fluctuations and 1/f noise do not imply
sporadicity, albeit sporadicity is always associated with such
phenomena.
To conclude, sporadicity fills in a gap between multiperi-

odic and chaotic dynamical behaviors or equivalently be-
tween predictable and random patterns.
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