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Abstract6

Pyramidal cells and interneurons expressing parvalbumin (PV), somatostatin (SST), and va-7

soactive intestinal peptide (VIP) show cell type-specific connectivity patterns leading to a canonical8

microcircuit across cortex. Experiments recording from this circuit often report counterintuitive9

and seemingly contradictory findings. For example, the response of SST cells in mouse V1 to top-10

down behavioral modulation can change its sign when the visual input changes, a phenomenon11

that we call response reversal. We developed a theoretical framework to explain these seemingly12

contradictory effects as emerging phenomena in circuits with two key features: interactions between13

multiple neural populations and a nonlinear neuronal input-output relationship. Furthermore, we14

built a cortical circuit model which reproduces counterintuitive dynamics observed in mouse V1.15

Our analytical calculations pinpoint connection properties critical to response reversal, and predict16

additional novel types of complex dynamics that could be tested in future experiments.17

Introduction18

Three major non-overlapping classes of interneurons expressing parvalbumin, somatostatin and vasoac-19

tive intestinal peptide (henceforth denoted PV, SST and VIP respectively) make up more than 80% of20

GABAergic cells of mouse cortex [Rudy et al., 2011]. These neurons show cell type specific connectivity21

among themselves and with excitatory (E) neurons [Pfeffer et al., 2013, Jiang et al., 2015] forming a22

canonical microcircuit in the cortex. This microcircuit motif, initially proposed theoretically [Wang23

et al., 2004], has been the subject of numerous recent experimental studies using optogenetic tools24

applied to behaving mice [Lee et al., 2012, Saleem et al., 2013, Kepecs and Fishell, 2014, Hawrylycz25

et al., 2016] as well as computational studies [Lee and Mihalas, 2015,Lee and Mihalas, 2017,Lee et al.,26

2017,Yang et al., 2016,Yang and Wang, 2017]. However, we still do not fully understand the mecha-27

nisms that underlie the behavior of this microcircuit which are often complex and counterintuitive.28

A notable observation was that pyramidal neurons and VIP interneurons concomitantly increase29

their activities in the primary visual cortex V1 during locomotion in comparison with immobility [Niell30
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and Stryker, 2010], even in the complete absence of visual input [Keller et al., 2012]. Moreover,31

optogenetically activating (respectively inactivating) VIP interneurons mimics (respectively eliminates)32

the effect of running [Fu et al., 2014]. Since VIP cells primarily target SST cells, a natural explanation33

for this phenomenon is disinhibition [Wang et al., 2004, Lee et al., 2013]: activation of VIP cells34

suppresses SST cells, therefore neurons targeted by the SST population are disinhibited, enhancing35

the overall activity of excitatory neurons. However, recent experiments show that the network behavior36

might be more complex. Namely, in darkness the activation of VIP cells results in an average decrease37

of SST population activity [Fu et al., 2014], whereas in the presence of visual stimulation the response38

of SST cells is reversed and its firing rate increases during locomotion compared to immobility [Pakan39

et al., 2016]. These findings, which have been further confirmed in a recent preprint [Dipoppa et al.,40

2017], appear to challenge the disinhibition hypothesis, suggesting that the nature of the interaction41

between VIP and SST could be stimulus dependent.42

These experimental results raise two questions: First, the external activation of a population that43

directly inhibits a second population can trigger a positive response of the latter. What is the mecha-44

nism behind this apparently paradoxical behavior? Second, the same top-down modulation can trigger45

both a positive and a negative response of certain populations of the circuit depending on the sensory46

input. Under which conditions can we expect one response or the other?47

In this study we model cortical activity and provide a comprehensive answers to these two questions.48

We show that these counterintuitive phenomena rely on two basic features of cortical networks: (i)49

the presence of multiple populations of interneurons and (ii) nonlinear responses to input. Finally, we50

use our model to predict complex behaviors that have not yet been experimentally tested. Beyond the51

mechanistic explanation for the observed behavior in mice V1, our work provides a very general and52

powerful framework to explain the dynamics of neural networks with multiple interneuron types, their53

context-dependent interactions, and the emergence of counterintuitive effects that may occur across54

different cortical structures and animals.55

Results56

We simulate microcircuit activity using a four population firing rate model. The average rate of each57

population is given by a nonlinear function of its input that we refer to as the f-I curve [Abbott and58

Chance, 2005]. The f-I curve is such that when the input is low (below threshold) cells are little59

responsive to changes in external input. Instead for high input (above threshold) small changes in60

the input can drive substantial changes in the response [Miller and Troyer, 2002] (see figure 1b). This61

nonlinearity has been analyzed experimentally and theoretically [Murphy and Miller, 2003,Phillips and62

Hasenstaub, 2016] and as we will show later, it is a key feature of the model.63

Populations are connected according to the microcircuit scheme in figure 1a which contains the64

connections reported in both [Jiang et al., 2015] and [Pfeffer et al., 2013]. We also consider three65

sources of input: (i) top-down modulation that targets VIP cells (ii) local recurrent input and (iii)66

constant background input set so that the populations have some fixed baseline activity (see methods67

for details).68

Response to top-down modulation depends on baseline activity69

To illustrate possible complex behaviors displayed by the network, we first focused on the circuit70

responses to top-down modulation. The simulation results from our model allow us to identify two71
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qualitatively different scenarios depending on the baseline activity of the network (the baseline activity72

is the activity before the onset of top-down modulation and we control it by changing the constant73

background input, see methods for details). On the one hand, when the baseline activity is low, top-74

down modulation will result in a decrease of the rate of the SST population and an increase of the75

rates of the other populations (E, PV and VIP) (see figure 1c). On the other hand, when baseline76

activity is high, the rate of all populations increases with top-down modulation (see figure 1d). These77

simulations reveal that population responses to top-down modulation depend in a complex way on the78

initial state of the network.79

The striking behavior exhibited by the SST population can be explained heuristically by analyzing80

the response of the different populations to external excitatory input targeting VIP cells. When the top-81

down modulation starts, the rate of the VIP population increases. By calculating the time derivatives82

of the rates right after the onset of the top-down modulation (see methods) one can see that this83

effect always results in a transient reduction of SST activity and therefore a reduction of inhibition84

to VIP, PV and E cells. When baseline activity is low the E population is below threshold and this85

change in net input has a small effect in the output. In that situation all populations quickly reach86

a stationary state. However, when the baseline activity is high the E population is above threshold87

and a small change in input from SST cells has a big effect on the rate of the E population. If the88

recurrent excitation in the microcircuit is strong enough it can reverse the initial response of the SST89

population making it increase its activity to a higher rate than the baseline.90
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Figure 1: Response to top-down modulation depends on baseline activity. (a) Microcircuit connectiv-
ity and top-down modulatory input. (b) f-I curve. When input is low changes in input have almost no effect on
the output rate, instead, when input is high changes in input have a big effect on output rate. (c, d) Transient
dynamics upon the onset of the top-down modulatory current for low baseline activity (i.e. when the rates
are low before top-down modulation) and high baseline activity (i.e. when the rates are high before top-down
modulation). Under a low baseline activity condition SST is inhibited and E and PV are slightly disinhibited.
The high baseline activity condition shows an example of response reversal in SST activity: it initially goes
below the baseline rate but due to significant change in E activity and to the recurrent excitation it eventually
reverses to a rate higher than baseline.

Circuit behavior explained by response matrix91

In order to formally characterize the steady state response of a population to external input we in-92

troduce the response matrix M . The intuition behind the response matrix is that if we change the93
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input to population j (where j = E,P, S, V for excitatory, PV, SST and VIP populations respectively)94

by a small amount δIj , then the change in rate of the population i will be δri = δIjMij . If Mij is95

positive (negative), an increase of the external excitation to j will result in an increase (decrease) of96

the rate of population i (see methods and table 3 for details). In contrast to the connectivity matrix,97

which takes into account only the direct path from population j to i, the response matrix contains98

information about all the possible ways in which population j can affect population i, namely through99

indirect connections j-h-i. Due to the complexity of these indirect pathways, for different values of100

the connectivity matrix (but preserving the excitatory/inhibitory structure) Mij can be positive or101

negative irrespective of whether the connection from j to i is inhibitory or excitatory. Furthermore102

due to the nonlinearities in the f-I curve, the response depends on the baseline rate of each of the103

populations and, as shown before, it can reverse its sign.104

As an example we analyze in detail the response of the SST population to external input to VIP
cells. As we show in the methods section, this term of the response matrix is given by:

MSV = CwSV ((wEE − dE)(wPP + dP )− wEPwPE) ,

where wij are the absolute values of the connection weights and therefore are positive by definition and105

for the system to be stable C has to be positive (see methods for details). The terms di are proportional106

to the inverse of the first derivative of the f-I curves and are always positive. In particular dE becomes107

arbitrarily large when the input is very low and tends monotonically to a positive constant d∞E for108

high input. Therefore, if wEE ≤ d∞E then MSV will always be negative. However, for wEE > d∞E the109

behavior is much richer: if input is high then dE will be close to its minimum d∞E and wEE > dE110

allowing for MSV to be positive (provided that the product wEPwPE is small enough). Instead if the111

input is low, dE will become very large and MSV will be negative.112

It is remarkable that this change in the interaction between VIP and SST populations depends on113

the activation level of E: modifying the state of one population has a impact in the interactions between114

other populations. The heuristic explanation is that if the recurrent excitation is strong enough and115

the E population is already strongly excited (above threshold), a small decrease in the inhibition from116

SST to the E population can boost its activity and therefore strongly drive the whole microcircuit. If117

instead, the E population is in a low activation state the change in inhibition will have a weak effect118

that will not be able to reverse the response of SST.119

This observation provides an explanation to the reversal of the response of SST to VIP activation120

when the baseline activity is changed: as we show in figure 2a and 2c for low baseline activity, MSV is121

negative and the presence of an external excitatory current targeting VIP cells will result in a negative122

response of SST cells and positive response of E, PV and VIP cells, conforming to the disinhibitory123

hypothesis. On the other hand, for high baseline activity (panels 2b and 2d), the response of the SST124

population to input to VIP cells becomes positive leading to the response reversal regime.125

A similar analysis can be conducted for all terms in M . For example, another case of response126

reversal in this circuit is that of MEE which can have different signs for different baseline activity levels,127

meaning that the excitatory population can have a negative response to excitatory input to itself.128

Intuitively, if an external excitatory current targets the E population, its rate will increase transiently129

and thus the excitation that SST and VIP receive will also increase. If this effect is stronger in SST130

than in VIP the rate of the VIP population will decrease and therefore the inhibition that SST receives131

will decrease as well resulting in stronger inhibition to E cells. Note that for this to happen both SST132

and VIP have to be in the high activity baseline (i.e. dS , dV have to be small) and wSV , wV S have to133
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be strong. The explicit expression of MEE (see table 3) reveals that if the SST-VIP-SST loop is not134

strong enough or if dS , dV are large MEE will always be positive.135
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Figure 2: Response matrix and disinhibition vs. response reversal regime. (a-b) Tuning curves for
the different populations and baseline activity in both scenarios (low and high). In the low baseline activity
scenario (a) all populations are below threshold (flat part of the fI curve), instead in the high baseline activity
scenario (b) all populations are above threshold, where small changes in input result in large changes in rate.
(c-d) Response matrices for the two scenarios. In (c) the response of SST to external excitation of VIP is
negative, while the responses of E and PV are positive. This corresponds to the disinhibition regime. In (d)
the responses of all populations to external excitation of VIP are positive, in particular, the response of SST is
reversed with respect to (c) corresponding to the response reversal regime.

Random network model136

Experimental recordings showed a great diversity across neural responses even when recording from137

the same class of cells (Pyramidal, SST, PV or VIP) [Pakan et al., 2016]. Although this diversity can138

have many origins, such as intrinsic heterogeneity in the cells within the same class, we proposed that139

random connectivity alone is sufficient to explain it. To do so we develop an extension of our model140

where each population is composed of multiple identical randomly connected rate units and where the141

probability that one connection exists from one unit to another depends on the populations of the142

presynaptic and postsynaptic units according to data extracted from [Jiang et al., 2015,Pfeffer et al.,143

2013] (see methods for details).144

For each unit we measure the rate modulation (rate during top-down modulation minus baseline145
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activity) for the different baselines. If the rate modulation is positive it means that the neuron is146

more active in the presence of the modulatory current and vice versa. In 3b we show scatter plots147

of the rate modulation under the low baseline condition versus the rate modulation under the high148

baseline condition for each unit. These simulations reveal that the behavior of individual neurons can149

be quite variable while the population average still corresponds to the behavior of the population based150

model. Since all units of each population are identical, variability in the response has to be due to151

the heterogeneity in the connectivity. This variability can result in cells within the same population152

having responses with opposite sign, as has been observed to be the case in mouse V1 [Reimer et al.,153

2014, Pakan et al., 2016] and A1 [Kuchibhotla et al., 2016]. In addition variability might also have154

further implications for gating of signals, since variability in inhibitory cells has been proposed to155

modulate the response gain of neural circuits [Mejias and Longtin, 2014].156
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Figure 3: Random network model. (a) Schematic of the model. Each population is composed of several
rate units and the connectivity between units is random with probabilities extracted from experimental data in
the literature. (b) Rate modulation (rate after the onset of the modulatory current minus baseline rate) for low
and high baseline activities. Each colored point corresponds to one unit. Unit responses are very variable and,
in particular within the same population different units might have responses with different sign. White points
correspond to the population average. Despite the variability of individual responses the population average
corresponds to the population responses in the single unit model in figure 1.

Model of mouse V1 accounts for experimental measurements157

Our framework allows us to easily understand the counterintuitive behavior of V1 during locomotion.158

In the experiments mice with their head fixed face a screen where different visual stimuli are presented159

and can run freely on a treadmill [Fu et al., 2014,Pakan et al., 2016]. Different visual stimuli result in160

different baseline activities in V1 and top-down modulation is triggered when the mice start running.161

To model visual input we use external currents. In the case of size-varying gratings this input has162

two sources: thalamic input that targets excitatory cells and cortical input that targets SST cells. In163

order to reproduce the surround suppression effect [Ozeki et al., 2009,Adesnik et al., 2012] excitatory164

cells have a small receptive field and therefore receive center input and SST cells have a large receptive165

field and receive surround input (see methods for details).166

Figure 4b shows the response reversal phenomenon when a weak visual stimulus is presented. Before167

the visual stimulation the SST has higher activity for immobility than for locomotion, by contrast,168

when the visual stimulus is presented, the activity of the SST population is higher for locomotion.169

In figure 4c we show the experimental data from [Pakan et al., 2016] for three different experimental170

conditions (darkness, gray screen and grating) and in figure 4d our simulations of V1 under the same171
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conditions. Supplementary figure 4 S1 shows the experimental data from the preprint [Dipoppa et al.,172

2017] for gratings of different sizes alongside with the behavior of our model.173

Our simulations of this V1 circuit model reproduce the phenomena described in the literature:174

in the presence of visual stimulation the activities of all populations, including SST, increase during175

locomotion [Pakan et al., 2016]. In darkness, the activities of excitatory, PV and VIP populations176

increase during locomotion while the activity of SST decreases as reported in [Fu et al., 2014] and177

in the preprint [Dipoppa et al., 2017]. In [Pakan et al., 2016] the response of SST to locomotion in178

darkness is weakly positive but this result is not statistically significant while the other two are.179

To show that our results do not rely on a fine tuning of the connectivity parameters or even on cer-180

tain details of the microcircuit structure we have run the model with several connectivity matrices and181

perturbations of them (figure 4 S2) and we find that different connectivity parameters can reproduce182

the same circuit behavior as has been shown before in other systems [Marder et al., 2015]. We have183

also considered other microcircuit structures to account for the differences between studies ( [Pfeffer184

et al., 2013] reports projections from PV to VIP and [Jiang et al., 2015] from PV to SST) and we also185

consider thalamic input to PV (figure 4 S3). In all these cases, the results were consistent with our186

original findings showing that the phenomenon and the analysis are robust and not a peculiarity of187

one specific circuit.188
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Figure 4: Model of mouse V1 behavior. (a) Schematic of the microcircuit. Visual input targets E and
SST cells. Behavior related top-down modulation targets VIP cells. (b) Response of E and SST populations
when a weak visual stimulus (6 deg) is presented for locomotion and immobility. The E population always
shows a higher response with locomotion. On the other hand, before the visual stimulation the SST population
has higher activity for immobility than for locomotion and when the visual stimulus is presented, the activity
of the SST population is higher for locomotion. (c) Relative change in calcium fluorescence for three levels of
visual stimulation (darkness, gray screen and grating) and two behavioral states: immobility (empty bars) and
locomotion (filled bars) extracted from [Pakan et al., 2016]. (d) Rates (in Hz) of the populations in the V1
simulation for the same conditions as in (c). Comparison of (c) with (d) shows that our simulations reproduce
qualitatively the activity of neural populations in mice V1. Namely the activity of all populations is higher
during locomotion than during immobility whenever there is visual stimulation and for E, PV and VIP also
in the absence of visual stimulation. Our model shows a decrease in activity of SST during locomotion as
reported in [Fu et al., 2014] (the change in activity of the SST population in darkness in [Pakan et al., 2016] is
not statistically significant). The quantitative differences might be related to the fact that changes in calcium
fluorescence are not proportional to changes in rate.
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Discussion189

We have developed a theoretical model of cortical circuit with multiple interneuron types that accounts190

for newly identified complex interactions between cell types. The model has been used to reproduce191

and explain two counterintuitive phenomena observed in mouse cortex. First, in certain cases the192

activation of VIP cells results in an overall positive response of the SST population [Pakan et al.,193

2016]. Second, the sign of the SST population response to excitation of VIP cells depends on the194

baseline activity of the circuit [Fu et al., 2014]. Two features of the system lead to this behavior: the195

presence of multiple interneuron populations and the nonlinearity of f-I curves.196

We explained heuristically the response reversal by closely looking at transient dynamics of the197

circuit. One experimentally-testable prediction of our analysis is that, as figure 1d and our calculations198

of the transient behavior show, in the response reversal regime, the overall SST population response199

to top-down modulation should initially decrease and later increase until reaching a higher rate than200

the baseline.201

Based on our model we introduced the response matrix M , which is a comprehensive framework202

to understand counterintuitive steady state responses. It provides explicit information about the203

contribution of each individual connection. For example by looking at the elements in MSV (see table204

3), one can readily see that if the recurrent excitation between pyramidal cells is not large enough,205

MSV can only be negative and therefore response reversal of SST would not happen. This statement206

can be easily tested by repeating the experiments while suppressing the activation of the E population.207

As we discussed before, another example is that if both SST and VIP populations have high baseline208

activities and if the SST-VIP-SST loop is strong enough, MEE can be negative, i.e. the excitatory209

population can have a negative response to excitatory input (see table 3 for the explicit expression of210

MEE). If the connections between the SST and the VIP populations are removed (or weakened) or if211

their baseline activities are sufficiently lowered MEE will always be positive. This constitutes another212

interesting prediction that can be experimentally tested.213

Our calculations also revealed sign correlations between entries of M , for example MSV and MSS214

have opposite signs for any connectivity matrix (given the microcircuit) and for any baseline activity.215

This predicts that in the regime where SST activity has a positive response to excitatory input targeting216

VIP, SST has to have a negative response to external input targeting SST. In addition our results are217

in line with experimental studies that show that VIP interneurons play an important role in cortical218

activity modulation [Mesik et al., 2015, Ibrahim et al., 2016,Jackson et al., 2016].219

Our approach constitutes a general conceptual framework in which previous work regarding complex220

cortical interactions can be better understood [Tsodyks et al., 1997,Ozeki et al., 2009,Litwin-Kumar221

et al., 2016]. The analysis of the response matrix shows that for the given microcircuit structure all222

terms of the matrix can be positive or negative. This is not the case in E-I networks (networks with one223

excitatory (E) population and only one inhibitory (I) population) [Tsodyks et al., 1997,Ozeki et al.,224

2009]. In that case MEE and MIE are always positive, MEI is always negative and only MII can225

have both signs (see methods). In this sense, having more than one inhibitory population results in226

a much more versatile network. Another important point that can be derived from our calculations227

is the relationship between response reversal and inhibition stabilized networks (ISN) [Ozeki et al.,228

2009]. Looking at the terms of the response matrix for an E-I network we can see that the condition229

to have response reversal and the condition to be an ISN is the same: WEE has to be larger than d∞E .230

When analysing networks with more than one inhibitory population the relationship is not necessarily231

bidirectional any more. In the network that we analyzed, we found that in the high baseline activity232
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the network is in the ISN regime and MSV is positive (as observed in [Litwin-Kumar et al., 2016])233

whereas in the low baseline activity the network is not in the ISN regime and MSV is negative, so in234

this case there is a clear relationship between being an ISN and exhibiting response reversal. However235

the condition for other cases of response reversal such as MEE do not involve WEE and therefore do236

not require the network to be an ISN.237

Finally, this study provides a parsimonious yet powerful explanation to striking observations of238

interneuronal circuits in V1 [Fu et al., 2014,Pakan et al., 2016,Lee et al., 2017] without requiring the239

assumption of top-down excitatory inputs explicitly targeting SST or PV neurons. Both our com-240

putational neural network model and the approach presented here (the response matrix analysis) go241

beyond circuit dynamics in mice V1 and can be easily applied to other species and cortical areas. By242

extending previous works [Tsodyks et al., 1997,Ozeki et al., 2009], it naturally explains the response243

reversal observed in cat visual cortex [Ozeki et al., 2009]. It could also be applied to explain similar244

phenomena observed in mouse primary auditory cortex [Seybold et al., 2015,Kuchibhotla et al., 2016].245

In particular, in [Kuchibhotla et al., 2016] the authors find that locomotion reduces the activity of246

excitatory cells. Assuming that the main modulation in the circuit is mediated by VIP cells this ob-247

servation implies that MEV < 0 which is the case when the connections WEP and WPS are strong248

enough. In mouse somatosensory cortex, activating VIP neurons results in an intuitive decrease in SST249

activity, instead of a response reversal [Lee et al., 2013]. As our results suggest, this qualitative differ-250

ence between V1 and somatosensory cortex may be explained by the quantitative difference between251

their circuit architectures: in a recent study the authors showed that cell densities of different types252

of interneurons differ substantially across cortical areas resulting in counterintuitive impacts on circuit253

responses [Kim et al., 2017]. These responses can be readily understood using the response matrix.254

In this work, we mainly focused on steady-state responses. However, neural responses in many255

cortical areas, including primary auditory cortex, are largely transient and dynamical [Wehr and Zador,256

2003]. In addition, synaptic connections to and from interneurons are often subject to short-term257

plasticity [Reyes et al., 1998]. Understanding transient dynamics in nonlinear, multi-type interneuronal258

circuits would be an important topic for future research.259

We have shown that similarly to the now well-known paradoxical effect that the presence of a single260

inhibitory neuron type can cause [Tsodyks et al., 1997, Ozeki et al., 2009], the presence of multiple261

types of interneurons has an even stronger impact on the activity of neural circuits. We have also262

exposed the effect of nonlinearity of the f-I curve. Our analysis suggests that in a circuit with multiple263

populations, the most interesting circuit behavior is found when spontaneous baseline activity is close264

to threshold since in that regime responses will change the most with small changes in population rates.265

These two features significantly broaden the richness of the dynamics of cortical circuits and enhance266

their usefulness for cognitive and behavioral computations. We conclude that computational models267

and mathematical analysis are critical to fully understand the dynamics of neural circuits underlying268

behavior [Gjorgjieva et al., 2016], especially when several types of interneurons are involved as intuition269

alone may be misleading and provide erroneous predictions on such circuits.270
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Methods271

Firing rate based population model272

The state of the system is characterized by the rates ri. To model the average rate of each population273

we use a function of the input Vi as the one introduced in [Abbott and Chance, 2005]274

ri = f(Vi) =
Vi − Vth

τ(Vth − Vr)

1

1− e−(Vi−Vth)/v
(1)

where Vth = −50 mV and Vr = −60 mV are the threshold and reset potentials respectively, τ is the275

membrane time constant and v = 1 mV. Vi is the average input to each of the populations and is given276

by277

Vi = Vl +





∑

j

Wijrj + Ii + Iibkg



 /gil (2)

where Vl = −70 mV is the reversal potential and gil is the membrane conductance. W is the connectivity278

matrix and therefore
∑

j Wijrj is the recurrent local input. Ii is the external input current and Iibkg279

is a constant current that is tuned to obtain the desired baseline activity and we find the specific280

values by solving the system ri = f(Vl + (
∑

j Wijrj + Ii + Iibkg)/g
i
l). For example, for the baseline281

activity steady-state the background currents needed to obtain the desired rates (1, 10, 3 and 2 Hz for282

pyramidal, PV, SST and VIP respectively) are 136.4, 238.8, 92.6 and 91.8 pA. The rate dynamics are283

given by284

τr
dri
dt

= −ri + f(Vi) (3)

where τr = 2 ms [Gerstner, 2000]. Since the parameters of the f-I curve are population dependent (see285

table 2), different populations will have different rates for the same input. The nonlinearity of the286

f-I curve has very important consequences. Namely, for low input f(Vi) is almost flat, and therefore287

changes in the input will have almost no effect on the rate. By contrast, for strong input f(Vi) tends288

asymptotically to a straight line with slope 1
τi(Vth−Vr)

and changes in the input will elicit a large change289

in the rate. As we will show later, this feature is key to reproduce the response reversal observed in290

the experiments.291

The connectivity matrix W used in the simulations is generated by rejection sampling, i.e. by292

generating random matrices that have the microcircuit structure given in figure 1a and selecting the293

ones that produce the desired responses. The simulations of figures 1 and 2 were done with the294

connectivity matrix given in table 1.295

Behavioral state is modelled with a constant top-down modulatory current of 10 pA that targets VIP296

cells. The constant background inputs Iibkg are set so that in the absence of the top-down modulatory297

current, the E, PV, SST and VIP populations will have spontaneous average rates of 1, 10, 3 and 2298

Hz respectively for the low baseline activity scenario and 30, 50, 30 and 20 Hz for the high baseline299

activity.300
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from
E PV SST VIP

to

E 2.42 -0.33 -0.80 0
PV 2.97 -3.45 -2.13 0

SST 4.64 0 0 -2.79
VIP 0.71 0 -0.16 0

Table 1: Connectivity matrix (in pAs).

E PV SST VIP

gl 6.25 nS 10 nS 5 nS 5 nS
τ 28 ms 8 ms 16 ms 16 ms

Table 2: Population dependent parameters.

Time derivatives of the rates after the onset of modulation301

In this section we calculate analytically the changes in rate right after the onset of the modulatory302

current. The intuition behind these calculations is that the initial change in activity of a population303

is driven by the fastest path from the external input to the neurons in that population.304

We assume that the system is at a fixed point (therefore dri
dt = 0 for all populations) and that305

at time t = 0 an excitatory top-down modulatory current targets the VIP population. Taking into306

account that the time derivatives of the rates are given by equation (3) and since f(V ) is monotonously307

increasing and the modulatory current IV > 0, then drV
dt (0) will be positive and all other derivatives308

will still be 0. In order to estimate the behavior of the initial slope of dri
dt we calculate the second309

derivatives at t = 0:310

d2ri
dt2

=
1

τi

d

dt
(−ri + f(Vi))

=
1

τi



−
dri
dt

+
df

dVi

∑

j

dVi

drj

drj
dt





=
1

τi

(

−
dri
dt

+
df

dVi

WiV

gil

drV
dt

)

(4)

where in the last step we used the fact that dri(0)
dt = 0 except for VIP. Since df

dVi
, gil and drV

dt are positive,311

the sign of d2ri
dt2

will depend on the sign of WiV . In particular, for SST we obtain312

d2rS
dt2

=
1

τS

df

dVS

WSV

gSl

drV
dt

(0) < 0, (5)

meaning that in all regimes the initial (transient) response of the SST population to top-down modu-313

lation targeting VIP cells will be negative.314
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Response matrix and response reversal315

In order to characterize the response of a population to external excitatory input to the network we316

calculate how its rate will change for a small change in external input. We focus on stationary states317

ri = f(Vi). If we apply a small perturbation to the external input δIi, the network will reach a new318

stationary state319

ri + δri = f(Vi + δVi) = f(Vi) + f ′(Vi)δVi +O(δV 2
i ) (6)

where f ′(Vi) is the derivative of f with respect to V and320

δVi =





∑

j

Wijδrj + δIi



 /gil . (7)

Since ri = f(Vi), when we linearize f around V and ignore terms of order δV 2 and higher we obtain321

the following self-consistent equation322

δri = f ′(Vi)





∑

j

Wijδrj + δIi



 /gil . (8)

We define the entries of response matrix as the derivative Mij =
∂ri
∂Ij

, which can be obtained from the323

limit δIj → 0 in the system of equations given by (8) and in matrix form can be written as324

M = (D −W )−1 (9)

where D is a diagonal matrix with entries Dii = gl,i/f
′(Vi). As it was explained in the results section,325

the nonlinear behavior of the terms Dii is essential to explain the response reversal regime. Dii becomes326

arbitrarily large as Vi → −∞ and decreases monotonically to d∞i = τi(Vth − Vr)/g
i
l when Vi → ∞.327

In table 3 we give the explicit formulas to all the entries of the response matrix in terms of the328

entries of the connectivity matrix W and D (we denote w = |W |, di = Dii and C = det(D −W )−1).329

Note that, because of the complex interactions in the network, the sign of Mij is never determined330

exclusively by that of Wij .331

Random network model332

We consider a network with 800 E units, 100 PV units, 50 SST units and 50 VIP units. Each unit333

within a population has the same f-I curve with the parameters in table 2. The probabilities pij of a334

connection from each unit in population j to each unit in population i are estimated from data [Pfeffer335

et al., 2013,Jiang et al., 2015] and are given in table 4.336

The strengths of the connections are rescaled so that the average input of a unit in population i337

from all units in population j is Wij as given in table 1. More specifically, each unit in population i338

will receive in average mij = pijNj projections from population j (where Nj is the number of units in339

population j) and therefore the weight of these connections will be Wij/mij .340

Top-down modulatory current and background input is identical to all units within the same pop-341

ulation and has the same value as in the population based model.342
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MEE = C(wPP + dP )(dSdV − wSV wV S)
MPE = C(wPE(dSdV − wSV wV S)− wPS(wSEdV − wSV wV E))
MSE = C(wPP + dP )(wSEdV − wSV wV E)
MV E = C(wPP + dP )(wV EdS − wSEwV S)

MEP = −CwEP (dSdV − wSV wV S)
MPP = −C((wEE − dE)(dSdV − wSV wV S) + wES(wSEdV − wSV wV E))
MSP = −CwEP (wSEdV − wSV wV E)
MV P = −CwEP (wV EdS − wSEwV S)

MES = −CdV (wES(wPP + dP )− wEPwPS)
MPS = −CdV (wESwPE − (wEE − dE)wPS)
MSS = −CdV ((wEE − dE)(wPP + dP )− wEPwPE)
MV S = −C(wV E(wES(wPP + dP )− wEPwPS) + wV S((wEE − dE)(wPP + dP )− wEPwPE))

MEV = CwSV (wES(wPP + dP )− wEPwPS)
MPV = CwSV (wESwPE − (wEE − dE)wPS)
MSV = CwSV ((wEE − dE)(wPP + dP )− wEPwPE)
MV V = C(wES(wES(wPP + dP )− wEPwPS)− dS((wEE − dE)(wPP + dP )− wEPwPE))

Table 3: Entries of the respone matrix.

from
E PV SST VIP

to

E 0.02 1 1 0
PV 0.01 1 0.85 0

SST 0.01 0 0 -0.55
VIP 0.01 0 0.5 0

Table 4: Connection probabilities for the random network model.

Mouse V1 model343

In the simulations of V1 activity we use the connectivity matrix given in table 5.344

We model visual input with an external excitatory current that targets E and SST cells. In the345

experiments in [Pakan et al., 2016] and in the preprint [Dipoppa et al., 2017] the authors consider three346

levels of visual stimulation which are: darkness, gray screen and grating. To model darkness condition347

we assume a total absence of visual stimulation (therefore IE = 0 pA, IS = 0 pA). For gray screen348

we use a small input current to the excitatory population (IE = 50 pA, IS = 0 pA). Finally to model349

different grating diameters the value of the input is a sigmoid function of the grating diameter θ:350

Ii(θ) =
ai

1 + e−θ/bi+5
(10)

where bE = 2, bS = 6, aE = 100 pA, aS = 20 pA. With this parameters E cells receive center input351

(input saturates for diameters ∼ 20 deg) and SST cells receive surround input (input to SST saturates352

for diameters of ∼ 60 deg) [Dipoppa et al., 2017].353

To demonstrate that our results do hold for a wide range of connectivity matrices and do not have354

to be fine tuned, we simulate several different connectivity matrices that produce the same qualitative355

behavior. We also make perturbations of these matrices by multiplying each entry by a random variable356
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from
E PV SST VIP

to

E 3.30 -3.48 -2.98 0
PV 1.73 -4.25 -1.07 0

SST 3.50 0 0 -4.51
VIP 0.53 0 -0.13 0

Table 5: Connectivity matrix for the mouse V1 model (in pAs).

uniformly distributed in the interval [0.9, 1.1]. This amounts to randomly modifying each connection357

within ±10% of its original value (see figure 4 S2).358

In the alternative models of figure 4 S3 where visual stimulus input also targets PV cells, we use359

IP = 0 pA for darkness, IP = 10 pA for gray screen and bP = 2, aP = 20 pA for gratings.360

Response matrix for an E-I network361

For the sake of completeness, here we analyse the response matrix for a fully connected E-I network362

[Tsodyks et al., 1997,Ozeki et al., 2009] . The connectivity matrix is363

W =

[

wEE −wEI

wIE −wII

]

(11)

and therefore the response matrix is364

M = (D −W )−1 = C

[

wII + dI −wEI

wIE −wEE + dE

]

, (12)

where C = ((dE − wEE)(wII + dI) + wEIwIE)
−1. Note that the only term that can change sign is365

MII so the only population that can exhibit response reversal is the I population. Furthermore note366

that the condition for having response reversal (wEE > d∞E ) is the same that defines the ISN regime,367

so this two properties are equivalent in the E-I network.368
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Figure 4 S1: Model of mouse V1 behavior with different grating sizes. (a) Relative change in calcium
fluorescence for gratings of diameters ranging from 10 deg to 60 deg for the two behavioral states: immobility
(empty dots) and locomotion (filled dots) extracted from the preprint [Dipoppa et al., 2017] (b) Rates (in Hz) of
the populations in the V1 simulation for the same conditions as in (a). As in figure 4, our simulations reproduce
qualitatively the activity of neural populations in mice V1. Our model also exhibits surround suppression for
all populations.
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Figure 4 S2: Robustness of the behavior. Top: Example of three connectivity matrices that have the same
qualitative behavior (in pAs). Bottom: rate modulation (rate during locomotion minus rate for immobility).
Each bar corresponds to the average rate modulation of 20 random perturbations of the matrices on the top
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as the circuit in figures 4 and 4 S1.
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