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Compte, Albert, Maria V. Sanchez-Vives, David A. McCormick,
and Xiao-Jing Wang. Cellular and network mechanisms of slow
oscillatory activity (�1 Hz) and wave propagations in a cortical
network model. J Neurophysiol89: 2707–2725, 2003. First published
January 15, 2003; 10.1152/jn.00845.2002. Slow oscillatory activity
(�1 Hz) is observed in vivo in the cortex during slow-wave sleep or
under anesthesia and in vitro when the bath solution is chosen to more
closely mimic cerebrospinal fluid. Here we present a biophysical
network model for the slow oscillations observed in vitro that repro-
duces the single neuron behaviors and collective network firing pat-
terns in control as well as under pharmacological manipulations. The
membrane potential of a neuron oscillates slowly (at �1 Hz) between
a down state and an up state; the up state is maintained by strong
recurrent excitation balanced by inhibition, and the transition to the
down state is due to a slow adaptation current (Na�-dependent K�

current). Consistent with in vivo data, the input resistance of a model
neuron, on average, is the largest at the end of the down state and the
smallest during the initial phase of the up state. An activity wave is
initiated by spontaneous spike discharges in a minority of neurons,
and propagates across the network at a speed of 3–8 mm/s in control
and 20–50 mm/s with inhibition block. Our work suggests that
long-range excitatory patchy connections contribute significantly to
this wave propagation. Finally, we show with this model that various
known physiological effects of neuromodulation can switch the net-
work to tonic firing, thus simulating a transition to the waking state.

Cortical oscillatory activity as measured by electroenceph-
alogram (EEG) is a clear signature of the general state of the
brain. The waking state and the rapid-eye-movement (REM)
phase of sleep are characterized by low-amplitude fast oscil-
lations (Gray et al. 1989; Steriade et al. 1996) of a generally
low spatiotemporal coherence (Destexhe et al. 1999). In con-
trast, during slow-wave sleep and anesthesia, the brain shows
pronounced oscillatory activity at a variety of frequencies often
with remarkable long range synchrony (Bullock and McClune
1989; Destexhe et al. 1999; Steriade et al. 1993a, 1996).
During slow-wave sleep, low-frequency (�1 Hz) oscillations
are visible both in the EEG, and in extracellular and intracel-
lular recordings (Achermann and Borbély 1997; Lampl et al.
1999; Steriade et al. 1993b,c, 1996; Stern et al. 1997). Lesion
studies have shown that this type of rhythmic activity origi-

nates in the cortex and is then reflected in subcortical structures
(Amzica and Steriade 1995; Steriade et al. 1993c). Intracellular
recordings in vivo showed that the slow oscillation is mediated
by two phases: a period in which nearly all cell types within the
cerebral cortex are depolarized and generate action potentials
at a low rate (the so-called up state) interdigitated with a period
of hyperpolarization and relative inactivity (the down state).
The transition from the up to down states has been proposed to
occur either in response to synaptic “fatigue” or depression
(Contreras et al. 1996) or to the build-up of activity-dependent
K� conductances (Sanchez-Vives and McCormick 2000). A
gradual increase in input resistance of pyramidal cells during
the up state in vivo has been taken to indicate a steady decrease
of a specific ionic conductance, suggesting a stronger role of
depression of excitatory synapses over the activation of K�

conductances in the transition from the up to the down state
(Contreras et al. 1996; Timofeev et al. 2000b).

Recently, spontaneous activity similar to the slow oscilla-
tions (�1 Hz) recorded in vivo has been described in an in
vitro slice preparation of cerebral cortex when maintained in an
ionically modified artificial cerebral spinal fluid (ACSF) solu-
tion that mimics ionic concentrations in situ more closely than
the solutions traditionally used for cortical slice preparations
(Sanchez-Vives and McCormick 2000). This helped to identify
candidate cellular and circuit mechanisms underlying the gen-
eration of slow oscillations and wave propagation in ferret
visual cortex slices. For example, pharmacological manipula-
tions show that this activity depends on excitatory transmission
through AMPA and N-methyl-D-aspartate (NMDA) receptors,
suggesting a critical role of recurrent excitatory connections.
Open issues remain in relation to the two main aspects of
slowly oscillating cortical activity: the membrane potential
sudden transition between and up state and a down state and
the propagation of activity across the cortical network. Evi-
dence suggests that the transition from the up state to down
state is induced by the opening of a K� conductance (Sanchez-
Vives and McCormick 2000), whose time course has led to the
hypothesis that it is a slow Na�-dependent K� conductance
gKNa known to exist in these neurons (Sanchez-Vives et al.
2000). This raises the question of how an increase of gKNa in
a pyramidal cell could be compatible with an increase of its
input resistance observed during the course of an up state.
Another intriguing aspect of these membrane fluctuations is the
sharpness of the transitions between the up and the down states,
where the relative contribution of intrinsic and network mecha-
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nisms remains to be established. On the other hand, as observed
experimentally, an up state episode consists of barrages of syn-
aptic activity that initiate earlier in infragranular laminae and
occur in all cortical layers. This reverberatory network activity
propagates across the slice at �10 mm/s and is followed by a
silent period of 2–4 s. Blocking GABAA-mediated inhibition
results in epileptiform discharges that propagate along the slice at
�100 mm/s. The ability of a cortical network to sustain two
propagation velocities has been studied mathematically by
Golomb and Ermentrout (2001) for a simple model where each
cell is an integrate-and-fire neuron and is allowed to fire only one
spike. It remains to be examined how these two wave propagation
modes can be realized in a biophysically realistic network model
of conductance-based neurons.

The combined results obtained from the in vivo and in vitro
preparations provide a framework to build a physiologically real-
istic network model of the slow oscillation in a cortical slice. We
present here this biologically realistic network model, and we use
it to address the aforementioned questions about the rhythmogen-
esis and wave propagation. We then speculate about how our
model could relate to slow oscillations during natural slow-wave
sleep and activity in the waking state in vivo.

M E T H O D S

The network model consists of a population of 1,024 pyramidal
cells and 256 interneurons equidistantly distributed on a line and
interconnected through biologically plausible synaptic dynamics.
Some of the intrinsic parameters of the cells are randomly distributed,
so that the populations are heterogeneous. This and the random
connectivity (determined by the synaptic probability distributions; see
Fig. 2A) are the only sources of noise in the network.

Model neurons

Especially in vivo, intracellular voltage records show clear transi-
tions between two well-defined stable membrane potentials (Cowan
and Wilson 1994; Stern et al. 1997). It has been argued that intrinsic
channels may shape the neuronal membrane potential via an inward
rectifier K� channel (IAR) and a slowly inactivating K� channel
activated by depolarization (IKS) (Nisenbaum et al. 1994; Wilson
1992; Wilson and Kawaguchi 1996). In our model pyramidal neurons,
we include these and other channels found in cortical pyramidal cells.

Our model pyramidal cells have a somatic and a dendritic compart-
ment (Pinsky and Rinzel 1994). The spiking currents, INa and IK, are
located in the soma, together with a leak current IL, a fast A-type K�

current IA, a non-inactivating slow K� current IKS, and a Na�-
dependent K� current IKNa. The dendrite contains a high-threshold
Ca2� current ICa, a Ca2�-dependent K�-current IKCa, a non-inacti-
vating (persistent) Na� current INaP, and an inward rectifier (activated
by hyperpolarization) non-inactivating K� current IAR. The dynami-
cal equations for the somatic voltage (Vs) and the dendritic voltage
(Vd) are

CmAs

dVs

dt
� �As�IL � INa � IK � IA � IKS � IKNa� � Isyn,s � gsd�Vs � Vd�

CmAd

dVd

dt
� �Ad�ICa � IKCa � INaP � IAR� � Isyn,d � gsd�Vd � Vs�

with the membrane capacitance Cm � 1 �F/cm2 and the areas being As �
0.015 mm2 and Ad � 0.035 mm2 for the soma and dendrite, respectively.
The coupling between soma and dendrite is determined by gsd � 1.75 �
0.1 �S (axial resistance 0.57 M	, standard deviation indicates the degree
to which this parameter is randomly varied from cell to cell). Isyn,s and

Isyn,d are the synaptic currents impinging on the soma and dendrites,
respectively. In our simulations, all excitatory synapses target the den-
dritic compartment and all inhibitory synapses are localized on the
somatic compartment of postsynaptic pyramidal neurons.

Interneurons are modeled with just Hodgkin-Huxley spiking cur-
rents, INa and IK, and a leak current IL in their single compartment

CmAi

dV

dt
� �Ai�IL � INa � IK� � Isyn,i

with the total neuronal surface area being Ai � 0.02 mm2.

Ion channel kinetics and conductances

All ion channels are modeled following the Hodgkin-Huxley for-
malism, with gating variables x governed by the first-order kinetics
equation dx/dt � � [�x(V)(1 � x) � �x(V)x] � �[x
(V) � x]/�x(V).
� being the temperature factor (� � 1 unless otherwise indicated).

For pyramidal cells, the sodium and potassium spiking currents are
modeled following (Wang 1998) with slight variations. The sodium
current INa � gNam


3 h(V � VNa) has a maximum conductance of
gNa � 50 mS/cm2, its rapid activation variable is replaced by its
steady-state m
 � �m/(�m � �m) with �m � 0.1(V � 33)/[1 �
exp(�(V � 33)/10)] and �m � 4 exp(�(V � 53.7)/12) and the
inactivation variable has �h � 0.07 exp(�(V � 50)/10) and �h �
1/[1 � exp(�(V � 20)/10)]. The temperature factor is � � 4. The
delayed rectifier IK � gKn4(V � VK) has a maximal conductance gK �
10.5 mS/cm2 and its inactivation kinetics are set by �n � 0.01(V �
34)/[1 � exp(�(V � 34)/10)] and �n � 0.125 exp[�(V � 44)/25],
with � � 4. The leakage current IL � gL(V � VL) is a passive channel
with conductance gL � 0.0667 � 0.0067 mS/cm2 (Gaussian-distrib-
uted in the population, mean � SD given). The fast A-type K�-
channel is as in Golomb and Amitai (1997); IA � gAm


3 h(V � VK) has
its fast activation variable replaced by its steady-state m
 � 1/[1 �
exp(�(V � 50)/20)] and the inactivation variable is governed by h
 �
1/[1 � exp((V � 80)/6)] and �h � 15 ms. Its maximal conductance is
gA � 1 mS/cm2. The non-inactivating K�-channel is modeled as in
(Wang 1999a) but with no inactivation variable: IKS � gKSm(V �
VK). It has a maximal conductance gKS � 0.576 mS/cm2 and an
activation controlled by m
 � 1/[1 � exp(�(V � 34)/6.5)] and �m �
8/[exp(�(V � 55)/30) � exp((V � 55)/30)]. The remaining currents
are modeled with instantaneous activation because their activation is
sufficiently fast and removing these additional variables significantly
reduces the time required to perform our network simulations.

The persistent sodium channel INaP � gNaPm

3 (V � VNa) has

maximal conductance gNaP � 0.0686 mS/cm2, it activates instanta-
neously according to m
 � 1/[1 � exp(�(V � 55.7)/7.7)] and it does
not inactivate. It is borrowed with parameter modification from (Flei-
dervish et al. 1996). The inwardly rectifying K� channel was modeled
as in (Stern et al. 1997; Spain et al. 1987) and adjusting the param-
eters: IAR � gARh
(V � VK) activates instantaneously below a low-
lying threshold following h
 � 1/[1 � exp((V � 75)/4)] and it has a
maximal conductance gAR � 0.0257 mS/cm2. The high-threshold
Ca2�-channel ICa � gCam


2 (V � VCa) has gCa � 0.43 mS/cm2 and is
instantaneously activated at very depolarized voltages, thus making it
effectively a very transient current. The voltage dependency is given
by m
 � 1/[1 � exp(�(V � 20)/9)]. The concentration of intracellular
calcium, [Ca2�], follows first-order kinetics as d[Ca2�]/dt �
��CaAdICa � [Ca2�]/�Ca with �Ca � 0.005 �M/(nA � ms) and �Ca �
150 ms. The Ca2�-dependent K� channel IKCa � gKCa[Ca2�]/
([Ca2�]�KD)(V � VK) (with KD � 30 �M) activates instantaneously
in the presence of intracellular calcium [Ca2�], and it has a maximal
conductance gKCa � 0.57 mS/cm2. All the mechanisms involving
intracellular calcium are taken from Wang (1998). As for the intra-
cellular sodium concentration [Na�], its dynamics are somewhat more
involved because they incorporate a Na-K pump (Li et al. 1996):
d[Na�]/dt � ��Na(AsINa � AdINaP)�Rpump{[Na�]3/([Na�]3 �
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153) � [Na�]eq
3 /([Na�]eq

3 � 153)}, with �Na � 0.01 mM/(nA � ms),
Rpump � 0.018 mM/ms, and [Na�]eq � 9.5 mM. The Na2�-dependent
K� channel IKNa � gKNaw
([Na�])(V � VK) has a conductance
gKNa � 1.33 mS/cm2 and w
([Na�]) � 0.37/[1 � (38.7/[Na�])3.5]
(Bischoff et al. 1998). The kinetics for [Na�] and IKNa are taken from
(Liu 1999; Wang et al. 2002). For all these channels, the reversal
potentials used are VL � �60.95 � 0.3 mV, VNa � 55 mV, VK �
�100 mV, and VCa � 120 mV.

For the last three figures, a slight modification in the implementa-
tion of the IKNa current was introduced because we realized that IKNa

was continuously contributing a sizable [Na�]-independent, voltage-
independent hyperpolarizing current that was confounded with the
leakage current. Because for those figures we were interested in
changing independently gKNa and gL, we opted to subtract the con-
stant part from IKNa: IKNa � gKNa (w
([Na�]) � w
([Na�]eq))(V �
VK) and change the leakage properties to compensate for this: gL �
0.07 mS/cm2 and VL � �62.8 mV.

For interneurons, the model was taken from Wang and Buzsáki
(1996). The sodium current INa � gNam


3 h(V � VNa) has a maximal
conductance gNa � 35 mS/cm2, and its rapid activation is replaced by
its steady-state value m
 � �m/(�m � �m) with �m � 0.5(V �
35)/[1 � exp(�(V � 35)/10)] and �m � 20 exp(�(V � 60)/18). The
inactivation gating variable is controlled by �h � 0.35 exp(�(V �
58)/20) and �h � 5/[1 � exp(�(V � 28)/10)]. The delayed rectifier
IK � gKn4(V � VK) has gK � 9 mS/cm2 and it activates with kinetics
given by �n � 0.05(V � 34)/[1 � exp(�(V � 34)/10)] and �n �
0.625 exp(�(V � 44)/80). The leakage current IL � gL(V � VL) is a
passive channel with conductance gL � 0.1025 � 0.0025 mS/cm2.
The reversal potentials are VL � �63.8 � 0.15 mV, VNa � 55 mV,
and VK � �90 mV.

Model pyramidal neurons set according to these parameters fire at
an average of 22 Hz when they are injected a depolarizing current of
0.25 nA for 0.5 s. The firing pattern corresponds to a regular spiking
neuron with some adaptation, no bursting pattern was ever observed.
In contrast, a model interneuron fires at �75 Hz when equally
stimulated and has the firing pattern of a fast spiking neuron.

Model synapses

Kinetics of synaptic currents is modeled as in (Wang 1999b): a
postsynaptic current Isyn � gsyns(V � Vsyn) enters the postsynaptic
neuron when the presynaptic neuron’s action potential activates the
gating variable s(t) following ds/dt � �f(Vpre) � s/�, with f(Vpre) �
1/[1 � exp(�(Vpre � 20)/2)]. For AMPAR-mediated synaptic trans-
mission, � � 3.48, � � 2 ms, and Vsyn � 0; while for inhibitory
synaptic transmission � � 1, � � 10 ms, and Vsyn � �70 mV. In the
case of NMDAR-mediated synaptic transmission, the gating variable
follows a second-order kinetic scheme: ds/dt � �(1 � s) � s/�,
dx/dt � �xf(Vpre) � x/�x (� � 0.5, � � 100 ms, �x � 3.48, �x � 2 ms,
Vsyn � 0) so that the ensuing excitatory postsynaptic current (EPSC)
has a slower rise phase and saturates at high presynaptic firing rates.

Unless specified otherwise, the synaptic conductances’ maximal
strengths are set to the following values: pyramidal to pyramidal:
gEE

AMPA � 5.4 nS, gEE
NMDA � 0.9 nS; pyramidal to interneuron:

gEI
AMPA � 2.25 nS, gEI

NMDA � 0.5 nS; interneuron to pyramidal: gIE �
4.15 nS; and interneuron to interneuron: gII � 0.165 nS. In Fig. 11
(except for A, left) the synaptic conductances are changed to gEE

AMPA �
5.75 nS, gEE

NMDA � 0.75 nS, gEI
AMPA � 2.75 nS, gEI

NMDA � 0.6 nS,
gIE � 4.25 nS, gII � 0.135 nS. These values were chosen so that the
network would show stable periodic propagating discharges with
characteristics compatible with experimental observations. The pre-
cise network activity pattern is sensitive to these parameters but the
qualitative presence of traveling waves and oscillations is robust to
synaptic parameter changes (see examples in Fig. 6).

Cortical microcircuit connectivity

The neurons in the network are sparsely connected to each other
through a fixed number of connections that are set at the beginning of
the simulation. Neurons make 20 � 5 (SD) contacts to their postsyn-
aptic partners (multiple contacts onto the same target, but no autapses,
are allowed). For each pair of neurons separated by a distance x in the
network (see Fig. 2A), the probability that they are connected in each
direction is decided by a Gaussian probability distribution centered at
0 and with a prescribed standard deviation 	: P(x) � exp(�x2/2	2)/
�2
	2. In our simulations, the total length of the model network is
assumed to be 5 mm, and we let 	 � 250 �m for excitatory connec-
tions so that the typical size of a patch of connections coming from a
single pyramidal neuron is 500 �m. This number is consistent with
anatomical (Rockland 1985) data for local connections within ferret
visual cortex. Anatomical studies have also shown that excitatory
horizontal connections in cortex extend further away creating a peri-
odic patchy pattern (Gilbert and Wiesel 1983; Rockland 1985). In
some simulations, we include this by using a probability of connection
given by P(x) � [exp(�x2/2	2) � s exp(�(x � d)2/2	2) � s
exp(�(x � d)2/2	2)]/(1 � 2s)/�2
	2 so that additional probability
of connection (whose strength is controlled by the parameter s) is
added at a distance d of the soma (see Fig. 11A, top right). For
inhibitory connections, a Gaussian probability distribution is also used
but with a smaller standard deviation 	 � 125 �m, except for
simulations in Fig. 12, where 	 � 500 �m is used. Anatomical and
physiological data indicate that axonal arbors from inhibitory (basket)
cells vary considerably, ranging from narrow to widespread (Crook
et al. 1998). Here we mostly work with the narrow inhibition archi-
tecture but we also briefly explore the case of broader inhibition
(Fig. 12).

Robustness of the model

The model network that we present here has proven its robustness
to parameter modification in a variety of tests. The model is robust to
connectivity sparsity and randomness and to neuronal inhomogeneity.
Furthermore, a certain amount of randomness and heterogeneity
seems to confer more stability to smooth wave propagation. Also,
intrinsic neuronal properties can be varied substantially without
changing the essential propagation and oscillation properties. Using a
network of integrate-and-fire neurons, instead of Hodgkin-Huxley
neurons, shows similar network dynamics (see van Vreeswijk and
Hansel 2001; Wang 1999b for non-traveling slow oscillations), but the
model cannot reproduce experimental intracellular data quantitatively.
However, as indicated by Goldman et al. (2001) in a different context,
there are some intrinsic parameters that do affect the collective net-
work dynamics importantly. The reversal leak potential, for instance,
controls very finely the excitability of the neurons, and its mean value
across the population has very marked effects on the frequency of the
slow oscillations. However, the standard deviation with which the
reversal leak potential is distributed across the neuronal population
does not have such an important effect on the activity characteristics.
In particular, increasing threefold the reversal leak potential standard
deviation augments the slow oscillation frequency by just 50% (from
0.27 to 0.4 Hz), the wave velocity 40% (from 5 to 7 mm/s), and the
overall firing frequency 60% (from 1.1 to 1.8 Hz). Instead, with the
same manipulation in a network with blocked excitatory synaptic
transmission, the average spontaneous rate of firing of the network
increases more than fourfold (from 0.06 to 0.26 Hz) and the number
of spontaneously active neurons more than doubles (from 12 to 30%).
This implies that the model is robust with respect to the exact fraction
of neurons spontaneously active in the absence of synaptic excitation,
but it is more sensitive to the overall excitability level of the network.
As for neuron number, our simulations show that doubling or halving
the number of neurons in our model network does not change either
the oscillation frequency, or the wave propagation velocity, or the
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average firing rate. This is so because the connectivity of the model is
unaffected by the number of neurons. Any given neuron connects to
an average of 20 postsynaptic cells independently of the size of the
network.

Numerical methods

The model was implemented in a C�� code and simulated using
a forth-order Runge-Kutta method with a time step of 0.06 ms.

Experimental methods

Experimental data depicted in Fig. 1 was collected extracellularly in
prefrontal cortex slices of the ferret. Details of the methods can be
found in Sanchez-Vives and McCormick, 2000.

R E S U L T S

Excitatory synaptic block reveals spontaneous neuronal
firing

Extracellular multiple unit recordings in layer V revealed the
basic characteristics of the slow oscillation in vitro, including
the recurrence of synchronized bursts of activity in neighboring
neurons, and the presence of spontaneous activity between up
states (Fig. 1, B–D). The rate of firing of this multiple unit
activity typically decreased following an up state but increased
prior to the onset of the next up state (Fig. 1, B–D). At least
some of this spontaneous activity was not dependent upon fast
glutamatergic excitation because it survived block of AMPA
and NMDA receptors with bath application of 6-cyano-7-
nitroquinoxaline-2,3-dione (CNQX; 20 �M) and DL-2-amino-
5-phosphonovaleric acid (DL-APV; 50 �M; n � 6 slices).
Block of glutamatergic excitatory postsynaptic potentials
(EPSPs) resulted in both a block of the up state (see Sanchez-
Vives and McCormick 2000) and a significant reduction in
spontaneous activity during the down state. However, in 4 of

10 recorded layer V sites in CNQX/APV, significant sponta-
neous activity remained (Fig. 1, B–D), suggesting that at least
some layer V pyramidal cells discharge spontaneously through
intrinsic membrane mechanisms (e.g. see Wang and McCor-
mick 1992). We used these and other (Sanchez-Vives and
McCormick 2000) features of the slow oscillation as guide
lines in the generation of our model of this activity.

Slow oscillation and wave propagation of network activity

In accordance with the experimental observations of
Sanchez-Vives and McCormick (2000), neurons in our model
show spontaneous activity as repetitive episodes of low-rate
neuronal firing, separated by long-lasting silences of �2.5 s
(Fig. 2). The oscillation frequency is thus �0.4 Hz. Activity
patterns are organized spatially as synchronous waves that
propagate from one site to neighboring sites, thus recruiting the
whole network at each firing episode of the slow oscillation
(Fig. 2B). Typically, the most active part of the network
initiates the discharge at each cycle (in Fig. 2B, 3rd row from
bottom), but the initiation site is not unique and varies from
simulation trial to trial.

The membrane potential of modeled pyramidal neurons, as
also seen in experiments, undergoes transitions between more
depolarized states with higher spiking activity (up states) and
more hyperpolarized states with virtually no spike discharges
(down states; Fig. 2C). Slow oscillation of the membrane
potential occurs in parallel with waxing and waning of the
intracellular sodium concentration: [Na�]i accumulates slowly
due to spike-triggered sodium influx during the up state and
decays by an extrusion process to the extracellular medium
during the down state (Fig. 2, C and D). We will show that the
slow [Na�]i dynamics is critical to the generation of slow
oscillations (see following text).

Because neurons are not identical in the heterogeneous net-

FIG. 1. Block of excitatory synaptic transmission
eliminates the slow oscillation and reveals spontane-
ous action potential activity in a subset of layer
V cells. A: extracellular multiple unit recording
from layer V in prefrontal cortex during the bath
application of 6-cyano-7-nitroquinoxalene-2,3-dione
(CNQX, 20 �M) and DL-2-amino-5-phosphonovaleric
acid (dl-APV, 50 �M). The slow oscillation (see
expansion in B) is completely blocked and spontane-
ous discharge is greatly reduced. However, occasional
action potential discharges still occur. B: expansion of
recording in A prior (left) and following (right) block
of excitatory synaptic transmission. C: recording at
another site in layer V before and after block of
excitatory transmission. D: another example of the
slow oscillation recorded in control solution, and
spontaneous activity recorded in a nearby site follow-
ing the block of synaptic transmission.

2710 A. COMPTE, M. V. SANCHEZ-VIVES, D. A. MCCORMICK, AND X.-J. WANG

J Neurophysiol • VOL 89 • MAY 2003 • www.jn.org



work model, the membrane potential of pyramidal cells shows
quantitatively different firing patterns. Some (highly excitable)
cells show spike firing prior to the onset of an up state, and a
relatively small after-hyperpolarization in the down state (Fig.
2, C and D, top). Other less excitable cells do not show spiking
during the down state and have a pronounced and slowly
recovering afterhyperpolarization following the firing dis-
charge in the up state (Fig. 2, C and D, middle). And finally, a
subpopulation of (the least excitable) pyramidal neurons ex-
hibit clearly defined voltage up states and down states sepa-
rated by �10 mV (Fig. 2, C and D, bottom). These differences
arise from the random initialization of intrinsic properties for
each cell, and, therefore, other neurons show intermediate
behaviors between these three characteristic examples.

Propagating discharges can also be evoked by local external
stimulation, for example by a brief depolarizing current injec-
tion to a subpopulation of 50 neurons (indicated by arrows in
Fig. 3). Colliding waves usually merge and extinguish (3rd and
4th waves in Fig. 3A). The wave nature can be more clearly
revealed when spontaneous activity is absent if all pyramidal
cells are slightly hyperpolarized so that they are unable to

trigger any network event by themselves. In this case, briefly
stimulating by current injection a restricted area of the network
triggers a discharge episode that travels across the network as
a wave front (Fig. 3B, left) and merges with waves traveling in
the opposite direction (Fig. 3B, right). Furthermore, stimula-
tion immediately after an evoked discharge is unable to recruit
the network for a renewed propagation (Fig. 3B, left, 2nd
stimulation arrow). Experiments on the slice have yielded very
similar results: external stimulation during the hyperpolarized
phase of the oscillation generated a wave that propagated
across the slice (Sanchez-Vives and McCormick 2000), and the
slice was refractory immediately following one of these net-
work events.

Model pyramidal neurons and interneurons fire in phase
during the slow oscillation (Fig. 3, A and B). When pyramidal
cells and interneurons at a given spatial location are closely
examined, we found that interneurons typically discharge first
in response to the arrival of the wave front (blue rim around
activity in B, rightward shift in peak of histogram in C, and
shift in average activity of pyramidal cells and interneurons in
D). Pyramidal neurons have an average maximal rate of �10
Hz during the network discharge while interneurons fire at �20
Hz (Fig. 3D).

Change of input resistance during the slow oscillation

In Fig. 5 are plotted the time courses of synaptic and intrin-
sic ionic conductances in a pyramidal neuron during the slow
oscillation. In particular, the input resistance of pyramidal
neurons (here computed as the inverse of all open conduc-
tances across the membrane, see Fig. 4) is the highest during
the down state, reaching its maximal value right before the
onset of the discharge episode. The input resistance is at its
minimum during the initial phase of the up state and increases
gradually in the course of the up state (Fig. 5B). This is in
agreement with experimental recordings during the occurrence
of the slow oscillation in cortical cells of the anesthetized cat
in vivo (Contreras et al. 1996). On the basis of this observation,
Contreras et al. (1996) suggested that a K� conductance con-
tributing to spike frequency adaptation cannot be responsible
for the termination of the up state because this would lead to a
gradual reduction, not increase, of the input resistance as the
spike discharge progressed. This argument assumes that the
K� conductance dominates the input resistance. In our model,
the mechanism terminating the up state is the activation of a
Na�-activated K� conductance gKNa (see following text).
However, the input resistance is determined by the sum of all
conductances and is dominated by the synaptic conductances
rather than by gKNa. During an up state, the slow activation of
gKNa produces spike-frequency adaptation; reduced neural fir-
ing leads to a decrease of recurrent synaptic conductances and
other intrinsic ion conductances, hence an overall increase of
the input resistance (Fig. 5, C and D).

Balance between synaptic excitation and inhibition

It is apparent in Fig. 5C that the excitatory and inhibitory
synaptic conductances onto pyramidal neurons closely follow
each other during the up state. This is shown more clearly in
Fig. 6A, where the two synaptic conductances are not plotted
against time, but against each other for seven different neurons

FIG. 2. The model reproduces spontaneous slow oscillations observed in
the in vitro slice preparation. A: schematic representation of the spatial con-
nectivity in the network model. A particular realization of the probabilistic
connectivity for a pyramidal neuron and an interneuron is illustrated. - - -,
probability distribution of synaptic connections from one neuron at the center
to the rest of the network. Neurons are not drawn to scale with probability
distributions. B: the spontaneous network activity can be visualized as multi-
unit recordings (5 neighboring cells per site, sites are spatially separated by 500
�m) to compare with the experiments of Sanchez-Vives and McCormick
(2000). C: intracellular somatic voltage Vm and intracellular sodium concen-
tration [Na�]i of 3 representative pyramidal neurons. Calibration bars for
central traces apply to all corresponding traces in C and D. Time scale as in B.
D: blow-up of an individual depolarized episode of the cells in C. In C and D,
3s point at �75 mV for voltage traces and at 10 mM for internal sodium
concentration.
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(middle), or averaged across 32 neurons equally spaced in the
network (right). This plot yields a linear relationship, which
means that the excitatory and inhibitory synaptic conductances
increase and decrease in time in such a way that the ratio of the
two gexc:ginh remains fixed. This ratio varies from neuron to
neuron, ranging from 1:1 to 1:5. On average, inhibitory syn-
aptic conductances are typically four times larger than excita-
tory synaptic conductances, gexc:ginh � 4. Assuming that the
average potential in the up state is about �V
 � �55 mV, the
driving force for the excitatory current (with a reversal poten-
tial of Vexc � 0 mV) is (Vexc � �V
) � 55 mV, whereas that of
the inhibitory current (with a reversal potential Vinh � �70
mV) is (�V
 � Vinh) � 15 mV. Hence, the driving force for
excitation is approximately four times larger than for inhibi-
tion. Therefore, an excitatory conductance four times smaller
than the inhibitory conductance will yield comparable excita-
tory and inhibitory postsynaptic currents. In other words, there
is an approximate balance between synaptic excitation and
inhibition that is preserved over time throughout the up state,
when pyramidal neural firing is sustained at relatively low rates
(10 Hz).

To establish whether this excitation-inhibition balance is the
result of a particularly well-tuned parameter choice or is an
emergent property of the network, we drew the same graphs for
network simulations where one synaptic conductance had been
modified (Fig. 6, B and C). We observe that in all cases, the
approximately linear relationship between excitatory and in-
hibitory conductances remains, but the proportionality ratio
varies. It also becomes clear that the relationship is not exactly
linear but follows a closed cycle, with excitatory conductances

FIG. 3. Excitatory and inhibitory neurons fire in phase during
the slow oscillation with interneurons typically firing before pyra-
midal neurons at the onset of the up state. A: rastergram of network
activity during 20 s of simulation. Time is on the horizontal axis
and the network is represented along the y axis. Each red dot
corresponds to 1 spike at time x in the pyramidal cell located at
position y. Blue dots are spikes fired by the inhibitory population
and may be overlapped by red dots. Note spontaneously occurring
discharges and evoked episodes (triggered by brief external stim-
ulation indicated by tilted arrows). B, left: rastergram for an evoked
discharge (brief external stimulation indicated by arrow) when
pyramidal neurons are slightly hyperpolarized to prevent sponta-
neous oscillations. Where spikes from excitatory and inhibitory
cells coincide in space and time, red and blue dots overlap and are
illustrated as green. Note how the same external stimulation ap-
plied right after an evoked propagating wave fails to elicit a new
discharge because of the refractoriness of the network. Right:
example of a collision of 2 evoked waves. Note the faint blue rim
(interneuron spikes) surrounding the wave in both panels, indicat-
ing that interneurons typically fire first and for a longer time during
the up state. C: histogram of the intervals between the 1st spike of
each pyramidal and its immediately adjacent interneuron in the
time window shown in B (directly stimulated neurons are not
shown). The histogram is biased toward positive time lags, indi-
cating that on average interneuron firing leads pyramidal cell firing
(by �50 ms) at the onset of the slow oscillation discharge episode.
D: firing rate averaged across neurons for the time window shown
in B. Within the considered window, we substract from the spike
times for each excitatory (inhibitory) neuron the time of the 1st
spike of the closest lying inhibitory (excitatory) neuron, and then
we construct the time histogram of those intervals in the red (blue)
curve. Notice that interneurons firing leads pyramidal cell firing by
�50 ms, as also shown in C.

FIG. 4. Comparison between the input resistance calculated as the inverse
of open membrane conductances in the model (gray plot in bottom) and that by
the usual method employed in intracellular recordings through brief hyperpo-
larizing pulses (voltage trace in top, current pulses �0.3 nA, 100 ms). R, the
input resistances calculated as the ratio between the voltage deflection caused
by each current pulse and the magnitude of the current (0.3 nA). Notice the
quantitative agreement between the 2 estimates. The neuron was kept hyper-
polarized (�0.25 nA) in the course of the network simulation to prevent spikes
riding on the up state, which confounds Rin calculations with the pulse method.
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above (below) the average linear relationship during the
down-up (up-down) transition (see Fig. 6C, right).

The exact ratio of excitatory to inhibitory conductances is
likely to depend on other parameters like VL. Indeed, in a much
simplified model including only leak and synaptic currents, the
membrane equation is CmdV/dt � �gL(V � VL) � gE(V �
VE) � gI(V � VI). Assume that VE � 0, VL � VI � �75 mV,
and gL � 20 nS. The steady state of the voltage is given by
Vss � (gL � gI)VL/(gL � gI � gE). Then, the membrane
potential could stabilize around its threshold even with an

excitation-inhibition ratio of gE:gI � 1(Vss � �56 mV, if gE �
gI � 10 nS). However, the issue of whether such a model could
maintain its stability throughout a recurrently generated up
state does not seem trivial because synaptic conductance in-
creases proportional to the network activity could lead to
reverberatory instability.

Mechanisms of the slow oscillation in the model

The basic mechanism for the emergence of the oscillatory
activity in the network model is the interplay between neuronal
spontaneous firing amplified by recurrent excitation, and a
negative feedback due to slow activity-dependent K� currents.
These positive and negative feedback processes operate along
the lines illustrated in Fig 7: because the reversal potential of
the leakage current is distributed randomly (see METHODS),
some neurons are spontaneously active at very low rates (0.6 �
0.2 Hz). Occasionally, a sufficient number of closely adjacent
spontaneously active neurons fire together, thus triggering a
cascade of recurrent excitation that locally brings the network
into the firing regime of the oscillation (up state). At that point,
activity-dependent K� currents (notably the Na�-dependent
K� current) start accumulating in active pyramidal neurons,
reducing their excitability. The decremental excitability of
pyramidal neurons eventually makes the network recurrence
unable to sustain the firing state, and the local network reverts
to the silent state via a slow afterhyperpolarization. The decay
time of the currents responsible for this afterhyperpolarization
sets the time scale for the reappearance of spontaneous firing
and determines the periodicity of the oscillatory cycle.

According to this scheme, recurrent excitation should be
responsible for quickly bringing neurons into the firing state in
a collective manner, and the activity-dependent slow IKNa
eventually leads to a transition back to the down state. More
specifically, we hypothesized that recurrent synaptic excitation
produces a network bistability with an active up state and an
inactive down state and that the slow kinetics of IKNa drives the
network to switch back and forth between these two states (see
Fig. 8). We tested this prediction by substituting the time-
varying IKNa current with a constant hyperpolarizing current of
varying intensities simultaneously in all model neurons. We
found that the network indeed exhibits two stable dynamic
states: the silent state with large hyperpolarization and the
persistent firing state with low hyperpolarization. There is a
range of current intensity over which these two states coexist
(bistability; Fig. 8, A and B). In the control network simulation,
the role of the injected hyperpolarizing current of Fig. 8 is
fulfilled by the time-varying IKNa, whose slow dynamics causes
the neurons to cyclically trace this hysteresis loop (perimeter of
shaded area in Fig. 8B): as IKNa progressively builds up in the
firing state (upper solid line in Fig. 8B), pyramidal neurons
experience an increasing hyperpolarizing current. Eventually,
point A in Fig. 8B is reached and neurons in the network
collectively and sharply fall into the silent state because recur-
rent excitation is no longer sufficient to sustain their firing.
Then neurons remain silent while IKNa recovers slowly and the
network regains the level of excitability (point B in Fig. 8B)
where the silent state becomes unstable again and a collective
sharp transition to the up state is generated. Thus the cycle goes
on indefinitely, driven by the slow kinetics of IKNa. Transitions
between up and down states are sharp because of the sudden

FIG. 5. Membrane input resistance and various ionic conductance contri-
butions in the course of the slow oscillation. A: membrane voltage trace of 1
neuron while the network undergoes slow oscillations. B: total input resistance.
Maximal resistance occurs right before the discharge onset and the resistance
is minimal at the beginning of the up state. There is a gradual increase of the
input resistance during the up state. C: excitatory and inhibitory synaptic
conductances decrease as the discharge progresses. D: intrinsic conductances
during the slow oscillation. gAR is closed, while gKS and gNaP are activated,
during the up state. Contributions from the other intrinsic channels, mostly
from the passive leakage, are not shown but are included for input resistance
calculation. Activity-dependent K� conductances (gKCa and gKNa) are weaker
in magnitude (notice the scale on the y axis). For the sake of clarity, the data
in this graph correspond to simulations with reduced gKNa (gKNa � 0.33
mS/cm2), that have much longer up states. We have confirmed by performing
averages over many neurons that the trends illustrated here hold true for the
reference parameter set, such as that used in Figs. 2 and 3.
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loss of network stability at a given degree of neuronal excit-
ability.

To further test the importance of feedback excitation to the
bistability phenomenon, we reduced the maximum conduc-
tance of the recurrent excitatory synapses to pyramidal neurons
by 20%. The result is a loss of the bistable range (Fig. 8C).
Now the network is either silent or, upon progressive depolar-
ization of pyramidal neurons, it becomes spontaneously active.
There is, however, no range of input currents for which both a
quiescent state and a persistent firing state are simultaneously
stable.

The mechanism for adaptation-induced network oscillations
has been mathematically analyzed by van Vreeswijk and Han-
sel (2001) (see also Fuhrmann et al. 2002; Wang 1999b).

Pharmacological manipulations

To compare with the experimental results of Sanchez-Vives
and McCormick (2000), we explored the effect of various
synaptic receptor blockers on our slowly oscillating cortical
network (Fig. 9). Blocking AMPAR-mediated transmission
abolishes this rhythmic activity completely, and a subpopula-
tion of excitable neurons fire spontaneously without any ap-
parent network amplification. Similarly, the slow oscillation
disappears under NMDARs blockade but this disruption is not
as dramatic as when AMPARs are blocked, and occasional
bursts of activity are able to recruit neighboring neurons into a
network event via AMPAR-mediated transmission. On the

A control

B 10% stronger I–to–E

C 10% weaker 

FIG. 6. Excitatory and inhibitory synaptic conductances
preserve an approximate proportional relation to each other
in the course of the slow oscillation. A: control network as
in Fig. 2. B: same network with 10% enhanced inhibition to
pyramidal neurons. C: network with 10% reduced excitation
to interneurons. Left: network activity shown in a multiunit
array record, distance between adjacent recording channels
0.5 mm. Middle: excitatory synaptic conductance plotted vs.
inhibitory synaptic conductance for 7 different cells. Note
the linear relationship between the 2 conductances, with the
ratio (the slope of the linear plot) varying from neuron to
neuron. Right: the excitatory and inhibitory conductances
averaged across 32 neurons equally spaced in the network
(calculated at each time step) and plotted against each other.
The approximately linear relationship indicates that the bal-
ance between synaptic excitation and inhibition is main-
tained during the up state. Strictly, conductances do not
keep an exact linear relationship but tend to depart system-
atically from it tracing an elongated closed cycle. This is
especially evident in C, where arrows indicate the sense in
which the cycle is traced in the course of the up state.

FIG. 7. Mechanism of the slow oscillation: some neurons have slightly
lower spiking threshold and fire spontaneously (bottom left). This spontaneous
firing will occasionally trigger the recruitment of all the cells in a subregion of
the network through recurrent excitation and bring those cells up into the firing
state (top left). While neurons fire, their activity-dependent K� currents (es-
pecially IKNa) accumulate slowly. A point is reached in which the neurons are
not excitable enough to maintain this self-sustained spiking state and they
revert to the silent mode (middle right). Only after the Na�-dependent K�

current decays can the spontaneous firing resume and eventually trigger a new
discharge episode (bottom left).
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other hand, blocking GABAARs results in a more exuberant
discharge that propagates at a much faster velocity across the
cortical network. Also, the time intervals between burst epi-
sodes are significantly prolonged, i.e. the oscillation period is
longer. All these behaviors are very similar to the results of
Sanchez-Vives and McCormick (2000) after bath application
of various synaptic receptor blockers in the slice preparation
(compare the Fig. 9, left and right).

Velocity of wave propagation

Figure 9 shows that the network can sustain two different
types of propagating waves depending on whether intracortical
inhibition is functional (control case) or the network is disin-
hibited (GABAAR block). Notably, these two waves have very
different propagation speeds, as in slice experiments (Golomb
and Amitai 1997; Sanchez-Vives and McCormick 2000; Wu et
al. 2001). Both in the model and in the experiment, the prop-
agation of the disinhibited wave is almost an order of magni-
tude faster than that of the wave in control conditions. The
velocity of the disinhibited wave is largely determined by the
efficacy of AMPAR-mediated excitatory synaptic transmission
(Fig. 10A), consistent with previous analytical and simulation
results (Ermentrout 1998a; Golomb and Amitai 1997). The
dependence of the propagation speed on the strength of feed-
back inhibition is plotted in Fig. 10B. Either an increase of the
inhibitory conductance onto excitatory cells or of the excitatory
conductances onto inhibitory cells gradually decreases the
wave propagation speed, according to a smooth sigmoid func-
tion (fitted curve).

Although the model reproduces roughly a 10-fold increase in
the wave speed with inhibition blockade, a closer examination
revealed that the absolute wave speeds in the model are sig-
nificantly off the experimentally measured values. In control
conditions, the velocity is �3 mm/s, whereas in the experi-
ments it was �10 mm/s; with inhibition blockade, the wave
propagation is �20 mm/s, when the experiment yielded a value
�80 mm/s. We have explored possible solutions to this dis-
crepancy. Figure 10A shows that with sufficiently strong E-
to-E coupling, a wave velocity of �100 mm/s could be
achieved in the disinhibited network. This suggests that one
could first increase the strength of recurrent AMPA-mediated
excitatory synapses to achieve the desired velocity in the
disinhibited network; then, by gradually increasing the inhib-
itory feedback (as in Fig. 10B), slower propagation at a desired
velocity could be obtained. However, this is not the case (Fig.
10C): with much stronger excitatory feedback (4-fold E-to-E
AMPA conductances), increasing inhibition in a network does
not lead to the slower propagation mode observed in the
experiment. Instead, when the feedback inhibition is above a
threshold value, the wave phenomenon disappears and the
network shows a spatially uniform (unstructured) tonic firing
state (shaded areas in Fig. 10C). Below this threshold but near
it (inhibitory synapses are still very strong) a complex activity
pattern emerges (see illustrative rastergram in Fig. 10D), in
which activity propagates at two different velocities. The ras-
tergram in a small time window reveals that activity spreads
quickly, as in the disinhibited case (“fast wave” indicated in
Fig. 10D). Examination at a longer timescale reveals also a
slower propagation, which is nevertheless not a smooth wave-

FIG. 8. Recurrent excitation produces network bistability for a range of
values of the slowly decaying current IKNa. The Na�-dependent K� channel
was blocked in all pyramidal cells, and a constant hyperpolarizing current Iext

was injected as a replacement in all of them. Simulations were repeated for a
range of intensities of Iext with the stimulation protocol illustrated in A
(bottom): 2.5 s after the initiation of a simulation trial, a brief depolarizing
pulse is injected into all pyramidal neurons, the network settles into a stable
state for another 2.5 s, and then a brief hyperpolarizing pulse is injected. The
average network firing rate is calculated before the depolarizing and hyperpo-
larizing pulses (triangles). The rastergram shows the network activity, where
spikes are represented by dots at the firing time (along the x axis) and the
position of the neuron on the network (along y axis). Below is the instanta-
neous population firing rate and a sample “intracellular” trace of one of the
cells in the network. B: for a range of constant injected current (shaded area),
the network can stably remain in the silent state or in a persistent firing state
sustained by excitatory reverberation. Triangles correspond to the network
firing rates in the example simulation of A, at the time points indicated by the same
triangles. In the full model, the time-varying IKNa plays the role of hyperpolariza-
tion current. When the neurons are in the sustained firing state, [Na�]i slowly
accumulates and the activation of IKNa makes neurons move leftward along the
upper branch of the graph (left-pointing arrow), up to the left end-point (‘left-
knee’, point A) when the network abruptly drops down to the silent state. When
neurons cease firing, [Na�]i decays back to the baseline and IKNa decreases slowly,
so that neurons move rightward along the lower branch of the graph (right-pointing
arrow), until they reach the right end-point (‘right-knee’, point B), when the
network jumps back to the persistently firing state again. C: reducing excitatory
feedback (E-to-E conductances) by 20% abolishes the network hysteresis, dem-
onstrating that bistability requires strongly recurrent synaptic excitation.
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front (“slow propagation mode” indicated in Fig. 10D). The
global network pattern is clearly not comparable to the one
observed in the slice experiment of Sanchez-Vives and Mc-
Cormick (2000).

Another possibility is to increase the spatial extent (the
“footprint” 	EE) of excitatory connectivity because the wave
velocity increases proportionally with 	EE (Ermentrout
1998b). However, to achieve the experimentally comparable
wave velocities, one would have to increase 	EE of the E-to-E
coupling by three- to fourfold, from 250 �m (see METHODS) to
�2 mm, which would be inconsistent with the anatomical and
physiological data. We examined the more plausible scenario
that weak but long-range patchy horizontal connections could
increase the propagation speeds significantly. This pattern of
connection is prominent in the mammalian cortex (Gilbert and
Wiesel 1983; Rockland 1985), and it has been observed in
ferret visual cortex in both supragranular and infragranular
layers (Rockland 1985). Typically, horseradish peroxidase in-
jection in a restricted area of cortex results in orthograde
striped staining of intracortical connections with stripe width of
250 �m and center-to-center distance 0.5–0.7 mm (Rockland
1985). We model this kind of connectivity as depicted in Fig.
11A (right). When we use this type of connectivity in our
model, discharges propagate much faster in both conditions
(Fig. 11A, right compare with left for non-patchy connectivity).
For the wave in the disinhibited network, the velocity increased
to �50 mm/s; whereas for the network with functional inhibi-
tion, the propagating wave has a speed close to 10 mm/s. On
the other hand, the inclusion of long-range excitatory connec-

tions does not lead to a significant increase of the pyramidal
neural activity, the firing rates are comparable to the situation
without patchy excitatory connections. Both velocities depend
markedly on the spatial extent and strength of the patchy
horizontal connections (Fig. 11,C and D). Figure 11C shows
how the center-to-center distance for the patchy horizontal
connections influences the propagation speeds. The more sep-
arated the patches are spatially, the faster the wave propagates
both in the control and disinhibited conditions. The firing rates
of pyramidal cells decreased slightly as the waves became
faster. In Fig. 11D, we show the dependency of the wave
velocities on the strength of the lateral patches. The stronger
the patched connections, the faster the wave. In this case, the
firing rates grew slightly with the increase in excitatory patch
strength.

Relative spatial range of excitatory and inhibitory
projections

A still unresolved issue in functional cortical architecture is
whether cortical inhibition has a larger or smaller spatial range
than intracortical excitation. The spatial extent of a specific
(e.g. interneuron-to-pyramid) connection depends on the con-
volution of the axonal projection from the presynaptic cells and
the dendritic extent of the postsynaptic cells. Judging from the
anatomical estimates of the axonal and dendritic spreads of
cortical interneurons and pyramidal neurons (Lund and Wu
1997), one could argue that inhibition from most interneurons
is likely to act more locally than excitation. However, there are

FIG. 9. Simulations with synaptic trans-
mission blockade reproduce the experimen-
tal results. Left: simulation results plotted as
multiunit records with blockade of the vari-
ous synaptic receptors. Right: experimental
results when CNQX, APV, or picrotoxin
were applied in the bath solution of a slowly
oscillating cortical slice. The experimental
results shown as control correspond to the
same slice as the results for N-methyl-D-
aspartate (NMDA) blockade. Control traces
are very similar (not shown) for the AMPA
and GABAA blockade.
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some classes of interneurons (e.g. a subset of cortical basket
cells) with far-reaching axons (Buzás et al. 2001; Lund and Wu
1997) that could be functionally very powerful. Indeed, func-
tional monosynaptic long-range inhibitory connections have
been recorded electrophysiologically (Crook et al. 1998). We
used our model to address whether one or the other scenario is
more appropriate to reproduce the slow oscillatory activity
observed in the cortex. To do that, we re-ran the network
simulations with a broadened spatial width (footprint) of the
inhibitory connection probability (from 	I � 125 �m to 	I �
500 �m), while keeping the footprint for excitation at 	E �
250 �m. We still find very robust slow oscillations; the wave
propagation velocity is �5 mm/s (not shown).

Is there a way to distinguish these two cases (	I/	E � or �

1) experimentally? We focus on the temporal relationship
between excitatory and inhibitory events as a possible discrim-
inative test (Fig. 12). In both cases (	I � 125, 500 �m),
interneurons tend to fire ahead of nearby pyramidal cells at the
onset of the propagating discharge (Fig. 12, A and B). The
relative timing of spike discharges in pyramidal cells and
interneurons is therefore not a useful test for the functional
significance of long-range inhibition. If the spread of the in-
hibitory axons is greater than the excitatory ones, then inhib-
itory synaptic conductances increase first in pyramidal neurons
as the up state propagates through the network (Fig. 12, C and
D). This is also shown in Fig. 12G, where simultaneous PSCs
onto a pyramidal cell are shown under voltage clamp. If the
spread of inhibitory connections is narrower than excitation

FIG. 10. Control of the propagation speed by recurrent ex-
citation and by feedback inhibition. A: with inhibition blockade,
the wave velocity increases linearly with the strength of fast
recurrent excitation (AMPA E-to-E conductances on x axis,
relative to the reference value). B: parametrical dependence of
the wave velocity on the strength of feedback inhibition. Left:
inhibitory conductance onto pyramidal neurons on x axis, rel-
ative to the reference value. Right: excitatory conductances
(AMPA and NMDA) onto inhibitory neurons on x axis, relative
to the reference value. C: setting AMPA-mediated E-to-E con-
ductances 4-fold stronger yields correct propagation velocity in
disinhibited networks (see A), but inhibition fails to control the
wave to generate smooth slower propagation. Above a critical
level (shaded area), the wave phenomenon is abolished and the
network activity becomes spatially uniform. Below this critical
value, the wave dynamics is complex: the network activity
propagates at 2 distinct velocities (● , faster velocity; �, slower
velocity). D: example to illustrate the coexistence of 2 veloci-
ties of propagation in the network dynamics. The 2 distinct
propagation velocities are indicated (- - -).
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(left), then the EPSCs and inhibitory PSCs (IPSCs) arrive to the
pyramidal cells at approximately the same time. This occurs
because, locally, interneurons fire in advance of excitatory

FIG. 11. Long-range patchy excitatory connections increase the velocities of
wave propagation to be comparable to the experimental measurements, without
dramatically increasing the firing rates. A: original excitatory probability distribu-
tion of synaptic contacts (left) and with the addition of the patchy connectivity
(right). Left rastergrams: how the discharge propagates at 2 different velocities
without patches with or without inhibition (control in top, v � 3 mm/s; disinhibited
network in bottom, v � 20 mm/s). Right rastergrams: examples of wave propa-
gation for a patchy excitatory connectivity with d � 1 mm and s � 10%. Top: a
wave in the network with functional inhibition (v � 8 mm/s); bottom: shows the
propagation of activity in the disinhibited case (v � 50 mm/s). B: slow oscillation
in the network model when patchy excitatory connections are included as seen
with multiunit electrodes. The speeds of the propagating waves increase both with
the center-to-center patch distance d (C, s � 10%. Top: inhibited wave; bottom:
disinhibited wave) and with the strength s of the lateral connectivity patches (D,
d � 1 mm. Top: inhibited wave; bottom: disinhibited wave). In all graphs of C and
D, left y axis labels absolute velocities with 	EE � 250 �m and right y axis labels
velocities in the unit of 	EE/s.

FIG. 12. The relative spatial range of inhibitory and excitatory synaptic
connections only affects the time relationship between inhibitory and excita-
tory synaptic conductances but not the corresponding synaptic currents. Except
for G, each curve is normalized by its maximal value. Left: reference parameter
with narrower inhibitory connections (top left, —) than excitatory connections
(top left, - - -). Right: modified parameter with broader inhibitory connections
(top right, —) than excitatory projections (top right, - - -). The data show that
in both cases inhibitory neurons tend to fire earlier than pyramidal cells (A and
B, —: interneuron firing, maximum rate 24 and 38 Hz; - - -: pyramidal cell
firing, maximum rate 10 and 18 Hz, respectively). The 2 synaptic conductances
onto pyramidals rise at about the same time (C, —: inhibitory conductance
onto pyramidals, maximum value 7.2 nS; - - -: excitatory conductance onto
pyramidals, maximum value 2.2 nS). However, when inhibition has a longer
spatial range than excitation, the inhibitory synaptic conductance leads the
excitatory conductance (D, —: inhibitory conductance onto pyramidals, max-
imum value 9.5 nS; - - -: excitatory conductance onto pyramidals, maximum
value 3.7 nS). What pyramidal neurons feel, though, is the synaptic current and
in both cases excitatory and inhibitory synaptic currents start concurrently (E
and F, —: inhibitory current onto pyramidals, maximum values 64 and 97 pA;
- - -: excitatory currents onto pyramidals, maximum values 126 and 210 pA,
respectively). This is due to the fact that an increased inhibitory conductance
in the down state is purely shunting, and it does not participate in active
inhibition until the neuron is depolarized by excitation. In each panel averages
over different neurons (n � 32 and n � 16 in left and right, respectively) and
various periods of the oscillation are computed, with time 0 being set by the
first spike in the propagating discharge of the nearest inhibitory neuron. G:
single episode traces illustrating the relationship of inhibitory and excitatory
postsynaptic currents (IPSCs and EPSCs) to each other in simulated voltage
clamp recordings. In voltage clamp, synaptic currents are proportional to
conductance changes and IPSCs are seen to lead EPSCs when inhibition is
broader than excitation (see rescaled curves for comparison in lowest traces.
gray, EPSCs; black, IPSCs).
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cells. If the inhibitory connections are broader than excitation,
then IPSCs precede the arrival of EPSCs (right). On the other
hand, without voltage-clamp, during network oscillations, the
synaptic currents that the neuron integrates in the course of the
slow oscillation depend on the time-varying postsynaptic mem-
brane potential Isyn � gsyn(V � Vsyn). Figure 12, E and F,
shows that this excitatory and inhibitory currents show similar
time courses in both cases, with EPSCs slightly leading ahead
of IPSCs. This is because initially the voltage is close to the
inhibitory reversal potential, inhibition is purely shunting, and
IPSCs become significant only after the cell is depolarized by
EPSCs. As a result, PSPs measured in current clamp cannot be
used to discriminate between long- and short-range inhibition
unless the neuron is significantly depolarized away from the
reversal potential of IPSPs.

These data suggest that the timing of EPSPs and IPSPs in
intracellular recordings in slices may give clues as to the
functional spread of inhibition and excitation in cortical net-
works. Recent experimental observations with intracellular re-
cordings in layer V pyramidal cells during the generation of the
slow oscillation in vitro demonstrate that the synaptic barrages
are initially weighted toward excitation with a balance of
excitation and inhibition being achieved over �50–100 ms (Y.
Shu, A. Hasenstaub, and D. A. McCormick, unpublished ob-
servations). In the view of the current model results, this would
suggest that, functionally, the spread of inhibition has a nar-
rower extent than that of excitation in the cortex.

Relation to in vivo slow oscillations under anesthesia

Slow oscillations observed in vivo can have distinct features
depending on the particular experimental protocol. In contrast
to the in vitro condition, up states can be longer than down
states (Contreras et al. 1996; Cowan and Wilson 1994; Mas-
simini and Amzica 2001; Stern et al. 1997; Timofeev et al.
2001), but in other cases the opposite occurs (Steriade et al.
1993b,c). In some cases, regular and robust slow oscillations
are observed (Paré et al. 1998; Steriade et al. 1993b), whereas
in other instances transitions between up and down states are
irregular and stochastic (Cowan and Wilson 1994; Lampl et al.
1999; Paré et al. 1998; Stern et al. 1997). These marked
differences between spontaneous cortical activity in vivo as
seen by different laboratories may be due to the particular
anesthetics protocol (kind and depth of anesthetics) used
(Lampl et al. 1999). Since anesthetic agents often affect intrin-
sic neuronal excitability and synaptic transmission (Nicoll et
al. 1990; Schulz and Macdonald 1981), we explored how a
change in GABA or NMDA-mediated transmission or in the
neuronal baseline excitability may affect spontaneous activity
in our model network (Fig. 13). Neuronal intrinsic excitability
was varied by modifying the leakage membrane permeability
to K� ions (in the model this affects both the leak conductance
gL and the leak potential VL). As leakage K� currents are
progressively reduced, we observe that a sample neuron in the
model goes from very stereotyped pronounced slow oscilla-
tions with short up states and long down states (Fig. 13C) to

FIG. 13. Dependence of spontaneous cortical activity, as
regular oscillations or irregular switchings between two stable
voltages, on modulations associated with anesthetic agents. The
same neuron was monitored in a model network as network
parameters were varied from the reference case of Fig. 15B
(central panel). All GABA conductances were modified by 10%
(reduced in A, increased in B, as indicated). Intrinsic excitabil-
ity was modified by changing the leakage K� permeability by
3% up (C) or 2% down (D), thereby modifying both the leakage
conductance and the leak reversal potential. NMDAR-mediated
transmission was modulated by 50% (reduced in E, increased in
F). Top panels show the network activity pattern (as an array of
multiunit channels) in each of these conditions.
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fluctuations between a down state and an up state of more
irregular durations (Fig. 13, center) and eventually to long
sojourns in the up state and only occasional and brief incur-
sions into the down state (Fig. 13D). Notice that Fig. 13C
resembles the very rhythmic recordings by Steriade et al.
(1993b,c); the center panel in Fig. 13 is reminiscent of the
irregular traces in Cowan and Wilson (1994) and in Stern et al.
(1997); and Fig. 13D simulates closely the data dominated by
tonic-firing of Lampl et al. (1999), Contreras et al. (1996), and
Timofeev et al. (2001). Synaptic modifications associated with
anesthetic action on GABA channels could also induce
changes in the pattern of network activity: enhanced inhibition
made the slow oscillation more irregular (Fig. 13B) while
reduced inhibition turned it more regular and faster (Fig. 13A).
In contrast, NMDAR-mediated transmission modulation did
not produce significant change in the oscillatory pattern of the
network (Fig. 13 E and F). It may thus appear that the com-
bined action of barbiturates via reduced neuronal intrinsic
excitability and via the augmentation of GABA responses
could compensate each other and have little effect on the
pattern of slowly oscillating activity. Our simulations, how-
ever, show that reduced intrinsic excitability determines the
overall activity pattern even when GABA responses are simul-
taneously enhanced (data not shown).

Therefore our model suggests that anesthetics-dependent
changes in the network excitability, most notably through
neuronal intrinsic excitability, may explain the various slow
oscillating patterns, such as the durations of the up and down
states and the statistics of transitions between the two states
observed under different anesthesia protocols in vivo.

Transition to the tonic-firing state of vigilance

In unanesthetized cats, local field potential during quiet
sleep shows slow oscillations (Timofeev et al. 2001); whereas
the waking state is characterized by tonic-firing of spikes
(Evarts 1964; Hubel 1959; Steriade et al. 1974) and fast oscil-
lations in the local field potentials (Destexhe et al. 1999;
Steriade et al. 1996; Timofeev et al. 2001). We used our
network model, calibrated to reproduce the slice results, to
simulate the transition from the slow wave sleep to the waking
state with neuronal activity patterns observed from unanesthe-
tized animals. It is well established that the transition from
sleep to wakefulness depends critically on the activation of
ascendent activating systems (especially cholinergic, noradren-
ergic, and serotoninergic), notably through an increased cho-
linergic input to the cerebral cortex (McCormick 1992; Ste-
riade and McCarley 1990). We focused on manipulations that
have been linked to neuromodulatory action by acetylcholine
(see DISCUSSION): reduction of passive, activity- and voltage-
dependent K� conductances, and reduced excitatory transmis-
sion (via presynaptic inhibition, see DISCUSSION).

We have considered various manipulations, each in isola-
tion, to see whether any of them was in itself sufficient to
simulate the transition to waking in terms of voltage traces and
input resistance. We found that when Na�-dependent K� con-
ductance alone was significantly reduced, the network reverted
to activity with less marked periodicity, longer up states and
shorter down states (see Fig. 14A, middle). Further reduction of
this adaptation current led the network to a tonic firing mode
with no global spatiotemporal coherence (but still some weak

FIG. 14. Various manipulations bring the
model network from the slow wave state and
tonic activity state, similar to the transition be-
tween sleep and waking states of the brain. Each
column shows 3 illustrative panels of increasing
degrees of the parameter manipulation indicated
in the column titles. Each illustrative panel in-
cludes: local field potential (LFP, calculated as
the average synaptic activity over the whole net-
work and normalized to the standard deviation of
the resulting signal), population activity in mul-
tiunit electrode representation and membrane
voltage trace and input resistance for a selected
neuron. A: gradual reduction of the Na�-depen-
dent K� current (IKNa) brings the network from a
slowly regularly oscillating regime (top, param-
eters as described in METHODS) into a more irreg-
ular and faster oscillation (middle, gKNa � 0.27
mS/cm2) and eventually to a non-oscillating
tonic-firing state (bottom, gKNa � 0.13 mS/cm2).
B: progressive reduction in leakage K� perme-
ability of pyramidals also changes from regular
slow oscillations (top, as in A, top), to somewhat
faster oscillations (middle, gL � 0.067 mS/cm2,
VL � �60.84 mV) and to tonic firing (bottom,
gL � 0.06 mS/cm2, VL � �56.23 mV). As shown
experimentally, all of these effects could be at-
tributable to the action of acetylcholine on corti-
cal circuits. In all panels, arrows point at a volt-
age of �75 mV or at an input resistance of 40
M	.
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faster oscillations are to be seen in the local field potential at
ca. 2–3 Hz), the voltage traces are thus reminiscent of those
characteristic of the “waking state” (compare to data in Ste-
riade et al. 2001; Timofeev et al. 2001). Other aspects, how-
ever, indicate that adaptation current reduction is not the only
ingredient of neuromodulatory action important for the “wak-
ing up” of the circuit. In particular, the overall firing rate of the
network increases in the process (from 1 Hz in the top and 5 Hz
in the middle panel, to 9 Hz in the bottom of Fig. 14A), and the
input resistance of the neuron is significantly reduced. This is
in contrast to experimental observations (Steriade et al. 2001)
that indicate that the overall firing rate of neurons remains
approximately the same between the natural slow oscillation
and the waking state, even though during the up state of the
slow oscillation the apparent input resistance is lower.

On the other hand, the reduction of leakage K� permeability
(reduced gL and increased VL) in pyramidal neurons also
affects the transition from a slowly oscillating network into
tonically firing neurons (Fig. 14B). With this mechanism, as
also observed when reducing IKNa, the overall firing rate also
increases considerably (from 1 Hz in the top and 4 Hz in the
middle to 8 Hz in the bottom), and the input resistance de-
creases (presumably due to enhanced synaptic conductance),
contrary to the experimental evidence. The last mechanism that
we examined is the reduction of intracortical excitation to
pyramidal neurons (not shown). The effect is also to transform
a slowly oscillating network into tonic activity, the difference
with the previous mechanisms is that this tonic firing is now
extremely sparse at very low rates (0.2 Hz) and does not look
comparable to intracellular recordings during the waking state.
Trivially, however, input resistance increases because of the
practical absence of synaptic activity.

When these effects of the neuromodulatory action are com-
bined in the network model (Fig. 15), the reduction of recurrent
excitatory synaptic conductances leads to an increase in the

input resistance, whereas the decreased excitation is compen-
sated by the reduction of K� currents so that the firing rate in
the tonic state remains comparable to that in the up state of the
slow oscillation mode. Therefore a transition from the slow
oscillation state characteristic of natural sleep to the tonic firing
state of the waking state is realized, with neural activity and
input resistance changes consistent with the experimental ob-
servations (Steriade et al. 2001).

D I S C U S S I O N

Cellular and network mechanisms of the slow (�1 Hz)
oscillation

In this paper, we present a model that reproduces the slow
rhythmic activity (�1 Hz) observed in vitro by Sanchez-Vives
and McCormick (2000) and in vivo by Steriade et al. (1993b).
The network oscillates between an up state of sustained but
low-rate (�10 Hz) neural activity and a down state of mem-
brane hyperpolarization. The onset and maintenance of the
active up state is due to an amplification of spontaneous ac-
tivity by powerful recurrent excitation, whereas the transition
back to the down state is controlled by a slow negative feed-
back, the Na�-dependent K� current IKNa. We provide exper-
imental evidence that when excitatory glutamatergic transmis-
sions mediated by AMPA and NMDA receptors were blocked,
a subset of layer 5 neurons still displayed significant sponta-
neous activities. Our model suggests that such spike discharges
of single neurons are sufficient to trigger waves of activity that
propagate across the cortical tissue. This initiation mechanism
is in contrast to that of spike-independent spontaneous synaptic
transmission proposed by Timofeev et al. (2000a).

Our results are in support of the hypothesis that the up state
is sustained by local reverberatory circuits in the cortex (Con-
treras et al. 1996; Metherate and Ashe 1993; Sanchez-Vives
and McCormick 2000). More specifically, our model proposes

FIG. 15. The model network can show spontaneous activity corresponding to various states of vigilance of the brain. A: local
field potential (LFP), population activity in multiunit electrode representation and a single neuron’s membrane potential and input
resistance for a slowly oscillating network (parameters as in Fig. 2 but with interneurons leakage currents given by gL � 0.104 �
0.0025 mS/cm2 and VL � �64.2 � 0.15 mV). Activity as in the slice preparation or in some instances of anesthetized animals
(Steriade et al. 1993b,c). B: same data for a network in which Na�-dependent adaptation currents have been reduced by 25%, gKCa

by 25%, gA and gKS by 5%, gL by 3% (and VL was depolarized by 1.2 mV), AMPAR-mediated transmission by 10% and
NMDAR-mediated transmission by 30%. As seen experimentally, all of these effects could be attributable to the action of
acetylcholine on cortical circuits. Notice longer up states of more irregular duration, similar as seen during slow-wave sleep in
unanesthetized cats (Timofeev et al. 2001). C: same as in B with AMPAR-mediated transmission further reduced by 33%,
NMDAR-mediated transmission by 30% and gKNa by 33%. Oscillations disappear and LFP becomes flat, as occurs during the
waking state. Mean rates averaged across the network are 1.3 Hz (A), 4.8 Hz (B), and 5.5 Hz (C). Notice that rates do not increase
significantly from B to C, as observed in the transition between slow-wave sleep and waking. In all panels, arrows point at a voltage
of �75 mV or an input resistance of 60 M	.
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that this oscillatory activity is the signature of an intrinsic
bistability between the up and down state and that IKNa induces
slow switchings between these two states. One testable predic-
tion of this scenario is that if IKNa could be suppressed, for
example by neuromodulators such as acetylcholine or norepi-
nephrine, the local cortical network would become bistable,
where both the up and down states would be dynamically
stable. In that case, transient stimulation would set the network
into a self-sustained (up) firing state, whereas transient hyper-
polarization would revert it back to the silent (down) state.
Moreover, this bistability would depend on strong excitatory
reverberation and should disappear with reduced recurrent
excitation. Finally, in the presence of IKNa, the cortical slice is
predicted to cycle around the bistability loop as depicted in Fig.
8 during the slow oscillation.

The ability of a cortical module to sustain several stable
states of firing has been proposed as a possible mechanism for
working memory in association cortical circuits, especially the
prefrontal cortex (Compte et al. 2000; Wang 1999b, 2001). Our
findings hint at the potential existence of a bistable dynamics in
the primary visual cortex that could be made available opera-
tionally by reducing slow adaptation currents or enhancing
after-depolarizing currents via neuromodulators (McCormick
1992). We emphasize that such a bistability has not yet been
demonstrated experimentally and thus represents a testable
prediction of our model. It is also important to note two major
differences between the kind of bistability discussed here and
that required for working memory. First, for a working mem-
ory circuit, a persistent up state should be stimulus-selective
and involve only a subset of neurons (a neural assembly). By
contrast, the up state during slow oscillation is global and
recruits the entire network. Second, bistability of a working
memory network would be between a resting state of sponta-
neous activity (at a few Hz) and a persistent active state with
elevated firing rates (20–50 Hz). On the other hand, the bi-
stability associated with slow oscillation is between a down
state of membrane hyperpolarization and an up state of relative
low firing rates (at �10 Hz). As the network is transformed
from the slow oscillation mode to the tonic-firing mode, the
persistent up state is similar to the spontaneous state of wake-
fulness (at �10 Hz) (Destexhe et al. 1999; Steriade et al.
1996), rather than higher-rate mnemonic activity states.

Input resistance and neuronal versus synaptic adaptation

Contreras et al. (1996) found that during the slow oscillation,
the input resistance is at its lowest of the cycle at the beginning
of the depolarized state and then it increases until it reaches its
maximum at the end of the hyperpolarized phase of the oscil-
lation. This was interpreted as evidence that the primary cause
for the sudden transition to the silent down state was the
depression or “disfacilitation” of an excitatory synaptic current
as opposed to the accumulation of an activity-dependent hy-
perpolarizing current. The short-term synaptic depression
mechanism has been implemented in a network model of the
slow oscillations as they occur in deafferented cortical slabs
(Bazhenov et al. 2002; Timofeev et al. 2000a). Presumably,
that model is also endowed with an intrinsic bistability, and the
network cycles around the hysteresis loop by the slow dynam-
ics of synaptic depression in a similar manner to that described
in Tabak et al. (2000).

We have built our model based on the experimental evidence
that a Na�-dependent K� current plays a critical role in the
slow oscillation in vitro (Sanchez-Vives and McCormick
2000). Our model shows that IKNa can be responsible for the
termination of the up state firing, whereas the input resistance
has the same time course as observed experimentally. This is
because an increase in IKNa results in decreased firing and
reduced synaptic and voltage-dependent conductances.
Whether the input resistance increases or decreases will then
depend on the particular balance between the opening of the
adaptation conductances and the closing of synaptic conduc-
tances (resulting from reduced activity in the network). Our
model suggests that the increase of input resistance in the
course of the up state is indeed primarily due to a decrease of
the synaptic conductances, but this decrease could arise as an
indirect consequence of intrinsic spike-frequency adaptation
rather than a direct synaptic depression. Moreover, the inhib-
itory conductance gI shows a much larger change than the
excitatory conductance gE, hence dominates the overall input
resistance.

Interestingly, during slow oscillations, we found that gE and
gI co-vary in such a way that the ratio gI/gE remains roughly
fixed in time, so that the two synaptic currents (conductance
times the driving force) are about the same. This dynamic
balance of synaptic excitation and inhibition, as well as intrin-
sic potassium currents (such as the low-threshold IKS) (Nisen-
baum et al. 1994; Wilson 1992), contribute to the control of
low firing rates (�10 Hz) in the up state and avoid the gener-
ation of runaway excitation.

Propagation of neural activity and the wave velocity

A number of previous theoretical works have been devoted
to the understanding of the velocity of wave propagation in a
one-population of pyramidal neurons, corresponding to slice
preparations with inhibition blockade (Bressloff 2000; Ermen-
trout 1998b; Osan et al. 2002). In particular, this topic was
experimentally surveyed and theoretically modeled by Golomb
and Amitai (1997). They found that discharges propagated as
traveling pulses in the disinhibited slice, propagation was pos-
sible only above a threshold value for the AMPAR conduc-
tance (gEE

AMPA) and beyond that point the propagation velocity
increased linearly with gEE

AMPA. All these points have been
reproduced by our model (see Fig. 10A). They further showed
that NMDA receptor conductance had a much smaller effect on
the discharge propagation, as our model also confirmed (data
not shown).

More recently, Golomb and Ermentrout (2001, 2002) ex-
tended the analysis to a model with two (excitatory and inhib-
itory) neural populations of leaky integrate-and-fire neurons.
They found that two wave propagation modes existed with
very different speeds, and they predicted that in the slow wave
inhibitory neuron firing would precede the pyramidal cell dis-
charge. This is precisely what our more detailed model shows,
thus confirming their prediction. Interestingly, within the range
of parameters that we examined, interneurons always fire in
advance of pyramidal cells at the onset of an up state, regard-
less of whether the inhibitory projection is narrower or broader
than excitation. This prediction could be checked experimen-
tally by comparing the firing times of intracellularly recorded
pairs of a pyramidal cell and an interneuron at the same
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recording site or by comparing the discharge of pyramidal cells
and interneurons at the same site to a common reference, such
as multiple unit or local field potential activity. Golomb and
Ermentrout (2001) also found that the network could be in a
regime where both modes of propagation occurred, depending
on the way in which the network was stimulated. We did not
explicitly find this situation in our network. However, it is
conceivable that this behavior could be observed with the
appropriate parameter modification.

In Golomb and Ermentrout (2001, 2002), the propagation of
a wavefront was considered with the constraint that each cell is
allowed to fire only one spike. By contrast, our model repro-
duces both the wave propagation of the onset of a long-lasting
up active state and the slow oscillation between the up state and
down state. We found that with anatomically estimated spatial
ranges of synaptic connections, it is difficult to reproduce
quantitatively the measured velocities of wave propagation.
Typically the wave speeds in the model are three- and fourfold
lower than the experimental data. It is not straightforward to
obtain larger wave speeds by increasing excitatory synaptic
conductances because the latter lead to complex firing patterns
and high neural firing rates in the up state incompatible with
the observations. On the other hand, by introducing weak
long-range intracortical excitation, these connections are effec-
tive at recruiting neurons during the firing phase of the oscil-
lation in such a way that they mediate faster discharge propa-
gation. Our model predicts a strong relationship between the
wave velocity observed physiologically and the inter-patch
distance of long-range horizontal connections measured ana-
tomically, which can be tested experimentally. The recruitment
of long-range connections during cortical spontaneous activity
has also been suggested to operate in anesthetized preparations
in vivo (Tsodyks et al. 1999).

In our model, whether the inhibitory connections are nar-
rower or broader than the excitatory ones is not crucial for the
generation of slow oscillations. In either case, the model can
generate slow propagating waves. These two scenarios of
intracortical connectivity cannot be distinguished based upon
the relative timing of activity in nearby inhibitory and excita-
tory neurons but only by examining in voltage-clamp the
relative timing of EPSCs and IPSCs that arrive in pyramidal
cells in the transition to the up state. We predict that inhibition
should arrive earlier than excitation in pyramidal cells if long-
range inhibition is a significant ingredient of intracortical cir-
cuitry. If the cell is at or near the reversal potential for this
inhibition, then this should appear as an initial increase in
membrane conductance (shunt) without significant change in
membrane potential.

Slow oscillations in vitro and in vivo

The spontaneous cortical activity recorded in in vivo prep-
arations under urethan or ketamine-xylazine anesthesia is not
always univocally identified as slow oscillations. In some
instances, membrane voltage transitions between an up state
and a down state can be quite unpredictable, and they are then
classified as a fluctuating rather than an oscillating pattern
(Lampl et al. 1999; Stern et al. 1997). The issue of the coher-
ency of the activity of cortical neurons is also a matter of
debate since some authors find very good correspondence
between neuronal up states and EEG waves (Paré et al. 1998;

Steriade et al. 1993c), but other experiments show poor coher-
ence between individual neurons and EEG (Lampl et al. 1999).
An obvious question is then how to reconcile all these various
observations with the hypothesis that they are manifestations of
one single phenomenon. Our network simulations provide a
hint as to how these types of behavior could be related to each
other. We found that an irregularly oscillating network (Fig.
13B) turns into a more periodic oscillation at a lower frequency
(Fig. 13A) when the pyramidal neuron intrinsic excitability is
reduced (by increasing permeability to K� ions through leak-
age channels). Also the inverse manipulations make the neuron
spend more time in the up state and less in the down state (as
in Fig. 13C). One of the anesthetic agents typically used in in
vivo experiments is xylazine, which increases K� conduc-
tances through �2 noradrenergic receptors (Nicoll et al. 1990).
For anesthetic effective concentrations, barbiturates also have a
hyperpolarizing effect through a GABA-mimetic action (open-
ing Cl� channels) that occurs in parallel to an augmentation of
GABA responses (Schulz and Macdonald 1981). Our model
suggests that these variations in excitability and connectivity
may explain the variations in the pattern of activity generated
in cortical networks between the in vitro slice, anesthetized and
naturally sleeping animal.

Transition to the tonic firing state of vigilance

In unanesthetized animals, the membrane potential of corti-
cal pyramidal cells is characterized by transitions between an
up and a down state in slow-wave sleep and a tonically depo-
larized state with firing at low rates during waking (when the
animal’s head is kept rigid) (Steriade et al. 1996, 2001;
Timofeev et al. 2001). The average firing rate over long periods
of time of a neuron is relatively similar over the sleep-waking
cycle, and the input resistance of pyramidal cells in the waking
state is as high as it is for the down state of the slow oscillation
(whereas it is significantly lower for the up state of the slow
oscillation) (Steriade et al. 2001).

Several neuromodulators are involved in the regulation of
the brain’s state of vigilance, including acetylcholine, norepi-
nephrine, and serotonin (McCormick 1992; Steriade et al.
1997). Cholinergic modulation in cortical neurons is known to
reduce several K� conductances: leak, A-type, M-type, and
Ca2�- and Na�-dependent (Constanti and Sim 1987; Foehring
et al. 1989; McCormick 1992; Schwindt et al. 1989). Another
known effect of acetylcholine is the reduction via a presynaptic
mechanism of EPSPs both in hippocampus (Hasselmo and
Fehlau 2001; Seeger and Alzheimer 2001; Valentino and
Dingledine 1981) and in neocortex (Kimura and Baughman
1997; Kimura et al. 1999; Tsodyks and Markram 1997).
Kimura et al. (1999) have estimated that ACh suppresses
�50% of intracortical synaptic excitation. On the other hand,
serotonin also reduces these adaptation currents while dimin-
ishing the size of unitary EPSPs (McCormick 1992). These
neuromodulators are likely to be at low levels in the in vitro
preparation, and in vivo their concentration depends greatly on
the state of vigilance of the brain.

We have performed manipulations to simulate some of the
actions of neuromodulators with our model of a slowly oscil-
lating cortical slice (see Figs. 15 and 14). We show that
changing individual parameters of the model does not repro-
duce the most salient neurophysiological differences between
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the slow-wave sleep and the waking states (Fig. 14). However,
concomitant manipulations of adaptation currents, leakage K�

currents, and recurrent excitation transformed a regularly os-
cillating network into a more irregular oscillating behavior
(Fig. 15), closely resembling the slow oscillations observed
during natural slow-wave sleep in unanesthetized cats (Steriade
et al. 1996; Timofeev et al. 2001). Enhancement of the neuro-
modulator effects eventually brings the network into a tonic
discharge state with no large-scale spatio-temporal coherence
(but notice local coherent inhomogeneities in the multiunit
record), reminiscent of typical cortical activity in the awake
state (Destexhe et al. 1999; Steriade et al. 1996). This effect
has been recently observed also in a thalamocortical network
model of slow oscillations (Bazhenov et al. 2002). Unlike the
in vivo observations, though, we find that in Fig. 15B the
oscillations still propagate slowly across the network, whereas
experiments have shown rapid synchronization of episodes
across very long distances (Destexhe et al. 1999). A possibility
is that the integrity of the corticothalamic feedback system has
a synchronizing action on the cortically generated slow oscil-
lation (Amzica and Steriade 1995; Contreras and Steriade
1997). However, the recently reported network model of Ba-
zhenov et al. (2002) still shows slow wave propagation even in
the presence of thalamocortical influences.

Our simulations were not meant to explore the myriad of
known effects of neurotransmitters in the cerebral cortex. Spe-
cifically, the ability of acetylcholine and other neurotransmit-
ters to enhance calcium-activated cation currents or to modu-
late activity differentially in subpopulations of cortical inter-
neurons (Kawaguchi 1997, 1998) may be relevant in the
natural transition from the sleep to waking and remain to be
explored.

In summary, our model proposes that a given cortical mi-
crocircuit is more reverberatory during sleep than during wak-
ing states. Slow oscillations are a manifestation of both strong
feedback synaptic excitation and neuronal adaptation during
quiet sleep. A concomitant reduction by neuromodulators of
recurrent excitatory synaptic transmission and adaptation cur-
rents leads to the transition to the tonic-firing state of wake-
fulness.
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