
Single-neuron recordings from behaving primates have established a
link between working memory processes and information-specific
neuronal persistent activity in the prefrontal cortex. Using a network
model endowed with a columnar architecture and based on the
physiological properties of cortical neurons and synapses, we have
examined the synaptic mechanisms of selective persistent activity
underlying spatial working memory in the prefrontal cortex. Our
model reproduces the phenomenology of the oculomotor delayed-
response experiment of Funahashi et al. (S. Funahashi, C.J. Bruce
and P.S. Goldman-Rakic, Mnemonic coding of visual space in
the monkey's dorsolateral prefrontal cortex. J Neurophysiol
61:331–349, 1989). To observe stable spontaneous and persistent
activity, we find that recurrent synaptic excitation should be
primarily mediated by NMDA receptors, and that overall recurrent
synaptic interactions should be dominated by inhibition. Iso-
directional tuning of adjacent pyramidal cells and interneurons can
be accounted for by a structured pyramid-to-interneuron connect-
ivity. Robust memory storage against random drift of the tuned
persistent activity and against distractors (intervening stimuli during
the delay period) may be enhanced by neuromodulation of recurrent
synapses. Experimentally testable predictions concerning the neural
basis of working memory are discussed.

Introduction
Dorsolateral prefrontal cortex (PFC) plays a pre-eminent role in

visuospatial working memory, as demonstrated by converg-

ent evidence from ablation and reversible lesion studies

(Goldman-Rakic, 1987; Fuster, 1988), brain imaging (McCarthy

et al., 1994; Courtney et al., 1998; Zarahn et al., 1999) and

primate physiological studies (Fuster, 1973; Niki and Watanabe,

1976; Funahashi et al., 1989; Chafee and Goldman-Rakic, 1998;

Rainer et al., 1998; Sawaguchi and Yamane, 1999). In an

oculomotor delayed-response task (Funahashi et al., 1989), when

a monkey is required to retain information of a visual cue

location through a delay period (a few seconds) between the

stimulus and memory-guided behavioral response, PFC neurons

show location-tuned elevated activity through the entire delay

period. Presumably, information about the cue location is

encoded by a selective neural assembly that subserves active

memory storage by virtue of its sustained firing activity.

Persistent activity has also been reported for neurons in pos-

terior parietal cortex (PPC) during delayed oculomotor response

experiments (Gnadt and Andersen, 1988; Colby et al., 1996;

Constantinidis and Steinmetz, 1996; Chafee and Goldman-Rakic,

1998). It is thus conceivable that mnemonic activity is

maintained by reverberatory loops between the PFC and PPC

(Fuster, 1988; Goldman-Rakic, 1987; Chafee and Goldman-Rakic,

1998; Sarnthein et al., 1998). However, location-specific per-

sistent activity in PPC was found to be easily disrupted by

intervening stimuli during the delay period, while the monkey's

working memory performance was not impaired (Constantinidis

and Steinmetz, 1996). An alternative mechanism is that a neural

circuit within the PFC may be by itself capable of sustaining

selective persistent activity. In support of that idea, recent

studies have demonstrated local recurrent excitatory connec-

tions both anatomically (Levitt et al., 1993; Kritzer and

Goldman-Rakic, 1995) and physiologically (González-Burgos et

al., 2000), as well as interactions between pyramidal and non-

pyramidal neurons at microcolumnar and macrocolumnar ranges

(Rao et al., 1999) in the PFC.

A number of theoretical models have attempted to account for

selective persistent activity, based on the assumption that

persistent activity is sustained by reverberatory excitation

within a local recurrent neural network (Hebb, 1949; Amit,

1995). Most previous computational analyses have used firing

rate models (Wilson and Cowan, 1973; Amari, 1977; Zipser et

al., 1993; Amit et al., 1994; Seung, 1996; Camperi and Wang,

1998; Moody et al., 1998; Durstewitz et al., 1999). Firing rate

models, however, are difficult to relate directly with the

physiological data. In particular, the issue of spontaneous versus

persistent activity cannot be properly analyzed. Moreover,

realistic time courses of synaptic interactions between neurons

are typically ignored. For these reasons, a direct dialog between

models and cortical synaptic physiology has been lacking.

Recently, several studies have brought models closer to experi-

mental data. Amit and Brunel used a spiking neuron model,

instead of a rate model, for object working memory (Amit and

Brunel, 1997). This approach allowed them to explicitly address

the question of spontaneous activity and the generation of

persistent activity by a specific structured connectivity.

Lisman and co-workers proposed that the voltage sensitivity of

NMDA receptors (NMDARs) at recurrent synapses could under-

lie the stimulus-selectivity of neuronal persistent activity (Lisman

et al., 1998). On the other hand, Wang found that, in order to

realize a stable, low-rate, persistent activity coexisting with a

stable resting state, recurrent excitation should be primarily

mediated by kinetically slow synapses of the NMDA type (Wang,

1999).

In this paper, we present a PFC network model for spatial

working memory that combines insights from previous

modeling studies on persistent activity in recurrent circuits

(Amit and Brunel, 1997; Camperi and Wang, 1998; Wang, 1999).

The structure of recurrent connnectivity is consistent with a

columnar organization of cortical circuitry (Levitt et al., 1993;

Goldman-Rakic, 1995; Kritzer and Goldman-Rakic, 1995;

Mountcastle, 1997), similar to network architectures that have

been proposed in other cortical network models (Ben-Yishai et

al., 1995; Douglas et al., 1995; Somers et al., 1995). The model

incorporates physiological data from slice preparations on the

membrane parameters and input-output transductions of pyram-

idal and nonpyramidal neurons (McCormick et al., 1985), and on

the  postsynaptic  current gating kinetics of AMPA  receptor

(AMPAR), NMDAR (Hestrin et al., 1990; Jahr and Stevens, 1990;
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Spruston et al., 1995) and GABAA receptor (GABAAR) (Salin and

Prince, 1996; Xiang et al., 1998) mediated synaptic transmission.

By using our model to reproduce the Funahashi experiment, we

investigated synaptic mechanisms and network dynamics that

may account for the salient observations on neuronal correlates

of working memory. We also investigated the robustness of

working memory storage against distraction stimuli and noise.

Predictions from our theoretical results that are testable by in

vitro physiological studies and single-neuron recording from

behaving monkeys will be discussed.

Materials and Methods
The network model represents a local circuit of the monkey dorsolateral

prefrontal cortex. It includes NE pyramidal cells, and NI interneurons.

Pyramidal cells are four times more numerous than interneurons (NE/NI =

4). We assume a network architecture that is consistent with a columnar

organization of the monkey PFC (Goldman-Rakic, 1995; Rao et al., 1999;

Constantinidis et al., 1999; Ó Scalaidhe and Goldman-Rakic, 1999), and

similar to models of the primary visual cortex (Ben-Yishai et al., 1995;

Somers et al., 1995; Tsodyks and Sejnowski, 1995). Neurons are spatially

distributed according to the stimulus to which they are most sensitive

(preferred cue  in  an  oculomotor delayed response  task)  and their

collaterals may differentially target neighboring (isodirectional) and

distant (crossdirectional) neurons. Cells receive external synaptic inputs

which are indicative of the angle of the peripheral cue during its

presentation. Each model neuron is labeled by its preferred cue position

(an angle), and neurons of the network cover uniformly all the angles

along a circle. Therefore, the cells are spatially distributed on a ring and

their position in the ring has a linear relationship with their preferred cue

angle.

Both pyramidal cells and interneurons are modeled as leaky integrate

and fire units (Tuckwell, 1988). Each type of cell is characterized by six

intrinsic parameters: the total capacitance Cm, the total leak conductance

gL, the leak reversal potential EL, the threshold potential Vth, the reset

potential Vres, and the refractory time τref. The values that we use in

the simulations are Cm = 0.5 nF, gL = 25 nS, EL = –70 mV, Vth = –50 mV,

Vres = –60 mV, and τref = 2 ms for pyramidal cells; and Cm = 0.2 nF, gL =

20 nS, EL = –70 mV, Vth = –50 mV, Vres = –60 mV, and τref = 1 ms for

interneurons (Troyer and Miller, 1997; Wang, 1999). All cells receive

external excitatory inputs from other cortical areas. This overall external

input is modeled as uncorrelated Poisson spike trains to each neuron at a

rate of νext = 1800 Hz per cell (or equivalently, 1000 presynaptic Poisson

spike trains at 1.8 Hz). The external input is exclusively mediated by

AMPARs, with the maximum conductance gext,E = 3.1 nS on pyramidal

cells, and gext,I = 2.38 nS on interneurons.

Neurons receive their recurrent excitatory inputs through AMPAR-

and NMDAR-mediated transmission and their inhibitory inputs through

GABAARs. Synaptic responses are modeled as by Wang (Wang, 1999):

postsynaptic currents are modeled according to Isyn = gsyns(V – Vsyn),

where gsyn is a synaptic conductance, s a synaptic gating variable, and Vsyn

the synaptic reversal potential (Vsyn = 0 for excitatory synapses, Vsyn =

–70 mV for inhibitory synapses). AMPAR and GABAAR synaptic gating

variables are modeled as an instantaneous jump of magnitude 1 when a

spike occurs in the presynaptic neuron followed by an exponential decay

with time constant 2 ms for AMPA (Hestrin et al., 1990; Spruston et al.,

1995) and 10 ms for GABAA (Salin and Prince, 1996; Xiang et al., 1998).

The NMDA conductance is voltage dependent, with gsyn multiplied by

1/(1 + [Mg2+]exp(–0.062Vm)/3.57) (Jahr and Stevens, 1990), [Mg2+] = 1.0

mM. The channel kinetics is modeled by the following equations:

where s is the fraction of open channels, x is an intermediate gating

variable, ti are the presynaptic spike times, τs = 100 ms is the decay time

of NMDA currents, τx = 2 ms controls the rise time of NMDAR channels,

and αs = 0.5 kHz controls the saturation properties of NMDAR channels at

high presynaptic firing frequencies.

The recurrent connections between neurons in the network depend

on the difference between their preferred cues. This is implemented by

taking the conductance between neuron i and neuron j to be gsyn,ij = W(θi

– θj)Gsyn, where W(θi – θj) is the ‘connectivity footprint’ normalized as

The functional form of W is chosen to be either a constant for

unstructured connections or the sum of a constant term plus a Gaussian

centered at θi – θj = 0: W(θi – θj) = J– + (J+ – J–)exp[–(θi – θj)
2/2σ2]. In this

equation, the dimensionless parameter J– represents the strength of the

weak crossdirectional connections, J+ the strength of the stronger

isodirectional connections, and σ is the width of the connectivity

footprint (see Fig. 1). Note that the normalization condition of W imposes

a functional relationship between the three parameters defining

the connectivity. Therefore, we only mention in the following two

parameters, J+ and σ. J– is then determined using the normalization

condition. In most simulations, only the excitatory-to-excitatory

connectivity is structured. Parameters of the corresponding footprint are

J+
EE, σEE. In a few simulations (Fig. 7),  the excitatory-to-inhibitory

connectivity is also structured. The parameters of the corresponding

footprint are J+
EI, σEI. In all simulations, the inhibitory connections are

unstructured, i.e. the cross- and isodirectional components of inhibitory

connections are equally strong.

In order to produce a desired level of spontaneous activity, we set the

values of the conductances of external synapses gext,E, gext,I, and the

frequency of external inputs νext so that each neuron receives strong

suprathreshold input from external sources. We then impose that

inhibition be stronger than recurrent excitation, by choosing a high

enough ratio of inhibitory to excitatory conductances on each cell type,

i.e. a high enough value of GIE/GEE = GII/GEI. Adjusting these parameters

allows control of the level of spontaneous activity of both excitatory and

inhibitory populations (Amit and Brunel, 1997). A structured pyramid-

to-pyramid connectivity gives rise to tuned network persistent activity

states. This is accomplished by a gradual increase of J+, until the network

shows a bistability between homogeneous spontaneous activity and

tuned persistent activity (Amit and Brunel, 1997). An important point to

make here is that the pyramid-to-pyramid footprint WEE is always

normalized to 1, so that an increase in the synaptic strength between

neurons with similar preferred cues implies a decrease in the strength of

connection between neurons with dissimilar preferred cues. This allows

the preservation of the level of spontaneous activity as the connectivity

footprint is varied.

In most of the simulations shown in this paper, only NMDAR channels

were included at the recurrent excitatory synapses (for simplicity), since

previous work suggested that dominance of the recurrent excitation by

NMDARs favors network stability (Wang, 1999). In some simulations we

assessed the network stability when the AMPAR contribution to the

recurrent connections was  included  (see below). Typically (for  the

‘control parameter set’), NE = 2048, NI = 512. The recurrent excitatory

synapses mediated by NMDAR channels have conductances GEE =
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Figure 1. Structured connectivity of the model. The synaptic connection strength
decreases with the difference in the preferred cues of two neurons, with strong
interactions between neighboring neurons and weak interactions between more distant
neurons.
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0.381 nS (pyramid-to-pyramid), GEI = 0.292 nS (pyramid-to-interneuron);

inhibitory synaptic conductances are GIE = 1.336 nS (interneuron-

to-pyramid), GII = 1.024 nS (interneuron-to-interneuron); the connectivity

footprint has characteristics σEE = 18° and J+
EE = 1.62. Recurrent

conductances are scaled inversely proportionally to N when network size

is varied, to keep the total synaptic conductances unchanged. We also

performed simulations with a different parameter set (Figs 4, 8), referred

to as a ‘modulated’ parameter set. It has the same parameters as the

control, except for an enhancement in the recurrent conductances: 20%

increase for NMDAR-mediated synaptic transmission (GEE and GEI) and

40% increase for GABA synapses (GIE and GII). In other simulations,

AMPAR-mediated synaptic transmission was introduced in the recurrent

connectivity (Fig. 6). For a 67% NMDA contribution to recurrent

excitatory charge entry at a holding potential of –65 mV (Fig. 6A) the

parameters are GEE,AMPA = 0.251 nS, GEE,NMDA = 0.274 nS, GEI,AMPA = 0.192

nS, and GEI,NMDA = 0.212 nS. For a 50% NMDA contribution to recurrent

connections at a holding potential of –65 mV (Fig. 6C), the parameters are

GEE,AMPA = 0.393 nS, GEE,NMDA = 0.214 nS, GEI,AMPA = 0.304 nS, and GEI,NMDA

= 0.164 nS.

The simulation protocol was chosen to mimic the protocol used in

the experiment of Funahashi et al. (Funahashi et al., 1989). In  that

experiment, monkeys were trained to fixate a central spot during a brief

presentation (0.5 s) of a peripheral cue and throughout a subsequent

delay period (1–6 s), and then to make a saccadic eye movement to where

the cue had been presented in order to obtain a reward. In our

simulations, cue presentation to the network is modeled through

selective transient current injection to pyramidal cells whose preferred

cues are close to the stimulus. During the delay period, all selective

external currents are absent. After the end of the delay period, we model

the effect of the motor response and reward on the network by a transient

nonspecific current injection to all neurons. In several simulations, we

tested the inf luence of distractors on the network dynamics. Distractors

Figure 2. Working memory maintained by a tuned network activity state (a ‘bump state’). C, cue period (250 ms, peak stimulus 200pA); D, delay period (8.75 s); R, response period
(250 ms, external current increase 500 pA). (A) Pyramidal neurons rastergram. The x axis represents time, while the y axis represents neuron label according to its preferred cue. A
dot in the rastergram indicates a spike of a neuron whose preferred location is at y, at time x. Note the enhanced and localized neural activity that is triggered by the cue stimulus and
persists during the delay period. The population firing profile, averaged over the delay period, is shown on the right. (B) Color-coded spatiotemporal activity pattern (see Materials and
Methods). (C) Same as (B), with less specific cue stimulation (5-fold increase in cue width). The network reaches a bump state with the same width as in (B) during the delay. In
these simulations, inhibitory interneurons (not shown) display a spontaneous activity rate of 9 Hz and an increased delay activity rate of 13 Hz.
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are modeled as a cue stimulus (same strength, same duration) but at a

different location relative to the cue stimulus.

To visualize network activity, pseudo-color spatiotemporal firing

patterns  were  calculated.  A spike time rastergram  for all pyramidal

neurons (or interneurons) is smoothed with a sliding window both in

time (500 ms in Figs 2 and 7, 10 ms in Fig. 6A,C, 5 ms in Fig. 6B, and 250

ms in Fig. 8) and along the neuron population (15 neurons in all figures

except Fig. 6, where it is 125 neurons). The resulting firing rate is color

encoded using the Matlab package. The population vector (Georgopoulos

et al., 1986) was used to estimate the evolution of the peak location of the

bump state (see Fig. 5). To compute the population vector during a given

time interval, we first compute a vector for each pyramidal cell, with

direction given by the preferred direction of that cell and the amplitude

proportional to the firing rate of the cell during the corresponding time

interval. The population vector is then given by the sum of all individual

vectors. Its angle with respect to a reference frame is a measure of the

stored positional cue in the corresponding time interval. It is a simple and

convenient method to estimate the peak of the activity profile at a given

time. In Figure 8 a maximum likelihood estimator was used to assess the

memorized angle at a given time (angles θ1 and θ2 in Fig. 8). The popu-

lation activity profile before the distractor was fitted to the population

profile after the distractor. This method picks the position of the most

salient bump present in the profile in contrast to the population vector,

which computes the mean position of all bumps in the profile. ‘Local field

potentials’ (see Fig. 6) were computed by averaging the synaptic variable

sAMPA across all the pyramidal neurons at each time step.

The integration method used is a second-order Runge–Kutta algorithm

with the firing time interpolation scheme (Hansel et al., 1998b) and a

time step of ∆t = 0.02 ms. The code for the simulations has been written

in C++. When run on a Linux 550 MHz Pentium III PC, a 6 s trial with 2048

pyramidal neurons and 512 interneurons typically takes 2 h to complete.

Results

Persistent Activity and Memory Fields

Our network model simulation used the protocol of the

experiment of Funahashi et al. (Funahashi et al., 1989),

consisting of a cue presentation (C) followed by a delay period

(D) then a response period (R) (see Materials and Methods

for details). The network activity during any given trial was

monitored by plotting its spatiotemporal firing pattern. Figure

2A,B shows two different ways of showing the temporal

evolution of network activity. In both plots, the abscissa

represents time, while the ordinate represents pyramidal

neurons arranged according to their preferred cue directions. In

Figure 2A, spikes of all pyramidal neurons are shown in a

rastergram. In Figure 2B, spatiotemporal activity is smoothed

(see Materials and Methods) and shown in a continuous and

color-coded map. The main features of network activity can be

read out from these graphs from left to right. First, before cue

presentation, neurons show spontaneous activity at a few spikes

per second. This activity is uniform in space: the network

is untuned. Such a low spontaneous activity is an emergent

property of the network. It is achieved through a combination of

suprathreshold external inputs representing background activity

in other brain areas, and of a strong feedback inhibition in the

network.

Second, during the cue period (C), a pattern of increased

activity develops around the location of the cue (180°). This

increased   activity   is due to   the   external input to the

subpopulation of neurons with preferred cues closest to the cue

stimulus (approximately those with preferred cues between

162° and 198°, see Materials and Methods).

Third, in the delay period (D), the network initially localized

response widens and stabilizes. The elevated persistent activity

remains restricted to a selective neural subpopulation through-

out the delay period. This is quantified by the peaked network

profile of the averaged delay-period activity (right panel in

Fig. 2A). The enhanced persistent rates (∼ 20 Hz) are achieved

through the strong excitatory feedback between cells sharing

similar tuning properties. In Figure 2C, the same simulation is

repeated, but with a more broadly tuned cue stimulus (cells

between 90° and 270° are activated by the stimulus). Thus, the

network response during the cue period is more widespread.

However, the network persistent activity eventually evolves to

the same profile during the delay period as with a more specific

cue stimulation (Fig. 2B). Therefore, the tuned persistent activity

profile is independent of the precise shape (or intensity) of the

cue stimulus. Such a ‘bump state’ is an attractor of the network

dynamics.

Finally, during the response period (R), a transient and overall

increase of external inputs to the whole network leads to a

transient increase of neuronal firing, which turns off the

persistent activity (Funahashi et al., 1991; Goldman-Rakic et al.,

1990). This ‘switching off’ of persistent activity by excitation is

due to the strong inhibitory feedback. A global excitatory drive

to the network increases the firing rate of inhibitory cells in a

way that is strong enough to effectively wipe out persistent

activity and refresh the short-term memory.

An example of a single neuron's selective persistent activity is

shown in Figure 3 for a pyramidal cell with preferred cue at

260°. During a delayed-response simulation in which the cue

location was 270°, the spike trains were recorded for several

trials (Fig. 3A). The cell shows a low rate (3.5 Hz) of spontaneous

activity. In response to a transient cue at 270° (250 ms), the cell

displays an enhanced persistent activity during the delay period

(8.75 s). Both spontaneous and delay-period firing activities are

quite irregular in time (Fig. 3A). The cell is switched back to the

spontaneous state during the response period (250 ms). With

eight cue presentations, the average firing rate of the neuron’s

persistent activity for each cue is computed and the resulting

tuning curve is shown in Fig. 3B. The persistent activity is tuned

to a memory field around 270°. Note that the maximum

persistent activity rate is ∼ 20 Hz, within the physiological range

of PFC neurons. Moreover, the firing rate of delay period activity

for a non preferred cue is lower than the spontaneous rate, as is

often observed experimentally (Funahashi et al., 1989). The

tuning curve can be fitted by a Gaussian function. It is

significantly broader (with a width of ∼ 40°) than the width of the

recurrent excitatory connectivity (18°, see Materials and

Methods). The width of the tuning curve (or the size of the

neuron’s memory field) depends also on a variety of network

parameters, such as the relative strengths of recurrent synaptic

excitation and inhibition, as we shall see below.

The persistent activity of a single neuron is sustained by

synaptic excitation from the rest of the network. To dissect vari-

ous contributions to the synaptic drive to a cell, we calculated

separately the components of the synaptic inputs to the cell

during both spontaneous state and delay period (Fig. 3C). The

time-average over the delay period of the different types of

synaptic inputs to the cell (external excitatory, recurrent

excitatory and recurrent inhibitory inputs) are plotted as a

function of the cue stimulus. Several important features of the

network activity can be seen from the graph. It shows that the

overall recurrent (excitatory plus inhibitory) input from the

other cells in the network is negative, so that the net effect is

hyperpolarizing, and the neuron is restrained from firing at the

high rates that would otherwise be imposed by external inputs

alone. This is a consequence of the inhibition dominance of the

recurrent interactions, which is crucial to the network function.

Cerebral Cortex Sep 2000, V 10 N 9 913



Another  important point can be  made from Figure  3C by

comparing the persistent activity state with the spontaneous

state. Even though there is a significant increase in both

excitatory and inhibitory recurrent currents in the persistent

activity state, the summated total recurrent input remains

approximately unchanged with respect to the spontaneous state.

Thus, in the present network, excitation and inhibition balance

each  other  dynamically.  A balance between excitation and

inhibition has also been suggested to account for the irregularity

of interspike intervals of cortical cells in vivo (Shadlen and

Newsome, 1994; Tsodyks and Sejnowski, 1995; Amit and

Brunel, 1997; van Vreeswijk and Sompolinsky, 1998). For cues

within the neuron’s memory field, neighboring cells with similar

preferred cues show enhanced firing and send increased lateral

excitation to each other, so that the total recurrent input to the

cell is higher than during spontaneous activity, leading to an

enhanced persistent activity. On the other hand, when the cue

location is very different from the preferred cue, cells with

enhanced persistent activity are far away from (and thus send

little excitation to) the recorded cell, and the total recurrent

input shows actually a slight decrease during the delay period,

which explains why the firing rate is lower than spontaneous

activity in that situation (Fig. 3B).

As mentioned above, the size of the memory field depends on

the interplay between recurrent excitation and inhibition.

Memory fields are thus under modulatory control of various

neurotransmitters via their action on synaptic transmissions. In

particular, a concomitant enhancement of recurrent synaptic

excitation (20%) and inhibition (40%) (modulated parameter set,

see Materials and Methods) leads to a sharper tuning of persistent

activity (in Fig. 4A,  the width  of  the tuning  curve is  30°.

Compare with 40° in Fig. 3). Stronger inhibition reduces the

spontaneous activity, whereas stronger excitation leads to a

higher mnemonic activity for the preferred cue, thereby

increasing the separation between the firing rates of the two

states (the signal-to-noise ratio). We show in Figure 4A the raster-

grams of a pyramidal neuron with a preferred cue at 270° for

eight cue stimuli. For comparison, the data from a neuron in the

principal sulcus recorded by Funahashi et al. (Funahashi et al.,

1989, Figs 3 and 9) is plotted in Figure 4C. Note the similarities

between the simulated cell and the real cell. Indeed, both cells

show a low spontaneous activity, a cue-selective delay activity

after stimulus presentation, a high degree of variability of spike

trains during both spontaneous and persistent states, and a

transient increase in the firing rate during the response period

before the cell returns to its spontaneous state. Activity during

the cue period is controlled by the intensity of the external

stimulation during that period and it is not directly related to the

delay activity, which is intrinsically set by the network synaptic

conductances. Finally, the tuning curves of both simulated and

real cells during the delay period show comparable shape and

rates (Fig. 4B,D respectively).

Random Drift of Memory

In the model, a network persistent activity can be peaked at an

angle anywhere between 0° and 360°, which encodes the

memory of a cue stimulus in a graded fashion. Thus, there is a

continuum of such structured activity profiles (‘bump states’),

which is realized by the circular symmetry of the network. A

particular bump state is selected by the cue during the stimulus

presentation. However, after the cue is withdrawn, no external

input is present to constrain the peak's location of the network

activity profile during the delay period. This raises the question

of the stability of one particular bump against random

fluctuations that can move it to another adjacent bump, in which

case the memory of the cue location would be lost.

The simulation of Figure 5 shows clearly that the bump, once

elicited by a cue, is not completely stationary. Rather, it slowly

Figure 3. Synaptic mechanisms underlying spontaneous and persistent activity
(‘control’ parameter set, see Materials and Methods). (A) Rastergram and average
discharge rate vs time of a cell in trials in which a cue is shown close to the preferred
angle of the cell. (B) Tuning curve of the cell in the delay period. The standard deviation
of the Gaussian fit is 40°. (C) Components of the synaptic inputs of the cell. The shaded
area shows the average inputs during spontaneous activity. To the right, we show the
average synaptic components of the cell as a function of cue position: recurrent
excitatory, recurrent inhibitory and external excitatory (labelled ‘external’). The sum of
both recurrent inputs is labelled ‘total recurrent’ and the sum of all independent inputs
is labelled ‘total’. Depolarizing inputs are positive and hyperpolarizing inputs negative.
Note the increase in both recurrent excitatory and inhibitory inputs during the delay.
Because of the balance between excitation and inhibition, the sum of the two (total
recurrent) remains close to the level of the spontaneous state.
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drifts in a seemingly random fashion. Such a drift is due to the

random inputs that the network continuously receives from

outside. This random bombardment has a small effect on the

bump location, so that even though the shape of the bump is

stable, its location is only marginally stable as a result of the

translational invariance along the circle. To quantify this drift

behavior, we have estimated the instantaneous location of the

bump (the peak of the network activity profile) using the

population vector (see Materials and Methods). The time evolu-

tion of the population vector is shown for different trials and

network sizes in Figure 5. For a given network size, the

population vector drifts away in any single trial from the cue

location during the delay period, indicating a slow deterioration

of memory for the cue location. Note that the network has equal

probabilities of drifting up  and down, due  to the  circular

symmetry (Fig. 5A). The three panels in Figure 5A clearly show

Figure 4. Single cell recording in experiment (Funahashi et al., 1989) and in the simulation reveals directional delay period activity. (A,B) Network simulation with the modulated
parameter set (see Materials and Methods); (C,D) Experiment of Funahashi et al. [(Funahashi et al., 1989), see their Figs 3 and 9]. Each rastergram represents the response of the cell
when the cue was shown in one of the eight locations indicated in the center diagram. Both cells respond vigorously in the delay only for one direction (270°), and are suppressed
relative to inter-trial spontaneous activity in the upper visual field. The delay period tuning curves (B,D) show the average discharge rate during the delay period (circles), together with
a Gaussian fit of the data. The horizontal line indicates average inter-trial spontaneous activity. Note the similarity between experiment and simulation.
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that the drift effect is smaller for larger network sizes, indicating

that the memory of the cue location is more robust with a larger

neural population in the network. The variance of the popu-

lation vector as a function of time is plotted for different network

sizes in Figure 5B, showing an approximate linear trend. This

linear trend is consistent with a diffusion process (Berg, 1983).

The figure shows also that the slope of the variance dramatically

decreases with network size. Indeed, after a 4 s delay, the

location has drifted on average by 20° in a network of 1024

neurons; by ∼ 15° in a network of 2048 neurons; and by <10° in

a network of 4096 neurons. Further simulations with the

modulated parameter set of Figure 4A showed a remarkably

smaller degree of drift at each network size compared to Figure

5 (data not shown), indicating that the memory drift can be

controlled by neuromodulation of recurrent synapses.

Stability, Synchrony and the NMDA to AMPA Ratio

As can be seen in Figure 2A, neural discharges appear quite

asynchronous both during the spontaneous state and the delay

period. The lack of synchronicity is due to the predominance of

NMDAR-mediated transmission at the recurrent excitatory

synapses. To show this, we performed simulations with different

relative contributions of the AMPAR and NMDAR to the

recurrent synaptic excitation. This was done by varying the

contribution of the NMDAR to the total charge entry into a cell

by a unitary EPSC at recurrent connections. The neuronal

firings are essentially asynchronous, as long as NMDAR currents

contribute at least 75% to the total charge entry mediated by

excitatory recurrent inputs (at a holding potential of –65 mV).

With less NMDA contribution, neurons become partially

synchronized, as shown in Figure 6A. On a large scale (Fig. 6A),

the structure of the network persistent activity profile remains

similar to that in Figure 2A. On a fine temporal scale, however

(Fig. 6B), the temporal structure of the network activity has

dramatically changed from asynchronous behavior to pro-

nounced synchronized oscillations at ∼ 40 Hz (see power

spectrum in the right panel). These oscillations are due to the

fact that when the contribution of AMPAR channels to recurrent

connections becomes large, these synaptic inputs with a fast

time constant tend to produce surges of activity, that are later

dampened by the slower synaptic inhibition. Thus, an oscillatory

behavior emerges. The network behavior remains irregular due

to external noise. Another important characteristic of the net-

work is that firing rates of persistent activity tend to be higher as

the NMDA contribution decreases. This can be explained by the

lack of saturation of the steady-state, AMPAR-mediated synaptic

response at physiological firing rates, while NMDARs saturate at

rather low presynaptic frequencies. For still smaller NMDA

contribution to total charge entry, oscillations become more

pronounced. Fluctuations in the network dynamics eventually

destroy persistent activity (Fig. 6C).

Therefore, our simulations show that (i) NMDARs are

Figure 5. The network pattern of persistent activity drifts randomly in time due to noise, but memory storage is robust in large networks and weaker recurrent synaptic connections.
(A) Population vector position versus time for different runs and different network sizes. (B) Variance of the population vector position around the initial stimulation point averaged
across trials and plotted versus time for each of the three network sizes studied. Note the linear trend, similar to a diffusion process.
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necessary for sustaining a dynamically stable persistent activity;

and (ii) rhythmic oscillations in the gamma frequency range

(20–80 Hz) readily occur in such a strongly recurrent network, if

a substantial component of recurrent excitation is mediated by

AMPA receptors. This is a phenomenon produced by the

interplay between a fast positive feedback followed by a slower

negative feedback (Wang, 1999).

Tuning in Inhibitory Cells

Recently, recordings from putative inhibitory neurons in the PFC

have been reported in monkey experiments using the same

oculomotor delayed-response paradigm (Rao et al., 1999). It was

found that some PFC fast-spiking interneurons display tuned

persistent activity, similar to pyramidal cells. In our network

simulation of Figure 2, only excitatory cells show tuning to the

Figure 6. A decrease of the NMDAR channel contribution to recurrent synapses gives rise to oscillations in the delay period. (A) Network spatiotemporal firing pattern with moderate
AMPA component in recurrent interactions. Here the NMDAR channels contribute 67% to the total recurrent excitatory charge entry at a holding potential of –65 mV (NMDA:AMPA
ratio 0.038 in terms of the peak elicited EPSC). (B) 500 ms blowup of the upper panel to show the AMPA-induced oscillations, the local field potential and the membrane potential of
a single neuron. On the right is shown the power spectrum of the local field, demonstrating a large peak at ∼ 40 Hz. (C) Example of the disruptive effect of weak NMDA component in
the delay period activity of the network. The NMDA contribution to the recurrent excitatory charge entry is here 50% at a holding potential of –65 mV (NMDA:AMPA ratio 0.019 in
terms of peak EPSC). Note the eventual recruitment of the whole network that abolishes persistent activity. The network then goes back to the asynchronous spontaneous activity.
The local field shows a very strong oscillation before disruption of persistent activity.
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cue. This is due to the fact that in that simulation, only con-

nections between excitatory cells were structured. Tuning in

inhibitory cells can be realized by introducing a structured

pyramid-to-interneuron connections. Network simulations were

performed with the parameter set of Figure 2, except for σEI =

18° and J+
EI = 1.25. Results are shown in Figure 7. In that figure,

the population of inhibitory cells shows a peaked activity profile

(‘bump state’) during the delay period, similar to excitatory cells

(Fig. 7A). The tuning of inhibitory cells is less pronounced (Fig.

7B) because the pyramid-to-interneuron connectivity was

chosen to be more weakly modulated than the pyramid-to-

pyramid connectivity. Sharpening further the pyramid-to-inter-

neuron connectivity results in higher inhibitory rates that

eventually destabilize persistent activity. Similar to the experi-

mental data (Rao et al., 1999), in our model a pair of pyramidal

cell and interneuron show similar tuning if they are close to each

other; and orthogonal tuning if they are far apart.

Distractors

If information about a cue stimulus is required for a delayed

behavioral response, it is important that the memory of the cue

is maintained in spite of possible distraction inputs from outside

of the memory network. We tested the resistance of the network

memory storage to distractors presented as intervening stimuli

during the delay period. The simulation protocol in the presence

of distractors is shown in Figure 8. First, a cue stimulus is shown

at angle θS. It elicits a bump state that stores the memory of that

stimulus, up to a small drift. The bump state peaks at an angle θ1

(close to θS) just prior to the presentation of a distractor at angle

θD. A distractor has identical characteristics as a cue stimulus (in

particular, it has the same intensity and duration), except that

it is presented at a different location and during the delay period.

We then measure the effect of the distractor by measuring the

peak location of the bump state after distraction (angle θ2). The

effect of distraction is quantified by the difference in the peak

location of the bump state before and after the distractor, θ2 – θ1.

Distraction stimuli are presented at various cue positions, close

to or far away from the original cue, in separate trials.

We studied how the behavior of the network is affected by

distractors in the ‘control’ case (network parameters of Fig. 2),

and with a modulatory enhancement of both NMDA (by 20%)

and GABA (by 40%) recurrent synapses, resulting in an enhanced

‘signal-to-noise’ ratio (modulated parameter set as in Fig. 4A). We

stress that in all cases, cue and distractor stimulation amplitudes

were identical. If the stimulation amplitude is sufficiently large,

the distractor is powerful enough to overcome the intrinsic

dynamics of the recurrent circuit, and the network is always

perturbed to a location close to the intervening stimulus (see

sample trial in Fig. 8A, and red points in Fig. 8C). However, with

a lower stimulus intensity (blue points in Fig. 8C), or with an

enhanced signal-to-noise ratio (sample trial in Fig. 8B or orange

trace in Fig. 8D), the network was found to be much more

resistant to an intervening stimulus. If the distractor is close to

the initial cue, the amount of distraction increases approximately

linearly with the distance, reaching a maximum around θD – θS =

90°. At larger distances (if the distractor and the initial cue are

separated by >90°), the distraction becomes very small (<10°),

Figure 7. Memory fields of interneurons with structured pyramid-to-interneuron connections. Left panels show pyramidal neurons, and right panels show inhibitory neurons.
(A) Spatiotemporal firing patterns showing a ‘bump state’ during the delay period both in the pyramidal neurons and in the interneurons. (B) Tuning curves for a single pyramidal neuron
and a single neighboring interneuron (preferred cue 260°), tested with eight cues.
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which shows that the network is essentially unaffected by

distractors far from the cue location. The resistance to distractors

can be understood by the fact that inhibition is much stronger in

the persistent activity state. Thus, it is harder to elicit a new

bump during the delay period than from the spontaneous

activity state. This explains why in Figure 8B the distractor just

elicits a transient increase in cells that receive direct inputs from

the intervening stimulus. Inhibition dominance of the synaptic

circuitry underlies the network's ability to ignore distractors, as

long as the external inputs are not too strong to overrule the

recurrent network dynamics. This resistance can be facilitated

by an increased signal-to-noise ratio, which in our network can

be brought  about  by concomitant modulation of recurrent

conductances. On the other hand, if the inputs are very strong,

the network is no longer resistant to intervening stimuli. In this

case, the network can be reset by every new transient stimulus,

and retains a memory of the last stimulus in the form of a

refreshed selective persistent activity state.

Figure 8. The network resists to distractors when the stimulus intensity is low. (A,B) Network spatiotemporal firing pattern The cue is presented initially for 250 ms at θS, triggering
a tuned persistent activity. After a 2.5 s delay, a distractor stimulus is presented at θD, with the same intensity and duration as the cue stimulus. The population vector is computed
in a window of 500 ms just before the distractor (θ1) and 500 ms after the distractor (θ2). (A) A case of complete distraction for the control network parameter set (see Materials and
Methods) and strong stimulation (200 pA). (B) A case of perfect robustness to distraction for the modulated parameter set (see Materials and Methods) and moderate stimulation
(100 pA). (C) Dependence of network distraction on the distance between the cue and distractor and on the stimulation intensity. The ‘distracted’ angle θ2 – θ1 is plotted versus
distraction angle θD – θS for several distractor cues. The dashed line indicates perfect distraction (as in A) while points on the x-axis show absence of distraction (as in B). Stimulation
intensity is 50 pA (red) and 200 pA (blue) (control parameter set). (D) Comparison between control and modulated cases for a given stimulation paradigm (250 ms duration, 120 pA
intensity). Modulation of both NMDAR- and GABAAR-mediated synaptic transmission enhances dramatically the network’s resistance to distractors, particularly at high distraction
angles. NE = 4096, NI = 1024.
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Discussion
We have used a  recurrent cortical network model that  in-

corporates physiological properties of cortical neurons and

synapses, to decipher the neuronal mechanisms underlying

persistent activity in a spatial working memory circuit. In the

paper we have focused on spatial working memory in PFC, in

order to compare the model with physiological data from behav-

ing monkeys, and thus be able to draw specific experimental

predictions. However, we believe that the synaptic mechanisms

identified in this study could be applicable to other types of

mnemonic persistent activity observed in PFC as well as in other

cortical areas.

Neuronal Mechanisms of Spatial Working Memory

Since the emergence of persistent activity requires sufficiently

strong recurrent synaptic excitation, one may ask how a spon-

taneous activity state with low firing rates can be realized, and

how the firing rates of persistent activity can be controlled

within a physiological range (20–40 Hz), in spite of such an

explosive positive feedback. We found that the dynamic stability

of both states depends critically on the predominant con-

tribution of NMDARs to the recurrent synaptic excitation, and

on a strong inhibition that overall dominates the recurrent

synaptic circuit. Strong recurrent excitation between nearby

cells (with similar preferred cues), in interplay with recurrent

inhibition, produces a structured network activity profile of

persistent activity, which gives rise to ‘memory fields’ in indiv-

idual neurons. Neuronal firing properties in both spontaneous

and selective persistent states are found to be in agreement with

single-neuron recording data from the PFC of the behaving

monkey (Funahashi et al., 1989; Chafee and Goldman-Rakic,

1998; Rao et al., 1999).

The study of pattern formation in neural models has a

long history (Wilson and Cowan, 1972, 1973; Amari, 1977;

Ben-Yishai et al., 1995; Skaggs et al., 1995; Somers et al., 1995;

Tsodyks and Sejnowski, 1995; Redish et al., 1996; Seung, 1996;

Zhang, 1996; Bressloff and Coombes, 1998; Camperi and Wang,

1998; Hansel and Sompolinsky, 1998) [reviewed recently by

Ermentrout (Ermentrout, 1998)]. In most of these studies,

spatially tuned activity patterns (‘bump states’) appear through a

continuous (‘Turing’) bifurcation; therefore they do not coexist

with the resting state. On the other hand, to fulfil a working

memory function, a PFC network should display bistability (or

multistability) between the resting state and structured activity

states, so that the network can be switched on and off between

the two by transient inputs (Amit and Brunel, 1997; Camperi

and Wang, 1998). The main conceptual novelty of the present

work is to build a network of spiking neurons that shows

bistability between two different types of active states: a resting

state with spontaneous firing rates of a few Hertz, and a spatially

structured state with firing rates of ∼ 20–30 Hz (comparable to

the physiological data). This property is mainly brought about by

the dominance of recurrent synaptic inputs by the GABAergic

contribution; and the network is stabilized by NMDARs at the

recurrent synapses. Both features were not present in previous

pattern formation studies.

A Mechanism for Switching Off Working Memory

Persistent activity is usually turned off following a transient

increase of neuronal firing during the response period [see e.g.

Fig. 3 of (Funahashi et al., 1989), and Fig. 16 of (Goldman-Rakic

et al., 1990)]. Our simulations show that a simple way to turn

off persistent activity is to increase transiently the external

excitatory inputs to a large neural population of the network.

These transient inputs increase the firing rates of pyramidal cells

as well as interneurons. The increase in recurrent inhibitory

inputs switches off the bump state. Such a mechanism is

plausible given the available data. However, our model does not

address the specific neuronal source of the input signal for

memory erasure.

In a model of one-population spiking neurons without noise,

Laing et al. also use an excitatory pulse to switch off a bump to a

silent state (Laing et al., 2000). However, this is achieved in

their network through a quite different mechanism, i.e. by

synchronizing all cells so that the persistent activity destabilizes.

Physiological data show that activity during the response

period in PFC has two distinct phases (Funahashi et al., 1991;

Rao et al., 1999). Earlier activity (in the ‘pre-saccadic’ period) is

primarily tuned to the direction of the cue, while later activity

(in the ‘post-saccadic’ period) is in many cases tuned to

the opposite direction (especially for interneurons). Our model

accounts for the tuning properties observed during the

pre-saccadic period, since the tuned network activity takes some

time, of the order a few hundred of milliseconds, to vanish. On

the other hand, it does not account for the inversion of tuning

reported in experiments during the post-saccadic period. A

detailed modeling of the PFC activity during the saccade is

outside the scope of the present paper.

Random Drift of Memory

Persistent network activity that encodes an analog quantity

typically displays random drifts in time, because the activity

pattern is marginally stable (Ben-Yishai et al., 1995; Seung, 1996;

Zhang, 1996; Lee et al., 1997; Camperi and Wang, 1998). This

has the consequence that the memory of the cue will become

less and less precise as time goes by. Our simulations show that

though this effect can be important in  small  networks, it

becomes less pronounced in large networks. However, these

simulations were performed under two assumptions. First, with

an increased network size the recurrent coupling is normalized

by the number of cells, so as to maintain a fixed average

recurrent drive to the cells. As a result, the signal-to-noise ratio of

the input to a cell decreases with the network size. This would

not be the case for a sparsely connected network where, when

network size is varied, both the number of synapses per cell and

the strength of each individual synapse could remain constant.

Second, we assumed that noise in the input is uncorrelated from

cell to cell. If significant correlations are present between noise

signals in different cells, drifts are likely to occur even in a very

large network.

The magnitude of random drifts in a realistic working

memory circuit storing an analog variable is therefore still an

open question. Our study predicts that, independently of the

amplitude of the random drift, the variance of the distance

between the bump location and the stimulus location increases

linearly with time, as for a diffusion process. This implies that, in

a visuospatial delayed-response task, the variance of the distance

between the cue and the eye position following the saccade to

the memorized cue position should increase linearly with the

delay time interval. In a psychophysical study using a visuospatial

delayed-response task, White et al. plotted the scatters of eye

positions following the saccade versus delay time in monkeys

[(White et al., 1994), see their Fig. 5B]. The data in this figure

(squared in order to get the saccade error variance) can be fitted

by a straight line, similarly to the drifting mechanism that occurs

in our model, for delay times up to 4 s. Similar data are also
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available for humans (Ploner et al., 1998), showing also a linearly

increasing saccade error variance up to 20 s delay times. It is thus

possible that such a gradual loss of accuracy in memory-guided

saccade is a manifestation of slow random drifts of the persistent

activity in PFC during the delay period.

NMDA Contribution to Recurrent Synapses: Implications

for Synchronous Network Behavior and Stability of

Working Memory

Our simulations show that the network dynamics are critically

dependent on the ratio of NMDAR and AMPAR channels at

recurrent synapses. When NMDAR channels dominate, per-

sistent activity is stable at physiological rates (20–40Hz), and

the network dynamics are essentially asynchronous. With a

substantial AMPA component of the recurrent excitation, the

network displays coherent oscillations; if the AMPAR-mediated

recurrent excitation is too large, persistent activity is abolished.

This result was initially obtained with a spatially unstructured

network model (Wang, 1999). Here, we found that the same

conclusion holds for a spatially structured network as well. Our

working memory model requires that at recurrent synapes the

NMDA receptors should contribute >65% of the charge entry

by a unitary EPSC at –65 mV. However, the precise value of

the required NMDA:AMPA ratio is likely to depend on the details

of the model, as well as the type of neuron models (e.g.

integrate-and-fire model versus compartmental conductance-

based model).

The relative contributions by NMDARs and AMPARs to charge

entry of a unitary EPSC remain unknown for intrinsic synapses

of the PFC. Estimates from other cortical areas vary considerably.

For example, the NMDA component contributes 17% to the EPSP

integral (at –60 mV) for pyramidal cells in layer 5 somatosensory

cortex (Markram et al., 1997), and 65% of EPSC’s charge entry

(at –65 mV) for hippocampal pyramidal cells of the young rat

(Spruston et al., 1995). At intrinsic synapses of the layer 4

somatosensory cortex, NMDA receptors contribute 39% to the

EPSP integral (at –60 mV) in the young rat (Feldmeyer et al.,

1999), and >90% of EPSC’s charge entry (at –70 mV) in the

mouse (Fleidervish et al., 1998). Further studies of this issue

would be worthwhile.

The crucial features of NMDAR-mediated transmission for

stable persistent activity in our model are its slow synaptic

kinetics [for stability with respect to synchronized oscillations

(Wang, 1999; Laing et al., 2000)] and its saturation properties

[for robust low persistent rates, see also (Wang, 1999)]. On the

other hand, the voltage-dependence of the NMDA conductance

due to magnesium block is not crucial here. However, the

voltage-gating of the NMDA current could conceivably con-

tribute to selectivity of persistent activity in a neural assembly.

This is because during a cue presentation the cells that are tuned

to the cue stimulus are more active, and their membrane poten-

tial is more depolarized, than those that are not tuned to the cue.

Therefore, the NMDA conductance  should be  differentially

unblocked in those cells that are excited by the cue stimulus

(Lisman et al., 1998).

Thus, the model predicts that the long decay time constant of

NMDAR-mediated synaptic transmission is critically important to

the persistent activity underlying working memory function of

PFC. This conclusion is supported by behavioral experiments

with rats performing a spatial delayed alternation task, where it

was found that systemic administration (Verma and Moghaddam,

1996) or microinjection into the PFC (Romanides et al., 1999)

of NMDAR antagonists in PFC impaired working memory.

However, in these studies, pharmacological manipulation has not

been combined with physiological recordings from PFC

neurons. Thus, changes in the mnemonic neuronal dynamics

caused by the NMDAR blockade are presently unknown.

Furthermore, evidence suggests that dysfunction of NMDAR-

mediated synaptic transmission may lead to working memory

deficits similar to those observed in schizophrenia (Javitt and

Zukin, 1991; Krystal et al., 1994; Akbarian et al., 1996). Our

model study identified a candidate mechanism through which

working memory relies on NMDARs at recurrent synapses of

PFC, namely asynchronous firing resulting in persistent activity

stability. Moreover, according to the hypothesis that dopamine

differentially modulates NMDAR-mediated synaptic transmission

(Cepeda et al., 1992), a malfunction of the dopaminergic in-

nervation of PFC would also give rise to working memory

deficits, as has been shown by many studies in humans and

animals (Sawaguchi et al., 1990; Sawaguchi and Goldman-Rakic,

1991; Goldman-Rakic, 1994; Okubo et al., 1997; Arnsten, 1998).

Tuning in Inhibitory Cells

Recently, Rao and co-workers reported memory fields in

interneurons as well as in pyramidal cells (Rao et al., 1999). In

our model, a structured connectivity from pyramidal cells to

interneurons leads to a persistent state with tuned interneurons

as well as pyramidal cells. This result suggests that the selectivity

of persistent activity in putative inhibitory neurons observed

experimentally (Rao et al., 1999) may be explained by a struc-

tured pyramid-to-interneuron connectivity that is similar to the

pyramid-to-pyramid connectivity. However, we have been

unable to stabilize a network  state  in which  the tuning is

identical between interneurons and pyramidal cells. Thus, we

would predict that pyramidal cells are more sharply tuned than

interneurons in the delay period.

Maintaining Working Memory in the Face of Distractors

An important property of working memory is its ability to resist

distractions. Neurophysiological studies of working memory in

the associative cortex of monkeys have shown that delay activity

is typically resistant to distractors in the PFC (Miller et al., 1996),

though it is not in areas which are closer to primary sensory

areas such as PPC (Constantinidis and Steinmetz, 1996) or infero-

temporal cortex (Miller et al., 1996). A main result of the present

study is that a network model of spatial working memory with

strong recurrent inhibition is intrinsically resistant to distractors,

provided stimulus intensities are low. On the other hand,

persistent activity is disrupted by distractors when stimuli are

strong. Moreover, the network is less distractable with enhanced

NMDAR-mediated recurrent excitation and feedback inhibition.

Thus, we propose two candidate factors that may explain

the areal differences observed with respect to response to

distractors. In areas close to primary sensory areas, stimulus

intensities are probably stronger, as indicated by the magnitude

of visual responses during cue presentation, and delay activity

would be easily disrupted by distractors. In the PFC, which is

further away from sensory areas, direct afferent inputs are likely

to be weaker, hence persistent activity of PFC neurons is more

resistant to distractors. Alternatively, the PFC circuit may be

uniquely equipped with an optimal balance between NMDAR-

mediated excitation and recurrent inhibition, while other

cortical areas are not optimal in that respect. This would endow

the PFC with an exceptional ability to hold behaviorally relevant

information on-line, in spite of external distractions.
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Experimentally Testable Predictions

The present work raises a number of mechanistic issues about

working memory processes that could be addressed experi-

mentally.

(i) In vitro slice experiments can be carried out to investigate

whether NMDARs indeed dominate recurrent synaptic excita-

tion in PFC, as suggested by the model.

(ii) In experiments with behaving animals, a combination of

pharmacology with single-neuron recordings, similar to the

iontophoresis experiments of other workers  (Williams and

Goldman-Rakic, 1995; Rao et al., 2000), would elucidate how

working memory performance is affected by modulation or

blockade of NMDARs in PFC; and what are the concomitant

changes in the neuronal persistent activity.

(iii)  An  open question is whether neuronal  firings  in  a

persistent activity state during the delay period are asynchro-

nous. Alternatively, neurons may be partially synchronized

and/or display coherent oscillations. This question can be

addressed with simultaneous recordings from multiple neurons,

and using local field recordings from the monkey PFC to probe

population activity in a delayed-response task. Moreover, we

predict that the propensity of a network to display coherent

oscillations is higher if the relative contribution of NMDAR

channels to recurrent excitation is smaller.

(iv) As mentioned above, memory-guided saccadic response

has been found to be less accurate with longer delay periods

(White et al., 1994; Ploner et al., 1998). It would be interesting

to study more systematically whether the loss of accuracy in the

saccade is correlated with slow random drifts of persistent

neuronal activity in the PFC during the delay period.

(v) Distractor experiments similar to those of Miller (Miller et

al., 1996) could be performed in combination with pharma-

cological manipulation of synaptic transmission. We predict that

a cooperative facilitation of recurrent inhibition and NMDAR-

mediated recurrent excitation would enhance the network’s

ability to resist distractors and preserve the memory of behav-

iorally relevant information in spite of intervening stimuli.
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