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The performance of the brain is constrained by wiring
length and maintenance costs. The apparently inverse
relationship between number of neurons in the various
interneuron classes and the spatial extent of their axon
trees suggests a mathematically definable organization,
reminiscent of ‘small-world’ or scale-free networks
observed in other complex systems. The wiring-econ-
omy-based classification of cortical inhibitory inter-
neurons is supported by the distinct physiological
patterns of class members in the intact brain. The com-
plex wiring of diverse interneuron classes could rep-
resent an economic solution for supporting global
synchrony and oscillations at multiple timescales with
minimum axon length.

One of the main challenges of neuroscience is to under-
stand how complex behaviors of the brain emerge from its
cellular constituents. The mammalian cortex consists of
two basic neuron types: excitatory principal cells and
inhibitory interneurons. In contrast to the more homo-
geneous principal cell population, interneurons are excep-
tionally diverse in their morphological appearance and
functional properties [1-7]. To date, there is no univer-
sally accepted taxonomy of cortical interneurons. Classi-
fication schemes vary from a dozen or so defined classes
[1-7] to views that regard interneurons as a single group
with virtually unlimited heterogeneity of its members [1].
Interneurons differ from each other in intrinsic biophysi-
cal properties and in morphological and molecular bio-
logical features, as well as in connectivity [2]. This article
considers how wiring of interneurons affects their contri-
bution to network performance and suggests that connec-
tivity is a useful approach for examining how complex
functions (e.g. oscillations) emerge from elementary
features (e.g. inhibition) [8].

Building networks for multiple functions

The repertoire and complexity of network performance can
be augmented in two fundamentally different ways. The
first approach is to use relatively few constituents in large
numbers. However, physical realization of this approach
in growing networks is problematic. If the network is
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sparsely connected (e.g. feedforward ‘synfire’ chains of
pyramidal cells across many layers [9]), signals become too
long to propagate across the network owing to synaptic
and conduction delays. However, if the network is densely
recurrent, the number of connections should scale with the
network size by some rule. Whereas all-to-all wiring is
possible in a tissue culture involving dozens of neurons, it
becomes less and less feasible when millions of neurons
are involved, owing to space and energy supply limitations
[10,11]. The second approach for increasing network per-
formance is adding novel types of constituents (e.g. func-
tionally different types of interneurons), whose activity
can exert qualitatively different effects on network functions
[12]. Combining distinct computational elements endows
networks with the ability to carry out novel computations
(e.g. oscillations of different frequencies). Mathematical
modeling indicates a power-law relationship between the
number of computation types (complexity) and the number
of distinct constituents in physical networks (e.g. elec-
tronic devices and the Internet) [12,13]. The economy of
wiring in physical systems has received special attention
recently (Box 1) and excellent reviews are available on
this topic [13-16].

Brains have evolutionary goals but implementation
of brain structures has physical constraints [11,17]. Brain
systems with ‘simple’ computational demands evolved
only a few neuron types. The basal ganglia, thalamus and
the cerebellum possess a low degree of variability in their
neuron types. By contrast, cortical structures have evolved
in a manner that most closely resembles a relatively
sparsely connected network of few principal cell types and
many classes of GABAergic interneurons. An important,
but hitherto unaddressed, issue is whether diversity of
interneurons increases with the evolution of the mammal-
ian cortex. Even if the same interneuron types are present
in small and large brains, some unique wiring rules must
be implemented so that functions have a preserved
continuity in brains of various complexities. One hypothe-
sis is that the diversity of interneurons in the mammalian
cortex [1-7] reflects a compromise between computational
needs and wiring economy [10,18]. The diversity of inter-
neurons in the hippocampus and neocortex might have
evolved to meet the need for multiple functions, as will
be discussed in this review. To date, the many facets of
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Box 1. Small-world and scale-free network architecture

How fast can a message propagate from one neuron (‘node’) to
distant neurons in large networks? If one defines a ‘characteristic
path length’ /., as the average number of monosynaptic connec-
tions in the shortest path between two neurons, how does it scale
with the network size N? In a completely random network with a
sufficiently large number of links per node, /,,¢, can be very short (and
the network is a ‘small world’). But what if, more realistically, most
connections are local? This question was studied in alandmark paper
by Watts and Strogatz [14]. They first prescribed a local architecture
with neighboring connections, for which /,,4, increases linearly with
N. Then they reconnected a fraction p of existing links to nodes that
were chosen uniformly at random over the entire network (Figure la).
Surprisingly, they found that even with a small number of shortcuts
(p = 0.05), the dependence of /., on N becomes ~ log(N). The small
number of shortcuts dramatically reduces the average path length
Ipatn Of the network. For example, if N = 108, with local connections
lpath s also ~106, whereas with a small world architecture Ipath =
log 108 = 6. Hence, a ‘small-world’ architecture can be realized with
only a few shortcuts (long-range connections).

In the Watts—Strogatz model, the reconnection was assumed to be
uniform across the network. What if the reconnection probability
pli,j) from node i to node j decreases with the distance d(ij)?
Intuitively, if p(i,j) is local, (e.g. a narrow Gaussian or exponential
distribution), there would be no chance for long-range connections.
However, if pli,j) decreases with d(i,j) as a power law, p(ij) ~
d(i,j)~%, then there is a significant (although small) probability for
connections across long distances, especially if the exponent « is
small so that p(ij) falls off slowly with dl(ij), and a small world
becomes realizable. Power distributions lack a characteristic scale
and, hence, are ‘scale-free’. Many recent studies have been devoted
to ‘scale-free networks’ where the number k of links per node obeys a
power law, P(k) ~ k™”. The skewed distribution with a heavy tail
means thatthere are a few nodes (‘hubs’) with an exceptionally large
number of links [13,58,59]. Although it is unlikely that the concepts of
small-world and scale-free networks directly apply to neural net-
works inthe brain, the demonstration of the effectiveness of a few but
costly long-range connections in growing networks has important
relevance for brain wiring. Most importantly, they demonstrate that
complex networks can be described mathematically.
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Figure 1. Abstract architectural plans of connectivity. (a) A network of nodes
(e.g. neurons) arranged on a ring. A small-world network has most connec-
tions between neighboring nodes, but with a few (four in this illustration)
randomly reconnected long-distance ‘shortcuts’. (b) A scale-free network
exhibits a power-law distribution of numbers of connections per node; the
skewed distribution with a heavy tail yields the formation of a few ‘hubs’ with
exceptionally large numbers of links [58]. Reproduced, with permission, from
Ref. [60] © (2001) Nature Publishing Group (http://www.nature.com/).

hippocampal interneurons have been documented more
extensively than those of neocortical interneurons [2].
Nevertheless, the available database from early Golgi
studies, immunocytochemistry and neocortical slices
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already indicates a rich multiplicity of neocortical inter-
neurons [4,5,7,19] and their basic similarity to hippo-
campal interneurons [5]. Examples of how interneurons
implement novel functions in the brain include sculpting
stimulus selectivity of cortical neurons in sensory and
memory systems [20,21] or generating coherent oscil-
lations at different frequencies [22]. Given the hypothesis
that diversity reflects a compromise between compu-
tational needs and wiring economy, we need to discover
the rules that can describe how interneuron diversity and
connectivity result in economical computational complexity.

Scalable interneuronal clocks: connectivity is of the
essence
Complex brains have developed specialized mechanisms
for keeping time: inhibitory interneuron networks [23].
Oscillatory timing can transform unconnected principal
cell groups into temporal coalitions, providing maximal
flexibility and economic use of their spikes [24]. Various
architectures of inhibitory and excitatory neurons can give
rise to oscillations [25—28]. The simplest one consists of
interneurons of the same type [26,28—34]. Let us illustrate
the importance of connectivity using this simplest network.

Suppose that the goal of a interneuron network is to
provide oscillatory timing for the principal cells and that
this function should be preserved in different animals —
that is, independent of the brain size. How should the
network be wired? Because synchronization requires a
minimum connectedness, one possibility is to keep a given
fractional connectivity among other neurons, regardless of
the network size. However, physical implementation of
this strategy is often not feasible or economic, because for a
network of size N, the total number of synaptic connections
increases very quickly (~N2). For example, according to
the fractional rule, if a minimum of 10% connectivity is
needed for the generation of a rhythm, the required total
number of connections is 1000 for a small network of
100 neurons, whereas it is ~10° for a population of
10° neurons. Thus, it is easy to understand why the brain
has not opted for this solution. An alternative strategy is to
have a fixed number of random synaptic links per neuron,
independent of the network size, in which case the total
number of synaptic connections grows only linearly with
the network size. However, because neurons are distrib-
uted in physical space, members physically distant from
each other will require excessively long axons and have
excessively long conduction delays. The most economic
wiring solution is to establish connections locally [35]
(Figure 1), including functionally crucial gap junctions
among dendritically overlapping interneurons [36—39].
However, this economy of wiring results in a different
problem: physically distant neurons are not connected to
each other and this ‘disconnectedness’ increases mono-
tonically with network size. In other words, synaptic path
length (i.e. average number of synapses between randomly
chosen pairs; Box 1), and consequently synaptic delays,
become excessively long for synchronization in larger size
networks. A solution must compensate for the constraints
of axon conduction and synaptic delays.

Computational modeling has revealed that in a ran-
domly connected network (Box 1) of basket neurons, there
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Figure 1. Connections among basket cells are local. (a) /n vivo labeled and fully reconstructed basket neuron (dendrites and axon) contacting other basket cells (circles).
Inset: position of the neuron in the CA1 region. (b) Two-dimensional reconstruction of interneuron—interneuron contacts, viewed from above. Shading reflects increasing
bouton density per square. Black circle indicates position of the soma. (¢) Density of synaptic contacts (ordinate) in 60 wm squares shown in (b). Total axon length of a CA1
basket cell in the rat is ~50 mm, with ~10 000 boutons, ~60 of which contact other putative basket cells. Abbreviations: O, stratum oriens; P, stratum pyramidale;
R, stratum radiatum. Adapted, with permission, from Ref. [33] © (1996) by the Society for Neuroscience and Ref. [35] © (1995) by the Society for Neuroscience.

is a critical threshold for synchrony, defined as a minimum
fixed number of synaptic connections per cell, independent
of the network size [33] (Figure 2). This finding illustrates
that it is not necessary for each cell to be connected to a
fixed fraction of other cells as the network size scales up.
Virtually all previous oscillation models used densely
connected or random networks similar to that shown in
Figure 2 (although see Refs [26,40]). These models func-
tion because random connectivity ensures that neighbor-
ing and distant basket cells in small and large networks
have the same opportunity to synchronize. However, ran-
dom connectivity is not economic because in larger brains
distant connections require longer axon lengths and/or
more effective myelination, and transmitting action poten-
tials over large distances is energetically costly [10,15].
More importantly, real-world networks are hardly ever
random, and this is especially true for interneuron
connections. Most interneuronal connectivity is local [35]
(Figure 1), hence the synonym for interneurons of ‘local
circuit neurons’.

Figure 3 illustrates how specific architecture affects
network synchrony, using two populations: a locally con-
necting majority (basket cells) and a smaller fraction of
long-range cells that connect with other cells according to a
probability that falls off as an inverse power law with
distance (Box 1). As expected from the aforementioned
considerations, high-density local connectivity of model
basket cells alone does not give rise to global coherence
because with increasing network size, the ‘synaptic path
length’ of the network (Box 1) becomes excessively long
(Figure 3a). However, mathematical theory suggests that
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the synaptic path length can be dramatically decreased by
a few randomly placed ‘short-cuts’ that connect distant
parts of the network (Figure 3b,d; Box 1). In theory, this
could be achieved by a few long axons of a subset of basket
cells. However, such connections are not known. Instead, it
could be that the small number of specialized ‘long-range’
interneurons, with their axons distributed over large
areas within and across anatomical regions (Figure 4) [41],
serves this exact role. In support of this conjecture,
inclusion of a small percentage of model neurons with
long-range connections in the model results in a clear
oscillatory rhythm (Figure 3). Synchrony increases
dramatically with the relative number of long-range
neurons but only to a limit. Increasing long-range con-
nections above a certain share (proportion of total
connections, p > 0.2) enhances network synchrony only
modestly. Therefore, long-range network synchrony can be
achieved with a small fraction of the local connectivity
being replaced by long-range connections yet keeping the
total wire length at a minimum (Figure 3d). These simu-
lations support the hypothesis that an effective design for
network synchronization with a minimal wire-cost can be
achieved by the division of labor between a larger popu-
lation of local and a small subpopulation of long-range
interneurons. This architecture is of a class called ‘small-
world’ networks (Box 1). An added advantage of this
architecture is that local and global synchrony can be
selectively biased by discretely targeting locally connect-
ing and long-range interneurons, respectively (e.g. phase-
resetting of global oscillations) [42]. These simulations
illustrate that a desired functional outcome can be
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Figure 2. Minimal connectivity (connection ‘threshold’) is required for large-scale
synchronization in a randomly connected network of GABAergic cells; this is
independent of the network size. (a) An example of network synchronization in a
fully connected regular network. Upper panel: the rastergram of spikes (dots) of
100 neurons (ordinate) as a function of time. Lower panel: membrane potentials of
two neurons chosen for illustration. Neurons discharge independently initially, but
quickly become synchronized by mutual inhibition. (b) Network synchrony as a
function of the mean number of synaptic inputs per cell, My, in randomly con-
nected networks of different sizes (N = 100, 200, 500 and 1000; the correction 1/N
takes into account the finite size effect). Note the critical threshold of connected-
ness (each interneuron connected to ~60-80 peers) for synchrony, which is inde-
pendent of the network size. Adapted, with permission, from Ref. [33] © (1996) by
the Society for Neuroscience.

achieved by numerous ways in computational models. To
consider any model relevant, its architecture should reflect
real-brain function and constraints. Here, a network for
a single-band oscillation has been considered. However,
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cortical networks support multiple, coupled oscillations at
various temporal scales [22] and numerous other functions
[2], which require more interneuron types and economic
wiring. It should be stated, though, that the static small-
world and scale-free models discussed here might not
faithfully capture the true nature of interneuron organ-
ization. Nevertheless, these models illustrate that complex
hierarchies can be described quantitatively and that costly
distant wiring can be minimized by appropriately designed
architectural rules [13,18].

Functional diversity of interneurons increases
computational power at a low wiring cost

As already discussed, integrating functionally novel types
of neurons into networks increases their computational
diversity [12,13]. Functionality can be defined by the
intrinsic, biophysical properties of interneurons [1,3,4,6]
and/or by their placement in the network [43]. In terms of
their connectivity to the principal cells [2,5,13,44], three
major groups of cortical interneurons are recognized:
(i) interneurons controlling principal cell output (by
perisomatic inhibition), (ii) interneurons controlling the
principal cell input (by dendritic inhibition) and (iii) long-
range interneurons coordinating interneuron assemblies.
These major groups are divided into further functional
classes. Output control is achieved by chandelier cells and
at least two types of basket neurons [43]. Input control is
brought about by interneurons that specifically target the
dendritic domains of every excitatory afferent projection
to the cortex [5,35,44,45]. Several additional subclasses
target two or more dendritic regions [1,3], whereas others
can target somata and nearby dendrites with similar
probability [35,46]. The distinguishing characteristic of
the third major group is that they are inter-regional, and
thus can be considered ‘long-range’ [47]. Their distant
clouds of terminal boutons are separated by myelinated
axon collaterals that provide fast conduction for temporal
synchrony of all terminals. This group includes back-
projection cells [41] (Figure 4), septally projecting
interneurons [48] and other types with inter-regional
connections [49].

As predicted from theoretical considerations [12—14]
and preliminary computer modeling (Figure 3), the specific
wiring of interneurons can support numerous and flexible
functions. For example, collaboration of different inter-
neuron types might support global oscillations at different
frequencies [26,39,50,51] and various modes of synaptic
plasticity [62—54]. Progress in this direction will benefit
from precise knowledge about interneuron connectedness
and the relative incidence of neurons in the postulated
classes. From the available evidence, a hierarchical organ-
ization appears to emerge (Figure 5). Chandelier cells do
not, or only scarcely, innervate each other or other inter-
neurons. Basket cells are connected to nearby basket cells
and perhaps to other nearby cell types [35,37,38]. The
connectivity among the various dendrite-targeting neuron
types is not understood well but several classes are known
to be interconnected within the same class [36] and also to
connect to basket and/or chandelier cells [45]. Finally, the
long-range group is likely to innervate all interneuron
classes [47]. In addition to synaptic connectivity, nearby
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Figure 3. Trade-off between synchronization and wire length economy. (a) Oscillations in a local network with Gaussian connectivity (characteristic length = 20 neurons).
The network is essentially asynchronous. Upper panel, spike raster of 4000 neurons; middle panel, the voltage trace of a representative neuron; lower panel: the population
firing rate. (b) Oscillations in a network with local [Gaussian connectivity as in (a)] and long-range connections (power-law connectivity). A fraction (20%) of cells contact
neurons with a power-law distribution P(r) ~ (r + k)%, where ris the distance between cells, xk = 100 and « = 1. Note clear oscillatory rhythm. (¢) Connectivity probability
functions: the Gaussian distributed connections are local (blue). With a power distribution, long-range connections become possible (red). (d) With increasing fraction of
long-range neurons p, the network synchrony increases, while the inverse of the wire-length of connections decreases (lower panel). Upper panel: an efficiency function is
defined as synchrony/length of wire. There is an optimal range of the value p (gray shade) corresponding to high synchrony at a low wire-cost (a small ratio of long-range

and short-range connections).

TRENDS in Neurosciences

Figure 4. Axon arbors of long-range interneurons span large anatomical areas, as
shown here for an in vivo filled ‘backprojection’ interneuron. The 3D reconstructed
axon collaterals (green) are projected onto CA1, CA3 and dentate gyrus (DG)
regions of a coronal section. The cell body and dendrites are in red. Total axon
length is >100 mm, and total bouton number is >25 000. Adapted, with per-
mission, from Ref. [41] © (1994) American Association for the Advancement of
Science (http://www.sciencemag.org).
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interneurons of the same class are also connected by
dendritic gap junctions [36—39].

The hierarchy of interneuron organization shares some
important features with systems characterized by small-
world architecture [14] and/or the power law [13] (Box 1).
Theory [13,14] and modeling (Figure 3) suggests that
neurons with only local connections and those with most
widespread connections should be most and least numer-
ous, respectively. Other classes are expected to have some
intermediate incidence, with some mathematically defin-
able relationship among the classes [13]. According to this
hypothesis, the most numerous interneurons belong to the
perisomatic control group, followed by the specific (single)
and less-specific (multiple) dendritic control groups, and
the least numerous cells are the long-range interneurons
[1] (Figure 5). Thus, most wiring is local and neurons
with long-range connectivity and large global impact are
rare. Mathematical considerations also predict the scaling
relationship among the interneuron classes in brain struc-
tures of varying sizes. Accordingly, the ratio of inter-
neurons with local and distant connections (i.e. the slope of
the power law function in Figure 5) should be much larger
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Figure 5. A hypothetical connection scheme of cortical interneurons. Connections
and cell body locations are based on information gathered in the hippocampus [2]
(P, principal neuron). The graph shows a hypothesized relationship between
spatial coverage and the number of neurons in a given class. Perisomatic (red)
interneurons with small spatial coverage are most numerous, whereas long-range
interneurons (blue) that interconnect different regions are few. Many other classes
[1] (green and yellow) might occupy an intermediate coverage. The slope of this
hypothesized relationship should vary with network size. With increasing brain
size, the number of interneurons with local connections increases more rapidly
than neurons with more extensive spatial coverage. The power law shown here is
for illustration purposes only, to indicate that a mathematically defined relation-
ship might exist between spatial coverage and number of neurons in particular
interneuron classes.

in the rodent neocortex than in the rodent hippocampus,
and orders of magnitude larger in the human brain than in
the rodent cortex, for achieving the same magnitude of
global synchrony (Box 1).

Support for the postulated hierarchical organization of
interneurons comes from functional observations in the
intact hippocampus. On the basis of discharge frequency
and the relationship to the phase of hippocampal theta
oscillations in the behaving rat, only one or two overlap-
ping interneuron groups could be recognized [2,55]. How-
ever, when their relationship to sharp-wave-associated
population synchrony was examined, several putative
classes with distinct firing patterns were observed [50],
with further subgroups distinguished by their preferred
theta phase [56] (Figure 6). Several members of these
putative classes have been identified by juxtacellular
labeling and, importantly, the functional classes charac-
teristically differ from each other in their connectivity
patterns [56,57]. These findings support the hypothesis
that differential wiring of interneurons contributes crucially
to shaping network output.

Concluding remarks

This review has considered whether, and how, the
diversity of cortical interneurons reflects optimization
between computational performance of the cortex and
its axonal wiring costs. In their relationship to principal
cells, three major classes of interneurons are recognized:
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Figure 6. Relationship between circuit (axonal targets) and function properties of
interneuron classes in the hippocampus. Mean firing probabilities of different cell
types during theta (left) and sharp-wave-related fast ‘ripple’ oscillations (right).
Distinct classes of anatomically defined interneurons contribute differentially
to either theta phase or ripple patterns. Adapted, with permission, from Refs
[56,57]. Abbreviation: O-LM, stratum oriens interneurons projecting to stratum
lacunosum-moleculare.


http://www.sciencedirect.com

192 TRENDS in Neurosciences Vol.27 No.4 April 2004

(i) interneurons controlling principal cell output, (ii) inter-
neurons controlling dendritic inputs and (iii) long-range
interneurons coordinating interneuron assemblies. Each
class has several further divisions. The number of neurons
in the divisions shows an inverse relationship with spatial
coverage, a relationship that suggests some mathematic-
ally definable organization. The connectivity-based classi-
fication is supported by the distinct physiological patterns
of class members in the intact brain.

A prerequisite for finding a quantitative relationship
among cortical interneuron classes will require large
samples. Power-law and small-world network rules sug-
gest that the relative incidence of long-range neurons with
large spatial extent decreases dramatically with network
size; therefore, finding these neurons in the neocortices
of animals with large brains might be very difficult with
currently used random sampling methods. Molecular bio-
logical markers could replace the laborious in vivo labeling
methods and address the important issue of whether
diversity of cortical interneurons increases with brain
complexity. In vitro biophysical and pharmacological tools
can identify how intrinsic properties of the interneuron
classes and divisions support the various in vivo observed
network patterns. In turn, realistically scaled computer
models are needed to understand the complex interactions
among the classes and with the principal cell population. It
is unlikely that static models, such as small-world or scale-
free graphs, can faithfully describe the neuronal networks
with evolutionary goals. Nevertheless, they illustrate the
important point that costly distant connections can be
minimized by appropriate clustering architecture. Con-
nectivity-based classification is only one approach for
understanding the problem of interneuron diversity.
Nevertheless, because wire-economy is an important
constraint of brain evolution, it is likely that it captures
some important details of a more comprehensive taxonomy
of interneurons.
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