THEORETICAL NEUROSCIENCE

Understanding Cognition

XIAO-JING WANG

Larry Abbott, William Bloor Professor of Theoretical Neuroscience, Columbia University; co-author with Peter Dayan of the textbook "Theoretical Neuroscience"

"In this textbook, Xiao-Jing Wang takes the reader on a remarkable journey from cellular and synaptic biophysics to memory, decision making, psychiatry and large-scale brain structure. His insights on how to apply theoretical methods to higher cognitive functions will be valuable to anyone thinking about thinking."

Jean-Pierre Changeux, Institute Pasteur, Paris; author of "Neuronal Man: the Biology of Mind"

"X-J Wang book illuminates how in the past decades a new field has emerged from the theoretical modeling of a wide diversity of neural processes which has successfully contributed to our understanding of brain functions up to Cognition. The book progresses from the most elementary building blocks of the brain, neurons, synapses and their molecular components up to global executive functions and the new field of computational psychiatry. The immense knowledge recently acquired and beautifully presented in the book is a must for anybody concerned by the higher functions of the brain: a bible for the students, a grandiose panorama for the educated scientists."

Anne Churchland, Professor of Neurobiology, University of California, Los Angeles

'This compelling book explains foundational concepts in theory and modeling in a way that marries rigor with intuition. It furnishes readers with powerful theory and modeling tools that are critically needed to tackle problems in modern neuroscience. Wang's explanations of network dynamics, normalization and attractor models for cognition are certain to inspire experimentalists and theorists alike."

Robert Desimone, Director of the McGovern Institute for Brain Research, Doris and Donald Berkey Professor of Neuroscience, MIT

"In Theoretical Neuroscience: Understanding Cognition, Xiao-Xing Wang explains that while the brain is not a computer, all of its elements, from synapses to circuits, obey computational principles that underlie our cognitive functions. As a leader in the computational field, he gives an insider's account of these principles at both a mathematical and conceptual level. This should be required reading for any student of modern neuroscience."

Stanislas Dehaene, Chair of Experimental Cognitive Psychology, Collège de France, Paris

"In the 20th century, Molecular Biology decoded the intricate mechanisms of DNA and RNA, the "logic of life" celebrated by Nobel Prize Laureate François Jacob. Understanding the logic of neural circuits of cognition is an equivalent goal for 21st century in Neuroscience. This important book represents a fundamental step forward: it provides a synthesis of elemental circuit building blocks of core cognitive functions, how their operation can be mathematically modeled, and how their composition may account for a variety of cognitive processes and behavioral tasks."

Brent Doiron, Heinrich Kluver Professor of Neurobiology, Director of the Grossman Center for Quantitative Biology and Human Behavior, University of Chicago

"Understanding the brain needs an appreciation of its components and activity over a wide range of spatial and temporal scales: from synapses to whole brain circuits, from rapid sensory and motor responses to lifetime memory. In this book Xiao-Jing Wang beautifully shows how theoretical and mathematical thinking can provide the needed abstraction to not only describe the brain at each scale, but synthesize these across scales into a compelling and deep understanding of neural function. At whatever stage you are in your neuroscience journey, from novice to expert, this is now required reading."

John Duncan, University of Cambridge and the Medical Research Council; author of "How Intelligence Happens"

"Nobody understands better than Xiao-Jing Wang how the events of the mind are built from the dynamic activity of neural populations, and in this book, he explains the state of the art from top to bottom. With extraordinary depth and scope, the story moves from the fundamentals of the neuron to the highest levels of human intelligence. Anybody aiming to understand the union of mind and brain can start right here."

Ann Graybiel, Institute Professor, MIT

"Xiao-Jing Wang has written a remarkable book, melding together viewpoints of a physicist/mathematician and those of a neuroscientist to produce a unique account of how the brain and its vast number of networks could operate to produce behavior. Wang has undertaken the job of bridging these two worlds, and the result is a grand success. This volume will be invaluable not only to academics, but also to all who have an interest in how the brain does its work. Xiao-Jing Wang has created a book to read and re-read, culminating in an introduction to brain-wide modeling to address the unsolved mysteries of the normal brain and the need for computational psychiatry to alleviate mental illness."

John Krystal, Chair of the Department of Psychiatry, Robert L. McNeil, Jr. Professor of Translational Research, Yale University School of Medicine

"This book is a remarkable opus from Dr. X-J Wang, a pioneering computational neuroscientist who's work continues to surprise and inspire me. This book is logically organized. It builds from a model neuron, to networks, to cognition/behavior, and it integrates all of this in considering issues of "computational psychiatry", i.e., behavioral pathology. Wirtten with clarity and an accessible style, this wonderful book is useful for people entering the field of computational neuroscience. It is also a wonderful resource for clinical investigators hoping to learn about the formalism of computational models."

Eve Marder, University Professor, Brandeis University; Former President of the Society for Neuroscience "Theoretical Neuroscience: Understanding Cognition by X-J. Wang is a remarkable book. It reads easily, and puts much of the field of quantitative and computational neuroscience into frameworks that allow the reader to see the etiology and genesis of the particular methods and findings being discussed. The book is comprehensive and moves seamlessly from the details of the biophysics of single neurons and synapses to some of the most complex puzzles in the neuroscience of cognition. This book will be useful for trainees and for established investigators as its breadth and depth will be helpful for everyone as they wish to gain access to the conceptual frameworks of large areas of neuroscience and their quantitative analyses."

William Newsome, Harman Family Provostial Professor of Neurobiology, the inaugural Director of Wu Tsai Neuroscience Institute, Stanford University, Co-chair of the US Brain Initiative

"In a rapidly advancing field, Xiao-Jing Wang provides a beautiful and timely account of where we have been, where we are now, and where we are likely heading. From biophysical models of single neurons, through network models of neural circuits, to macro-level models of communication between brain areas, Wang sure-handedly guides the reader with clear, incisive exposition of each topic. For dessert, we are treated to Wang's forward-looking views on computational psychiatry and future interactions between artificial intelligence and natural intelligence. This book is a must-read for anyone intrigued with the nexus between neuroscience, cognitive science, and computational theory."

Mu-ming Poo, Scientific Director of Institute of Neuroscience, Chinese Academy of Sciences; Paul Licht Distinguished Professor in Biology Emeritus, University of California, Berkeley

"This monumental treatise by Xiao-Jing Wang, one of the leading computational neuroscientists in the world, offers a thorough survey and critical synthesis of both experimental and theoretical works on various cognitive processes in the brain. A valuable book for consultation by researchers and students of neuroscience."

Matthew Rushworth, Chair of Psychology Department, Oxford University, Britain

"Xiao-Jing Wang has been a leader in theoretical neuroscience for many years. The approaches and models that he has devised have inspired the field. Even more importantly, however, Xiao-Jing Wang has had an impact on cognitive science and neuroscience more generally that has changed how scientists working with brain and behavioural data think about the issues that they are investigating. Theoretical Neuroscience: Understanding Cognition provides an accessible but comprehensive guide not just to how this happened but also to the very latest ideas emerging at the field's frontier."

Doris Tsao, University of California at Berkeley

"If a genie were to grant me a wish, I might ask for a guided tour of the brain—starting in the microscopic world of neurons and synapses, traveling through the vast landscapes of large-scale cortical interactions underlying higher cognitive functions, and culminating in our modern era of AI. A tour with a master at my side who could cut through the dense jungle of thousands of scientific papers and explain the key findings with clarity, putting them in a precise conceptual and mathematical framework. Xiao-Jing Wang's remarkable book is exactly that wish come true. This book is an invaluable guide for young researchers and anyone who wants to truly understand what is known about the brain."

Theoretical Neuroscience

This textbook is an introduction to Systems and Theoretical/Computational Neuroscience, with a particular emphasis on cognition. It consists of three parts: Part I covers fundamental concepts and mathematical models in computational neuroscience, along with cutting-edge topics. Part II explores the building blocks of cognition, including working memory (how the brain maintains and manipulates information "online" without external input), decision making (how choices are made among multiple options under conditions of uncertainty and risk) and behavioral flexibility (how we direct attention and control actions). Part III is dedicated to frontier research, covering models of large-scale multi-regional brain systems, Computational Psychiatry and the interface with Artificial Intelligence. The author highlights the perspective of neural circuits as dynamical systems, and emphasizes a cross-level mechanistic understanding of the brain and mind, from genes and cell types to collective neural populations and behavior. Overall, this textbook provides an opportunity for readers to become well versed in this highly interdisciplinary field of the twenty-first century.

Xiao-Jing Wang is Distinguished Global Professor of Neural Science at New York University, where he is also affiliated with the Courant Institute of Mathematical Sciences and Department of Physics. Before joining New York University, he was Professor at Yale University. His honors include a Guggenheim Fellowship, the Swartz Prize for Theoretical and Computational Neuroscience and the Goldman-Rakic Prize for Outstanding Achievement in Cognitive Neuroscience.

Theoretical Neuroscience

Understanding Cognition

Xiao-Jing Wang

First edition published 2025 by CRC Press 2385 NW Executive Center Drive, Suite 320, Boca Raton, FL 33431

and by CRC Press 4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2025 Xiao-Jing Wang

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf. co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Wang, Xiao-Jing, author.

Title: Theoretical neuroscience: understanding cognition / Xiao-Jing Wang. Description: Boca Raton: CRC Press, 2025. | Includes bibliographical references and index.

Identifiers: LCCN 2024019547 (print) | LCCN 2024019548 (ebook) | ISBN 9781032604824 (hardback) | ISBN 9781032604817 (paperback) |

ISBN 9781003459361 (ebook)

Subjects: LCSH: Neural networks (Neurobiology)—Textbooks | Human information processing—Textbooks | Computational

neuroscience—Textbooks | Cognition—Textbooks

Classification: LCC QP355.2 .W36 2025 (print) | LCC QP355.2 (ebook) |

DDC 612.8—dc23/eng/20240430

LC record available at https://lccn.loc.gov/2024019547 LC ebook record available at https://lccn.loc.gov/2024019548

ISBN: 978-1-032-60482-4 (hbk) ISBN: 978-1-032-60481-7 (pbk) ISBN: 978-1-003-45936-1 (ebk)

DOI: 10.1201/9781003459361

Typeset in ITC Leawood by Apex CoVantage, LLC

Access the Support Material: www.routledge.com/9781032604817

CONTENTS

Preface		ix	2.7	SHORT-TERM SYNAPTIC PLASTICITY	50
Par	t I	1		2.7.1 Short-Term Synaptic Depression2.7.2 Short-Term Synaptic Facilitation	52 53
Ch -	onton 1		2.8	Summary	55
	opter 1 lerstanding the Cognitive Brain	3	Cha	amtow 2	
-				apter 3 Iral Networks	57
1.1	INTRODUCTION	3	-	Tur Networks	
1.2	ON EPISTEMOLOGY	5	3.1	INTRODUCTION	57
1.3	THE MIND-BRAIN SOCIETY	7	3.2	NETWORK DYNAMICS OF	
1.4	CROSS-LEVEL MECHANISTIC			SPIKING NEURONS 3.2.1 Signal Propagation in a	61
	THEORY	10		3.2.1 Signal Propagation in a Feedforward Network	61
1.5	LAYOUT OF THE BOOK	14		3.2.2 Excitation and Inhibition Balance and Asynchronous State in a Recurrent Network	63
	pter 2			3.2.3 Neuronal Correlations	65
Neu	irons and Synapses	17	3.3	POPULATION RATE MODELS	66
2.1	INTRODUCTION	17	0.0	3.3.1 Formulations of Rate Models	67
2.2	INTEGRATE-AND-FIRE NEURON	20		3.3.2 Neural Integrator	69
2.2	2.2.1 Neuronal Membrane as an RC Circuit2.2.2 LIF as a Simple Spiking Neuron			3.3.3 Inhibition-Stabilization and Balanced Amplification	71
	Model Model	23	3.4	COHERENT NEURAL CIRCUIT	
	2.2.3 Spiking Variability	24		OSCILLATIONS	73
2.3	CONDUCTANCE-BASED MODELS			3.4.1 Synchronization of Neural Oscillators	75
	OF SINGLE NEURONS	27		3.4.2 Sparsely Synchronous Rhythm	77
	2.3.1 Hodgkin-Huxley Formalism of Action Potential	27		3.4.3 At the Edge of Criticality	78
	2.3.2 Type I and Type II Neurons	30	3.5	NETWORK MODELS OF	
2.4	TIME-DEPENDENT NEURONAL			INFORMATION REPRESENTATION	82
2.4	FIRING PATTERNS	32		3.5.1 Feedforward Continuous Network Model	83
	2.4.1 Resonance in Response to			3.5.2 Normalization	84
	Time-Dependent Noisy Inputs	32		3.5.3 Recurrent Continuous Network	0.1
	2.4.2 Spike Rate Adaptation2.4.3 Input Decorrelation	33 36		Model	86
	•		3.6	COMPUTING WITH	
2.5	BURST FIRING	38		SPATIOTEMPORAL DYNAMICS	90
	2.5.1 Ping-Pong Interplay between Soma and Dendrite	38		3.6.1 Time Integration	90
	2.5.2 Postinhibitory Rebound	41		3.6.2 Spatial Navigation3.6.3 Propagating Waves	91 93
	2.5.3 Clustered and Irregular Spiking	42			
2.6	SINGLE SYNAPSE MODELS	45	3.7	RESERVOIR COMPUTING	95
-	2.6.1 Kick Synapses	46		3.7.1 State Space, Dimensionality and Manifolds	95
	2.6.2 Filter and Kinetic Models of	47		3.7.2 Feedforward Random Networks	98
	Synaptic Transmission 2.6.3 NMDA Receptor-Mediated	47		3.7.3 Recurrent Random Networks	99
	Synaptic Excitation	49	3.8	Summary	101

	 ON'	TT	דיד א	ΓC
V/I				

	opter 4 Sticity, Learning and Memory	105		5.3.4 Emergence of Self-Sustained Activity from a Bifurcation 1 5.3.5 Inverted U-Shape of Dopamine	157
4.1	INTRODUCTION	105			160
4.2	SUPERVISED LEARNING	107	5.4		62
4.3	 REINFORCEMENT LEARNING 4.3.1 The Rescorla-Wagner Rule and Reward Prediction Error 4.3.2 Reward Signaling by the Dopamine System 4.3.3 Action Valuation and Selection 4.3.4 Temporal-Difference Learning 	111 111 112 113 115		5.4.2 Stochastic Gamma Oscillations during Delay Period Activity 1 5.4.3 Drifts of Neural Representation across the Delay 1	162 164 165 166
4.4	UNSUPERVISED LEARNING4.4.1 Hebbian Plasticity Rules4.4.2 Pattern Formation during Brain	117 118	5.5	LINE ATTRACTORS: PARAMETRIC WORKING MEMORY 1	67
4.5	Development 4.4.3 Spike-Timing Dependent Plasticity 4.4.4 A Calcium-Based Plasticity Model 4.4.5 Molecular Basis of Memories 4.4.6 Homeostasis, Non-Hebbian and Non-Synaptic Plasticity STORAGE CAPACITY AND MEMORY RETRIEVAL 4.5.1 Ideal Observer Analysis of Memory Capacity 4.5.2 Hopfield Model of Associative	120 122 124 126 128 129	5.6	5.6.1 The Excitation-Inhibition Balance 5.6.2 The Role of NMDA Receptors 15.6.3 The Importance of Being Slow But Not Too Slow 15.6.4 Cannabinoid Modulation and Cross-Trial Serial Effect 16.6.5 Disinhibition Motif by Three Subtypes of Inhibitory Cells 16.6 LIMITED WORKING MEMORY	69 169 1170 1172 1174 1176
4.6	Memory 4.5.3 Plasticity-Stability Dilemma MEMORY CONSOLIDATION	131 133 135	5.8	DYNAMICAL NATURE OF	83
4.7 Par	Summary t II	138 141		Heterogenous Delay Activity 1 5.8.2 Self-Sustained or Decaying Transient? 1 5.8.3 Persistent Activity Is Required for Manipulation of Information in	183 188 190
	pter 5 rking Memory	143		<u></u>	92
5.1	INTRODUCTION	143		apter 6 cision Making 19	95
5.2	NEURAL REPRESENTATION OF WORKING MEMORY	145	6.1		95
	 5.2.1 Delay-Dependent Task and Self-Sustained Mnemonic Activity 5.2.2 Three Types of Neuronal Working Memory Coding 5.2.3 Feedback Mechanisms of Persistent Activity 	145 146 151	6.2	6.2.1Signal Detection Theory16.2.2Drift Diffusion Model16.2.3Race Models2	96 196 199 202 203
5.3	ATTRACTOR NETWORK MODEL OF WORKING MEMORY 5.3.1 A Simple Rate Model 5.3.2 Network Model of Stimulus-Selective Persistent Activity 5.3.3 How Many Parameters Does This Model Have?	152 152 154 156	6.3	OF DECISION MAKING 6.3.1 Neural Correlates 6.3.2 A Recurrent Neural Circuit Model 6.3.3 State-Space Trajectories of	06 206 209

CONTENTS vii

6.4	TERMINATION RULE FOR A DECISION PROCESS 6.4.1 Ramping-to-Threshold in			napter 8 recutive Function	
	the Brain	216	8.1	INTRODUCTION	285
	6.4.2 Chronometric Function and Scale Invariance of Reaction Times	218	8.2	RESPONSE INHIBITION	287
	6.4.3 The Biological Substrate of a Decision Threshold	219		8.2.1 Race Model and Neurophysiology of a Stop-Signal Task	288
	6.4.4 Speed-Accuracy Tradeoff	223		8.2.2 A Neural Circuit Model of Countermanding	290
6.5	MULTI-ALTERNATIVE DECISIONS	226		8.2.3 Role of Basal Ganglia in "Holding the Horse"	295
6.6	DIVERSE TYPES OF PERCEPTUAL DECISIONS	228		8.2.4 Pro- versus Anti-Response	298
	6.6.1 Detection	228	8.3	TIMING	300
	6.6.2 Comparison and Discrimination6.6.3 Pattern Match Decisions	230 232	8.4	SELECTIVE ATTENTION 8.4.1 Biased Competition and	303
6.7	CONFIDENCE AND CHANGES OF MIND	235		Multiplicative Gain Modulation 8.4.2 An Integrative Circuit Model of	304
6 0	DUALITY OF COGNITIVE-TYPE	200		Selective Attention	307
6.8	NEURAL CIRCUITS	242		8.4.3 Attention Modulation of Network Synchrony and Noise Correlation	312
6.9	Summary	245	8.5	TASK SWITCHING	314
	opter 7		8.6	BEHAVIORAL FLEXIBILITY AND MIXED SELECTIVITY	319
Val	ue-Based Economic Choice	247	8.7	Summary	324
7.1	INTRODUCTION	247	Dog	+ TTT	227
7.2	NEUROECONOMICS AND FORAGING THEORY	248	Pai	t III	327
7.3	NEURAL CIRCUIT MECHANISM FOR VALUE-BASED CHOICE 7.3.1 Dopamine and Synaptic Plasticity	253 253		pter 9 ge-Scale Multi-Regional Brain	329
	7.3.2 A Decision-Making Network Model Endowed with Reward-Dependent		9.1	INTRODUCTION	329
	Learning 7.3.3 Computation of Returns by	255	9.2	9.2.1 Connectome	332 332
	Synapses: Matching Law through Melioration	257		9.2.2 Directed and Weighted Inter-Areal Cortical Connections	334
7.4	VALUATION	262		9.2.3 Exponential Distance Rule	335
	7.4.1 Computation of Common	262		9.2.4 A Generative Model of Spatially Embedded Neocortex	337
	Currency 7.4.2 Cost and Regret	265		9.2.5 Cortical Hierarchy	339
	7.4.3 Predictive Valuation	266	9.3	MACROSCOPIC GRADIENTS	340
	7.4.4 Multi-Attribute Choice	267	7.3	9.3.1 Heterogeneous Variations of a Canonical Circuit	340
7.5	PROBABILISTIC REASONING	269		9.3.2 Macroscopic Gradients of Synaptic	
7.6	SOCIAL DECISION MAKING	274		Excitation	341
	7.6.1 Random Choice Behavior in Matching Pennies Game	274		9.3.3 Macroscopic Gradient of Inputversus Output-Controlling Inhibition	344
	7.6.2 Volatility and Reinforcement Learning on Multiple Timescales	275	9.4	A HIERARCHY OF TIMESCALES 9.4.1 A Dynamical Model of Multi-	346
	7.6.3 Cooperation	278		Regional Monkey Cortex	346
7.7	Summary	281		9.4.2 A Spatial Localization Measure	348
				9.4.3 Experimental Observations of Timescale Hierarchy	350

VIII	TENTS

9.5	FUNCTIONAL CONNECTIVITY AND INTER-AREAL COMMUNICATION	352	10.7 BIG DATA AND MODEL-AIDED DIAGNOSIS	410
	9.5.1 Functional Connectivity in a Resting State	352	10.8 Summary	412
	9.5.2 Layer-Dependent Feedforward and Feedback Processes	355	Chapter 11	
	9.5.3 Gating of Inter-Areal Communication	358	Biological and Artificial	
9.6	DISTRIBUTED WORKING MEMORY	361	Intelligence	419
	9.6.1 The Parieto-Frontal Loop9.6.2 Distributed Mnemonic Activity in the	361	11.1 INTRODUCTION	419
	Cortex 9.6.3 Bifurcation in Space: Emergence of	363	11.2 DEEP FEEDFORWARD NEURAL	421
	Modularity	367	NETWORKS 11.2.1 Basic Methods of Deep Neural	421
	9.6.4 A Diversity of Spatially Distributed Persistent States	368	Network Models 11.2.2 Deep Neural Network Modeling	421
	9.6.5 Macroscopic Gradient of Dopamine Modulation	370	and the Brain	425
9.7	DISTRIBUTED DECISION MAKING	373	11.3 COGNITIVE-TYPE RECURRENT NEURAL NETWORKS	428
9.8	Summary	376	11.4 ABSTRACTION	435 436
	pter 10 putational Psychiatry	379	11.4.1 Categorization11.4.2 Factorized Code for Abstract Knowledge	441
			11.4.3 Task Set	443
	INTRODUCTION	379	11.5 LEARNING-TO-LEARN	446
10.2	MENTAL DISORDER CLASSIFICATION VERSUS DIMENSIONAL PSYCHIATRY	381	11.6 REASONING AND FLUID INTELLIGENCE 11.6.1 Compositionality	453 453
10.3	REINFORCEMENT LEARNING MODELS OF BEHAVIORAL DISORDERS	385	11.6.2 Inference and Cognitive Maps 11.6.3 Mental Programming and Intelligence	454 458
	10.3.1 Task Design and Behavioral Quantification	385	11.6.4 Cross-Scale Brain Basis of Intelligence	461
	10.3.2 Mood and Depression 10.3.3 Addiction	385 388	11.7 Summary	465
10.4	DEFICITS OF EXECUTIVE CONTROL 10.4.1 Loss of Control in Addiction and Depression	391 391	Chapter 12 Looking Back and Ahead	467
	10.4.2 Negative Bias in Anxiety and Obsessive-Compulsive Disorder 10.4.3 Reactive versus Proactive Control	393	12.1 BUILDING BLOCKS OF BEHAVIOR AND COGNITION	467
	in Schizophrenia	395	12.2 TAKE-HOME MESSAGES	469
10.5	NEURAL CIRCUIT MODELS OF	207	12.3 SHIFTING PERSPECTIVES	470
	COGNITIVE DEFICITS 10.5.1 Working Memory	397 398	12.4 LESS CHARTED TERRITORIES	471
	10.5.2 Decision Making 10.5.3 Critical Role of E/I Balance	400 402	References	475
10.6	DEFICITS IN MULTI-REGIONAL BRAIN SYSTEMS 10.6.1 Abnormal Default-Mode Network 10.6.2 Altered Macroscopic Gradients 10.6.3 Deficits in Top-Down Signaling	404 405 406 409	Index	551