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Reconciling Coherent Oscillation with Modulation
of Irregular Spiking Activity in Selective Attention:
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In this computational work, we investigated gamma-band synchronization across cortical circuits associated with selective attention. The model
explicitly instantiates a reciprocally connected loop of spiking neurons between a sensory-type (area MT) and an executive-type (prefrontal/
parietal) cortical circuit (the source area for top-down attentional signaling). Moreover, unlike models in which neurons behave as clock-like
oscillators, in our model single-cell firing is highly irregular (close to Poisson), while local field potential exhibits a population rhythm. In this
“sparsely synchronized oscillation” regime, the model reproduces and clarifies multiple observations from behaving animals. Top-down atten-
tional inputs have a profound effect on network oscillatory dynamics while only modestly affecting single-neuron spiking statistics. In addition,
attentional synchrony modulations are highly selective: interareal neuronal coherence occurs only when there is a close match between the
preferred feature of neurons, the attended feature, and the presented stimulus, a prediction that is experimentally testable. When interareal
coherence was abolished, attention-induced gain modulations of sensory neurons were slightly reduced. Therefore, our model reconciles the
rate and synchronization effects, and suggests that interareal coherence contributes to large-scale neuronal computation in the brain through
modest enhancement of rate modulations as well as a pronounced attention-specific enhancement of neural synchrony.

Introduction
During covert selective attention to locations or features of the
visual scene, visual cortical neurons are modulated selectively in
both their firing rate (Desimone and Duncan, 1995; Reynolds
and Chelazzi, 2004) and their gamma-range synchronization
(Fries et al., 2001, 2008b; Womelsdorf et al., 2006; Gregoriou et
al., 2009). Several studies suggest that gamma-range synchroni-
zation facilitates attentional processing (Salinas and Sejnowski,
2001; Womelsdorf and Fries, 2007; Tiesinga et al., 2008). How-
ever, single-neuron studies indicate that spatial attention only
reduces modestly the high irregularity of neuronal spiking
(McAdams and Maunsell, 1999a; Mitchell et al., 2007), contrary
to what would be expected from a robust enhancement of oscil-
latory firing. These contrasting temporal aspects of attentional
modulation must be reconciled to specify the dynamics of corti-

cal network activity, and its sensitivity to synchronization for
attentional processing.

The fact that attentional enhancement of network oscillations
does not impact greatly on single-neuron irregularity may con-
strain models that evaluate the functional role of neural synchro-
nization in selective attention. Typically, strong synchrony-based
attentional effects require that neurons enter an oscillator regime
during behaviorally relevant contexts (Börgers et al., 2005, 2008;
Tiesinga, 2005; Mishra et al., 2006; Buehlmann and Deco, 2008;
Buia and Tiesinga, 2008; Zeitler et al., 2008; Masuda, 2009). It
remains to be analyzed how attentional synchronization affects
information processing in networks that consistently reside in
oscillatory regimes with highly irregular neural spiking (Brunel
and Hakim, 1999; Brunel and Wang, 2003; Geisler et al., 2005;
Brunel and Hansel, 2006).

Attention modulates associative visual cortex responses pre-
sumably through top-down inputs from the frontoparietal net-
work (Colby and Goldberg, 1999; Corbetta and Shulman, 2002;
Bressler et al., 2008). Indeed, attention enhances coherence be-
tween signals recorded simultaneously from visual and frontopa-
rietal areas (Saalmann et al., 2007; Gregoriou et al., 2009). It has
been hypothesized that the source area of the top-down atten-
tional signal is a working memory circuit of the parietal or pre-
frontal cortex (Desimone and Duncan, 1995; Corbetta and
Shulman, 2002). Neurons in such circuits present sustained se-
lective firing (Gnadt and Andersen, 1988; Quintana et al., 1988;
Funahashi et al., 1989), possibly oscillatory (Pesaran et al., 2002;
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Compte et al., 2003; Joelving et al., 2007), during the delay period
between sensory cue extinction and motor response, and provide
input to neurons in associative sensory circuits (Moore and Arm-
strong, 2003). Thus, working memory circuits can maintain an
internal copy of the attentional set, and modulate both firing
rates and oscillations in upstream visual areas, as suggested ex-
perimentally (Gregoriou et al., 2009).

Here, we reconcile the dichotomy between modulations of
local field potential synchrony and Poisson-like firing in atten-
tion using a network of two interacting cortical microcircuits in
visual and working memory areas (Ardid et al., 2007). Using a
manipulation that specifically abolishes interareal coherence, we
assess the impact of synchronized sensory and executive circuits
on the attentional modulations of sensory firing rates (McAdams
and Maunsell, 1999b; Reynolds et al., 1999; Treue and Martínez
Trujillo, 1999; Martinez-Trujillo and Treue, 2004). We find that,
in a regime of irregular single-neuron spiking, interareal syn-
chrony has a profound impact in gamma-range coherence across
circuits, but only a limited effect on the firing rate of neurons in
the sensory circuit.

Materials and Methods
The model network. Each of the two network modules represents a local
circuit of the cortex. The sensory network represents a local circuit of the
visual middle-temporal area (MT). We refer to the working memory
module as a local circuit of the prefrontal cortex (PFC) for the sake of
simplicity, although working memory and selective attention are likely to
be subserved by both prefrontal and parietal cortices (Colby and Gold-
berg, 1999; Corbetta and Shulman, 2002; Corbetta et al., 2008). The MT
and PFC circuits had exactly the same wiring structure; they only differed
in the strength of the synaptic connectivity within each module. A de-
tailed account of the local circuit model can also be found in (Compte et
al., 2000). For each circuit, pyramidal cells (NE � 1024) and interneurons
(NI � 256) were spatially distributed on a ring simulating the cortical
columnar organization, labeled by their preferred direction of motion
(�N, from 0 to 360°). Their axonal collaterals differentially targeted
neighboring (isodirectional) and distant (cross-directional) neurons.
This was implemented by taking the synaptic conductance between neu-
ron i and neuron j to be gsyn,ij � W(�i � �j)Gsyn, where W(�i � �j) was
either a constant for unstructured connections [W(�i � �j) � 1] or the
sum of a constant term plus a Gaussian: W(�i � �j) � J � � (J � �
J �)exp(�(�i � �j)

2/2� 2). This last expression depends on two parame-
ters, J � and �, while J � is determined from a normalization condition
(Compte et al., 2000). In both networks, only the excitatory-to-excitatory
connectivity was structured with �EE � 14.4° and JEE

� � 1.62 (Compte et
al., 2000). The excitatory-to-inhibitory, inhibitory-to-excitatory, and
inhibitory-to-inhibitory connections were unstructured, i.e., the cross-
directional and isodirectional components of feedback inhibitory con-
nections were equally strong. This simplification was introduced to
constrain the number of free parameters and because inhibitory tuning
can easily be obtained by additionally tuning excitatory-to-inhibitory
connections without affecting much the rest of network operation
(Compte et al., 2000). Following the notations by Compte et al. (2000),
the parameters defining the strengths of local connections in the two
networks were as follows: in PFC: GEE,AMPA � 0.459 nS, GEE,NMDA �
0.557 nS (pyramid to pyramid); GEI,AMPA � 0.352 nS, GEI,NMDA � 0.430
nS (pyramid to interneuron); GIE � 3.20 nS (interneuron to pyramid);
GII � 2.50 nS (interneuron to interneuron); in MT: GEE,AMPA � 0.801
nS, GEE,NMDA � 1.10 nS (pyramid to pyramid); GEI,AMPA � 0.684 nS,
GEI,NMDA � 2.00 nS (pyramid to interneuron); GIE � 7.34 nS (interneu-
ron to pyramid); GII � 7.34 nS (interneuron to interneuron). Thus,
although recurrent synaptic conductances were very strong in both mod-
ules, recurrent inputs in MT were at least three times stronger than in
PFC. On the other hand, both networks operated in an inhibition-
dominated regime (Compte et al., 2000): recurrent excitatory and inhib-
itory inputs into excitatory neurons during stimulus response averaged
4.8467 nA and 9.4006 nA in area MT, respectively, and 1.4094 nA and

1.5515 nA in area PFC, respectively. This corresponds to an inhibition-
to-excitation ratio of 1.94 in MT and 1.10 in PFC.

Both pyramidal cells and interneurons were modeled as leaky
integrate-and-fire neurons, with the same parameters as for neurons in
the network model of Compte et al. (2000). Specifically, each type of cell
was characterized by six intrinsic parameters: the total capacitance Cm,
the total leak conductance gL, the leak reversal potential EL, the threshold
potential Vth, the reset potential Vres, and the refractory time �ref. The
values used were Cm � 0.5 nF, gL � 25 nS, EL � �70 mV, Vth � �50 mV,
Vres � �60 mV, and �ref � 2 ms for pyramidal cells; and Cm � 0.2 nF,
gL � 20 nS, EL � �70 mV, Vth � �50 mV, Vres � �60 mV, and �ref � 1
ms for interneurons. All cells received random background excitatory
inputs. This unspecific external input was modeled as uncorrelated Pois-
son spike trains to each neuron at a rate of vext � 1800 Hz per cell (or
equivalently, 1000 presynaptic Poisson spike trains at 1.8 Hz), except for
excitatory cells in PFC where vext � 2010 Hz. This input was exclusively
mediated by AMPARs, with the maximum conductances gext,E � 2.8 nS
on pyramidal cells and gext,I � 2.38 nS on interneurons, in PFC; and gext,E �
17 nS and gext,I � 9.2 nS in MT. High external conductances in MT
produced the high-variance strong external input that allowed high firing
rates (�60 Hz) with irregular spiking statistics (CV � 1) in our integrate-
and-fire neurons.

Neurons received their recurrent excitatory inputs through AMPAR-
and NMDAR-mediated transmission and their inhibitory inputs
through GABAARs. These conductance-based synaptic responses were
calibrated by the experimentally measured dynamics of synaptic cur-
rents. Thus, postsynaptic currents were modeled according to Isyn �
gsyns(V � Vsyn), where gsyn is a synaptic conductance, s a synaptic gating
variable, and Vsyn the synaptic reversal potential (Vsyn � 0 for excitatory
synapses, Vsyn � �70 mV for inhibitory synapses). AMPAR and
GABAAR synaptic gating variables were modeled as an instantaneous
jump of magnitude 1 when a spike occurred in the presynaptic neuron
followed by an exponential decay with time constant 2 ms for AMPA and
10 ms for GABAA. The NMDA conductance was voltage dependent, with
gsyn multiplied by 1/(1 � [Mg 2�]exp(�0.062Vm)/3.57), [Mg 2�] � 1.0
mM. The channel kinetics was modeled by the following equations:

ds

dt
� �

1

�s
s � �s x�1 � s�

dx

dt
� �

1

�x
x � �

i
��t � ti�,

where s is the gating variable, x is a synaptic variable proportional to the
neurotransmitter concentration in the synapse, ti are the presynaptic
spike times, �s � 100 ms is the decay time of NMDA currents, �x � 2 ms
controls the rise time of NMDAR channels, and �s � 0.5 kHz controls the
saturation properties of NMDAR channels at high presynaptic firing
frequencies. Parameters for synaptic transmission were taken from
Compte et al. (2000).

The MT and PFC network modules were interconnected through
bottom-up and top-down AMPAR-mediated connections (see scheme
in Fig. 1 B). Both bottom-up and top-down connectivities were topo-
graphic, so that for both the bottom-up and top-down pathways, neu-
rons sharing the same preference were more strongly coupled than
neurons with disparate preferences. This connectivity was described by a
Gaussian function: gsyn � Gsynexp(�(�i � �j)

2/2� 2)/��2	. We used
for the bottom-up connection onto PFC pyramids GEE

MT3PFC � 0.005 nS
and � � 36°, for the bottom-up connection onto PFC interneurons
GEI

MT3PFC � 0, for the top-down connection onto MT pyramids
GEE

PFC3MT � 0.146 nS and � � 72°, and for the top-down connection
onto MT interneurons GEI

PFC3MT � 0.098 nS and � � 72°. The less
specific connectivity in the top-down direction is supported by recent
evidence in area MT, showing that the directionality index for responses
to behaviorally relevant stimuli located far from the receptive field, and
presumably reflecting top-down input, was approximately half that of
responses to stimuli in the receptive field (Zaksas and Pasternak, 2005).
The divergence of bottom-up projections to PFC was chosen equal to
bottom-up inputs from V1, which were in turn determined by fitting
typical tuning curve widths for motion direction in area MT (see below).

The integration method used was a second-order Runge–Kutta algo-
rithm with a time step of 	t � 0.02 ms. We confirmed that using 	t �
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0.002 ms did not alter the dynamics of our control network. The custom
code for the simulations was written in C��.

Monosynaptic latencies. Our code implementation considers the pos-
sibility of introducing independent latencies for each synapse in recur-
rent connections and also between the two networks. The values for these
latencies come from two terms, an identical constant term for all the
connections from a specific neuron of the same kind (recurrent vs loop
connection) plus a variable term, selected at random from an exponential
distribution given its SD. We have tried other types of random distribu-
tions (Gaussian truncated by discarding negative latencies; gamma; and
uniform distributions) without showing significant quantitative differ-
ences in the results. We used this technique because it allowed us to study
two different issues using monosynaptic latencies. On the one hand, we
could increase drastically the monosynaptic latency variability (SD 100
ms) so as to break completely the synchrony between the two networks
(see Fig. 6). By doing that, we do not pretend to consider a plausible
physiological scenario, but to quantitatively analyze the role of oscilla-
tions and synchrony per se on sensory encoding in the MT network (see
Figs. 7–10). On the other hand, from a plausible biophysical point of view
using reasonable variances [1–2 ms (Ghosh and Porter, 1988; Fanardjian
and Papoyan, 1997; Sirota et al., 2005; Le Bé et al., 2007)], the technique
allowed us to see to which degree the effects of synchronization persist in
morerealisticconditions(supplementalFig.6,availableatwww.jneurosci.
org as supplemental material). In some recurrent connections, fixed syn-
aptic delays were used (
1 ms), but these did not have a significant
impact in network synchronization.

Simulated feature-based attentional tasks. The chosen simulation pro-
tocol resembled other behavioral protocols used in monkey attention
experiments (Martinez-Trujillo and Treue, 2004) (Fig. 1 A). In attention
trials, attention is focused on the direction of motion of a peripheral
stimulus, whereas in nonattention trials, attention is directed elsewhere
(for instance to the fixation cross luminance). Furthermore, we included
a delay period, between the presentation of the stimulus to pay attention
to (cue stimulus), and the presentation of the stimulus to respond to
(target stimulus). Specifically, all trials consist of four periods: cue (0.5 s),
delay (2.5 s), test (1.5 s), and response. In the cue period, a cue stimulus
appears indicating the type of trial: a random dot pattern (RDP) stimulus
in coherent motion indicates attention trial and the attended feature
(direction of motion), whereas a change in fixation cross luminance (not

specifically modeled) indicates nonattention trial. In the delay, no visual
stimulus is presented so that all task instructions have to be maintained
mnemonically. During the test period, one or two transparently moving
RDPs (test stimuli) are presented in the neuron’s receptive field (RF).
These stimuli are behaviorally irrelevant, but in attentional trials they
may be similar or dissimilar to the direction of motion of the behaviorally
relevant attended stimulus (target stimulus), which is away from the
neuron’s RF. Using this protocol, one can gradually separate the test and
the target features in attention trials. To model consistently the neural
mechanism for this behavioral task and the flow of sensory information
through MT to PFC, one would require the simulation of two different
motion-selective MT circuits feeding into a motion-selective PFC circuit;
one MT network would be selective to the RF where the cue appears, and
the other one would be selective to the RF where the test is presented. We
noted, however, that the temporal separation of the cue and test period
makes activity in these two periods independent for both MT circuits.
This justifies reducing the model to a single MT circuit, which is respon-
sive to motion stimuli presented in either RF. This is, however, a simpli-
fying abstraction, and interpretation of cue activations in MT should be
regarded as occurring in neurons selective for the corresponding stimu-
lus location. In the response period, a brief and transient change in the
target RDP direction of motion or in the luminance of the fixation cross
occurs, and the subject has to detect it and respond in a prescribed time
window. Our model does not include these aspects of the task.

Task-related extrinsic inputs. Cells in area MT received external inputs
from primary visual area V1 that were selective to the direction of motion
of the visually presented stimulus (Born and Bradley, 2005) (Fig. 1 B). We
thus modeled motion stimuli presentation by injecting external currents
to MT neurons that mimicked outputs from V1 to MT. We tried with
Poisson-triggered synaptic inputs, and our conclusions remained unaf-
fected. When there was a single motion direction (�S), the current injected to
a neuron labeled by �i was I(�i) � I0 � I1exp(
(cos(�i � �S) � 1)), for MT
pyramidal cells we used I0

E � 1.65 nA and I1
E � 0.74 nA, for MT interneu-

rons we used I0
I � 1.4 nA and I1

I � 1.39 nA, and for both cell types 
 �
2.63 [this choice of 
 gives a connectivity profile very close to a Gaussian
with a constant baseline, with the same width as MT-to-PFC connec-
tions, which gives tuning widths in MT compatible with physiological
data (Snowden et al., 1992; Treue and Martínez Trujillo, 1999)]. When
two overlapping directions of motion were visually presented, the cur-

Figure 1. Schematic description of simulated task and model architecture. A, The simulated task consisted of various task epochs (columns) and trial types (rows). In attention trials (top two rows)
a cue stimulus is presented, indicating the motion direction of the stimulus to be attended. After a delay period without any motion stimulation, the target and test stimuli appear on the screen
outside and inside the receptive field, respectively. The direction of motion of the test stimulus can match the attended target direction (top row) or not (middle row). B, Scheme of the model
architecture (red is excitation, blue is inhibition). Each of the two circuits includes excitatory pyramidal cells and inhibitory interneurons (not shown in scheme). The MT circuit contains neurons
selective for the same receptive field and are differentially selective to motion direction. Neurons in the PFC circuit are also selective to motion direction but not to spatial location. Local connections
within each circuit and cross-areal connections between excitatory cells depend on their respective preferred stimulus features (motion stimulus direction). Top-down projection from the working
memory (WM) circuit targets both excitatory and inhibitory cells in the sensory circuit. Two kinds of random-dot motion stimuli are considered (yellow arrows signal motion directions): single (top
input current) and transparent (bottom input current) motion.
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rent impinging on MT neurons was the sum of the currents correspond-
ing to the two single stimuli, normalized so that the maximal current was
still I0 � I1 (supplemental Methods and supplemental Fig. 1 B, available
at www.jneurosci.org as supplemental material). This normalization was
derived from the observation that the maximal response of a direction-
selective V1 neuron remains the same for either single-motion or
transparent-motion stimuli (Snowden et al., 1991). When a stimulus
suddenly appears or disappears from the visual scene, we simulate
smooth current transitions where injected current from V1 to MT
changes exponentially with a time constant of 50 ms.

Moreover, since here we want to analyze dynamical aspects of neural
activity and how this dynamics is modified when feature-based attention
is involved, we incorporate the experimental fact that stimulus-specific
oscillations occur at gamma-range frequencies in V1 neural activity
(Friedman-Hill et al., 2000). Specifically, we introduce a new oscillatory
component added to the constant bottom-up input from V1, I(�i) (see
above). This oscillatory component is constructed as the sum of sinusoi-
dal terms with frequencies fi � 15, 16, . . . 55 Hz, random phases in the
range [0, 2	], and amplitudes pondered by a factor coming from a
Gaussian function, Aexp(�( fi � fc)

2/2� 2), with fc � 35 Hz, � � 10 Hz,
and A � I(�i)/16. Such oscillatory input adds to the oscillations that are
generated internally in MT through the recurrent excitation–inhibition
loop. Oscillations in the input from V1 affect the overall oscillatory char-
acter of MT neural activity in passive conditions (see Fig. 4, blue lines),
but not its modulations by attention or the effect of top-down conduc-
tion latencies.

PFC model neurons received motion-specific sensory inputs only
through the MT-to-PFC pathway. These inputs were weak enough so
they would not drive the PFC network into a bump attractor state by
themselves (see Fig. 2 E). In all our simulation trials and during the at-
tentional cue period, all PFC neurons also received a constant current
injection of 0.025 nA. This current was not selective, and thus it did not
carry any direction of motion information. It was too weak to trigger by
itself a persistent activity pattern in the PFC network (see Fig. 2 A, No
Att.), but strong enough so that, when presented coincidentally with a
visual stimulus, the PFC stored the directional information from MT (see
Fig. 2 A, Att.). Such a “gating input” (Ardid et al., 2007) allows our model
to differentiate the attentional cue from an identical visual stimulus pre-
sented during the test period (see Fig. 1 A). This gating input could em-
anate from phasic alertness circuits in the superior temporal gyrus or in
the thalamus (Sturm and Willmes, 2001; Fan et al., 2005; Thiel and Fink,
2007), or phasic neuromodulation from the locus coeruleus (Aston-
Jones and Cohen, 2005).

LFP signal from simulation data. LFP signals reflect a summation of
synaptic potentials, subthreshold membrane oscillations, and spike af-
terpotentials rather than spiking activity (Logothetis and Wandell, 2004;
Rauch et al., 2008). In area MT, LFPs also show selectivity to direction of
motion (Liu and Newsome, 2006), although the tuning properties for
LFPs are usually poorer than for spiking activity (Liu and Newsome,
2006). We built the LFP signal as the sum of EPSCs from 129 neurons
selected uniformly among those with selectivity �i within 90° of a given
central location (typically 0°). In our loop model, there are three contri-
butions to the LFP signal related to the recurrent excitatory input (we
only consider the AMPAR contribution), the loop excitatory input (from
the other network), and the external Poisson excitatory input. No signif-
icant differences appeared when we also considered recurrent NMDAR-
mediated and GABAAR-mediated synaptic inputs in the LFP. The
sampling frequency used for the LFP was 1 kHz.

SUA/MUA signal from simulation data. Our SUA (MUA) signal comes
from the spike train of one (three) randomly selected neuron(s) for each
trial simulation, where the specific selection is done using a uniform
probability distribution within the interval: center � 30°, and center
represents the relevant direction of motion and is typically 0° or 180°.
This reflects the fact that in experimental studies, different SUA/MUA
recordings are averaged together, based on an approximately similar (but
not exactly equal) selectivity.

Measures of variability. To characterize the irregularity of neural spik-
ing, we measured coefficients of variation (CVs) and Fano factors. To
evaluate the CV, we computed interspike intervals (ISIs) of spike trains

during the test period for each neuron, lumping together ISIs from each
of 20 model simulations. For each neuron, we thus obtained its CV as the
ratio of SD to mean of its ISIs. The population average CV was then
obtained as the mean of each neuron’s CV. The Fano factor was calcu-
lated also individually for each neuron, following the approach that is
used experimentally (Mitchell et al., 2007). For Figure 10 A, we took spike
trains corresponding to 101 neurons around �N � 0° in 20 simulations,
each of which included cue (�A � 0°), delay, test (�S � 0°), and response
periods and lasted 6 s. These spike trains were fragmented in non-
overlapping pieces of duration 100 ms. For each neuron and time win-
dow, we thus had 20 spike train fragments, from which we obtained 20
spike counts. The Fano factor for each cell was computed as the variance
over the mean of these spike counts. The population Fano factor for each
time window was then computed as the average over the neurons’ Fano
factors in that time window. For Figure 10 B, we took spike trains corre-
sponding to a given neuron in 128 simulations, in each of which the test
period lasted 5 s. These spike trains were fragmented in non-overlapping
pieces of duration 500 ms. For each neuron, we thus had 1280 spike train
fragments, from which we obtained 1280 spike counts. The Fano factor
for each cell was computed as the variance over the mean of these spike
counts. The population Fano factor was then computed as the average
over the neurons’ Fano factors.

Frequency domain analysis. We used the Chronux data analysis tool-
box (http://chronux.org) for the spectral analysis of model data. We
estimated quantitatively the amount of oscillations in our model com-
puting the power-spectra of time-series (LFP) and/or point-process
(SUA/MUA) signals. To study synchrony between two signals, we used
the coherence measure C( f ) � S12( f )/�S1( f )S2( f ), where Si( f ) repre-
sents the spectrum estimation for each signal, and S12( f ) the cross-
spectrum estimation between both of them. All spectral quantities
(power spectra and coherences) were computed by using 9 orthogonal
Slepian tapers and a bandwidth of 10 Hz. In Figures 3C–F and 5C and
supplemental Figure 4, A and B (available at www.jneurosci.org as sup-
plemental material), we performed time-resolved sliding window spec-
tral analyses. These analyses consisted in the spectral evaluation of
spectra/coherence in time windows of length 500 ms, which were moved
along the signals in steps of 25 ms. In Figure 3C–F and supplemental
Figure 4, A and B (available at www.jneurosci.org as supplemental ma-
terial), we plotted the average power in the range 30 –50 Hz (normalized
to firing rate for the case of MUA spectra) over 20 trial simulations.

Statistical analysis. Ninety-five percent confidence intervals in power
spectra and coherence measures in Figures 3– 6 and supplemental Fig-
ures 4 and 5 (available at www.jneurosci.org as supplemental material)
were computed following a jackknife approach over simulation trials
(identical simulation parameters but each one with different random
number generation; typically Nt � 20, except in Fig. 3C–F, where Nt �
70). The extent of these confidence intervals is shown as shadowed areas
around the mean curves. We performed unpaired t tests (unless indicated
otherwise) to establish significant differences between the means of two
distributions. As the t test relies on the assumption of normally distrib-
uted errors, we tested our data with the Kolmogorov–Smirnov normality
test to establish that the data did not violate the normality assumption
(p � 0.05). For the cases where the assumption was violated, we applied
instead the nonparametric unpaired Mann–Whitney test. All analyses
were performed using the Matlab package (The MathWorks).

Parameter optimization to find a diversity of MT models. We designed
an unbiased, automated optimization procedure to find the parameters
of suitable MT networks. This procedure consisted in randomly initial-
izing 13 free parameters (I0

E; I1
E; I0

I ; I1
I ; 
; GEE,AMPA; GEE,NMDA; GEI,AMPA;

GEI,NMDA; GIE; GII; gext,E; gext,I; each within a prespecified range of values)
for each of 50 networks, henceforth called particles (see Fig. 9A). Such
networks were simulated to evaluate their responses to background ac-
tivity, to single presented stimuli, and to two stimuli presented with
varying separation (30°, 60°, 90°, 120°, and 180°). Evaluation was per-
formed with predefined functions that rated the degree of accomplish-
ment of specified target behaviors (maximal and minimal firing rates,
response to two stimuli compared to single stimulus, etc., supplemental
Methods, available at www.jneurosci.org as supplemental material) for
each particle. Based on the overall rating of each particle, and the history
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of best rating for each particle and for the collection of particles (swarm),
a particle swarm optimization algorithm (Kennedy and Eberhart, 1995)
updated the parameters of each particle in the swarm. This procedure
was repeated iteratively until the swarm converged to a network that
accomplished the required functional output (typically within 50 itera-
tions). Such swarm simulations were computationally intensive (10,000
CPU hours each) and required specialized grid computing management
software [Grid SuperScalar (Sirvent et al., 2006)]. For more details, see
supplemental Methods (available at www.jneurosci.org as supplemental
material). We ran several swarm simulations and identified 15 different MT
networks with similar functional output (supplemental Fig. 1, available at
www.jneurosci.org as supplemental material) but largely divergent parame-
ters (supplemental Fig. 2 and supplemental Table 1, available at www.
jneurosci.org as supplemental material). We used this set of models to test
the generality of our results (see Fig. 9; supplemental Fig. 9, available at
www.jneurosci.org as supplemental material), and show that they are un-
likely to emerge from a specific, singular combination of parameter values.

Results
The model architecture is described in a previous paper (Ardid et
al., 2007). The model includes two interacting cortical networks
at different stages in the processing hierarchy, one of them is a
sensory area and the other one a working memory (WM) area. To
be able to evaluate the spiking statistics of neurons in each area,
single cells are described by a spiking (integrate-and-fire) neuron
model. Excitatory and inhibitory neurons are interconnected
through AMPA receptor and NMDA receptor-mediated excita-
tory synapses and GABAA receptor-mediated inhibitory syn-
apses, so that biologically realistic oscillations can be generated
through synaptic interactions in the model networks (Fig. 1B and
see Materials and Methods). To simulate the neural encoding of
an analog quantity (such as direction of motion), these synaptic
connections are topographically organized, so that the strength of
neuronal connectivity depends parametrically on the similarity
of presynaptic and postsynaptic neuron selectivities. Then, the
two networks are interconnected through weaker, topographi-
cally organized excitatory AMPA receptor-mediated synapses
that provide selective bottom-up inputs to the WM area and
selective top-down inputs to the sensory area. Parameter values
were calibrated based on available physiological and anatomical
evidence. Some parameter values (typically synaptic strengths)
were relatively unconstrained by existing data and were manipu-
lated to find operating regimes that reproduced the neuronal
responses recorded experimentally in areas MT and PFC of be-
having monkeys (for details, see Ardid et al., 2007). We focus on
these two areas to specify our hypotheses and extract specific data
from the literature. These areas have been shown to be anatomi-
cally connected (Barbas, 1988; Schall et al., 1995; Burman et al.,
2006; Roberts et al., 2007), but our model might equally apply to
other combination of sensory and WM-supporting associative
areas, such as V4-PFC or MT-LIP. In fact, we apply a generaliza-
tion principle so that in those aspects where no data are available
from area MT, we extrapolate from results in area V4.

This model has been shown to integrate most attentional
modulations of the firing rate in visual extrastriate neurons
(Ardid et al., 2007): biased competition (Desimone and Duncan,
1995; Reynolds et al., 1999), multiplicative scaling of tuning
curves (McAdams and Maunsell, 1999b; Treue and Martínez
Trujillo, 1999), and selective enhancement with inhibitory sur-
round of population activity profiles (Martinez-Trujillo and
Treue, 2004; Chen et al., 2008). In addition, this biophysical com-
putational model provides a plausible mechanistic basis for
the feature-similarity gain principle proposed by Treue and
Martínez-Trujillo (Treue and Martínez Trujillo, 1999; Martinez-

Trujillo and Treue, 2004). According to this principle, the atten-
tional modulation of the firing rate response of a given
extrastriate neuron to arbitrary visual stimuli is given by a mul-
tiplicative factor (“modulation ratio”) that only depends on how
similar the attended feature is to the neuronal preferred feature
(Martinez-Trujillo and Treue, 2004). Our model network is ar-
chitecturally identical to this earlier model (Ardid et al., 2007),
but we operated some parameter value modifications to repro-
duce all the firing rate effects accounted for in (Ardid et al., 2007)
plus the statistics of single neuron firing in these areas (McAdams
and Maunsell, 1999a; Mitchell et al., 2007), and attentional local
and long-range synchronization effects (Fries et al., 2001, 2008b;
Womelsdorf et al., 2006; Saalmann et al., 2007). Using a compu-
tationally intensive search algorithm in parameter space (see Fig.
9A and Materials and Methods), we found 15 network realiza-
tions that reproduced satisfactorily the required phenomenology
(supplemental Figs. 1, 2, available at www.jneurosci.org as sup-
plemental material). We report here detailed data about one of
these networks and test some of our conclusions in the rest of
network models to evaluate the generality of our results.

A model simulation followed a typical protocol of selective
visual attention tasks: A first cue stimulus indicates what needs to
be attended, a random-duration delay forces the subject to maintain
actively such attentional set in memory, and during the test period a
sensory stimulus appears that is to be processed under the specific
attentional condition established by the first cue (Fig. 1A and see
Materials and Methods). We specify this general visual attention task
by assuming that stimuli are moving random dot patterns and the
relevant stimulus feature is direction of motion. This type of stimu-
lus is effective in eliciting responses in area MT (Born and Bradley,
2005) and also in PFC (Zaksas and Pasternak, 2006). Persistent
working memory activity in single neurons has not yet been located
in the primate brain for this type of stimulus (Zaksas and Pasternak,
2006), but there is evidence of category-based delay activity for mo-
tion stimuli in area LIP (Freedman and Assad, 2006).

Gamma oscillations in network dynamics
Figure 2, A and B, shows sample firing rate activity from two
neurons, one in each network, which were selective to the direc-
tion of motion of the test and attended stimulus. Both neurons
interacted synaptically, as they were mutually coupled because of
their similar selectivity. Enhanced synchronization in the test pe-
riod of attention trials relative to nonattention trials is reflected
by the larger fluctuation amplitudes in the local field potential
(LFP) signals of either network (Fig. 2A,B). Spatiotemporal pat-
terns of network activity in attention (Fig. 2C,D) and nonatten-
tion (Fig. 2E,F) trials revealed network oscillatory activity in all
high-activity states in both networks (Fig. 2C,D,F). Interneurons
showed similar patterns of activity (supplemental Fig. 3, available
at www.jneurosci.org as supplemental material). Despite these
marked population oscillations, spike trains of MT neurons were
highly variable (Fig. 2D). Coefficients of variation (CVs) of in-
terspike intervals of MT excitatory and inhibitory neurons, com-
bining data from 20 test-period simulations, were 0.98 � 0.06
and 1.11 � 0.04, respectively (mean � SD, NE � 1024 and NI �
256, respectively). These high values of variability (Poisson spike
trains have a CV of 1) are in qualitative agreement with experi-
mental data (see Figs. 4F, 10A,B) (Softky and Koch, 1993;
McAdams and Maunsell, 1999a; Mitchell et al., 2007), and they
reflect in part the fact that spike trains had a bursty character (see
Fig. 10C,D) (Bair et al., 1994; Constantinidis and Goldman-
Rakic, 2002). Oscillatory firing was difficult to identify both in
individual MT neuron spike trains (single unit activity, SUA) and
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event trains formed by collapsing spikes from several neighboring
neurons (multiple unit activity, MUA) (Fig. 2D), and only became
clear in the collective network activity and filtered local field po-
tential (LFP) (Fig. 2D). The LFP was obtained from the model as
the summated synaptic currents produced by a large number of
neurons (see Materials and Methods). This sparse participation of
neurons in the population rhythm, where oscillations are revealed in
the LFP and not in the SUA, is characteristic of cortical activity dur-
ing cognitive tasks (Fries et al., 2001; Pesaran et al., 2002). Theoretical
work has shown that such a regime can be obtained with strong

inhibitory feedback within the network
(Brunel and Wang, 2003; Geisler et al.,
2005), as it indeed happened in our MT net-
work (recurrent inhibitory currents ex-
ceeded recurrent excitatory currents by a
factor close to 2). However, no previous
study has addressed how these regimes are
modulated by oscillating top-down inputs.

Gamma-range rhythms are not phase
locked to stimulus but to response
We then investigated what specific analy-
ses of experimentally accessible signals
could reveal such weak population rhythms.
It is instructive to compare SUA, MUA,
and/or LFP recordings from several trials
(similar to typical experimental data)
(Fig. 3B) with simultaneous activity of a
population of neurons in a single trial
(Figs. 2, 3A). We found that raster plots
and peristimulus time-histograms (PSTHs)
of SUA spike trains over several trials (Fig.
3B) failed to reflect the oscillatory dynam-
ics that were readily observed for simulta-
neously recorded spike trains in a single
trial (Fig. 3A). This can be further demon-
strated by pooling together spikes from 3
different SUAs to generate a MUA spike
train, and computing its average power
content around the peak of the gamma
oscillation (30 –50 Hz) in the course of the
trial (Fig. 3C,D). When the SUAs came
from 3 simultaneously recorded neurons,
attentional gamma-band power enhance-
ment was observed during stimulus pre-
sentation (Fig. 3C), whereas it was absent
when the MUA was formed by spike trains
from a given neuron in 3 different trials (Fig.
3D). This reveals that the stimulus-triggered
population rhythm was not phase locked to
the stimulus onset time on different trials.
This also underlies the lack of oscillatory
marks in the power spectrum of event-
related potential (average LFP over trials)
during stimulus presentation (Fig. 3F),
which were instead present when power
spectra of each individual LFP were first
computed and only then averaged over tri-
als (Fries et al., 2008a) (Fig. 3E).

Only one synchronization effect re-
mains in the multiple-trial analyses of Fig-
ure 3, D and F: a gamma-band oscillation
locked to the response onset time. This

effect is dependent on how the response period is simulated.
Network response here consisted in the erasure of PFC persistent
activity by means of general excitation of the PFC pyramidal
population (Compte et al., 2000). Such sudden activity surge in
PFC generated a synchronization enhancement in MT that was
phase locked to response time, and was thus detectable from both
trial-averaged spectral measures and event-related potential
measures (Fig. 3E,F). Such synchronization did not emerge if we
reset PFC persistent activity through excitation of the PFC inter-
neuron population. In a recent experiment, marked additional

Figure 2. Network oscillations emerge in two-area loop model. A, Top, Average firing rate of a PFC neuron selective to the test
stimulus. The PFC neuron activated only in attention trials, from cue onset, through delay until the response period. Bottom traces,
Bandpass filtered LFPs (20 –70 Hz) for the two attentional conditions. Attentional LFP amplitude increase reveals local synchrony
enhancement at gamma frequencies. B, Same for a neuron from the MT network, also selective to the test stimulus. The MT neuron
activated during cue and test in attention trials and only during the test in nonattention trials, when no cue was presented.
C, Dynamics of 3 single units (SU), multiunit (MU, pooled spikes from top SUs), LFP (bandpass filtered 20 –70 Hz), and spatiotem-
poral graph of spiking activity (bottom) in the PFC area network in a fragment of the test period (white horizontal bar in A) and in
the attended condition. D, Same for MT network. E, Spatiotemporal graph of network spiking activity in the nonattention condition
and in the test period for the PFC network. F, Same for MT network.
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increases in gamma-band oscillations
were found in area V4 right at the time of
change detection in an attention task
(Fries et al., 2008b). Our model would
thus suggest that erasure of the main-
tained attentional set at the end of behav-
ioral trials occurs through synchronizing
excitation (Gutkin et al., 2001), rather
than inhibition. This also shows how the
degree of oscillatory synchrony in PFC
can change qualitatively the temporal
properties of MT responses: sudden
strong oscillations in PFC reset the phase
of gamma-range activity in MT, whereas
this does not happen for weaker PFC os-
cillations as during the delay and test
periods.

Local-circuit synchronization without
neural oscillators
At the local circuit level, attention modu-
lated the microcircuit oscillations. Similar
to experiments in area V4 (Womelsdorf et
al., 2006; Fries et al., 2008b), greater co-
herence was observed between MT MUA
and LFP signals when the PFC maintained
oscillating persistent activity in attention
trials than when it did not in nonattention
trials (Fig. 4A,B). Such strong attentional
enhancement of gamma-range oscilla-
tions was also clearly reflected in the LFP
power spectrum (Fig. 4C) and in the MUA
power spectrum, obtained by pooling sev-
eral simultaneously recorded SUAs (Fig.
4D). The time course of LFP spectral en-
hancement in the gamma range paralleled
firing-rate changes in MT through the
task (supplemental Fig. 4, available at
www.jneurosci.org as supplemental ma-
terial), as it has also been observed exper-
imentally (Fries et al., 2008b). However, at
the level of single neuron firing, the atten-
tional enhancement of oscillatory activity
was barely reflected in either the power
spectrum (Fig. 4E) or the coefficient of
variation (Fig. 4F). These two calculations
approached the expected features of highly
irregular Poisson spike trains. Therefore,
strong coherence effects in the population
are not a signature of neurons switching to
the regime of a neural oscillator.

Selective long-range synchronization
We quantified how attention modulated the synchrony between
the two areas by computing the coherence between SUAs ex-
tracted from the two networks. Gamma-range synchronization
was observed between equal-selectivity neurons in the two net-
works, but only when they fired in response to an attended stim-
ulus (Fig. 5A), and mostly during the cue, test, and response periods
(Fig. 5C). Notably, coherence between neurons in the two net-
works was absent if the presented stimulus was dissimilar to the
stimulus being attended (Fig. 5B). This occurred because the os-
cillating top-down input had a limited connectivity footprint,

and could only synchronize the firing of those MT neurons being
targeted by the activated PFC neurons. In addition, such synchro-
nization was only effective if these MT neurons were firing coher-
ently in response to a preferred stimulus. Thus, neurons of
distant selectivity in the two networks did not synchronize even
though they were both firing at high rates (Fig. 5B, violet), and
neurons of equal selectivity in the two networks did not synchro-
nize either, if the attended feature differed from the feature being
presented (Fig. 5B, green). Analogous results were obtained for
the coherence between LFPs extracted from either network (Fig.

Figure 3. Attentional synchrony enhancement in MT is not phase locked to stimulus, but to response. A, Spike-time rasters of
90 neurons ( y-axis) in time (x-axis) in a single trial, and their PSTH (below) show clear gamma oscillations. B, This oscillatory
regime is not revealed in the spike-time rasters or PSTH of a single neuron in 90 different stimulus-aligned trial simulations
( y-axis). C, MUA formed by collapsing spikes from 3 adjoint neurons in A shows different gamma-range spectral power (average
power in 30 –50 Hz normalized to MUA firing rate) during stimulus presentation for attention (orange) and nonattention (blue)
trials (Nt � 20). D, Same analysis for MUA formed from the spiking activity of a neuron in 3 consecutive trials fails to show
attentional gamma enhancement during test stimulus, but it emerges during response. E, Gamma power spectrum (see C) of LFP
(sample LFP above) averaged over 70 simulations shows gamma enhancement during stimulus and response. F, Gamma power
spectrum of average LFP (LFP averaged over 70 trials, above) does not show attentional enhancement during stimulus, as oscilla-
tions are not phase locked to stimulus, but shows it during response, indicating phase locking of gamma to response onset.
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5D). Enhanced interareal synchronization during attention has
been reported experimentally (Saalmann et al., 2007; Grego-
riou et al., 2009), showing in addition that synchronization oc-
curs only between neurons with overlapping receptive fields
(Gregoriou et al., 2009). Our results predict that this selectivity
projects to feature space: synchronization affects only those neu-
rons in the two networks that are firing above baseline and only if
the attended feature and the test feature coincide.

We tested the role of local-circuit AMPA receptors in generating
the attentional enhancement of synchronization (supplemental
Fig. 5, available at www.jneurosci.org as supplemental material).
We found that when AMPA receptors were replaced by NMDA
receptors in MT recurrent connections, both oscillations in MT
and synchronization across MT and PFC were reduced signifi-
cantly. Removing AMPA receptors from PFC totally abolished
interareal synchronization and reduced the attentional effects on
local-circuit oscillations in MT. Therefore, fast recurrent dynam-
ics in both networks were necessary to implement synchronization

enhancement by attention but had little ef-
fect on the irregular firing statistics of MT
neurons.

Random top-down latencies disrupt
interareal synchronization
What are the functional consequences of
this temporal coordination of spiking ac-
tivity in the two network areas? One way
to address this question is to selectively
abolish interareal coherence in the net-
work and assess the computational conse-
quences. To this end, we introduced long
(nonphysiological) random conduction
latencies in the top-down signal from PFC
excitatory neurons to MT neurons. These
latencies were taken randomly from an
exponential distribution of SD 100 ms,
and chosen independently for each pair of
presynaptic and postsynaptic neurons
(see Materials and Methods). This non-
physiological manipulation [the SD in
conduction latencies between cortical ar-
eas is typically 
2 ms (Ghosh and Porter,
1988; Fanardjian and Papoyan, 1997;
Sirota et al., 2005; Le Bé et al., 2007)] pro-
duced the temporal shuffling of all top-
down synaptic events onto MT, but no
significant change in the total number of
top-down events received (see Fig. 7C, or-
ange and green lines). Thus, we expected
rate effects due to the top-down signal to
remain, while specific effects of the tem-
poral organization of top-down spikes
should be removed. Indeed, the temporal
fluctuations of the LFP signals extracted
from the MT network were significantly
diminished by this manipulation (SD of
MT LFP 0.74 � 0.04 nA before and 0.70 �
0.05 nA after introducing random laten-
cies; mean � SD, Nt � 20 trials, t test p 

0.001) (a single trial is illustrated in Fig.
6A), while there was no such effect in PFC
(SD of PFC LFP was 0.23 � 0.01 nA be-
fore, and 0.22 � 0.01 nA after introducing

random latencies; mean � SD, Nt � 20 trials, t test p � 0.05) (Fig.
6A). When we repeated the coherence analyses of Figures 4
and 5 on the data from the long-latency top-down input, we
confirmed that the attentional synchronization enhancement
was significantly reduced at the local level (Fig. 6 B) and prac-
tically vanished at the interareal level (Fig. 6C,D).

Interareal synchronization affects attentional rate
modulations weakly
The firing-rate effects of feature-based attention (Martinez-
Trujillo and Treue, 2004; Ardid et al., 2007) were diminished by
the introduction of random top-down latencies, albeit by a small
amount (Fig. 7). In particular, the selectivity enhancement of
population activity induced by attention was reduced (Fig.
7A,B). Thus, attentional modulation of MT activity can be con-
sidered as composed of two different contributions: a main term,
proportional to the mean PFC input, and another weaker contri-
bution, that depends on the interareal synchronization.

Figure 4. Gamma band oscillations are detected locally in both networks. A, Average coherence between the LFP and MUA in
MT increases in the gamma-range for attention (orange) relative to nonattention (blue) trials during test stimulus presentation
(Nt � 20). B, Same between neighboring MUAs in MT. C, The power spectrum of the LFP reveals a gamma peak enhancement in
attended trials (orange) relative to nonattended trials (blue). D, Synchrony enhancement in spike train power spectra remains by
constructing a MUA with 3 neighboring SUA (Nt � 20). E, Averaged power spectrum of MT test-period SUA does not show
significant synchrony enhancement (Nt � 20). F, Coefficients of variation (CVs) for the excitatory MT neuron population remain
very high (�1) both in attention (orange) and nonattention (blue) trials. CV data for the 1024 neurons comes from the 1.5 s test
period in a single simulation.
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We confirmed that a physiologically
realistic dispersion of synaptic latencies in
long-range connections [�1.2 ms (Ghosh
and Porter, 1988)] was insufficient to
eliminate the effect of interareal synchro-
nization in the attentional modulations of
firing rate responses in area MT (supple-
mental Fig. 6, available at www.jneurosci.
org as supplemental material). Because
attentional selectivity enhancement is
thought to underlie the behavioral advan-
tage of selective attention (Lee et al.,
1999), our finding identifies a specific way
through which interareal synchronization
may contribute to distributed cortical net-
work processing.

We wondered whether it would be
possible to dissociate these two effects of
the attentional signal. We ran simulations
in the attended condition with random
top-down latencies, now with the addi-
tion of an oscillating (at 35 Hz) external
input (with zero mean) to MT that re-
stored the intra-MT coherence to the con-
trol values of Figure 4. Because top-down
input from PFC retained long, random
top-down latencies, there was no coher-
ence between MT and PFC in these simu-
lations, and we could specifically test how
the sole change in intra-MT coherence
during attention trials with an asynchro-
nous top-down input from PFC affected
rate modulations in area MT. Our simu-
lations revealed that the same rate effect
was achieved whether MT synchrony
was enhanced by virtue of a synchroniz-
ing top-down input from our PFC net-
work, or via synchronization by a separate
input pathway (supplemental Fig. 7, avail-
able at www.jneurosci.org as supplemen-
tal material). It is important to note that,
in these simulations, the additional oscil-
latory input was attention specific, and spatially tuned the same
way as the top-down asynchronous input. The result shows that
the overall attentional effect observed in the control condition
can be decomposed into two additive components.

On the other hand, interareal synchronization during atten-
tion acts similarly as modest rate increases in the area from which
the attentional signal originates. We demonstrated this by inject-
ing additional current into active neurons (�0.04 nA) of the PFC
network, when random top-down latencies disrupted interareal
synchronization. We calibrated this injected current so that the
modulation ratio in MT recovered the modulation ratio of the
original network with intact interareal synchrony (Fig. 7B, red
and orange curves). The average firing rate in the PFC population
increased by 25% (from 10.6 Hz to 13.3 Hz), while peak rates
increased by 12% (from 42.2 Hz to 47.5 Hz) (Fig. 7C). Thus,
synchrony between the sensory and WM network achieved a
given attentional effect on MT population rate coding with lower
PFC firing. This metabolic efficiency represents an advantage of
interareal synchronization. In addition, the same correspon-
dence between interareal synchronization and rate increases sug-
gests that MT populations with enhanced oscillations (Fig. 7B,

orange) will have greater impact on their downstream targets by
virtue of their enhanced synchronization (Salinas and Sejnowski,
2001), much as if they were firing at a higher rate.

We also tested the multiplicative scaling of tuning curves in
our network by running simulations with the test stimulus at
different directions of motion �S (n � 36) while attention was
maintained at a fixed direction �A � 0° (Martinez-Trujillo and
Treue, 2004; Ardid et al., 2007). Firing rates and input currents
were recorded for an MT neuron located within the focus of
attention, both in simulations with and without top-down ran-
dom latencies. Interareal synchronization steepened the power
law relating current input and firing rate in MT neurons (Fig.
7D). Earlier studies have shown that input fluctuations underlie
the power-law relationship between firing rate and input currents
in neurons, and that the higher the exponent in this power law,
the more multiplicative the responses to additive currents are
(Murphy and Miller, 2003). Consistent with this, input current
fluctuations in our network were reduced by 10% when the desyn-
chronizing top-down latencies were introduced (SD of total � cur-
rent in an active MT neuron went from 2.67 0.05 nA to 2.39 � 0.03
nA; mean � SD, Nt � 20 trials, t test, p 
 0.001), and this manipu-

Figure 5. Coherent neuronal activity between PFC and MT in the gamma band occurs selectively and only in attention trials.
A, Trial-averaged (Nt � 20) coherence between spikes from one PFC neuron and one MT neuron [selected at �center � 0° (see
Materials and Methods), circles in the top scheme] shows gamma-range enhancement during attention-to-test (orange) relative
to nonattention (blue) trials. B, In contrast to A, no gamma-range effect is observed when the test stimulus was orthogonal to the
attended stimulus, both when taking neurons with similar selectivity (green, see top scheme) or with distant selectivity and
maximal response (violet, see top scheme) in either network. C, Temporally resolved PFC–MT SUA coherence analysis through an
attention trial shows strong gamma coherence during cue, test, and response periods. D, Averaged coherence between local field
potentials at �center � 0° (see Materials and Methods) in the two networks mimics results in A.
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lation also compromised slightly the multiplicative character of neural
response modulations to additive top-down biases (supplemental Fig.
8, available at www.jneurosci.org as supplemental material).

We then studied how interareal synchronization affected the
attentional processing of competing stimuli in area MT. The
modulation of competitive interactions between simultaneously
presented stimulus representations is a fundamental compo-
nent of attentional processing (Desimone and Duncan, 1995;
Reynolds et al., 1999). Similar biased competition effects as those
observed in V4 (Reynolds et al., 1999) have been found in MT
neural activity driven by transparent motion stimuli (Wannig
et al., 2007; Patzwahl and Treue, 2009), as our model predicted
[Fig. 8 and Ardid et al. (2007)]. In our model, desynchronizing ran-
dom top-down synaptic latencies reduced slightly the attentional
bias of responses to either competing stimulus (Fig. 8A,B). There-
fore, interareal synchronization might constitute an incremental
mechanism behind biased competition in the cortex.

Testing generality in a population of network models
Our analysis showed that interareal synchronization had effects
on all major attentional rate modulations in area MT. However,
these effects were small and did not attribute a major computa-
tional role to synchronization-based rate enhancements in selec-
tive attention. We were concerned about the generality of our
results: was the weak role of synchronization in our network a
particular result of our specific parameter selection? To address
this in our simulations, we designed an unbiased optimization
procedure on 13 of our network parameters (Materials and Meth-
ods, and supplemental Methods, available at www.jneurosci.org as
supplemental material). In brief, we let these parameters take values
within a prespecified region of a 13-dimensional hyperspace (Fig.

9A), and we evaluated the neural re-
sponses of the corresponding MT net-
work models upon the presentation of
one and two motion stimuli. An optimi-
zation procedure based on the particle
swarm optimization algorithm (Kennedy
and Eberhart, 1995) was guided by the
known properties of passive responses to
random dot patterns in area MT (Maun-
sell and Van Essen, 1983; Albright, 1984;
Mikami et al., 1986; Snowden et al., 1991,
1992; Britten et al., 1992) (supplemental
Methods and supplemental Fig. 1, avail-
able at www.jneurosci.org as supplemen-
tal material). Repeated optimization runs
starting from different random initial
conditions allowed us to obtain 14 addi-
tional MT networks consistent with these
data. These networks were highly diverse
in terms of the varied parameters (coeffi-
cients of variation of the various parame-
ters were in the range 0.26 – 0.93, with a
mean at 0.47 and SD 0.19) (see supple-
mental Fig. 2 and supplemental Table 1,
available at www.jneurosci.org as supple-
mental material). By construction, these
different MT networks had similar activ-
ity upon stimulus presentation (supple-
mental Fig. 1, available at www.jneurosci.
org as supplemental material), and for
each of them, we manually tuned top-
down connections from our PFC network

to generate also similar attentional firing rate enhancements
(supplemental Fig. 9, orange traces, available at www.jneurosci.
org as supplemental material), compatible with experiments
(Treue and Maunsell, 1996; Treue and Martínez Trujillo, 1999;
Martinez-Trujillo and Treue, 2004; Zaksas and Pasternak, 2005).
We studied the synchronization properties of the resulting MT–
PFC networks and found the following in all the available 15
networks: (1) the PFC and MT circuits synchronized at gamma
frequencies in attention trials (Fig. 9B) (mean peak PFC–MT
SUA coherence in the attended condition was 0.30 � 0.10 at a
frequency of 40 � 2 Hz, and in the nonattended condition 0.08 �
0.02 at 41 � 16 Hz; n � 15, mean � SD; coherence values were
different, paired t test, p 
 0.001); and (2) randomization of
top-down latencies disrupted this interareal synchronization
(Fig. 9B) (mean peak PFC–MT SUA coherence in attention was
reduced by random latencies to 0.09 � 0.04; mean � SD; n � 15,
p 
 0.001; not significantly different from nonattention coher-
ence, p � 0.1). For most of the 15 networks, the attentional top-
down input from PFC enhanced existing gamma-range
oscillatory dynamics in area MT (Fig. 9C) (mean peak MUA–
MUA coherence in MT was 0.25 � 0.17 at 40 � 8 Hz for attended,
and 0.13 � 0.07 at 39 � 14 Hz for nonattended trials; n � 15,
mean � SD; coherence values were different, paired t test, p 

0.001); and random top-down latencies abolished attentional
synchrony effects in MT (Fig. 9C) (random latencies brought
mean peak MT MUA–MUA coherence down to 0.12 � 0.09;
mean � SD; n � 15, p 
 0.001; not significantly different from
nonattention levels, p � 0.1). This confirms that our results of
Figures 4 – 6 are generally valid for many MT networks that are
functionally constrained by the experimental data detailed above.
We then tested what impact interareal synchronization had on MT

Figure 6. Random conduction latencies in the top-down signal disrupt selectively gamma band synchronization between the two
networks. A, Sample gamma-band filtered LFP signals (20 –70 Hz) from the PFC and MT networks in the control attention
case (orange) and in the case with randomly dispersed top-down synaptic latencies of SD 100 ms (green). Bar plots to the right of LFP traces
represent the SD of LFP signals during the test period in each condition, and show that top-down latencies affect LFP fluctuations in MT but
not in PFC. B, Gamma coherence between MUA and LFP signals from the MT network drops after introduction of random synaptic latencies
of SD 100 ms in the top-down connection (before�orange, after�green) (computed as in Fig. 4 A). C, Same for the SUA–SUA coherence
between MT and PFC (computed as in Fig. 5A). D, Same for LFP-LFP coherence between networks (computed as in Fig. 5D).
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firing rate enhancements by attention in the
population of 15 models. Despite the large
variance in parameter values, all the net-
works responded similarly at the level of the
peak firing rate to the abolishment of inter-
areal synchronization through the intro-
duction of random top-down synaptic
latencies: The attentional enhancement at
the peak of population rate responses was
unaffected or only slightly modified by in-
terareal synchronization removal (Fig. 9D;
supplemental Fig. 9, available at www.
jneurosci.org as supplemental material).
From all the tested networks, the control
network that we illustrate in Figures 2–8
and 10 is the one that showed the most pro-
nounced effects on MT firing rates by inter-
areal synchronization (Fig. 9D, gray dot).

Interareal synchronization reduces
slightly the high variability of
neuronal firing
Neural spiking was highly irregular in our
MT network, with CVs and Fano factors
(FFs) close to unity, the expected value for
Poisson spike trains (Figs. 4F, 10A,B).
Fano factors were higher for interneurons
than for pyramidal neurons (1.24 � 0.05
and 0.97 � 0.10, respectively; mean � SD,
n � 256, 1024 neurons, Mann–Whitney
test, p 
 0.001) (Fig. 10B). Despite the
pronounced effect of attentional modula-
tory inputs on the coherence of neuronal
firing (Fig. 5), the attentional effects on
irregularity were much less pronounced
(Fig. 10A,B) and were only sizable if PFC
presented very strong oscillations (re-
sponse period in Fig. 10A). We designed a
test to show how much of this modest at-
tentional modulation was specifically due to
interareal synchronization and not to
changes in the firing rate of MT neurons.
We computed the Fano factor of stimulus-
activated pyramidal neuron spike trains in
the attentional condition in the three differ-
ent cases shown in Figure 7, B and C: control
case with intact interareal synchronization,
case with largely dispersed top-down ran-
dom latencies, and case with top-down ran-
dom latencies and PFC boost to recover the
firing rate modulations of the intact case.
Fano factors increased significantly by a
small amount when random synaptic laten-
cies were included in top-down connec-
tions, regardless of whether MT neurons
responded with a higher or lower firing rate
to the presented test stimulus (Fig. 10A).
This proves that the attentional modulation of Fano factor was pri-
marily due to interareal synchronization, and not to changes in the
firing rate of MT neurons (Mitchell et al., 2007). Together, our re-
sults are consistent with available data on spike count variability in
neurons of area V4 (McAdams and Maunsell, 1999a; Mitchell et al.,
2007), and suggest that a portion of the reduction in Fano factor

during attention observed experimentally (Mitchell et al., 2007)
might be due to an oscillating top-down signal, which regularizes V4
neuronal firing slightly. Importantly, the Fano factor of MT neurons
remains generally very high in our model, even in the coherent os-
cillating dynamics regime that characterizes the attentional state in
our network (FF � 0.8). We found that this fact was explained by the

Figure 7. Gamma band synchronization between PFC and MT specifically enhances the firing rate effects attributed to selective
visual attention, in a similar way as PFC rate increases. A, Trial-averaged (Nt � 20) population activity during the test period in
attention (orange), nonattention (gray), and random top-down latencies (green) cases. Attention enhances selectivity, and inter-
areal gamma band synchronization contributes. B, Modulation ratios [i.e., point-by-point division of attentional rates by nonat-
tentional rates (Martinez-Trujillo and Treue, 2004) in A] are accentuated in the control case (orange) relative to the case with
asynchronous top-down input (green). Attentional modulation is recovered when, in addition, PFC neurons receive external
injected current (red). C, PFC activity for the cases depicted in B. Activity is boosted by external current injection (red), and this
results in a recovered modulation ratio through asynchronous top-down signal in B. D, Interareal synchronization increases the
exponent of the power-law relationship between MT neuron activity and input (I � IS � IA). The exponent increases from 3.79 to
3.92. Inset, Tuning curves with interareal synchrony (orange) and without (green).

Figure 8. Gamma-range synchronization strengthens the attentional bias of network responses to multiple stimuli (transpar-
ent motion). A, Trial-averaged population activity in MT when two transparent motion components were simultaneously pre-
sented in the receptive field (Nt � 20), in the nonattended (gray), and attended with (green) and without (orange) random
top-down latencies. Synchronized top-down inputs enhance attentional effects. Neurons are labeled on the x-axis according to
their preferred direction (�N). B, The attentional bias is enhanced by interareal synchrony when attention is directed to the
neuron’s preferred direction of motion (circles, stimuli at 90° and �90°, neuron �N � 90°, attention at 90°; see A), and reduced
when attention is focused to the neuron’s null direction of motion (triangles, stimuli at 90° and �90°, neuron �N � �90°,
attention at 90°; see A). The nonattention condition is plotted to observe the attentional bias magnitude (squares, stimuli at 90°
and �90°, neuron �N � 90°; see A).
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bursty character of MT neurons spike trains, also detected experi-
mentally (Bair et al., 1994). Indeed, the distribution of interspike
intervals (ISI) presented an overrepresentation of short ISIs (Fig.
10C,D) and interareal synchrony enhanced only slightly ISI proba-
bility in E-cells within the 20–30 ms range, corresponding to
gamma-range synchronization (Fig. 10C).

Discussion
In this study, we investigated network synchronization induced
by attention in a computational model of two interacting, sensory
and executive, cortical areas. Apart from attentional rate effects
(Ardid et al., 2007), the model matched both the synchronization
and the irregular statistics of neuronal firing in these areas
(McAdams and Maunsell, 1999a; Fries et al., 2001; Womelsdorf et al.,
2006; Mitchell et al., 2007; Gregoriou et al., 2009). These mea-
sures offer conflicting views on the impact of temporal dynamics
modulations in attentional processing, and our model integrates
these results in a single coherent framework. We show that sig-

nificant attentional modulation of local
and long-range coherence is compatible
with little attentional modulation of
highly irregular statistics in single-neuron
firing. We then evaluated the impact that
such weak interareal synchronization had
on attentional processing in our network.
The impact of synchrony was assessed by
comparing rate-based attentional modu-
lations in MT with or without coherence
with PFC. Random latencies in PFC-
to-MT connections removed totally the
attentional MT synchrony enhancement,
taking it to nonattention levels, while only
marginally affecting MT neuron Fano fac-
tors. Furthermore, we show that the tem-
poral organization of top-down incoming
spikes into MT is responsible for not more
than 10 –15% of the various attentional
modulations of firing rate identified ex-
perimentally. The modest effects of syn-
chronization on MT firing rates are in
contrast with the marked and highly selec-
tive effects of interareal synchronization
on the coherence of neural activity across
areas. This suggests that selective atten-
tion might encode in activity coherence
across areas the results of selection and
detection, adding this information to the
rate code of sensory areas.

This model integrates and helps to
clarify multiple, hitherto disconnected,
experimental results on attentional mod-
ulations of neural dynamics. Oscillations
in the local cortical circuit in extrastriate
cortex are enhanced by a synchronizing
top-down input (Fries et al., 2001, 2008b;
Womelsdorf et al., 2006; Gregoriou et al.,
2009), with a time course that parallels
that of rate modulations (Fries et al.,
2008b). This local network synchrony is
concomitant with enhanced synchroniza-
tion between neurons in the sensory and
associative networks (Saalmann et al.,
2007; Gregoriou et al., 2009). However,
such increase in oscillatory dynamics does

not affect greatly the high variability of extrastriate neuron firing
(McAdams and Maunsell, 1999a; Mitchell et al., 2007). An ele-
ment that contributes to firing variability is the incidence of
bursty firing in a significant proportion of neurons (Bair et al.,
1994; Constantinidis and Goldman-Rakic, 2002). All these re-
sults are integrated in our network model, where population os-
cillations and synchrony are compatible with neuronal irregular
firing: rhythmic activity emerges as a population phenomenon,
without entraining individual neurons into a clock-like oscilla-
tory regime (Brunel and Wang, 2003; Geisler et al., 2005). Then,
top-down inputs modulate local and long-range synchronization
significantly, without affecting much single neuron firing statis-
tics. However, we found that interareal synchronization induces a
small but significant decrease in Fano factor at high rates (Fig.
10A,B). This suggests that synchronization might underlie an
analogous attentional effect observed in neurons of area V4
(Mitchell et al., 2007). However, the attentional reduction of

Figure 9. An automated optimization procedure found 14 additional MT networks, all of which showed little dependence of
firing rate modulations on interareal synchronization. A, Simplified schematic representation of the optimization algorithm (par-
ticle swarm optimization). Each network configuration is determined by fixing 13 free parameters of the simulation, i.e., each
network is represented by one “particle” in a 13-dimensional space. We represent here graphically an analogous bidimensional
situation (parameters x1, x2). Several networks (typically 50, a “swarm”) are simulated in parallel (here 4 red particles). For one of
the particles (center), a path with previously visited locations (dark blue dots) is drawn. The particle updates its velocity stochas-
tically toward the location with best fitness value visited previously by this particle (cyan dot) and toward the best location found
by the whole swarm (magenta dot). The fitness of a given location is determined by running 7 network simulations with the
corresponding parameters for various stimuli conditions, and checking how well neural responses approach quantitatively exper-
imental values for MT neurons in the literature (supplemental Methods, available at www.jneurosci.org as supplemental mate-
rial). An optimization run finishes when the swarm converges to a global optimum. If the global optimum is not reached within 50
algorithm iterations, the optimization run is stopped and all particles are discarded. B, Interareal coherence is enhanced in
attention trials, and abolished by top-down random latencies. Average maximal PFC–MT SUA coherence (mean in �10 Hz from
coherence peak) for each of 15 networks in three different conditions: nonattention trials (No Att.), attention trials (Att. synch.),
and attention trials with random top-down conduction latencies (Att. Asynch.). The control network shown in previous figures is
indicated in gray. C, Effects of attention in MT MUA–MUA coherence are abolished when introducing top-down random latencies.
Average maximal MT–MT coherence (mean in �10 Hz from coherence peak) for each of 15 networks in the three different
conditions of B. The control network shown in previous figures is indicated in gray. D, The effects of top-down random latencies on
MT–MT coherence (	MUA–MUA coh., indicated on C) and on changes in rate modulations of maximally activated neurons
(modulation ratio averaged across neurons where �A � �N � [0°, 45°]) correlate strongly across the population of 15 networks.
Despite large changes in coherence (x-axis), firing rate modulations of coding populations are affected very modestly by interareal
synchronization ( y-axis).
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Fano factor observed experimentally is
larger than suggested by our model, and
affects more significantly inhibitory neu-
rons (Mitchell et al., 2007). Recent evi-
dence suggests that a portion of these
attentional effects comes from the atten-
tional suppression of low-frequency (
5
Hz) fluctuating dynamics in the cortex
(Mitchell et al., 2009). The presence of
such slow cortical dynamics especially
during the nonattention condition has
not been contemplated in our model, and
we therefore expect the model Fano factor
in this condition to underestimate the ex-
perimental value, possibly in a cell-type-
specific manner. Finally, our model also
replicates the finding of additional gamma-
range synchronization at the time of detec-
tion and response (Fries et al., 2008b). This
might reflect the sudden increase of syn-
chronizing top-down inputs, due to the re-
moval of the attended item from the WM
buffer in the PFC network.

In addition, our model produces spe-
cific experimentally testable predictions.
On the one hand, the increase in gamma
oscillations in extrastriate areas right at
the time of change detection and response
(Fries et al., 2008b) should be phase lockedto
stimulus change (Fig. 3D,F) if we assume the
model of working memory erasure through
synchrony (Gutkin et al., 2001). This is in
contrast to attentional oscillatory en-
hancement in the test period before stim-
ulus change, whose phase is not reset by
test stimulus presentation (Fries et al.,
2008a). In our model, this qualitative dif-
ference is due to the different dynamics of
the PFC network at each of these time points. At the time of test
stimulus presentation, neurons in PFC are sustaining an atten-
tional set, which is mostly unaffected by stimulus presentation.
On the contrary, detection and response is triggered through a
sudden increase in PFC oscillatory activity, which resets synchro-
nization dynamics in area MT. Second, gamma-range attentional
coherence between neural firing in the sensory and executive
areas occurs between neurons of similar selectivity, and only if the
attended and test feature coincide with the neuronal preference.
Underlying this high specificity of interareal coherent firing is the
footprint of top-down synaptic projections. We propose that
this experiment would help estimate the synaptic footprint of
top-down attentional connections in feature space. Previous
experiments have already shown such selectivity of interareal syn-
chronization for the case of spatial attention, where attention en-
hanced the coherence only between neurons with shared receptive
field (Gregoriou et al., 2009).

Our model has some quantitative biases in the evaluation of
coherence measures, which could explain the difference with ex-
perimentally measured coherence values, typically lower (Saal-
mann et al., 2007; Fries et al., 2008b; Gregoriou et al., 2009). On
the one hand, we are using all-to-all connectivity for simplicity.
However, multiple recordings in vitro have typically reported a
rate of connectivity in the order of 10% for pyramidal neurons in
the neocortex (Markram et al., 1997; Song et al., 2005). Introduc-

ing a diluted random connectivity architecture in our model
would make the direct connectivity between units in the MUAs
unlikely, and reduce peak coherence values, especially for MUA–
MUA and SUA–SUA analyses. On the other hand, based on the
results by Liu and Newsome (2006), we took a weaker motion
selectivity for LFPs (input currents from neurons within �90°
were averaged together) than for MUA (neurons were gathered
from a window of selectivity of �30°). The peak values of coher-
ence measures based on LFPs and MUAs will also depend quan-
titatively on their precise selectivity.

By incorporating for the first time a spiking model for the
source of the top-down signal, our model represents the first
quantitative evaluation of the computational role of interareal
synchronization for selective visual attention, recently demon-
strated experimentally (Saalmann et al., 2007; Gregoriou et al.,
2009). Previous models have instead focused on other synchro-
nizing mechanisms, such as inhibitory interneurons (Tiesinga et
al., 2004; Mishra et al., 2006; Börgers et al., 2008; Buia and Tiesinga,
2008), feedforward processing (Buehlmann and Deco, 2008), or
neuromodulation (Börgers et al., 2005, 2008), and have assumed a
rate-based top-down signal. These modeling studies have found
that oscillations may have more impact in sensory activity than
the 10% modulation reported here. However, our study is the
first in finding explicitly a network regime that reconciles strong
attentional modulations in LFP oscillations with weak attentional

Figure 10. Interareal synchronization reduces neuronal firing variability but Fano factors remain high, due to burstiness.
A, Fano factor of high-rate MT neurons (averaged over 101 neurons around �N � 0°, see Materials and Methods) through the
periods of the task for attention (orange), attention trials with top-down asynchronous input (green) and attention trials with
top-down asynchronous input and PFC boost (red) (Fig. 7). The overlap of the red and green curves, for which test-period firing
rates are identical (Fig. 7), demonstrates that interareal synchronization, not rate, was responsible for the attentional Fano factor
modulation in the test period shown in A. Shaded regions indicate SEM over the 101 neurons considered. B, Fano factor versus
binned firing rate for model neurons. At high rates, interareal synchronization had the effect of reducing the Fano factor (compare
case with interareal synchrony, in orange, and case without, in green; stars indicate t test significance at p 
 0.05). The Fano factor
was calculated individually for each neuron, following the approach that is used experimentally (Mitchell et al., 2007) (see
Materials and Methods). C, ISIHs (Nt � 128) for excitatory neurons of intermediate rates (neurons firing in the range 47– 62 Hz) in
attention trials (orange) and attention trials with top-down asynchronous input (green) (Fig. 6). Burstiness is reflected in the high
first bins of the histogram (compare with expected Poisson histogram fit delineated in black). Oscillations appear as a small
secondary peak at �23 ms for the attention trials. D, Same for inhibitory neurons. Oscillations are not observed.
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modulations of irregular neuronal spiking. Such constraint
might be important in evaluating the functional impact of atten-
tional synchronization on cortical processing.

Modulations of both synchrony and firing rate characterize
attentional selection. It is not clear how these two types of
attentional modulations are related. On the one hand, they can
represent independent mechanisms by which information
processing is enhanced by attention. For instance, regardless of
rate modulations gamma-range synchronization could facilitate
information transmission between neuronal groups selectively
(Womelsdorf and Fries, 2007; Fries, 2009), it could enhance the
impact of neural activity on downstream targets (Salinas and
Sejnowski, 2001) (see also supplemental Fig. 7, available at www.
jneurosci.org as supplemental material), or it could reduce the
latencies of neural and behavioral responses (Womelsdorf et al.,
2006; Buehlmann and Deco, 2008) (but see supplemental Fig. 4,
available at www.jneurosci.org as supplemental material). Alter-
natively, rhythmic activity and rate modulations could be caus-
ally related concomitant effects of attention. Thus, rate increases
might entail concomitant synchronization enhancement, or the
enhancement of rhythmic firing might cause biased competition
rate modulations (Tiesinga et al., 2004; Börgers et al., 2005, 2008;
Mishra et al., 2006). Along this line, we find that interareal syn-
chronization contributes at most a small fraction of firing rate
modulations in extrastriate cortex. From this point of view, syn-
chronization is just an energy-efficient substitute of rate increases
in top-down afferent neurons (Fig. 7B,C). Because interareal
synchronization not only modulates modestly firing rates, but it
makes those rates more able to drive downstream neurons, our
model shows that interareal synchronization incrementally helps
in routing communication along behaviorally relevant neural
populations (Womelsdorf and Fries, 2007), through the incre-
mental added effects of modest rate increases and enhanced
downstream impact. Such a role of synchronization is however
only secondary to the primary role of afferent rate changes. How-
ever, we also found that the coherence between activity in
distant areas encoded selectively and robustly the detection of
the attended item (Fig. 5). Thus, an appropriate mechanism
for the readout of interareal gamma-range coherence would
extract a robust detection signal that is masked in the weak
attentional rate effects of area MT. Further research should
address whether such readout mechanism exists and whether
this may be the primary functional role of interareal synchro-
nization in selective attention.
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Markram H, Lübke J, Frotscher M, Roth A, Sakmann B (1997) Physiology
and anatomy of synaptic connections between thick tufted pyramidal
neurones in the developing rat neocortex. J Physiol 500:409 – 440.

Martinez-Trujillo JC, Treue S (2004) Feature-based attention increases the
selectivity of population responses in primate visual cortex. Curr Biol
14:744 –751.

Masuda N (2009) Selective population rate coding: A possible computa-
tional role of gamma oscillations in selective attention. Neural Comput
21:3335–3362.

Maunsell JH, Van Essen DC (1983) Functional properties of neurons in
middle temporal visual area of the macaque monkey. I. Selectivity for
stimulus direction, speed, and orientation. J Neurophysiol 49:1127–1147.

McAdams CJ, Maunsell JH (1999a) Effects of attention on the reliability of
individual neurons in monkey visual cortex. Neuron 23:765–773.

McAdams CJ, Maunsell JH (1999b) Effects of attention on orientation-
tuning functions of single neurons in macaque cortical area V4. J Neuro-
sci 19:431– 441.

Mikami A, Newsome WT, Wurtz RH (1986) Motion selectivity in macaque
visual cortex. II. Spatiotemporal range of directional interactions in MT
and V1. J Neurophysiol 55:1328 –1339.

Mishra J, Fellous JM, Sejnowski TJ (2006) Selective attention through phase
relationship of excitatory and inhibitory input synchrony in a model cor-
tical neuron. Neural Netw 19:1329 –1346.

Mitchell JF, Sundberg KA, Reynolds JH (2007) Differential attention-
dependent response modulation across cell classes in macaque visual area
V4. Neuron 55:131–141.

Mitchell JF, Sundberg KA, Reynolds JH (2009) Spatial attention decorre-
lates intrinsic activity fluctuations in macaque area V4. Neuron
63:879 – 888.

Moore T, Armstrong KM (2003) Selective gating of visual signals by micro-
stimulation of frontal cortex. Nature 421:370 –373.

Murphy BK, Miller KD (2003) Multiplicative gain changes are induced by
excitation or inhibition alone. J Neurosci 23:10040 –10051.

Patzwahl DR, Treue S (2009) Combining spatial and feature-based atten-
tion within the receptive field of MT neurons. Vision Res 49:1188 –1193.

Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002) Temporal
structure in neuronal activity during working memory in macaque pari-
etal cortex. Nat Neurosci 5:805– 811.

Quintana J, Yajeya J, Fuster JM (1988) Prefrontal representation of stimulus
attributes during delay tasks. I. Unit activity in cross-temporal integration
of sensory and sensory-motor information. Brain Res 474:211–221.

Rauch A, Rainer G, Logothetis NK (2008) The effect of a serotonin-induced

dissociation between spiking and perisynaptic activity on BOLD func-
tional MRI. Proc Natl Acad Sci U S A 105:6759 – 6764.

Reynolds JH, Chelazzi L (2004) Attentional modulation of visual process-
ing. Annu Rev Neurosci 27:611– 647.

Reynolds JH, Chelazzi L, Desimone R (1999) Competitive mechanisms sub-
serve attention in macaque areas V2 and V4. J Neurosci 19:1736 –1753.

Roberts AC, Tomic DL, Parkinson CH, Roeling TA, Cutter DJ, Robbins TW,
Everitt BJ (2007) Forebrain connectivity of the prefrontal cortex in the
marmoset monkey (Callithrix jacchus): an anterograde and retrograde
tract-tracing study. J Comp Neurol 502:86 –112.

Saalmann YB, Pigarev IN, Vidyasagar TR (2007) Neural mechanisms of vi-
sual attention: how top-down feedback highlights relevant locations. Sci-
ence 316:1612–1615.

Salinas E, Sejnowski TJ (2001) Correlated neuronal activity and the flow of
neural information. Nat Rev Neurosci 2:539 –550.

Schall JD, Morel A, King DJ, Bullier J (1995) Topography of visual cortex
connections with frontal eye field in macaque: convergence and segrega-
tion of processing streams. J Neurosci 15:4464 – 4487.

Sirota MG, Swadlow HA, Beloozerova IN (2005) Three channels of cortico-
thalamic communication during locomotion. J Neurosci 25:5915–5925.
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