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Supplemental Figure 1. MT network calibration to reproduce experimental data in passive-

viewing conditions.

Supplemental Figure 2. Mechanisms of inhibitory-surround selective enhancement of popula-

tion responses by attention.

Supplemental Figure 3. Effetcs of parametric changes of the top-down input on selective en-
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Supplemental Figure 1: The MT network model is calibrated by the constraint that the model

MT neurons reproduce the responses of MT cells to transparent motion stimuli with a range of

separation angle between the two motion components (Treue et al. 2000).(A) Input currents into

the MT network (x-axis) for superimposed motion stimuli of various angle separations (color

legend on panel (B). See Materials and Methods for details about the stimuli parameters). (B)

Responses of MT neurons in the model, quantitatively very similar to the physiological data in

(Treue et al. 2000). Note that the peak response is smaller for transparent motion than for single

motion, and is gradually decreased with increasing separation of the two motion components.

This is in contrast with the constant peak currents entering the MT network for all the stimuli

(left). This phenomenon is due to synaptic suppression by MT interneurons that are driven

by both bottom-up inputs (feedforward inhibition) and intrinsic MT excitatory cells (feedback

inhibition). This normalization mechanism has therefore elements of previous normalization

models of visual cortex (Carandini et al. 1997; Simoncelli and Heeger 1998; Rust et al. 2006).
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Supplemental Figure 2: Inhibitory-surround selective enhancement of population responses by

attention emerges from selective top-down excitation and unspecific local-circuit inhibition. (A)

Total current entering pyramidal neurons (labeled by θpref in x-axis) in the baseline (grayed area

to the left), non-attended 0o stimulus (black) and attention to 0o stimulus (red) conditions. (B)

Breakdown of incoming currents into the network model neurons in the same conditions as in

(A). Currents that did not show significant variations between attended and non-attended con-

ditions are plotted in gray (Iexc: recurrent excitation from network neurons; Iext: external non-

specific Poisson inputs; Istimulus: feedforward excitation upon stimulus presentation). (C) Detail

of the current balancing between contributions that did show attentional modulation (IPFC→MT:

top-down excitatory input; Iinh: inhibition). For each current, the left bar corresponds to inputs

into the neuron labeled 180o (attention at non-preferred) and the right bar to inputs into the

neuron labeled 0o (attention at preferred).
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Supplemental Figure 3: (figure caption in following page)
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Supplemental Figure 3: Parametric changes of the top-down input in the full model simula-

tion revealed how selectivity enhancement (C) and multiplicative scaling (D) depended on the

strengths of the PFC-to-MT conductance efficacies onto MT e-cells (gPFC→MT
E ) and MT i-cells

(gPFC→MT
I ). To quantify selectivity enhancement of population activity and multiplicative scal-

ing of tuning curves we computed two indices (modulation ratio MR and multiplicative index

MI), schematically indicated in panels (A) and (B), respectively. For each of these quanti-

ties, we then plotted their values at the peak and tail of the corresponding curve against each

other (panel (C) for MR, panel (D) for MI). Selectivity enhancement and multiplicative scal-

ing with a 25% (50%) tolerance occur in the dark (light) gray shaded areas of each graph.

Simulations for the cases of ±25% and ±50% change in gPFC→MT
E and gPFC→MT

I around their

control values were run (i.e. 25 different parameter sets). For each set of parameters, three

simulations were run: no-attention, attention-on-stimulus and attention-away-from-stimulus.

Each of these conditions was repeated 10 times with different initializations of the random

number generator. Data points in dark blue are obtained from the results of all correspond-

ing pairs of simulations sharing the same parameters (i.e. attention vs. no-attention in (C),

and attention-on vs. attention-off stimulus in (D)). In (D), the light blue data points corre-

spond to the case of hypothetical additive responses. These MI values were obtained ad-

hoc following one of two possible strategies: MIlow was not measured from simulation re-

sponses but computed using r low
att−pref = r low

att−null + r high
att−pref − r high

att−null, or MIhigh was evaluated with

r high
att−pref = r high

att−null + r low
att−pref− r low

att−null. Red data points correspond to simulations with the control

parameters. Notice that for strong gPFC→MT
E multiplicative scaling is progressively degraded,

consistent with the proposed mechanism, as the power-law in input-output relationships ap-

plies only for sufficiently low rates (Hansel and van Vreeswijk 2002; Murphy and Miller 2003).

See Mathematical analysis of the multiplicative gain modulation in supplemental Methods and

supplemental Fig. 5 for details.
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Supplemental Figure 4: Both extrinsic and recurrent inhibition in MT are required in our model

simulations to obtain the biased competition and selectivity enhancement of population activity.

Figure 6C and Figure 6D show that either competition or selectivity enhancement is compro-

mised through a conjoint reduction of local excitatory drive to interneurons and either bottom-up

feedforward inhibition or top-down feedforward inhibition, respectively. The conjoint inacti-

vation is necessary, since an isolated blockade of bottom-up input (A), top-down input (B) or

intrinsic excitatory drive (C), for MT interneurons does not abolish the competition in response

to transparent motion stimuli, the biasing effect of attention or the selectivity enhancement of

population activity. Parameter modifications were IE
0 = 0.15 nA, and I I

0 = 0 in panel (A);

GPFC→MT
EE = 0.098 nS, and GPFC→MT

EI = 0 in panel (B); and GPFC→MT
EE = 0.134 nS, IE

0 = 0.9

nA, I I
0 = 0.18 nA, GMT

EI,AMPA = 0, GMT
EI,NMDA = 0, and gext ,I = 7.13 nS in panel (C).
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Mathematical analysis of the multiplicative gain modulation

In our model, the tuning curve of a neuron is multiplicatively scaled by attention from the

unattended tuning curve (Figure 3 B), and we have argued that this multiplicative scaling is

related with a power-law relationship between the firing rate and the total external input cur-

rent (the sum of bottom-up and top-down inputs) in our MT excitatory cells (Figure 3 C). We

have pointed out that these results support the scenario described by Hansel and van Vreeswijk

(2002) and by Murphy and Miller (2003), namely a power-law input-output relationship that

transforms additive inputs into multiplicative outputs. However, two main differences exist be-

tween our model and models used in those scenarios. The first difference is that we have built

network models rather than single neuron models, and then, it could occur that recurrent in-

puts participate somehow in our multiplicative scaling. And the second difference is that both

external inputs, the top-down and also the bottom-up, impact on the two kinds of cells in the

MT network, the pyramidal neurons and the interneurons. Therefore, both feedforward and

top-down inhibition are likely to be additionally involved in a way not accounted for previously

(Hansel and van Vreeswijk 2002; Murphy and Miller 2003). To elucidate if, even with this

additional complexity in our model, multiplicative scaling still relies on the power-law input-

output relationship, we used a phenomenological mathematical analysis similar to the one by

Murphy and Miller (2003).

The power-law input-output relationship between rate R and inputs IS (bottom-up sensory

input) and IA (top-down attentional input) can be mathematically expressed as

R = a(IS + IA + c)b (1)

where a, b, and c are fitting parameters. Parameters a and b are determined by neuronal

properties and the fluctuations in task-independent synaptic input, whereas parameter c is task

dependent as it reflects the contribution of non-specific inhibition in the local circuit. Notice,

however, that because the inhibitory input to excitatory neurons is non-specific, c reflects the

mean activity of the inhibitory population and can take different values under attentional and

non-attentional conditions, but does not depend on the attended feature θA.

Let us define x = IS + c, i.e. the total input current in the non-attentional condition (IA = 0).
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Now, Eq. (1) can be rewritten for the non-attentional condition as

R0 = axb (2)

We fit with this equation the simulation data for the non-attentional condition (Figure 3 A),

and this gives the factor for the power-law input-output relationship a ' 1.1 Hz/nAb, and its

exponent b ' 4.0.

Now, we consider the two relevant attentional conditions: when attention is directed to

the neuron’s preferred direction of motion (att pref) and when attention is directed to the null

direction (att null). As we showed in Figure 3 C we have constrained the fit of these attentional

conditions in two ways, on the one hand, we permitted only additive changes in current to pass

from the non-attentional condition to the attentional condition. On the other hand, we fitted

the two attentional conditions with the same parameters. Then, as a and b have already been

determined from the fit of the non-attentional data, in the attentional conditions the only free

parameter is c and it has to be exactly the same for both of them.

We define the input changes coming from attention as ∆x = IA + ∆c. We expect that ∆x is

positive when attention is directed to the neuron’s preferred direction, thanks to the top-down

input (IA), but negative when attention is directed to the null direction, effect that comes from

the top-down inhibition included in ∆c. Indeed, the values we have found are IA(θpref) ' 0.35

nA, IA(θnull) ' 0.04 nA and ∆c = cat − cnoat ' 0.42 − 0.59 = −0.17 nA. Then, for the

attentional condition Eq. (1) can be rewritten as

R = a(x + ∆x)b (3)

Assuming a small bias (|∆x
x | ¿ 1), we can approximate Eq. (3) to first order as

R ' axb + abxb−1∆x (4)

This assumption is justified in our model, as we have |∆x
x | . 0.1.

From Eq. (2) we have x = (R0
a )1/b, so that Eq. (4) can be rewritten in terms of R0 as

R ' R0

[
1 +

(
a

R0

)1/b

b∆x

]
(5)

Given that R0 is well fitted by a Gaussian function plus a constant term r0 + r1 exp[−(θpref−
θS)2/(2σ2)] with r0 = 7.7 Hz, r1 = 34.0 Hz, and σ = 30o (from the tuning curve shape in Figure
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3 A), the multiplicative scaling in any of the attentional conditions is reasonably approximated

by

R
R0

' 1 +


 a

r0 + r1 exp
(
− (θpref−θS)2

2σ2

)



1/b

b∆x (6)

In the supplemental Fig. 5 we plot the two sides of the multiplicative scaling equation

(6). The left hand side is calculated numerically from the simulation data, and the right hand

side is obtained from the analytical approximation in Eq. (6). Supplemental Fig. 5 shows

the multiplicative scaling both when attention is located on the neuron’s preference and when

attention is focused on its null feature.

Notice that according to the FSGP this multiplicative scaling should correspond to a spe-

cific modulation ratio and that it must show no dependence on θS. Instead, Figure 5 shows a

slight dependence with θS. This deviation from a perfect multiplicative scaling, as it has been

pointed out before (Hansel and van Vreeswijk 2002; Murphy and Miller 2003), is due to the

power-law shape of the input-output relationship. Although it can generate a reasonably good

multiplicative scaling when its exponent is high enough, it is still not able to generate a perfect

multiplication. Strictly, only the exponential function can generate exact multiplicative scaling

with an additive input (ex+y = exey ). However, our observed deviations are around 5% of the

multiplicative scaling mean value. This deviation is negligible when we look at the multiplica-

tively scaled tuning curves of Figure 3 B.

This is also the reason for deviations from multiplicative scaling in supplemental Fig. 3 D.

The reason that the deviations in supplemental Fig. 3 D are higher is because the multiplicative

factor is computed there between the two attentional conditions, not between attentional and

non-attentional conditions as we do here. However, even for this worst possible case, the scaling

is much more multiplicative than additive, as shown in supplemental Fig. 3 D.

With respect to deviations between simulation data and the analytical approximation in sup-

plemental Figure 5, these come from considering the approximation just to first order. It can be

easily shown that the second order term in the Taylor’s serie is positive for the two attentional

cases. Considering it, the analytical approximation of the modulaton ratio would be even much

closer to the simulation data (data not shown).

We therefore conclude that the power-law input-output relationship in our model neurons
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can account for the multiplicative gain modulation of neural tuning curves in all conditions of

the task, provided we carefully account in addition for changes in the inhibitory drive between

non-attentional and attentional conditions. The change in top-down inhibition explains the shift

between curves in Figure 3 C: when we plot R versus IS + IA there is still an additive element

∆c differing between non-attentional and attentional conditions. Plotting R versus IS + IA + c

instead yields the same power-law curve for all three conditions, underscoring the fact that

multiplicative responses emerge from additive inputs through the shape of the f -I curve.
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Supplemental Figure 5: Multiplicative scaling dependence on the stimulus location. Multi-

plicative scaling versus stimulus location for attention to preferred direction (’att pref’, green

squares) and attention to null direction (’att null’, red circles). Simulation data results are com-

pared with the analytical approximation, Eq. (6) in supplemental Methods (blue curves).
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