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Abstract

6 At the core of intelligence is proficiency in solving new problems, including those that differ dramatically
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from problems seen before. Problem-solving, in turn, depends on goal-directed generation of novel
thoughts and behaviors?, which has been proposed to rely on internal representations of discrete units,
or symbols, and processes that can recombine them into a large set of possible composite
representations™*. Although this view has been influential in formulating cognitive-level explanations of
behavior, definitive evidence for a neuronal substrate of symbols has remained elusive. Here, we
identify a neural population encoding action symbols—internal, recombinable representations of
discrete units of motor behavior—localized to a specific area of frontal cortex. In macaque monkeys
performing a drawing-like task designed to assess recombination of learned action symbols into novel
sequences, we found behavioral evidence for three critical features that indicate actions have an
underlying symbolic representation: (i) invariance over low-level motor parameters; (ii) categorical
structure, reflecting discrete classes of action; and (ii) recombination into novel sequences. In

simultaneous neural recordings across motor, premotor, and prefrontal cortex, we found that
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22 planning-related population activity in ventral premotor cortex encodes actions in a manner that, like
23 behavior, reflects motor invariance, categorical structure, and recombination, three properties indicating
24 a symbolic representation. Activity in no other recorded area exhibited this combination of properties.
25 These findings reveal a neural representation of action symbols localized to PMv, and therefore identify
26 a putative neural substrate for symbolic cognitive operations.
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53 Introduction

54 Understanding the mechanisms of intelligence requires explaining the most powerful forms of
55 generalization, in particular, generalization to new situations or problems differing considerably from
56 those previously encountered. For example, if children are asked to “draw an animal that does not
57 exist”, they can generalize from prior experience to produce an imaginary animal, such as a dog-like
58 creature with six legs, three camel humps, and three pig tails'>. An influential hypothesis is that this
59 seemingly unbounded generalization depends on an internal representation of discrete units (symbols)
60 that can be recombined into composite representations, in a process called compositional
61 generalization*™'. Symbols support generalization because they enable the systematic derivation of a
62 large set of possible representations from a smaller set of components, such as new animals imagined
63 as rule-based combinations of discrete parts (e.g., new animal = 1 torso + 8 arms + 4 legs). Importantly,
64 this hypothesis is not restricted to concepts that people explicitly represent as symbol systems in
65 language®®, computer programs!*, or mathematics®°, but applies broadly even to abilities, such as
66 drawing, which are not superficially symbolic, but which seem to reflect internal symbolic
67 representations®”*. These abilities span various domains, including, in humans, geometry’,
68 perception™, handwriting®®, drawing'”*8, dance?®, music’, and speech®?!, and, in non-human animals,
69 logical reasoning®?®, social cognition®*, navigation®?2¢, artificial grammars®~, communication®,
70 numerical cognition®*2, and physical reasoning™.

71

72 Despite behavioral evidence for internal, symbolic representations, we lack definitive evidence for
73 whether and how symbols are implemented in neuronal substrates. This is especially problematic in
74 light of the uncertainty over how symbols reconcile with hypothesized mechanisms of cognition that do
75 not presuppose symbols, including those based on distributed processing in neural networks®3-%,
76 dynamical systems**—°, and map-like representations*®!. Given that symbols are discrete units that are
77 systematically recombined, a neural population representing symbols should exhibit three basic
78 properties in its activity patterns: (i) invariance, (ii) categorical structure, and (iii) recombination.

79 Invariance means that activity exhibits a form of abstraction in which it is largely independent of
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variables that are irrelevant to the task goal. Categorical structure means the neural population should
express a set of distinct activity patterns, one for each symbol, and be biased towards these discrete
activity states even in the setting of continuous variation in task parameters. Recombination implies that
a symbol’s activity pattern should occur in all contexts in which it is used in composition with other

symbols.

Recordings during cognitive tasks have revealed a diversity of invariant representations, including of
rules***, actions*“*°, sequences®47 numerical concepts*®**° perceptual categories®? visual
objects®, cognitive maps*>*°°, and abstract concepts®**’. Collectively, these findings reveal a striking
capacity for invariance in neural activity, and implicate critical roles for specific regions in this capacity,
including prefrontal cortex?®424347485152 and medial temporal lobe**349543657 However, it is unclear
whether these representations exhibit the other properties expected for symbols. First, with a few
exceptions®*2, these prior studies did not systematically test for categorical structure by assessing
whether activity varies discretely with continuous variation in task parameters. Second, evidence for
recombination in neural activity is also rare, with a notable exception being hippocampal activity
encoding spatial paths appearing to reuse parts of previous paths in novel sequences®*°. However,
whether these continuous spatial paths reflect recombination of discrete, categorical components has
not been tested. Third, an important point that applies to the navigation tasks in these hippocampal
studies, and generally to tasks in prior studies finding invariant representations, is that they did not, to
our knowledge, implement behavioral tests of compositional generalization, making it challenging to
determine whether and how any identified neural representation contributes to the cognitive processes
that support the ability to solve novel problems. For these reasons, we still lack evidence for a neural
representation of symbols—one that jointly exhibits invariance, categorical structure, and recombination

in the behavioral setting of compositional generalization.

To identify neural populations that may express these properties of symbols, we established a task

paradigm involving symbol-based compositional generalization, implemented in macaque monkeys, a
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107 species with extensive abilities for abstract cognition?424347.48525480 (Fig. 1a, b). This paradigm was
108 designed to capitalize on the brain’s remarkable ability to generate novel, goal-directed actions, an
109 ability hypothesized to involve symbolic representations in the form of discrete units of action (action
110 symbols) that are recombined into sequences'®!"1921.61-68 - Action symbols may be especially important
111 when complex actions must be generated to solve problems, such as in the problem of imitating a new
112 dance by observation, which may depend on internal representations of symbols corresponding to
113 dance poses™®. Action symbols also form the basis of models that capture behavioral findings in
114 action sequencing, including in handwriting*®®!, drawing!’®?, object manipulation®®, and tool use®.
115 These studies suggest that a task involving compositional generalization in action sequencing would
116 enable the systematic investigation of action symbols. Here, we establish such a task paradigm. We
117 then show that behavior in this task exhibits invariance, categorical structure, and recombination,
118 indicating an internal symbolic representation of action. In multi-area neuronal recordings, we found a
119 neural population, localized to ventral premotor cortex (PMv), which encodes actions in a manner that
120 reflects these three properties of symbols. This finding therefore identifies a neural substrate of action
121 symbols in PMv.

122
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123 Results

124 Learned stroke primitives in a drawing-like task paradigm.

125 We developed a drawing-like task paradigm for macaque monkeys modeled after studies of symbolic
126 structure in human drawing'’” and handwriting*®®t. We trained two subjects to draw geometric figures by
127 tracing them on a touchscreen (Fig. la,c,d; videos of behavior in Supplementary Videos 1-10;
128 experimental setup in Extended Data Fig. 1). On each trial, subjects were presented with an image of
129 a figure, and were rewarded for making an accurate copy of the image, quantified as the spatial
130 similarity between the drawing and image (primarily using the Hausdorff distance; see Methods).

131

132 Once subjects understood the core requirements of the task paradigm (i.e., to make accurate traces of
133 images), they practiced drawing a diverse set of simple shapes, each using one stroke (Fig. 1e). Each
134 subject converged on a set of consistently reused stroke spatio-temporal trajectories, one for each
135 shape, which we call the subject’s “primitives” (Fig. 1e). Analysis of stroke trajectories revealed that
136 primitives were idiosyncratic to each subject and shape. We devised a “trajectory distance” metric,
137 which measures the mean Euclidean distance between the velocity time series of two strokes (after
138 normalizing scale and duration; see Methods). For each subject, each shape was drawn in a consistent
139 manner across trials (example drawings in Fig. 1f; low trajectory distance in Fig. 1g). However, stroke
140 trajectories differed for the same shape across subjects (compare drawings between subjects in Fig.
141 1e,f; high trajectory distance in Fig. 1g) and for the same subject across shapes (Fig. 1e, g).

142

143 These findings—that stroke primitives were idiosyncratic to each shape and subject—raised the
144 possibility that these primitives reflect learned action symbols. To test this possibility, we tested how
145 subjects generalize to draw new figures designed to assess three behavioral properties that, in
146 combination, indicate an underlying symbolic representation: motor invariance, categorical structure,
147 and recombination (Fig. 1b).

148
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1. Learned stroke primitives in a drawing-like task paradigm.

Experimental paradigm. Given an image of a (potentially novel) figure, we hypothesize that subjects
internally represent actions as a composite of learned symbols.

Three essential features of a hypothesized symbolic representation, which we test in behavior and neural
activity: invariance, categorical structure, and recombination. Schematics depict predicted behavior if
subjects represent actions in a symbolic manner. Predictions consistent with alternative hypotheses are
presented in Figs. 2a, f, k.

Trial structure, showing a sequence of discrete events (dashed box) and sustained epochs (solid box)
represented on a touchscreen. During the “plan” epoch, subjects see the image but are not allowed to
remove their finger from the “start button”. During the “draw” epoch, subjects produce strokes, and can report
completion at any time by pushing the “done” button (which appears after the go cue). They then receive
juice reward based on drawing performance (see Methods). The range of epoch durations reflects the range
of mean durations across task variants and sessions (further trial-by-trial jitter was also added within each
session; see Methods). Note that “buttons” refers to virtual touchscreen buttons.

Photograph, showing top-down view of subject drawing (during in-cage training). The metal tube is the
reward spout. See videos of behavior in Supplementary Videos 1-10.
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166 (e) Learned stroke primitives for each subject, one for each practiced shape. Stroke onsets are marked with a

167 ball. Blue shading marks images for which subjects did not readily learn stereotyped stroke primitives, either
168 because they used two strokes or they executed a single stroke variably across trials (see Methods).
169 Drawings are averages over 15 trials.

170 (f) Example single-trial stroke trajectories for the “circle” shape, depicted in two ways, instantaneous speed as a
171 heatmap on the stroke trajectory (top) or as velocity vs. time (bottom). Shown are four trials per subject.

172 (g) Summary of pairwise trajectory distances across trials, where pairs of trials are grouped along two
173 dimensions: whether they refer to the same shape and to the same subject. Violin plots represent kernel
174 density estimates, with overlaid medians and quatrtiles. Starting from a pool of 300 trials (15 shapes x 10
175 trials x 2 subjects), each data point represents a single trial's average distance to a specific shape, such that
176 N = 300 for both “same shape, same subject” and “same shape, different subject” (15 shapes x 10 trials x 2
177 subjects), N = 4200 for “same subject, different shape” (15 shapes x 10 trials x 14 other shapes x 2
178 subjects). *** p < 0.0005, two-sided Wilcoxon signed-rank test, performed on data first averaged over trials
179 (N = 15 shapes, each averaged across subjects and trial-pairs).

180

181 Stroke primitives exhibit motor invariance over location and size.

182 If subjects represent stroke primitives as symbols, then stroke primitives should exhibit motor
183 invariance. Each primitive’s idiosyncratic trajectory should generalize across low-level motor
184 parameters (e.g., muscle activity patterns), as seen in handwriting and other skills’. To test motor
185 invariance, we presented each shape at a size and location that varied across trials, including novel
186 location-size conditions. Motor invariance predicts similar stroke trajectories across location and size
187 (“Symbols”, Fig. 2a). Alternatively, if responses were memorized by rote, one for each specific stimulus,
188 the subject would have difficulty generalizing, as seen in inflexible automatized skills™ (“Fail” in Fig. 2a).
189 A third alternative strategy could prioritize efficiency by minimizing movement from the starting position
190 of the hand. This would predict different trajectories dependent on location and size (“Efficient” in Fig.
191 2a). We found that stroke trajectories were similar across locations and sizes (Figs. 2b-e), indicating
192 that stroke primitives exhibit motor invariance.

193
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195 Fig. 2. Behavioral evidence for action symbols: motor invariance, categorical structure, and
196 recombination into sequences.

197 (a) Experiment designed to test motor invariance over location and size. Each trial presents one shape, which
198 varies in size and location across trials. Shown are three possibilities for how subjects will draw; only a
199 symbolic representation predicts reuse of stroke primitives.

200 (b) Example drawings for a “circle” shape, across trials varying in location (left, middle, right) and size (small,
201 medium, large). Three trials are overlaid on each panel (subject 2).

202 (c) Example drawings for more shapes (columns), varying in location and size.

203 (d) Heatmap of pairwise trajectory distances between each combination of shape, location, and size, plotting the
204 mean distance across trial-pairs (N = 9 trials per shape-location-size condition).

205 (e) Summary of pairwise trajectory distances, where pairs of trials are grouped along three dimensions: same
206 shape, same size, and same location. Violin plots represent kernel density estimates, with overlaid medians
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and quartiles. Each underlying datapoint is one trial's average distance to one shape/size/location condition.
N = 648 (same shape/size/location = YYY), 1296 (YYN), 1296 (YNY), 2592 (YNN), 5184 (NYY), taken from a
pool of 729 trials (81 shape-location-size conditions x 9 trials each).

Experiment designed to test for categorical structure. Given novel images generated by morphing between
two well-practiced shapes, we consider two hypotheses, “Tracing” and “Symbols”. A tracing strategy predicts
that drawings should closely match each interpolated figure, and thus their properties will vary linearly across
the morphed images. A symbolic representation predicts drawings with two hallmarks of categorical structure:
sigmoidal non-linearity and trial-by-trial discrete variation.

(g) Example experiment for one morph set. Across trials, images varied linearly (randomly sampled) between two

well-practiced images: morph i (mixture ratio of 100% “U”, 0% circle) and morph vii (0% “U”, 100% circle).
Example drawings are shown for each morph. Two drawings are shown for morph v, because it elicited
trial-by-trial variation between two primitives (A1, A2). We define “trial conditions” that group morphs based on
whether they are well-practiced images (P), are unambiguously drawn as one primitive (U), or are
ambiguously drawn as one primitive or the other across trials (A).

(h) Heatmap of pairwise trajectory distances between morphs for the example morph set in panel g. The category

()

boundary is defined as the morph that was found to elicit trial-by-trial variation in drawing (i.e., “ambiguous”
morph). Trials for morph v are split into two trial conditions based on the drawing (A1, A2). N = 5 - 30 trials
(range across morphs, counting A1 and A2 separately).

Primitive alignment vs. morph number for morph set in panel g. N = 5 - 30 trials (range across images,
counting Al and A2 separately). For primitive alignment using image data, instead of drawing data, see
Extended Fig. 2c).

Summary of primitive alignment (PA) vs. trial condition across all experiments, showing scores based on
image data (green, mean and 95% CI) and drawing trajectories (black). Each drawing datapoint represents a
single morph set [N = 20 morph set, combining subjects 1 (13) and 2 (7)]. The reason that primitive
alignments using drawing data for P1 and P2 are not exactly 0 and 1 is due to trial-by-trial variation in
behavior. ###, p<0.0005 testing for sigmoidal nonlinearity, i.e., that, compared to the image, primitive
alignment for drawings is closer to 0 (U1) and 1 (U2). Drawing scores were first normalized so that the means
of P1 and P2 trials were 0 and 1, respectively, and data were aggregated across Ul and U2; *** p<0.0005,
testing for trial-by-trial switching (drawing distribution in A2 higher than in Al); two-sided Wilcoxon
signed-rank tests.

(k) Experiment designed to test for recombination of primitives into sequences, using character tasks. Four

()

possible drawing responses are shown, each differing along three properties: success in copying the figure,
use of multiple strokes, and reuse of a subject’s own primitives. Combined evidence for all three properties is
consistent with a symbolic representation.

Example drawings in character tasks by subjects 1 and 2 given the same set of images. Strokes are
color-coded by their assigned primitive from the subject's own primitive set (see Methods). “Primitives” plots
each subject’s “ground-truth” primitives taken from the single-shape task.

(m) Example character strokes that were assigned to one particular primitive (“reversed C”), uniformly ranging

from best to worst match. Stroke background color indicates whether strokes are high (blue) or low (red)
quality matches. Data from subject 1.

(n) Example character strokes organized by the primitive they were assigned to (columns), showing four example

high-quality matches. Strokes are ordered from high (top row) to median (bottom row) quality (based on
trajectory distance to primitive), most to least frequent (columns), showing only the thirteen most frequent
(see frequency distribution in panel 0). Data from subject 1.

(o) Frequency histogram of strokes matched to each primitive. Stacked bars separate high- and low-quality

matches. Inset, fraction of all strokes that received a high-quality score and were thus considered cases of
primitive reuse. Data from subject 1.
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254 (p) Summary of primitive recombination, showing fraction of strokes labeled as high-quality match to a primitive
255 and were thus considered cases of primitive reuse, including only characters performed by both subjects.
256 Results show each subject’s strokes (data) tested against each subject’s primitives. Bars show mean and
257 95% CI. N (characters) = 133 (subject 1, practiced), 90 (S1, novel), 70 (S2, P), 135 (S2, N); note that a
258 character could contribute a data point to both practiced and novel groups, thus explaining the different
259 sample sizes between subjects. ***, p < 0.0005, two-sided Wilcoxon signed-rank test, performed
260 independently for practiced and novel data.

261
262 Stroke primitives exhibit categorical structure.

263 If subjects represent stroke primitives as categorically structured action symbols, we would expect them
264 to preferentially draw using their idiosyncratic set of learned primitives when challenged with new
265 figures that interpolate, or “morph”, between the shapes the primitives were associated with during
266 learning (Fig. 2f, “Symbols”). This would indicate that stroke primitives are represented as a set of
267 discrete types of action, similar to stroke categories in Chinese characters® or phonemes in speech?.
268 In contrast, if subjects simply trace images without interpreting them as action symbols, then we would
269 expect drawings to closely match the interpolated figures (Fig. 2f, “Tracing”). We presented subjects
270 with images that were randomly sampled on each trial by linearly morphing between two practiced
271 shapes (each “morph set” consisted of two practiced shapes and four to five morphed figures). We
272 tested whether the resulting drawings reflected a categorical boundary in the subject’s interpretation of
273 these images, which would manifest in two behavioral hallmarks (Fig. 2f, “Symbols”): a steep sigmoidal
274 relationship between image variation and drawing variation’>”*—such that images on the same side of
275 the category boundary are drawn similarly, while images across are drawn differently—and trial-by-trial
276 variation between distinct stroke primitives for images close to the boundary.

277

278 We found evidence for both of these hallmarks of categorical structure. In the example shown in Fig. 2g
279 (more examples in Extended Data Fig. 2a,b), the images varied in the extent to which the top was
280 closed, ranging linearly between two practiced shapes, a “U” (morph /) and a circle (morph vii). We
281 defined a category boundary as the morph that was found to elicit trial-by-trial variation between
282 primitives 1 and 2 (morph v). We found that drawings for morphs to the left of that boundary (U1) were

283 drawn similarly to primitive 1 (P1), and drawings for morphs to the right (U2) were similar to primitive 2
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284 (P2, Fig. 2g). This discrete, as opposed to smoothly varying, distinction across the category boundary
285 was evident as two blocks in a heatmap of the pairwise trajectory distances between all morphs (Fig.
286 2h). This block structure implies high similarity within each block, and low similarity across blocks. To
287 quantify this effect, we calculated a “primitive alignment” score for each trial. Primitive alignment
288 quantifies the relative similarity of a given trial's drawing to primitive 1 (alignment = 0) and primitive 2
289 (alignment = 1), and is defined as d,/(d; + d,), where d; (or d,) is that trial's average trajectory distance
290 to primitive 1 (or 2) trials. First, we confirmed that applying this metric to score the images produced a
291 linear relationship with morph number (Extended Data Fig. 2c). In contrast, applied to behavior,
292 primitive alignment varied nonlinearly in a sigmoidal manner across morph number (Fig. 2i). This
293 analysis also captured the trial-by-trial variation in behavior for morphs at the category boundary
294 (morph v, Fig. 2i). These effects—nonlinearity and trial-by-trial discrete variation—were consistent
295 across morph sets (Fig. 2j), indicating that subjects internally represent primitives as categorical stroke
296 types.

297

298 Stroke primitives are recombined into sequences.

299 If subjects represent stroke primitives as symbols, they should readily recombine primitives to construct
300 multi-stroke drawing sequences. We tested this using two tasks that challenge subjects with complex
301 figures, including novel ones. The first “multi-shape” task presented figures that combined multiple (two
302 to four) disconnected shapes, which could be drawn in any order. We reasoned that one possible
303 strategy was to use a single trajectory that efficiently traces over all shapes with appropriately timed
304 touches and raises to produce strokes and gaps (“Single trajectory”, Extended Data Fig. 3a). With this
305 strategy, behavior would be biased to minimize the movement, or gaps, between shapes, ignoring
306 whether this leads to reuse of primitives. A second strategy, consistent with a symbolic representation,
307 would be to draw by recombining the learned stroke primitives, at the expense of longer movements
3e8 during gaps between strokes (“Symbols”, Extended Data Fig. 3a). We analyzed all pairs of
309 consecutive strokes for which these two strategies predicted different stroke trajectories (Extended

310 Data Fig. 3b, top schematic). In virtually all cases, subjects preferred to recombine primitives, at the
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311 expense of longer movements in gaps, consistent with a symbolic representation (Extended Data Fig.
312 3b, bottom).

313

314 In the second “characters” task, we presented complex figures called characters, each designed by
315 connecting multiple simple shapes (inspired by logographic writing systems), such that there was
316 ambiguity regarding their components. We considered four possible drawing outcomes (Fig. 2Kk):
317 subjects may fail to accurately draw these novel figures (“Failure”), they may succeed using a single
318 unsegmented trajectory (“Single trajectory”), they may use multiple strokes that are not in their set of
319 learned primitives (“Non-symbolic strokes”), or they may successfully draw by reusing their own
320 primitives (“Symbols”).

321

322 We found that drawings were consistent with a symbolic representation. Subjects successfully drew
323 novel characters, and did so using multiple strokes (thus contradicting “Failure” and “Single trajectory”
324 predictions). Critically, stroke trajectories matched each subject’'s own primitives, rather than the other
325 subject’s primitives, leading to idiosyncratic differences in the way the same figures were drawn by the
326 two subjects (thus contradicting “Non-symbolic strokes” predictions; Fig. 2l, videos in Supplementary
327 Videos 1-10). To quantify primitive recombination, we collected all strokes from each subject's
328 character drawings and quantified how often these strokes matched closely at least one of the subject’s
329 own primitives. To do so, we scored each stroke’s trajectory distance to each of the subject's own
330 primitives (“ground-truth” strokes from single-shape tasks) and assigned each stroke to its
331 best-matching primitive. We then classified that match as either high- or low-quality, defined so that
332 high-quality means that a stroke falls within “natural” trial-by-trial variation in drawings of its assigned
333 primitive, thus counting as primitive reuse (see Methods, and example resulting matches in Fig. 2m, n).
334 We found that a large majority of strokes were classified as high-quality matches to a primitive (>80%,
335 Fig. 20). We further restricted our analysis to just the characters that both subjects had drawn, and

336 found that a given subject’s strokes matched its own primitives, and not those of the other subject (Fig.
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337 2p). This finding—that even on identical figures subjects selectively reused their own
338 primitives—indicates that drawings build on prior knowledge of primitives.

339

340 Multi-area neuronal recordings across frontal cortex.

341 Together, the findings that stroke primitives exhibit motor invariance (Fig. 2a-e), categorical structure
342 (Fig. 2f-j) and recombination (Fig. 2k-p) indicate they have an underlying symbolic representation. We
343 next searched for neural correlates of these putative stroke symbols. In order to search broadly, we
344 recorded simultaneously from neurons across multiple areas of frontal cortex, using chronically
345 implanted multi-electrode arrays (sixteen 32-channel arrays per subject, Fig. 3a, b, and Extended Data
346 Fig. 4). We targeted regions that have been associated with a wide range of motor, planning, and other
347 cognitive functions that may be relevant to this task (see Methods), including (but not limited to) motor
348 control in primary motor (M1), dorsal premotor (PMd), and ventral premotor cortex (PMv)™#; motor
349 planning and decision-making in PMd and ventral premotor cortex (PMv)’®; motor abstraction in PMv**;
350 abstract reasoning and planning in dorsolateral and ventrolateral prefrontal cortex’®’” (dIPFC and
351 VIPFC) and frontopolar cortex’ (FP); and action sequencing in the supplementary motor areas*® (SMA
352 and preSMA). We recorded 48.4 +/- 19.9 units per area (mean and S.D. across sessions) for subject 1
353 and 48.0 +/- 16.0 for subject 2 (see details in Methods).

354

355 We found clear task-related activity in all recorded areas except FP. This is evident as non-zero
356 baseline-subtracted trial-aligned activity in Fig. 3c. A coarse inspection revealed that different areas
357 exhibited grossly different activity patterns in relation to the ongoing trial. For example, many units in
358 prefrontal areas vIPFC and dIPFC and premotor areas PMd and PMv had rapid responses locked to
359 the image onset (Fig. 3c, at around 0.1 s post-onset) and varied activity patterns during the planning
360 epoch. In contrast, motor area M1 had relatively weak visual and planning-related activity, but strong
361 movement-related activity during the stroke epoch (Fig. 3c). Paralleling the behavioral experiments, we

362 tested whether activity in these areas encodes stroke primitives in a manner that exhibits motor
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363 invariance, categorical structure, and recombination. We found that a single area, PMv, exhibited all of

364 these properties.
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Fig. 3. Multi-area neuronal recordings across
frontal cortex.

(a) Recordings were targeted to multiple areas of
right frontal cortex, contralateral to the hand used
for drawing. Arrays were targeted stereotactically
and registered to sulcal landmarks, including
central sulcus (cs), arcuate sulcus (as), and
principal sulcus (ps). R, rostral. D, dorsal.

(b) Final locations of arrays, depicted to scale on
3D rendering of cortical surface. Note that SMA
and preSMA electrodes targeted the medial wall of
the hemisphere (Extended Data Fig. 4). The
caudal dIPFC array for subject 2 was implanted but
malfunctioned due to cable damage.

(c) Average activity across trials, grouped by brain
area (panels) and split by unit (inner rows). Before
averaging, trials were aligned by linear
time-warping to a median trial, aligned at “anchor”
events that consistently occurred across trials (see
Methods). Both single- and multi-units are
included. Each unt's activity was z-scored relative
to the baseline time window preceding image
onset, and sorted within each area from low to high
activity in the planning epoch. Sorting was done in
a cross-validated manner, by determining sort
indices using one subset of data (N = 50 trials) and
applying those indices to the remaining subset that
is plotted (N = 235). This plot includes from a
single session of single-shape trials (subject 2).

PMv encodes stroke primitives in a manner that is invariant over location and size.

397 In single-shape tasks, where subjects drew primitives that varied in location across trials (Fig. 2a-e), we

398 analyzed neural activity during the planning epoch (between image onset and the go cue). PMv activity

399 varied strongly depending on the planned primitive, with relatively small influence of location. For

400 example, the unit shown in Fig. 4a, b fired strongest for one specific primitive (red), second strongest

401 for another primitive (orange), and so on, and this pattern was similar across the four locations. To

402 quantify how strongly population activity encodes primitives, we first identified a primitive-encoding
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403 population subspace using targeted principal components analysis (i.e., a linear projection of population
404 activity that maximizes activity variation related to primitives; see Methods). PMv activity in this
405 subspace varied strongly depending on the primitive, and minimally depending on location (Fig. 4c,d).
406 For example, in Fig. 4d, within each location (subpanel), primitive trajectories (each color) differed from
407 each other after image onset (“x” icon), reflecting strong encoding of primitives; but across locations,
408 trajectories were similar, reflecting minimal encoding of location. In contrast, in a different area known
409 for its role in cognitive control, dIPFC, activity recorded in the same trials, and analyzed the same way,
410 strongly reflected location, with minimal encoding of primitive (Fig. 4e-h). Illustrating this point, in Fig.
411 4h primitive trajectories were similar to each other within location, but different across locations.

412

413 To quantify the extent to which population activity in each area encodes primitives vs. locations, we
414 devised a “neural distance” metric, which quantifies the activity dissimilarity between any two sets of
415 trials representing two conditions (e.g., different location-primitive conditions). Neural distance is the
416 average pairwise Euclidean distance between all across-condition trials, normalized by average
417 within-condition pairwise Euclidean distance, such that neural distance ranges between 0 and 1 (a
418 ceiling, defined as the 98th percentile of pairwise Euclidean distances). We computed neural distance
419 between each pair of primitive-location conditions. The resulting pairwise neural distances in PMv were
420 consistently low for the same primitive across locations, visible as off-diagonal streaks in a heatmap of
421 pairwise distances (Fig. 4i). In contrast, the heatmap for dIPFC had four blocks along the diagonal,
422 indicating similar activity within each location, regardless of primitive (Fig. 4i). Summarizing these
423 effects, we found that, in PMv, the neural distances between primitives controlling for location (“primitive
424 encoding”) were consistently higher than the distances between locations controlling for primitives
425 (“location encoding”) (Fig. 4j, left column). In dIPFC the opposite was true: primitive encoding was low
426 and location encoding was high (Fig. 4j, left column). A comparison of all areas (Fig. 4j, right column)
427 showed that PMv was the only one to exhibit this combination of strong primitive encoding and weak
428 location encoding.

429
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430 This strong encoding of primitives and weak encoding of location suggests that PMv population activity
431 uses the same population code for primitives across locations. We tested this by measuring the
432 performance of a linear decoder, trained to decode primitives at one location, in generalizing to held-out
433 locations. We found that cross-location decoder generalization was strong in PMv and relatively weak in
434 all other areas (Fig. 4k).

435

436 In different sessions, using the same methods, we found that PMv population activity encodes
437 primitives in a manner that is also invariant to size (Extended Data Fig. 5). Together, these findings

438 indicate that PMv represents primitives in a manner invariant to location and size.
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439 Location encoding
440 Fig. 4. PMv encodes stroke primitives in a manner that is invariant over location (for invariance over size
441 see Extended Data Fig. 5).

442 (a) Raster plot for an example PMv unit, showing single-trial spike patterns aligned to image onset. Trials (rows)
443 are grouped by primitive (separated by purple lines) and split by spatial location of the drawing (columns). The
444 go cue occurred 1.1 - 1.5 seconds after image onset; therefore, the subject’s finger was held still, pressing the
445 fixation button, throughout the plotted time window.

446 (b) Smoothed firing rates for the example PMv unit, averaged across trials for each primitive (colors), split by
447 location (columns). Curves show mean and SE (N = 13 - 20 trials per primitive-location combination).
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448 (c) PMv population activity in primitive-encoding principal components (outer rows), showing average activity for
449 each primitive (inner rows), and split by location (columns). Here, activity was z-scored and baseline
450 subtracted relative to activity before image onset.

451 (d) Average time course of PMv population activity (i.e., state space trajectories) for each primitive (colors),
452 plotted in a subspace spanned by principal components 2 and 3. Data are all from before the “go cue” and
453 therefore before movement onset. No z-scoring or baseline subtraction was performed. Gray legend depicts
454 trajectory, with image onset marked with an “x” icon.

455 (e) Analogous to panel a, but for an example dIPFC unit recorded simultaneously as the PMv unit.
456 (f) Analogous to panel f, but for the example dIPFC unit.

457 (g) Analogous to panel c, but for dIPFC population activity in the same session.

458 (h) Analogous to panel d, but for dIPFC.

459 (i) Heatmap of pairwise neural distances between unique primitive-location conditions, for the same session as
460 panels a-h, averaged over time (0.05 to 0.6 s after image onset). N = 13 - 20 trials per primitive-location
461 combination.

462 (j) Summary of primitive encoding and location encoding across areas and sessions. In the left two panels, each
463 point represents a unique primitive-location condition. Each condition’s primitive encoding is its average
464 neural distance to all other conditions that have the same location but different primitive. Location encoding is
465 defined analogously. Only PMv and dIPFC are plotted, to reduce clutter. N = 37 (subject 1, aggregating across
466 2 sessions), 59 (subject 2, 3 sessions). In the right two panels, each point depicts the mean encoding scores.
467 The color denotes statistical significance. It indicates the number of other brain areas that this area beats in
468 pairwise statistical tests of primitive encoding and location encoding (represented in the inset heatmap). For
469 example, PMv is deep blue because it has higher primitive encoding than every other area, but not higher
470 location encoding. See Methods. For statistics, each data point was a unique pair of primitive-location
471 conditions (trial-averaged). For testing primitive encoding, these pairs were the same location, but different
472 primitive [N = 93 (subject 1), 288 (subject 2)]. For location encoding, the pairs were the same primitive, but
473 different location [N = 114 (S1), 132 (S2)]. Statistical tests were performed on condition pairs pooled across
474 sessions (2 for S1, 3 for S2). See Methods for details.

475 (k) Across-condition generalization of linear support vector machine decoders for primitive (red) and location
476 (gray). Top: schematic of the train-test split method; the primitive decoder was trained on data from one
477 location and tested on data from all other locations (and analogously for location decoding). Bottom: accuracy
478 is linearly rescaled between 0 (chance) and 1 (100%). The horizontal line represents within-condition
479 decoding accuracy (with train-test splits partitioning data at the level of trials).

480

481 PMv activity reflects categorical structure of stroke primitives.

482 In experiments finding behavioral evidence for categorical structure (Figs. 2f-j, 5a)—sigmoidal variation
483 in behavior even with linear variation in images—we found that PMv activity diverges towards two
484 separate primitive-representing states, in a manner that aligns with the planned primitive on each trial
485 (Fig. 5). This is illustrated in a state space plot of PMv population trajectories during the planning epoch
486 (Fig. 5b). After image onset (“x” icon), trials with behavior resembling primitive 1 (morphs i-iv)
487 separated from trials assigned to primitive 2 (morphs vi, vii), such that activity diverged to two states

488 representing primitives 1 and 2 (Fig. 5b). Similarly, for the image at the category boundary (morph v),
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489 the trajectories diverged towards these two states depending on whether the subject was planning to
490 draw primitive 1 or 2 (Al or A2, in Fig. 5c).

491

492 To quantify this neural separation into two primitive-representing states, we first computed the
493 Euclidean distance between each pair of trials, and then scored each trial with its primitive alignment
494 score, representing its relative distance to activity encoding primitives 1 and 2 (P1 and P2). This
495 revealed the same two hallmarks of categorical structure that we saw in behavior: sigmoidal
496 nonlinearity and trial-by-trial switching. Sigmoidal nonlinearity is evident in the heatmap of pairwise
497 neural distances as two main blocks separated by the category boundary (Fig. 5d), and in the plot of
498 primitive alignment versus morph number (Fig. 5e, f). Trial-by-trial switching between
499 primitive-representing states for ambiguous images was evident in the heatmap of pairwise neural
500 distances (Fig. 5d, Al is closer to morphs i-iv, while A2 is closer to morphs vi-vii), and in the trial-by-trial
501 variation in primitive alignment scores (Fig. 5e, f). Comparing across areas, this effect was strongest in
502 PMv (Fig. 59).

503

504 We considered two explanations for the trial-by-trial switching in PMv’s activity for the ambiguous
505 images. One explanation is that activity is biased towards whichever primitive-representing state it
506 happens to be closer to at baseline, before image onset. Arguing against this, we found that the relative
507 proximity of baseline activity to states encoding primitive 1 or primitive 2 did not predict the chosen
508 primitive (in Fig. 5h, before image onset, A1 and A2 activity is not different). Another possible
509 explanation is competition between states after the image turns on, with the winning state determining
510 what primitive will be drawn. Network modeling suggests that such competition would manifest as slow
511 temporal evolution of activity towards one state or the other’. Consistent with this, the separation of
512 activity after image onset was slower for ambiguous images (“A2 - A1” in Fig. 5h) than for images
513 unambiguously drawn as primitive 1 or primitive 2 (*P2 - P1” and “U2 - U1” in Fig. 5h). In behavior as

514 well, reaction time was slower for ambiguous images (Extended Data Fig. 6). This slower temporal
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515 dynamic in neural activity is suggestive of a winner-take-all decision process occurring after image

516 onset.
517
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519 Fig. 5. PMv activity reflects categorical structure of stroke primitives.

520 (a) Example experiment showing discrete structure in drawing given continuously varying images. See also Fig.

521

2f-i.

522 (b) PMv mean population trajectories, showing divergence of activity after image onset (x) towards states

523
524
525
526
527

encoding either primitive 1 or 2, depending on whether the morph was to the left (i-iv) or right (vi-vii) of the
category boundary. Data are all from before the “go cue”, which occurred 1.2 - 1.6 seconds after image onset;
therefore, the subject’s finger was held still (pressing the fixation button) throughout the plotted time window.
Principal components were identified using PCA (see Methods). Trajectory legend is under panel c. N =14 -
30 trials per trajectory.

528 (c) PMv population trajectories for morph v, split by whether the subject will draw primitive 1 (A1) or primitive 2

529

(A2), overlaid on the same subspace from panel b. N =9 (A1) and 5 (A2) trials.

530 (d) Heatmap of neural distance between PMv activity for each pair of morphs. The morph on the category

531
532

boundary (morph v) is split into two groups based on the drawing (Al or A2). N = 5 - 30 trials (range across
morph, considering A1 and A2 separately).

533 (e) Primitive alignment vs. morph number for the example experiment. Primitive alignment quantifies the relative

534
535
536

537 (f)
538

539

similarity of each trial's neural activity to the neural activity for primitive 1 and for primitive 2, and is defined as
d/(d, + d,), where d; and d, represent that trial's average Euclidean distance to primitive 1 and primitive 2.
Each datapoint represents a single trial (N = 5 - 30 trials).

Summary of primitive alignment vs. trial condition across morph sets. Each morph set contributes one point to
each condition [N = 14 morph sets (5 from S1, 9 from S2), including only morph sets that have all six trial
conditions (14/20)].

540 (g) Summary of trial-by-trial variation in primitive alignment for ambiguous images (A2 - Al), showing mean +/-

541

SE. **, p<0.005; ***, p<0.0005, paired t-test [N = 20 morph sets, combining subjects 1 (7) and 2 (13)].
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542 (h) Average time course of difference in primitive alignment, split by trial condition, and aligned to image onset
543 (mean +/- SE). [N = 14 morph sets (5 from S1, 9 from S2), including only morph sets that have all six trial
544 conditions (14/20)].

545
546 PMv activity reflects recombination of primitives into sequences.

547 When subjects recombine primitives into a multi-stroke sequence to draw characters (Fig. 2k-p), does
548 this reflect a reused primitive-representing state in PMv? For each primitive, we compared PMv activity
549 between when it was used in single-shape vs. character tasks (both from the same session; see
550 Methods). We focused on activity in a time window immediately preceding stroke onset, because, for
551 character tasks, the alternative approach of using the entire planning window leaves uncertain which
552 primitive we would expect to be represented in PMv. For characters, we focused on the first stroke to
553 ensure a fair comparison between the two tasks. This maintained similar pre-stroke gross arm
554 movements between single-shape and character tasks (from the start button towards drawing),
555 ensuring that any differences in activity are unlikely to be due to differences in gross movements. This
556 also helped ensure that activity would not be influenced by the immediately preceding stroke®.

557

558 We found that PMv encodes primitives in a similar manner across single-shape and character tasks.
559 This is evident in the population activity plotted in Fig. 6a, b, where each primitive’s activity (inner rows
560 in Fig. 6a, colored trajectories in Fig. 6b) is similar across tasks (columns in Fig. 6a, b). We contrasted
561 PMv with preSMA, an area known to encode sequence-related information, finding that preSMA
562 activity for the same primitive differed between the two tasks (Fig. 6c, d). A quantification of the neural
563 distance between each pair of primitive-task condition (Fig. 6e, showing PMv and preSMA) confirmed
564 that PMv encodes primitives similarly across tasks. This is visible in the off-diagonal low-distance streak
565 for PMv in the heatmap of pairwise distances (Fig. 6e), and in the summary plot showing that in PMv
566 the neural distance between primitives controlling for task (“primitive encoding”) was high while the
567 neural distance between task controlling for primitive (“task encoding”) was low (Fig. 6f). In contrast,
568 preSMA activity was different when the same primitive was used in single-shape or character tasks.

569 This is evident in the block structure in Fig. 6e, and in preSMA having lower primitive encoding and
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570 higher task encoding compared to PMv (Fig. 6f). Across all areas, PMv activity most consistently had
571 high primitive encoding and low task encoding (Fig. 6f). This finding indicates that representations of

572 primitives in PMv are reused across recombined sequences.
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574 Fig. 6. PMv activity reflects recombination of primitives into sequences.

575 (a) PMv population activity, projected to its first six principal components using PCA (outer rows), showing
576 average activity for each primitive (inner rows), and split by whether that primitive was performed in character
577 or single-shape tasks (columns). Here, activity was aligned to stroke onset and z-scored over the entire
578 depicted window. Data from a single session for subject 2. N = 4 - 16 (single-shape), 6 - 72 (character) trials.

579 (b) PMv population trajectories for each primitive (color), plotted in a subspace spanned by principal components
580 2 and 3, and aligned to stroke onset. Gray legend depicts a trajectory icon, with stroke onset marked with an
581 “X" icon. This plot shows only a subset of primitives (7/10) to reduce clutter.
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582 (c) Analogous to panel a, but for simultaneously recorded activity in preSMA.
583 (d) Analogous to panel b, but for simultaneously recorded activity in preSMA.

584 (e) Heatmap of pairwise neural distances between each unique combination of primitive and task kind, for the
585 experiment in panels a-d. N = 4 - 16 (single-shape), 6 - 72 (character) trials.

586 (f) Summary of primitive encoding and task encoding across areas and sessions. Points show mean encoding
587 scores. The color of each point denotes statistical significance (analogous to Fig. 4j). It indicates the number
588 of other brain areas that this area beats in pairwise statistical tests of primitive encoding and task encoding
589 (represented in the inset heatmap). Each data point was a unique pair of primitive-task conditions
590 (trial-averaged). For testing primitive encoding, these pairs were the same task type, but different primitive [N
591 = 350 (subject 1), 380 (subject 2)]. For task encoding, the pairs were the same primitive, but different task
592 type [N = 29 (S1), 48 (S2)]. Statistical tests were performed on condition pairs pooled across sessions (10 for
593 S1, 9 for S2).

594
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595 Discussion

596 ldentification of a neural substrate of symbols

597 We identified a localized neural population encoding action symbols. We tested for three essential
598 properties of symbols—invariance, categorical structure, and recombination—in both behavior and
599 recordings. In behavior, we found that monkeys successfully trace complex geometric figures by
600 recombining discrete strokes, which exhibit motor invariance (Fig. 2a-e) and categorical structure (Fig.
601 2f-j), into new composed sequences (Fig. 2k-p). These properties indicate that strokes reflect internal
602 representations of action symbols. In recordings across motor, premotor, and prefrontal cortex (Fig. 3),
603 we found that population neural activity in PMv encodes strokes in a manner that reflects motor
604 invariance (Fig. 4), categorical structure (Fig. 5), and recombination (Fig. 6). PMv activity also shows
605 visual invariance. In two experiments that dissociated image from action, PMv encoded the planned
606 action instead of the image. These were experiments where (i) the same ambiguous image was drawn
607 across trials as one action symbol or another (Fig. 5f, “A2” differs from “A1”), and (ii) when character
608 and single-shape tasks presented different images that elicited the same action (Fig. 6f, PMv has high
609 primitive encoding and low task encoding). This finding of a localized representation of action symbols
610 in PMv indicates an important role for symbols in producing novel, goal-directed action sequences.
611 More broadly, this finding supports the hypothesis that cognition can be understood, at the algorithmic
612 level, in terms of internal symbolic operations, a hypothesis that so far has been based largely on
613 behavioral and modeling evidence? 114,

614

615 The identification of a symbolic neural representation in monkeys may provide more general insights
616 into the neural basis and evolutionary origins of symbols. Certain abstract properties—notably
617 reversible symbol reference®!, and the ability to recombine using higher-order relations®2? and recursive
618 syntax”?®—are thought to characterize the kinds of symbolic representations used in language,
619 mathematics, and formal reasoning in humans’*#-8_These abstract properties have not been readily
620 apparent in animal behavior®#828485 gyggesting they may be specific to humans. At the same time,

621 animals demonstrate a variety of behaviors that appear consistent with internal symbolic
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622 representations (see Introduction)?3-27.2-3131 ‘rajsing the possibility that symbols may contribute across
623 cognitive faculties and animal species. Different kinds of symbols may have different properties
624 appropriate for the abilities they contribute to, but they would share the core property of being discrete
625 units that are internally recombined to support generalization'*. We discovered that at least one kind of
626 symbolic neural representation (action symbols) exists in macaque monkeys. This discovery supports
627 the view that symbolic operations may in some form be common across species and cognitive
628 domains. It remains to be determined whether and how the neural substrates identified here relate to
629 other proposed kinds of symbols, including those with abstract properties hypothesized to be unique to
630 humans’8%> Nonetheless, our finding of a representation of action symbols raises the possibility that
631 a core set of neural mechanisms for generating discrete, invariant representations and recombining
632 them may exist across primates and possibly other taxa.

633

634 Abstraction using action symbols in ventral premotor cortex

635 There is strong evidence for invariant representations in neuronal activity, especially in
636 PFC28424347.4850-52 and medial temporal lobe*#349545657- in contrast, we found encoding of action
637 symbols in ventral premotor cortex. This finding is surprising in view of those prior studies, suggesting a
638 reassessment of the brain regions supporting abstraction. In particular, it suggests that PMv is also
639 critical for abstraction: in particular, those kinds of abstractions related to motor behavior. This may be
640 related to the fact that PMv is directly connected with both higher-order frontal areas (VIPFC and
641 preSMA)® and motor areas (M1 and spinal cord)®®", positioning PMv at the nexus of cognitive and
642 motor circuits. Consistent with a critical role for premotor areas in motor abstraction are findings from
643 human functional imaging and lesion studies linking premotor cortex to the perception, imitation,
644 planning, and imagination of action, including in handwriting®®®°, tool use®*®, dance®, and other
645 domains® . A possibility is that these, and related findings, may have a unified explanation as internal
646 operations on action symbols.

647
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The finding of action symbol representations in PMv is consistent with prior evidence for invariant action
representations in PMyv, especially in the context of goal-directed hand movements, such as grasping
and object manipulation**. Recordings have revealed a diversity of motor-invariant firing patterns,
including encoding grasp properties independent of the arm being used®, kinematics independent of
muscle dynamics®, and tool use regardless of hand posture®. Perhaps most strikingly, PMv contains
“mirror neurons”, which fire similarly whether one observes or performs a given action®®. These abstract
firing properties in PMv have been proposed to support a variety of functions, including object-oriented
visuo-motor transformation**°%1% understanding of others’ actions®® (but see ref'??), imitation®, and
mental imagery®®. Perhaps most related to action symbols, PMv has been proposed to encode a
“vocabulary” of discrete actions**%_ All of these proposals differ importantly from action symbols,
both conceptually—action symbols place stronger emphasis on categorical structure and
recombination—and experimentally—we tested both categorical structure (in a systematic manner not
previously done) and recombination into novel sequences (differing from previous studies, which
behaviorally tested only a few well-practiced sequences'®>'%%). We also recorded more areas than in
prior studies, which was essential for revealing specialization in PMv. This action symbol framework

may thus provide a unifying understanding of PMv’s functions.

The precise neural circuit mechanisms for encoding symbols remain to be determined, but our finding
of a neural substrate encoding action symbols provides a starting point to address this question.
Importantly, evidence already suggests that the circuit mechanisms underlying action symbol
representation in PMv depend on local processes within PMv, as opposed to being driven entirely by
image properties in a feedforward manner, or by symbol representations inherited from another region.
First, as noted above, we found that PMv was not driven directly by image properties, but instead
encoded the planned action. Second, we recorded from two of the higher-order areas, vIPFC and
preSMA, that provide input to PMv®, and did not find activity strongly representing symbols. PMv also
receives inputs from the anterior intraparietal area (AIP)'®, but there is evidence that these inputs more

strongly reflect visual than action parameters®. Together, these lines of evidence suggest that action
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675 symbol representations depend on computations within PMv. These computations may reflect
676 winner-take-all dynamics between discrete attractor states encoding action symbols’, which may
677 explain the slow activity dynamics for ambiguous images (Fig. 5h), and which is consistent with a
678 proposed role for PMv in decision-making*®. Future studies investigating neural processes in PMv may
679 give insight into circuit mechanisms for generating symbolic representations.

680

681 Action sequences as composition of symbols

682 We introduced a task paradigm testing compositional generalization by recombining action symbols into
683 novel sequences. This task has three critical design features: (i) a large set of possible problems that
684 share common structure [i.e., shape components variably transformed (Fig. 2a-j) and connected in
685 composites (Fig. 2k-p)]; (i) a lack of direct instructive cues or strong constraints on how to draw, forcing
686 subjects to decide on their own; and (iii) initial training to impart structured, generalizable prior
687 knowledge (action symbols). Compositional generalization has not, to our knowledge, been the subject
688 of prior studies of neural substrates of motor behavior, which have used tasks that fall largely into the
689 following (not mutually exclusive) classes: automatic, instructed, working-memory-guided, or
690 minimally-restrained (expanding the classification scheme from Mizes et al.'°®). Automatic movements
691 are highly-practiced sequences (typically thousands of practice trials or more) executed with high
692 stereotypy, often as a single “chunk” without the need for moment-by-moment instruction’06-117,
693 Instructed movements are guided by external cues that indicate specific actions, either directly (e.g.,
694 the location of a visual cue instructing where to reach)®1%18121 or indirectly from learned rules
695 associated with each cue (e.g., the rule that a red square means “reach left”)*4"122,
696 Working-memory-guided movements are produced from short-term memory, soon (seconds to minutes)
697 after the movement was instructed or learned?®1%107.121123  Minimally-restrained movements are
698 spontaneously produced in a naturalistic setting that, in contrast to common task-based paradigms, is
699 less constrained both physically and in terms of specifically defined problems®®**?’, Previous
700 drawing-like tasks in monkeys can be classified as either automatic*?®, instructed***, or

701 unconstrained®*°. Our study therefore complements existing task paradigms by establishing a new
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702 approach to probe the neural mechanisms of action symbols in motor behavior. These mechanisms
703 may turn out to also underlie other forms of motor abstraction described elsewhere, including plans®*,
704 hierarchies'®?'*, and categories®*.

705

706 We note that action symbols differ importantly from the well-studied concept of motor primitives!3s*%’,
707 While both motor primitives and action symbols can be understood as building blocks of movement,
708 they operate at different levels of abstraction and serve different roles. Motor primitives reflect
709 movement parameters at a lower level of abstraction, at the level of spinal cord and muscle activity*3®
710 (although see evidence in M1 activity'®), and they contribute to movement by simplifying complex
711 (rapidly varying, high-dimensional) movements into simpler (slowly varying, low-dimensional) control
712 parameters, such as in muscle synergies™®. In contrast, action symbols are higher-level cognitive
713 representations that internally compose to organize action (potentially supporting processes like
714 planning and imagination). Consistent with this, we found encoding of action symbols (i) during the
715 planning phase and therefore not temporally linked to ongoing movements (Figs. 4, 5), (ii) exhibiting
716 motor invariance in both behavior (Fig. 2a-e) and neural activity (Fig. 4), (iii) supporting compositional
717 generalization (Fig. 6), and (iv) encoded in a higher-order cortical area, PMv (Figs. 4-6).

718

719 A foundation for understanding symbolic operations in neural representations and dynamics

720 This action symbol representation in PMv may provide an entry point to bridge between two paradigms
721 that have dominated the modeling of cognition: one based on symbolic representations and rule-based
722 operations®*® and the other on neural network architectures and dynamical systems33343¢37.39 \While
723 these views have sometimes been considered to be at odds, it is recognized that explaining cognition
724 depends on their unification, possibly by implementing symbolic operations in appropriate neural
725 representations and dynamics?>#"139-144 One promising approach expresses symbolic computation in
726 terms of symbolic algorithms analogous to computer programs*”1014-1747  These algorithms, in turn,
727 may potentially be understood in terms of neural representations and dynamics®*’®>3%-143 (possibly

728 building on insights from task-optimized network models®*3539145146) "Importantly, implementations of
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729 symbolic algorithms in neural processes can lead to specific predictions for activity. To illustrate, the
730 drawing program “repeat circle three times"—represented symbolically as REPEAT((), 3), combining
731 the action symbol () with a syntactic operation REPEAT—could be encoded in a multi-module neural
732 architecture, with one REPEAT module counting up from one to three, and a second DRAW module
733 that, on each increment of that counter, draws a circle. In the brain, such program-like activity may be
734 observed in neural populations in PMyv, and perhaps in PFC and preSMA, areas that are directly
735 interconnected with PMv®®, and have been shown to encode abstract sequential information?46:247-149,
736 including, in PFC, sequential activity states resembling program operations*’. Looking forward, an
737 important aspect of our finding an action-symbol-encoding population is that it could provide the
738 substrate for future studies to test for activity dynamics consistent with symbolic operations in
739 programs. Identifying such activity would be a significant step towards a computational explanation of
740 intelligence that spans levels of behavior, cognition, and neural mechanisms, and that could generalize
741 beyond action to other abilities that seem to reflect internal program-like algorithms”°14,

742
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743 Methods

744 Subjects and surgical procedures

745 Data were acquired from two adult male macaques (Macaca mulatta, average weights 17 kg (S1) and
746 10 kg (S2), average ages 9 years (S1) and 7 years (S2)). All animal procedures complied with the NIH
747 Guide for Care and Use of Laboratory Animals and were approved by the Institutional Animal Care and
748 Use Committee of the Rockefeller University (protocol 24066-H).

749 After undergoing initial task training in their home cages, subjects underwent two surgeries, the
750 first to implant an acrylic head implant with a headpost, and the second to implant electrode arrays.
751 Both surgeries followed standard protocol, including for anesthetic, aseptic, and postoperative
752 treatment. In the first surgery, a custom-designed MR-compatible Ultem headpost was implanted,
753 surrounded by a bone cement cranial implant, or “headcap” (Metabond, Parkell and Palacos, Heraeus),
754 which was secured to the skull using MR-compatible ceramic screws (Rogue Research). After a six
755 month interval, to allow bone to grow around the screws and for the subject to acclimate to performing
756 the task during head fixation via the headpost, we performed a second surgery to implant 16 floating
757 microelectrode arrays (32-channel FMA, Microprobes), following standard procedures®°. Briefly, after
758 performing a craniotomy and durotomy over the target area, arrays were inserted one by one
759 stereotactically, held at the end of a stereotaxic arm with a vacuum suction attachment (Microprobes).
760 Using vacuum suction allowed us to release the arrays, after insertion, with minimal mechanical
761 perturbation by turning off the suction. After all arrays had been implanted, the dura mater was loosely
762 sutured and covered with DuraGen (Integra LifeSciences). The craniotomy was closed with bone
763 cement.

764 We used standard density arrays (1.8 mm x 4 mm) for all areas, except SMA and preSMA, for
765 which we used four high density arrays (1.6 mm x 2.95 mm). Four additional electrodes on each array
766 served as reference and ground. Two arrays were targeted to each of multiple areas of frontal cortex,
767 with locations identified stereotactically, and planned using brain surface reconstructions derived from
768 anatomical MRI scans. Locations were selected based on their published functional and anatomical

769 properties (see below), anatomical sulcal landmarks, and a standard macaque brain atlas®. During
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770 surgery, locations were further adjusted based on cortical landmarks, and to avoid visible blood vessels.
771 Arrays were implanted in the right hemisphere (contralateral to the arm used for drawing).

772 Array locations are depicted in Fig. 3b (confirmed with intraoperative photographs). For M1, we
773 targeted hand and arm representations (F1), directly medial to the bend of the central sulcus (which
774 corresponds roughly to the intersection of the central sulcus and the arcuate spur if the latter were
775 extended caudally), based on retrograde labeling from spinal cord and microstimulation of M18” and M1
776 recordings™®. For PMd, we placed both arrays lateral to the precentral dimple, with one (more caudal)
777 array directly medial to the arcuate spur (the arm representation®”*81%2 F2) and the other was placed
778 more rostrally (straddling F2 and F7). For PMv, we targeted areas caudal to the inferior arm of the
779 arcuate sulcus (F5), which are associated with hand movements based on retrograde labeling from
780 spinal cord®” and M13, microstimulation®>* and functional studies!®®%%, These areas contain neurons
781 interconnected with PFC**3. For SMA (F3) and preSMA (F6), we targeted the medial wall of the
782 hemisphere, with the boundary between SMA and preSMA defined as the anterior-posterior location of
783 the genu of the arcuate sulcus, consistent with prior studies finding significant differences across this
784 boundary in anatomical connectivity (e.g., direct spinal projections in SMA but not preSMA™) and
785 function?®>’. SMA arrays were largely in the arm representation*®. For dIPFC, we targeted the region
786 immediately dorsal to the principal sulcus (46d), following prior studies of action sequencing®®#"**® and
787 other cognitive functions®®. For vIPFC, we targeted the inferior convexity ventral to the principal sulcus,
788 with one (more rostral) array directly ventral to the principal sulcus (46v) and the other rostral to the
789 inferior arm of the arcuate sulcus (45A/B), based on evidence for encoding of abstract concepts in
790 regions broadly spanning these two locations®21°1¢1 'including a possible heightened role (compared to
791 dIPFC) in encoding abstract concepts in a manner invariant to temporal or spatial parameters®162163,
792 For FP, we targeted a rostral location similar to prior recording and imaging studies (one array fully in
793 area 10, the other straddling 9 and 10)*4%, In general, array locations targeted the cortical convexity
794 immediately next to sulci, instead of within the banks, in order to allow shorter insertion depths that

795 minimize the risk of missing the target. The exceptions were SMA and preSMA in the medial wall, for
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796 which this was not possible. To avoid damaging the superior sagittal sinus, we positioned the arrays
797 laterally (2 mm from midline) and slanted the electrodes medially (Extended Data Fig. 4).

798 The lengths of each electrode were custom-designed to target half-way through the gray matter,
799 and to vary substantially across the array, to maximize sampling of the cortical depth. Electrode lengths
800 spanned 1.5 - 3.5 mm (M1), 1.5 - 3.1 mm (PMd, PMv), 2.8 - 5.8 mm (SMA, preSMA), 1.5 - 2.5 mm
go1 (dIPFC, vIPFC), and 1.5 - 2.6 mm (FP) for subject 1, and 1.7 - 3.75 (M1), 1.5 - 3.3 mm (PMv), 1.5 - 3.1
802 mm (PMd), 2.65 - 5.95 mm (SMA, preSMA), 1.75 - 3.15 mm (dIPFC), 1.35 - 3.2 mm (vIPFC), and 1.6 -
803 2.9 mm (FP) for subject 2. Reference electrodes were longer (6 mm) to anchor the arrays. 28
804 electrodes were Pt/Ir (0.5 MQ) and 4 were Ir (10 kQ) (for microstimulation). Array connectors (Omnetics
805 A79022) were housed in custom-made Ultem pedestals (Crist), which were secured with bone cement
806 onto the cranial implant. Four pedestals were used per subject, holding 5, 5, 4, and 2 connectors each.
807

sos Behavioral task

809 Task overview

810 Subjects were seated comfortably in the dark with their head restrained by fixing the headpost
811 to the chair. They faced a touchscreen (Elo 1590L 15" E334335, PCAP, 768 x 1024 pixels, refresh rate
812 60 Hz, with matte screen protector to reduce finger friction) that presented images and was drawn on.
813 The touchscreen location was optimized to allow each subject to easily draw at all relevant locations on
814 the screen (23 to 26 cm away; see diagram in Extended Data Fig. 1). Both subjects decided on their
815 own over the course of learning to perform the task with the left hand. The chairs were designed to
816 minimize movements of the torso and legs (by using a loosely restricting “belly plate”), and of the
817 non-drawing arm (by restricting movement to within the chair). Gravity-delivered reward (water-juice
818 mixture) was controlled by the opening and closing of a solenoid pinch valve (Cole-Parmer, 1/8" ID).
819 Subjects were water-regulated, with careful monitoring that consumption met the minimum requirement
820 per day (and typically exceeded it), and weight was closely monitored to ensure good health. The task
821 was controlled with custom-written software, using the MonkeyLogic behavioral control and data

822 acquisition MATLAB package®®®. (PC: Windows 10 Pro, Intel Core i7-4790K, 32GB RAM; DAQ: National
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823 Instruments PCle-6343). All stimuli (images of line figures defined as point sets) were also generated
824 with custom-written MATLAB code. Images were presented in a “workspace” area on the screen (16.6
825 cm X 16.9 cm, corresponding to approximately 37° by 38° visual angle). Shape components in images
826 were on average 4.0 cm (9°) (taking the maximum of width and height).

827 Each neural recording session consisted of a day’s recording (2 - 3.5 hours). We collected 5-20
828 trials per condition (i.e., each unique image for Figs. 4, 5 and single-shape tasks in Fig. 6; each
829 primitive stroke for character tasks in Fig. 6). All trials were shuffled across all conditions within the
830 session, and presented in a randomly interleaved fashion, except for one case, the experiment in Fig.
831 6, in which character and single-shape tasks were switched in blocks.

832

833 Early Training

834 Before surgery, naive subjects underwent initial training on core task components (i.e., to trace images
835 accurately on a touchscreen, using a sequence of discrete strokes). Early training took place in the
836 home cage, using custom-built rigs that attached to an opening in the cage, using the same hardware
837 and software described above, except for a different computer (Lenovo IdeaPad 14" laptop, Windows
838 10, AMD Ryzen 5 3500U, 8GB RAM) and DAQ (National Instruments USB-6001). This initial training
839 progressed through the following stages: (1) Touch circle. Subjects were rewarded for touching a circle
840 anywhere within its bounds. The circle started large, filling the entire screen, and shrank over trials to
841 enforce more accurate touches. (2) Touch with a single finger. We shrank the circle until it was so small
842 that it could only be touched with a single finger. The trial aborted if the subject touched outside the
843 circle, or with multiple fingers simultaneously. (3) Hold still. Subjects were rewarded for keeping their
844 fingertip still on a dot, with the duration of this hold increasing across trials (up to a few seconds). (4)
845 Track moving dot. Subjects had to track the dot with their finger as it moved (a lag between dot and
846 finger was allowed). (5) Trace a line. We increased the speed of the moving dot over trials, until
847 eventually the dot moved so fast that the line it traced appeared immediately. We then positioned the
848 line at locations far from the hold position to train the subject to raise its finger from the hold position

849 and trace lines at arbitrary locations, angles, and lengths. (6) Trace single shape. We presented shapes
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850 of increasing difficulty (gradually “morphing” across trials from a straight line), including arcs,
851 “L"-shapes, and squiggles, and circles. Across these stages, the shapes were presented at random
852 locations. We did not enforce any particular tracing strategy for each shape (e.g., which endpoint to
853 start at), allowing subjects to choose on their own. (7) Trace multiple shapes. We presented images
854 composed of multiple disconnected shapes. This trained the subjects to understand that they should
855 use multiple strokes to trace multiple shapes. At this point, the subject understood the basic structure of
856 the task—to trace shapes, using multiple strokes if needed. The progression across these stages was
857 not determined by strict quantitative criteria, but instead on a combination of quantitative and qualitative
858 evaluations of how well the subjects understood the task.

859 After this basic training, subjects practiced various tasks to incentivize the learning of stroke
860 primitives (consistent stroke trajectories for each shape). They practiced single-shape trials using the
861 set of diverse simple shapes in Fig. 1le, varying randomly in shape and location across trials. On
862 different days, subjects also practiced multi-shape and character tasks. Below, we describe the trial
863 structure, followed by details for single-shape, multi-shape, and character tasks.

864

865 Trial structure

866 As depicted in Fig. 1c, trials began when the subject pressed and held a finger fixation button (blue
867 square) at the bottom of the screen (grey background; note that in this article “button” always means a
868 virtual button; diagram of screen in Extended Data Fig. 1c). After a random delay (uniform, 0.2 s
869 window, earliest [0.4, 0.6] s and latest [0.8, 1.0] s across experiments for subject 1 and [0.8, 1.1] s for
870 subject 2) the image appeared (figure colored dark grey). After a random delay (uniform, ranging from
871 [0.6, 1.0] sto [1.2, 1.6] s across experiments for subject 1, and [1.1, 1.5] s to [1.8, 2.4] s for subject 2), a
872 “go” cue (400 Hz tone and image blank for 300 ms) was presented. This delay between image
873 presentation and go cue we call the “planning” epoch. The subject had to keep its finger still on the
874 fixation button during the planning epoch. After the onset of the go cue, the subject was free to raise its
875 finger, move its hand towards the image, and start drawing. During drawing, the image stayed visible,

876 and the finger left a trail of black “ink” on the screen. Immediately after the finger was raised from the
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877 fixation button after the go cue, the “fixation button” disappeared and a “done button” (green square)
878 appeared at its location and stayed on. The drawing epoch ended when the subject signaled it had
879 completed the drawing, by pressing the “done button” (no time limit was imposed). This was followed by
880 a delay (uniformly sampled, 0.65 to 1 s), followed by performance feedback. Feedback spanned four
881 modalities, each signalling performance: (i) screen color, (ii) sound cue, (iii) duration of a delay before
882 getting reward, and (iv) reward magnitude. First, screen color and sound were signaled, followed by the
883 pre-reward delay and then the reward. How performance was scored and converted to feedback is
884 described below. In addition to providing this feedback at the end of the trial, we also provided feedback
885 online by immediately aborting a trial if subjects made serious errors, including (i) if they touched a
886 position far from any image points, and, (ii) for single-shape and multi-shape trials, if they used more
887 than one stroke per shape in the image. These “online abort” modes were turned off for trials testing
888 novel characters.

889 Screen image changes (including image presentation and trial events) were recorded using
890 photodiodes (Adafruit Light Sensor ALS-PT19) and sounds were recorded using an electret
891 microphone (Adafruit Maxim MAX4466, 20-20KHz). We performed eye tracking (ISCAN), but did not
892 enforce eye fixation.

893

894 Scoring behavioral performance

895 Behavior was scored by aggregating multiple metrics, or “factors”. There were three classes of factors.
896 The primary class measured image similarity, or the similarity of the final drawing to the target image
897 (ignoring its temporal trajectory). This factor had the greatest influence on the final aggregate score.
898 Additionally, we computed factors reflecting behavioral efficiency, and, in some cases, factors that were
899 task-specific. These scores were computed on behavioral data, which was represented as a sequence
900 of touched points (x-y coordinates) with gaps between strokes, and image data, represented as a set of
901 X-y coordinates. First, we describe the factors, and then how they were aggregated into a single score.

902 Image similarity. This included two factors: drawing-image overlap and Hausdorff distance.

903 Drawing-image overlap was computed as the fraction of the image points that were “touched” (within a
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904 margin of error) by at least one of the drawn points. A subset of the image points were weighted more
905 heavily because they captured unique features of the shape (e.g., the corners and endpoints of an “L”
906 shape). Hausdorff distance is a distance metric between the set of drawn points and the set of image
907 points (see definition below).

908 Behavioral efficiency. To incentivize efficiency, we included a factor comparing the cumulative
909 distance traveled in the drawing (i.e., the amount of “ink”) to the cumulative distance of the edges of the
910 figure in the image, with its value negatively proportional to the excess of drawn ink over image ink.

911 Task-specific factors. During practice trials for character tasks (see “Task types”), we also
912 included factors capturing the extent to which drawn strokes matched the shapes used in the image
913 figure. This included two factors: one proportional to the similarity of the number of strokes and the
914 number of image shapes, and the other proportional to the spatial alignment of the drawn strokes to the
915 image shapes. Importantly, these factors were included only for practice images, not for novel test
916 images.

917 The final score aggregated the image similarity, behavioral efficiency, and task-specific factors,
918 with more weight on image similarity factors. We first rescaled the factors linearly between 0 and 1
919 (where 1 means good performance), with the dynamic range set by a lower and upper bound on the
920 factor values. These bounds were adaptively updated on every trial based on the distribution of factor
921 values in the last 50 trials (lower bound at 1st percentile and upper bound at 53rd percentile), which
922 ensured that the dynamic range of feedback matched the dynamic range of behavioral performance
923 from recent history. We then weighted each of those factors to tune their relative contributions (using
924 hand-tuned weights for each experiment; generally highest for image similarity), and computed the final
925 scalar score (range 0 to 1) by taking the single factor that was worst after weighting.

926 Sscal = Hliln (1 - wz(l - fz))

927 where 7 indexes the factors, wi are the weights (between 0 and 1) and J1 are the factor values

928 (rescaled between 0 and 1). We also gave each trial a categorical score:
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great  Sgeq > 0.82
good 0.65 < S40q < 0.82

Scat =

ok 0.15 < Sgear < 0.65
929 fail Ssear < 0.15

930 The scalar and categorical scores were used to determine feedback across four different modalities.
931 The meaning of screen color and sound were learned by the subject, whereas delay and reward had
932 intrinsic value:

933 (1) Screen color. A linear mapping between two colors, such that a score of 0 was mapped to
934 red (RBG: [1, 0.2, 0]) and a score of 1 was mapped to green ([0.2, 1, 0.2]).

935 (2) Sound cue. A sound determined by Scq: if great, then three pulses (1300 Hz, 0.16 s on and
936 Off); if good, then a single pulse (1000 Hz, 0.4 s); if ok, then no sound; if fail, then a single pulse (120
937 Hz, 0.27 s).

938 (3) Delay until reward. A nonlinear mapping from score to delay before reward. We first applied
939 a linear mapping to the scalar score, such that a score of 0 was mapped to a long delay (5 sec +
940 random uniform jitter, [0, 2.5] s) and a score of 1 was mapped to 0 s delay. Further, if sct was great,
941 good, or ok, then this delay was reduced by multiplying by 0.65.

942 (4) Reward. The open duration of the solenoid gating the juice line was defined as

943 rew = C X m X a X Sgcal

944 where C is a constant in dimensions of time (0.15 - 0.6 s, set manually depending on the difficulty of
945 the task); m is a multiplier that gives a bonus for good performance and further penalizes bad

946 performance, depending on the value of Sct: great (1.3), good (1.0), ok (0.8), fail (0); and a is a

947 random variable sampled from the uniform distribution @ ~ 0.75 + 0.5 x U(0, 1), and Sscat defined as
948 above. On average, including failed trials, subjects received ~0.35 ml reward per trial. The order in
949 which these four feedback signals were delivered is described above (“Trial structure”).

950

951 Task types

952 Single-shape tasks. Single-shape tasks presented one of the practiced simple shapes, or, in the

953 “categories” experiments, sometimes a morphed shape. Subjects were allowed only a single stroke
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(triggering online abort if >1). In four single-shape sessions for subject 1, the ending of the drawing
epoch was triggered by completion of the stroke (i.e., on finger raise), and not on the subject pressing a
“done” button, as was the case in all other sessions and experiments.

To test for motor invariance (Figs. 2a-e, 4), we presented images of practiced shapes, varying
across trials in location, size, or both. For location variation, images spanned a distance in the x- and
y-dimensions (measuring from shape centers) of 321 pixels (9.6 cm), which is 2.38 times the average
size of shapes (135 pixels, 4.0 cm, maximum across width and diameter). For size variation, the
maximum size was 2.5 times larger than the smallest (in diameter), except for two experiments for
subject 1, in which the ratio was 2.0.

To test for categorical structure (Figs. 2f-j, 5), we constructed morph sets (subject 1: N = 7
morph sets across 3 sessions; subject 2: N = 13 morph sets across 4 sessions), each consisting of two
practiced shapes and four to five “morphed” versions of those shapes, which were constructed by
linearly interpolating between the two shapes along one image parameter, such as the extent of closure
of the top of the U (Fig. 2f, g). Across morph sets, we varied different image parameters (see examples
in Extended Data Fig. 2).

Multi-shape tasks. Each image was composed of two to four shapes positioned at random,
non-overlapping, locations spanning the space of the screen (four corners and center). Subjects were
allowed to draw the shapes in any order, and to use any trajectory within the shapes, but were
constrained to use one stroke per shape and to not trace in the gaps between shapes. In the Results of
this manuscript, we present results averaged across two sessions, one from each subject (Extended
Data Fig. 3). On each trial, an image was constructed by sampling a shape randomly without
replacement. This led to N = 531 (S1) and N = 278 (S2) unigue images.

Character tasks. Each image was generated by connecting two to six simple shapes into a

single character figure. This was done by sampling characters from a generative model. A character

978 with N shapes was defined by randomly sampling N shapes and N-1 relations, where each relation i

979

980

defines the location of the attachment points on shapes i and ¢ + 1; these attachment points, in turn,

define how these shapes will connect to each other. This is similar to a published generative model for
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981 handwritten characters'®. Generated characters were only kept if there was minimal crossing of shapes
982 over each other.

983 For experiments testing behavioral generalization to novel characters (Fig. 2k-p), we mixed
984 practiced and novel characters (practiced characters: N = 189 (mean, range 22 to 491) per day; novel
985 characters: 48 (mean, range 0 to 155) per day). For analyses, we label as “novel” only the very first trial
986 for a given character. Because of random sampling in generating characters, it would in principle be
987 possible that characters generated on different days are in fact identical; to avoid this, we ensured that
988 all characters we called “novel” indeed did not match any images the subject previously encountered.
989 We did this by ensuring that each novel character was different from every previously encountered
990 character across all days (quantified with the Hausdorff distance).

991 For neural experiments comparing single-shape and character tasks (Fig. 6), we analysed the
992 sessions for which we collected data from both single-shape tasks and character tasks [subject 1: N =
993 10 sessions, median N matching primitives between single-shape and character tasks = 9 (range 5 -
994 12); subject 2: N = 9 sessions, median N matching primitives = 10 (range 2 - 14)]. We switched
995 between single-shape and character tasks using a block design (2 - 5 blocks each), except one session
996 for subject 2, in which they were randomly interleaved across trials.

997

998 Behavioral data analysis

999 Preprocessing of touchscreen data

1000 Touchscreen data were represented as time series of (X, y) coordinates in units of pixels (conversion:
1001 33.6 pixels/cm) and sampled at 60 Hz, which we upsampled to 500 Hz and low-pass filtered (15 Hz).
1002 Strokes were segmented based on the time the finger first touched the screen (stroke onset) and the
1003 last time before raising off the screen (stroke offset) with 500 Hz resolution.

1004 To compute stroke instantaneous velocity and speed—in Fig. 1f and as input to the “trajectory
1005 distance” below—we first further low-pass filtered the data (12.5 Hz), and downsampled to 25 Hz. We

1006 then used the five-point stencil method to compute a finite difference approximation of the derivative:
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i1 fIn—=2]=8fn—1]+8f[n+1] — fln+ 2]
1007 fln] = 12h

1008 where f[1] is a discrete time series (i.e, the x- or y-coordinates) indexed by integer n, and h is the
1009 sampling period in seconds. This differentiation was performed separately for the x and y coordinates.
1010 The resulting velocity time series was upsampled to the original 500 Hz sampling rate with a cubic
1011 spline. Speed was computed as the norm of the (x, y) velocity at each timepoint.

1012

1013 Computing “trajectory distance”

1014 To quantify the similarity between two strokes, in a way that compares their spatio-temporal trajectories,
1015 while ignoring their relative size (or scale) and location (on the screen), we devised a “trajectory
1016 distance” metric. This metric is a scalar dissimilarity score, based on the dynamic time warping distance
1017 between two strokes represented as velocity time seriesv1 and v2. To compute trajectory distance
1018 between two strokes, we (1) spatially rescaled each stroke (while maintaining its x-y aspect ratio), to
1019 make the diagonal of its bounding box unit length 1. (2) We then linearly interpolated each stroke to the
1020 same number of points (70) to allow direct point-by-point comparison between strokes. This was done
1021 spatially by interpolating based on the fraction of cumulative distance traveled (so that the distances
1022 between successive points were the same value over the entire stroke), in order to capture the
1023 spatio-temporal trajectory, as in a previous study modeling strokes in handwriting®. (3) Interpolated
1024 trajectories were then converted to velocity time series as above. (4) We then computed the dynamic

1025 time warping distance between these velocities v1 and v2.:

minﬂz 1,7 Fd(lﬂj)
Dprw(vi, va) = S
1026 N

1027 where i and J index the two velocity trajectories, N is the number of points (70), 7 is a set of (4, )
1028 pairs representing a contiguous path from (0, 0) to (N, N). The local distance metricd(, J) is the
1029 Euclidean distance plus a regularization factor that discourages excessive warping:

1030 d(i, ) = [[vili] = v2[j]ll + A x |i — j

A = 0.045 (v, [d]]),.,

1031
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1032 where () is the average. For the regularization parameter, ), the purpose of the summation term was
1033 to rescale lambda to match the magnitude of velocities. The resulting distance Dprw was then

1034 rescaled to 0 and 1 to return the trajectory distance:

1
Dipoi(ve,ve) =1 —
1035 braj (V1, V2) Dprw(v1,ve) +1

1036

1037 Computing “image distance”

1038 To compare the similarity of two images—each a figure represented as a set of (x, y) points, with no
1039 temporal or stroke-related information—we used a modified version of the Hausdorff distance, a
1040 distance metric that has been commonly used in machine vision for comparing the similarity between
1041 two point sets based on their shape attributes®®’. There are, in principle, at least 24 variants of the
1042 Hausdorff distance based on possible variations in the formula'®’; we used a variant that is minimally
1043 susceptible to outlier points (because it is based on taking means instead of minima and maxima;
1044 variant #23 in the referenced study®’). Image distance was computed as follows: (1) Each image was

1045 first centered so that its center of mass becomes (0,0). (2) Image distance was then computed. First,
1046 we define the distance between two points, d(a,b), as the Euclidean distance. We also define the

1047 distance between a point and a set of points, d(a, B), and the distance from set A to set B, d(4, B),

1048 as:
1049 da, B) = beb dla,b)
1
A(A,B) = > d(a, B)
1050 ‘ ‘ acA

1051 Image distance was then defined as:

1052 Dimage<A7 B) = d(A B) ;L d<B7 A)

1053

1054 Computing “primitive alignment score”
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1055 For experiments on categorical structure, we generated a set of images, with each set containing four
1056 to five novel images that morph between one primitive (P1) and another primitive (P2): a “morph set”.
1057 Across morph sets, different image parameters were morphed (see Fig. 2g and Extended Data Fig. 2).
1058 Each trial presents a single image from one morph set.We sought to quantify the relative similarity
1059 between a given trial's data—either its behavioral, image, or neural data (see below)—and data for the
1060 two primitives, P1 and P2, in its morph set. To do so, we devised a “primitive alignment” score defined,
1061 for each individual trial, as:

dy
aqQ = —m
1062 d] + dQ

1063 where di is the average of the distances between that trial and each of the P1 trials, and dy the
1064 average of the distances between that trial and each of the P2 trials. A score closer to 0 implies
1065 similarity to P1, and a score close to 1 implies similarity to P2. The particular metric used for these
1066 distances depended on the analysis. For images, we used the image distance. For drawings, we used
1067 the trajectory distance. For neural activity, we used the Euclidean distance between population vectors.
1068 We confirmed that primitive alignment scores for image data varied linearly with morph number (Fig. 2j
1069 and Extended Data Fig. 2c), ensuring that any deviation from linearity in behavioral or neural data could
1070 not trivially be the consequence of how the score is defined.

1071

1072 Classifying strokes from character tasks

1073 To assess whether subjects drew characters by reusing their own stroke primitives, we scored the
1074 fraction of character strokes that were high-quality matches to one of the subject’'s own primitives, and
1075 the fraction that were high-quality matches to the other subject’s primitives. If the fraction of matches to
1076 a subject’s own primitives was high, and to the other subject’s primitives was low, then we interpreted
1077 this as evidence that subjects recombined their own primitives.

1078 This was performed by assigning each stroke the label of its nearest primitive using the

1079 trajectory distance, and then further defining this as a high-quality match only if the trajectory distance
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1080 was sufficiently low; in particular, if the distance was within the 95% CI of the expected distribution of

1081 trajectory distances caused by trial-by-trial variation in behavior.

1082 First, each stroke was assigned its best-matching primitive, p* from a set of primitives (the

1083 choice of primitive set—same or different subject—depending on the analysis; see below):

* = argmind(s,
1084 p g y (s 1p)

1085 Where P indexes the primitives, s is the stroke trajectory, Hp is the mean stroke for primitive P

1086 (averaged over trials from single-shape tasks), and d(,-) is the trajectory distance.

1087 Second, the quality of the stroke’s assignment to its nearest primitive was scored:

high ifd +) < Dinax.p*
quality — ) el 1 (s, tap+) ,p
low if d(s, f1p*) > Dimaxp>

1088
1089 Where DPmaxp* is an upper-bound on trajectory distances that would be expected from trial-by-trial

1090 variation in primitive P*. It is the 97.5th percentile of the distribution of trajectory distances from
1091 single-shape trials, determined separately for each primitive, which we consider as a good—if anything,
1092 conservative—estimate of trial-by-trial variation, because single-shape tasks present no ambiguity as to

1093 what primitive needs to be drawn.

1094 These steps assigned each stroke a class tuple (p*, quality) |n summary analyses, we pooled
1095 all cases of high-quality matches into a single “high-quality match” class (no matter the assigned
1096 primitive), and all low-quality matches into a single “no match” class (Fig. 20, p). In summary analyses
1097 testing whether a given subject’'s character strokes aligned better with its own primitives vs. the other
1098 subject’s primitives (Fig. 2p) we performed the above analysis separately for all four combinations of
1099 stroke data (2 subjects) x primitives (2 subjects), using only images performed by both subjects.

1100

1101 Neural recordings

1102 Recordings were acquired using a Tucker-Davis Technologies (TDT) system, including headstage
1103 (Z-Series 32 Channel Omnetics, LP32CH-Z), amplifier (PZ5M-256), processor (RZ2), and storage

1104 (RS4), sampled at 25 kHz (local reference mode), controlled with TDT Synapse software run on a
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1105 Windows 10 PC (Intel Core i7-3770, 32GB RAM), and saved to disk. Analog and digital task-related
1106 signals, including behavioral events (photodiode, audio, and trial event markers) and eye tracking
1107 (ISCAN, 125 Hz), were synchronized external triggers recorded by the neural data acquisition system.
1108

1109 Neural data preprocessing

1110 Spike sorting

1111 We extracted for later analysis both isolated single-unit (SU) and multi-unit (MU) spike clusters from the
1112 stored broadband signal. MU clusters consisted of threshold crossings that were clearly spikes, but
1113 which were not isolatable into distinct SU clusters. We used a three-step approach for extracting and
1114 sorting spikes into these clusters, with a first pass using Kilosort*®® (v2.5) to extract putative spike
1115 clusters, a second pass using a custom-written program to label these clusters as either SU, MU, or
1116 noise, and a final manual curation step. Note that Kilosort classifies clusters, but we did not use those
1117 labels.

1118 For Kilosort, we used the default parameters, except AUCsplit (0.90), Th ([6, 4]), and lam (10),
1119 which we optimized using parameter sweeps on data from representative sessions and by manual
1120 evaluation of results.

1121 We next refined these cluster labels. For each cluster, we first removed outlier waveforms (any
1122 exceeding a 3 x interquartile-range threshold for any of the minima, maxima, or sum-of-squares).
1123 Waveforms were then shifted slightly in time (<1 ms) to improve their alignment by peaks (or toughs, for
1124 negative-going waveforms). For each cluster, we computed two features. (1) Signal-to-noise ratio
1125 (SNR), defined as the ratio of the peak-to-trough difference (of the average spike waveform) divided by
1126 standard deviation (averaged across time bins). Before computing SNR, we checked whether the
1127 cluster contained both positive- and negative-going waveforms. If so, SNR was computed separately
1128 for these two subsets of data and then averaged. (2) Inter-spike-interval violations (I1SI1V), defined as the
1129 fraction of inter-spike intervals less than a refractory period (1.5 ms). Based on these SNR and ISIV, we
1130 provisionally classified clusters as SU [if either (SNR > 9.6 and ISIV < 0.05) or (SNR > 6.9 and ISIV <

1131 0.01)], noise (SNR < 3.9), or MU (the remaining clusters).
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1132 We then manually curated these clusters. We visualized every cluster to either confirm its label
1133 (MU, SU, noise) or to manually re-assign it to a different label (including “artifact”), using a
1134 custom-written MATLAB GUI. We also manually checked whether multiple SU clusters on a single
1135 channel should be merged into a single SU cluster, if they have high waveform similarity, inversely
1136 correlated spike count frequency over the course of the session, or a negative peak close to zero lag in
1137 a cross-correlogram of spike times. Finally, for each channel, all MU clusters were merged into a single
1138 MU cluster. Combining SU and MU, this yielded the following total number of units per area (mean +/-
1139 S.D. across sessions). For subject 1. M1 (59.9 +/- 12.5), PMd (44.1 +/- 6.2), PMv (34.2 +/- 7.3), SMA
1140 (63.0 +/- 7.9), preSMA (75.4 +/- 17.7), dIPFC (47.8 +/- 17.2), VIPFC (43.3 +/- 9.9), FP (19.2 +/- 3.8). For
1141 subject 2: M1 (40.7 +/- 13.1), PMd (54.7 +/- 5.5), PMv (71.1 +/- 6.6), SMA (53.4 +/- 7.2), preSMA (57.9
1142 +/- 11.1), dIPFC (24.6 +/- 4.8), VIPFC (38.6 +/- 13.7), FP (42.6 +/- 5.0).

1143

1144 Converting spike times to firing rates

1145 Single-trial spike trains were converted to firing rate functions by smoothing with a 0.025 s Gaussian
1146 kernel (0.01 s slide). We removed units with very low firing rates (if the 80th percentile of their firing
1147 rates across all trials and time bins was less than 1 Hz). We square-root transformed activity to
1148 normalize its variance. Following a common approach in analyses of population firing rates'*, we “soft”
1149 z-scored each unit’'s activity to ensure that neurons with very different firing rates contributed similarity

1150 to population analyses, but with higher-firing-rate neurons still contributing relatively more:

?orm(t) _ xl<t) — Mz

T
1151 o, +C

1152 Where Zi(t) is firing rate for trial 7 at time bin ¢, Kz and 0. are the mean and standard deviation,

1153 respectively (across trials and time bins), and C is an additive factor to ensure “softness”:

1154 ¢ = min(m) + 3Hz \yhere m is a vector of mean firing rates, one for each unit. All subsequent
1155 analyses used this normalized firing rate representation of the data.
1156

1157 Time-warping neural activity to a common trial template
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1158 For the figure showing the average firing rates over the entire trial (Fig. 3), we first time-warped each
1159 trial to a common trial template. We defined a set of events that occur across trials as “anchors”
1160 (fixation touch, image onset, go cue, finger raise off fixation, stroke onset, stroke offset, touch done
1161 button, reward). We included only single-stroke trials. We first generated a “median trial”. For each
1162 segment (i.e., time window between a pair of successive anchor events), we found its median duration,
1163 and then concatenated these median segments to construct a median trial. We then aligned each trial
1164 to this median trial at the anchor events, warping time linearly within each segment. To avoid sharp
1165 discontinuities at anchor points, we smoothed the final firing rates at the times of the anchor points (2.5
1166 ms Gaussian kernel). This warping did not change the firing rate values, just their timing.

1167

1168 Neural data analyses

1169 Dimensionality reduction of population activity

1170 We performed dimensionality reduction on the neural population activity, in general because
1171 high-dimensional noise can reduce the interpretability of the Euclidean distance'?®, and in one case in
1172 order to identify a potential linear projection of population activity (i.e., a subspace) that preferentially
1173 encodes primitives, a standard approach*”**¢. We represent a single area’s data from a single session
1174 and within a specific within-trial time window as a matrix X, of size N x KT, where N, K, and T are the
1175 number of units, trials, and time bins, constructed by concatenating time bins from all trials along the
1176 second dimension. Data were first binned in time (0.15 s window, 0.02 s slide) before constructing this
1177 data matrix. We used principal components analysis (PCA), but instead of applying PCA on single-trial
1178 data X, we applied PCA on trial-averaged data Xc, in order to minimize the influence of trial-by-trial
1179 variation (noise). Xc holds the mean activity for each trial condition, of size Nc x KT, where N is the
1180 number of unique conditions, and where the specific conditions depended on the experiment (see
1181 below). We performed PCA on Xc, and retained the top eight principal components (PCs). The
1182 specific trial-averaged conditions used for identifying PCs were the following. For analysis of motor
1183 invariance (Fig. 4), the conditions were each unique primitive (averaging over location/size), which

1184 resulted in identifying PCs that preferentially encoded primitives if they exist in the dataset. For analysis
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of categorical structure (Fig. 5), PCA was performed separately for each morph set, and the conditions
were the unique images (i.e., the two endpoint shapes plus the morphed shapes in between). For the
analysis of primitive representational reuse in characters (Fig. 6), the conditions were each combination
of primitive and task kind (i.e., resulting in num_primitives x 2 conditions).

We performed PCA in a cross-validated manner, to ensure that it was not overfitting to noise.
We partitioned trials into two subsets (in a stratified manner), one “training” set that was used only for
identifying the PCs, and a “test” set that was projected onto these PCs and then used for all
subsequent analyses. We performed 8 randomized train-test splits (including all downstream analyses),

and averaged their results.

Computing "neural distance”

To quantify the similarity of population activity between two sets of trials, such as trials for conditions A
and B (where A and B are specific values of task-relevant variables), we devised a “neural distance”
metric. This metric has the useful property of being unbiased (so that the expected value of the neural
distance between two sets of trials sampled from the same distribution is zero). Inspired by the
“normalized distance” in Liu et al*®®, it is the average pairwise Euclidean distance across conditions A
and B, minus the within-condition distances. This subtraction step ensures that the distance is unbiased
(unlike the mean Euclidean distance, which is biased upwards*). In addition, the resulting distance is
normalized by dividing by an upper-bound distance to normalize it between 0 and 1. Neural distance is
defined as:
Dp = Dap — Daa — Dpp

where the normalized Euclidean distance between sets of trial indices in conditions A and B is:

DAB:<dma1X(t)<“wi(t)_xj<t)‘>ieA,j€B>

te{ty,.,ty}

Here, x;(t) is the population activity vector at time ¢ (in a window between times t1 and tn), and @max
is a normalization factor that is an upper-bound (98th percentile) of the distances between all pairs of

different trials combined across all conditions.


https://www.zotero.org/google-docs/?rIWNeK
https://www.zotero.org/google-docs/?UwF4fa
https://www.codecogs.com/eqnedit.php?latex=D%5E*_%7BAB%7D%20%3D%20D_%7BAB%7D%20-%20D_%7BAA%7D%20-%20D_%7BBB%7D#0
https://www.codecogs.com/eqnedit.php?latex=A#0
https://www.codecogs.com/eqnedit.php?latex=B#0
http://www.texrendr.com/?eqn=D_%7BAB%7D%20%3D%20%20%5Cleft%5Clangle%20%5Cfrac%7B1%7D%7Bd_%7B%5Ctext%7Bmax%7D%7D(t)%7D%20%5Cleft%5Clangle%20%5Cleft%5C%7C%20%5Cmathbf%7Bx%7D_i(t)%20-%20%5Cmathbf%7Bx%7D_j(t)%20%5Cright%5C%7C%20%5Cright%5Crangle_%7Bi%20%5Cin%20A%2C%20j%20%5Cin%20%7BB%7D%20%5Cright%5Crangle_%7Bt%20%5Cin%20%5C%7B%5Cmathrm%7Bt_1%7D%2C%20%20%5Cldots%2C%20%5Cmathrm%7Bt_n%7D%5C%7D%7D#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%7Bx%7D_i(t)#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathrm%7Bt_1%7D#0
https://www.codecogs.com/eqnedit.php?latex=t#0
https://www.codecogs.com/eqnedit.php?latex=%5Cmathrm%7Bt_n%7D#0
https://www.codecogs.com/eqnedit.php?latex=d_%7B%5Ctext%7Bmax%7D%7D#0
https://doi.org/10.1101/2025.03.03.641276
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.03.03.641276; this version posted March 4, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1211

1212 Computing a variable’s encoding strength

1213 To compute how strongly a given variable is encoded in population activity (e.g., “primitive encoding” in
1214 Fig. 4j), we computed the mean effect of that variable on population activity, in terms of neural distance,

1215 while controlling for the other relevant variables. Consider an experiment varying two variables,

1216 primitive and location, such that a condition is represented by the tuple (p, l), where P and [ index the
1217 primitives and locations. Primitive encoding is the average neural distance across all pairs of conditions

1218 that have different primitives but same locations:

primitive encoding = <D>(kp,l),(p/,l’)>

1219 p#pP' 1=l

1220 Location encoding is defined analogously:

location encoding = <Dfp7l)7(p,7l,)>p:p, ot

1221
1222 This approach generalizes to any pair of variables, such as primitive and task kind in Fig. 6.
1223

1224 Statistically comparing brain regions in strength of variable encoding

1225 In analyses that compare the encoding strengths of a particular pair of variables (e.g. primitive vs.
1226 location in Fig. 4j), we performed the following statistical tests to compare each brain region with every
1227 other brain region, in terms of how strongly they encode these two variables. We used the following
1228 procedure. (1) For each variable and pair of brain regions, we performed a statistical test comparing
1229 how strongly these two regions encoded that variable. This involved first extracting a dataset of neural
1230 distances between each pair of trial conditions for each of the two brain regions. For example, if the
1231 variable was “primitive”, then each of the two brain regions would contribute a dataset consisting of
1232 neural distance scores between all pairs of trial conditions that have different primitives but the same
1233 location. The datasets for these two regions would be combined into a single dataset, to which we fit a

1234 linear model to test for an effect of brain region on neural distance ¥, controlling for trial-condition pair:

Nc

y = Po+ B X, +Z’szj +e€
1235 Jj=1
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1236 where X, is 0 or 1 depending on brain region, and Zj is an indicator variable for trial-pair condition,

1237 with 7j as their coefficients. Finally, we extracted the p-value for By (two-sided t-test), which represents
1238 the significance of the difference between this region pair in how strongly they encode the variable
1239 being tested. (2) This procedure was performed once for each combination of variable (2) and brain
1240 region pair (28), resulting in 56 p-values. We corrected the p-values for multiple comparisons using the
1241 Bonferroni method (28 brain region pairs x 2 variables = 56 comparisons). (3) Using these 56 values,
1242 we then summarized each region with two numbers representing the number of regions for which this

1243 region more strongly encodes these two variables. For example, for primitive x location experiments,

1244 each region was scored with a tuple (Nprim Nloc), where Nprim is the number of other regions that
1245 this region beats in the pairwise statistical tests of primitive encoding (and analogous for Vi, except
1246 that it scores location encoding). In summary plots (Figs. 4j, 6f), the results of this entire procedure
1247 were represented by mapping each region’s resulting tuple to a color based on a 2D color map.

1248

1249 Specific analyses

1250 Analysis of motor invariance in neural activity. Dimensionality reduction was performed as described
1251 above, using a time window of 0.05 s to 0.6 s after image onset for fitting the PCs and for analyses that
1252 involve time-averaging (Fig. 4i-k).

1253 To test cross-condition decoder generalization (Fig. 4k), we used a linear support vector
1254 machine classifier (SVC), using a one-vs-the-rest scheme for multi-class classification (LinearSVC,
1255 scikit-learn, regularization parameter C set to 0.1). We report test accuracy linearly rescaled so that
1256 chance level (inverse of the number of classes) and 1 were mapped to 0 and 1. Because decoders
1257 were trained and tested on different conditions (with non-overlapping sets of trials), there was no
1258 concern of overfitting. Decoding was performed separately for, and averaged across, time bins (0.05 to
1259 0.6 s relative to image onset).

1260 Analysis of categorical structure in neural activity. Dimensionality reduction was performed as
1261 described above, using a time window from 0.05 s to 0.9 s after image onset for fitting the PCs. For

1262 analyses involving time-averaging (Fig. 5d-g), we used a window late in the planning period (0.6 to 1.0
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1263 S), when separation for A1 and A2 trials was the greatest (Fig. 5h). Primitive bias index was computed
1264 as above, using the Euclidean distance.

1265 Analysis for recombination of primitive representations in character tasks. For each session, we
1266 presented both single-shape and character tasks using a block-interleaved design (except one session
1267 using a trial-interleaved design). We analyzed primitives that were performed in both single-shape
1268 (instructed by the shape image) and character trials (the subject’s choice). For one experiment, the
1269 subject performed multi-shape but not single-shape tasks—we therefore used the first stroke from
1270 multi-shape trials instead of single-shape trials. For character trials, we used only strokes that were
1271 scored as high-quality primitive matches. Dimensionality reduction was performed as above, using a
1272 time window of -0.8 to 0.3 s relative to stroke onset for fitting the PCs. For analyses involving
1273 time-averaging, we used a window -0.5 to -0.05 s relative to stroke onset. Neural distance, primitive
1274 encoding, and task encoding were computed as above, using primitive and task kind (instead of
1275 location or size) as the two relevant variables.

1276

1277 Data and code availability

1278 The data and code used in this study are available from the corresponding author (??) upon reasonable

1279 request.
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Extended Data Fig. 1. Behavioral task setup.

(&) Schematic of subject relative to screen, profile view. Subjects 1 (S1) and 2 (S2) were positioned at
different distances to accommodate their individual anatomies and postures. The screen was
slanted slightly to optimize the ability to see and reach to the same part of the screen (the
workspace at the top of the screen). Monkey schematic here and in panel b by D. Hanuska.

(b) Schematic of subject position relative to screen, top view. Subjects were positioned to the right, to
accommodate reaching to the screen with the hand they used for drawing (left).

(c) Schematic of screen during trial, with component locations and sizes to scale. The finger is tracing
over the figure (purple-gray “V”), leaving a black trail of “ink” behind. The thickness and color of the
figure and “ink” are to scale. The “done button” is visible (green square), and the subject can press
it at any time to report completion. The dashed line indicates the workspace (not visible to the
subject).
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1640 Image #
1641 Extended Data Fig. 2. Categorical structure in behavior: more examples and quantification of
1642 primitive alignment for image data.

1643 (a) Example single-trial drawings across nine different morph sets, for subject 2. Drawings are colored
1644 by whether they reflect use of primitive 1 (blue) or primitive 2 (orange). Images morph between two
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1645 well-practiced shapes. The examples here are depicted in a similar manner to the example in Fig.
1646 2.

1647 (b) Same as panel a, but for subject 1.

1648 (c) Primitive alignment vs. trial condition for the example experiment in panel Fig. 2b, performed on
1649 image data (using the image distance), and not on behavioral data as in Fig. 2i.

1650
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1651

1652 Extended Data Fig. 3. Recombination of stroke primitives into sequences, in “multi-shape”
1653 tasks.

1654 (a) Experiment testing for recombination of primitives into sequences, using “multi-shape” tasks. Given
1655 images composed of multiple disconnected shapes, two possible drawing responses are shown,
1656 consistent with either the “Single trajectory” (T) or “Symbols” (S) hypotheses (see main text).

1657 (b) Fraction of stroke-to-stroke transitions in which the second stroke is drawn in a manner consistent
1658 with the Single trajectory (T) or Symbols (S) strategies, restricted to transitions where the behavioral
1659 predictions of these two strategies differed (bottom bar plot). Top, schematic of an example
1660 transition between two strokes labeled 1 and 2. Stroke 2 can be drawn either starting from the
1661 top-left, consistent with primitive reuse (“Symbols”), or from the bottom right, which would reflect the
1662 taking of the shorter of the two gap distances (“Single trajectory”).

1663
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1665 Extended Data Fig. 4. Angled implantation of SMA and preSMA arrays to avoid the sinus and
1666 target the medial wall.

1667 (a) Coronal MRI section showing the location and angle of a preSMA array relative to the superior
1668 sagittal sinus (“sinus™). SMA and preSMA arrays were implanted ~2 mm lateral to the midline, and
1669 angled medially, in order to target the medial wall (preSMA), while avoiding the superior sagittal
1670 sinus. The array is depicted as a rectangular blue surface and two lines representing the shortest
1671 (2.65 mm) and longest (5.95 mm) electrodes. This location and angle is our best estimate based on
1672 the stereotactic coordinates and intra-operative photographs. The other two SMA and one preSMA
1673 arrays were located and angled similarly. D, dorsal. L, lateral.

1674 (b) Rostral-caudal location of the coronal section in panel a (red arrow and dashed line), overlaid on a
1675 brain surface model. D, dorsal. R, rostral.

1676
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Extended Data Fig. 5. PMv encodes stroke primitives in a manner that is invariant to size.

(a) Heatmap of pairwise neural distances between each unique combination of primitive and size,
averaged over the planning epoch (0.05 to 0.6 s relative to image onset), for PMv and vIPFC.
Shown are data from a single session for subject 2. N = 17 - 23 trials per primitive-size combination.

(b) Summary of primitive encoding and size encoding across areas and sessions, with each point
depicting the encoding scores for a given area. Each point’s color denotes statistical significance, in
terms of the number of other brain areas that this area beats in pairwise statistical tests of primitive
encoding and size encoding (represented in the inset heatmap); see Fig. 4j and Methods for
details. Each data point was a unique pair of primitive-size conditions (trial-averaged). For testing
primitive encoding, these pairs were the same size, but different primitive [N = 313 (subject 1), 253
(subject 2)]. For size encoding, the pairs were the same primitive, but different size [N = 60 (S1), 56
(S2)]. Statistical tests were performed on condition pairs pooled across sessions (3 for S1, 2 for
S2).

(c) Across-condition generalization of linear SVM decoders for primitive (red) and size (gray). See Fig.
4k.
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1694 Practiced image (P1, P2)

1695 Extended Data Fig. 6. Slower reaction time for ambiguous images in tasks testing categorical
1696 structure.

1697 Average reaction time (between go cue and stroke onset), comparing ambiguous images to
1698 practiced images. Each data point represents a single primitive from one morph set, its y-value
1699 indicating reaction time when the primitive was drawn in response to an ambiguous image, and its
1700 x-value indicating reaction time when it was drawn in response to the practiced image. Each morph
1701 set has two primitives and thus contributed two data points. *, p < 0.05; **, p < 0.005, two-sided
1702 Wilcoxon signed-rank test. N = 14 primitives (7 morph sets) for subject 1; N = 26 primitives (13
1703 morph sets) for subject 2.
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1705
1706 Supplementary Video 1. Behavior in character task (example character 1, subject 1). This depicts
1707 the trial in Fig. 21, 4th column from the right.

1708

1709 Supplementary Video 2. Behavior in character task (example character 1, subject 2). This depicts
1710 the trial in Fig. 21, 4th column from the right.

1711

1712 Supplementary Video 3. Behavior in character task (example character 2, subject 1). This depicts
1713 the trial in Fig. 21, 7th column from the left.

1714

1715 Supplementary Video 4. Behavior in character task (example character 2, subject 2). This depicts
1716 the trial in Fig. 2I, 7th column from the left.

1717

1718 Supplementary Video 5. Behavior in character task (example character 3, subject 1). This depicts
1719 the trial in Fig. 2I, 3rd column from the left.

1720

1721 Supplementary Video 6. Behavior in character task (example character 3, subject 2). This depicts
1722 the trial in Fig. 21, 3rd column from the left.

1723

1724 Supplementary Video 7. Behavior in character task (example character 4, subject 1). This depicts
1725 the trial in Fig. 21, 2nd column from the left.

1726

1727 Supplementary Video 8. Behavior in character task (example character 4, subject 2). This depicts
1728 the trial in Fig. 21, 2nd column from the left.

1729

1730 Supplementary Video 9. Behavior in character task (example character 5, subject 1). This depicts
1731 the trial in Fig. 2I, 1st column from the left.

1732

1733 Supplementary Video 10. Behavior in character task (example character 5, subject 2). This

1734 depicts the trial in Fig. 2I, 1st column from the left.

1735

1736

1737
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