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 Abstract 

 At  the  core  of  intelligence  is  proficiency  in  solving  new  problems,  including  those  that  differ  dramatically 

 from  problems  seen  before.  Problem-solving,  in  turn,  depends  on  goal-directed  generation  of  novel 

 thoughts  and  behaviors  1  ,  which  has  been  proposed  to  rely  on  internal  representations  of  discrete  units, 

 or  symbols,  and  processes  that  can  recombine  them  into  a  large  set  of  possible  composite 

 representations  1–11  .  Although  this  view  has  been  influential  in  formulating  cognitive-level  explanations  of 

 behavior,  definitive  evidence  for  a  neuronal  substrate  of  symbols  has  remained  elusive.  Here,  we 

 identify  a  neural  population  encoding  action  symbols—internal,  recombinable  representations  of 

 discrete  units  of  motor  behavior—localized  to  a  specific  area  of  frontal  cortex.  In  macaque  monkeys 

 performing  a  drawing-like  task  designed  to  assess  recombination  of  learned  action  symbols  into  novel 

 sequences,  we  found  behavioral  evidence  for  three  critical  features  that  indicate  actions  have  an 

 underlying  symbolic  representation:  (i)  invariance  over  low-level  motor  parameters;  (ii)  categorical 

 structure,  reflecting  discrete  classes  of  action;  and  (iii)  recombination  into  novel  sequences.  In 

 simultaneous  neural  recordings  across  motor,  premotor,  and  prefrontal  cortex,  we  found  that 
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 planning-related  population  activity  in  ventral  premotor  cortex  encodes  actions  in  a  manner  that,  like 

 behavior,  reflects  motor  invariance,  categorical  structure,  and  recombination,  three  properties  indicating 

 a  symbolic  representation.  Activity  in  no  other  recorded  area  exhibited  this  combination  of  properties. 

 These  findings  reveal  a  neural  representation  of  action  symbols  localized  to  PMv,  and  therefore  identify 

 a putative neural substrate for symbolic cognitive operations. 
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 Introduction 

 Understanding  the  mechanisms  of  intelligence  requires  explaining  the  most  powerful  forms  of 

 generalization,  in  particular,  generalization  to  new  situations  or  problems  differing  considerably  from 

 those  previously  encountered.  For  example,  if  children  are  asked  to  “draw  an  animal  that  does  not 

 exist”,  they  can  generalize  from  prior  experience  to  produce  an  imaginary  animal,  such  as  a  dog-like 

 creature  with  six  legs,  three  camel  humps,  and  three  pig  tails  12  .  An  infl  uential  hypothesis  is  that  this 

 seemingly  unbounded  generali  zation  depends  on  a  n  internal  representation  of  discrete  units  (symbols) 

 that  can  be  recombined  into  composite  representations,  in  a  process  called  compositional 

 generalization  1–11  .  Symbols  support  generalization  because  they  enable  the  systematic  derivation  of  a 

 large  set  of  possible  representations  from  a  smaller  set  of  components,  such  as  new  animals  imagined 

 as  rule-based  combinations  of  discrete  parts  (e.g.,  new  animal  =  1  torso  +  8  arms  +  4  legs  ).  Importantly, 

 this  hypothesis  is  not  restricted  to  concepts  that  people  explicitly  represent  as  symbol  systems  in 

 language  13  ,  computer  programs  14  ,  or  mathematics  9,10  ,  but  applies  broadly  even  to  abilities,  such  as 

 drawing,  which  are  not  superficially  symbolic,  but  which  seem  to  reflect  internal  symbolic 

 representations  5,7,11  .  These  abilities  span  various  domains,  including,  in  humans,  geometry  7,15  , 

 perception  11  ,  handwriting  16  ,  drawing  17,18  ,  dance  19  ,  music  7  ,  and  speech  20,21  ,  and,  in  non-human  animals, 

 logical  reasoning  22,23  ,  social  cognition  24  ,  navigation  25,26  ,  artificial  grammars  27–30  ,  communication  26  , 

 numerical cognition  31,32  , and physical reasoning  11  . 

 Despite  behavioral  evidence  for  internal,  symbolic  representations,  we  lack  definitive  evidence  for 

 whether  and  how  symbols  are  implemented  in  neuronal  substrates.  This  is  especially  problematic  in 

 light  of  the  uncertainty  over  how  symbols  reconcile  with  hypothesized  mechanisms  of  cognition  that  do 

 not  presuppose  symbols,  including  those  based  on  distributed  processing  in  neural  networks  13,33–35  , 

 dynamical  systems  36–39  ,  and  map-like  representations  40,41  .  Given  that  symbols  are  discrete  units  that  are 

 systematically  recombined,  a  neural  population  representing  symbols  should  exhibit  three  basic 

 properties  in  its  activity  patterns:  (i)  invariance,  (ii)  categorical  structure,  and  (iii)  recombination. 

 Invariance  means  that  activity  exhibits  a  form  of  abstraction  in  which  it  is  largely  independent  of 
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 variables  that  are  irrelevant  to  the  task  goal.  Categorical  structure  means  the  neural  population  should 

 express  a  set  of  distinct  activity  patterns,  one  for  each  symbol,  and  be  biased  towards  these  discrete 

 activity  states  even  in  the  setting  of  continuous  variation  in  task  parameters.  Recombination  implies  that 

 a  symbol’s  activity  pattern  should  occur  in  all  contexts  in  which  it  is  used  in  composition  with  other 

 symbols. 

 Recordings  during  cognitive  tasks  have  revealed  a  diversity  of  invariant  representations,  including  of 

 rules  42,43  ,  actions  44,45  ,  sequences  28,46,47  ,  numerical  concepts  48–50  ,  perceptual  categories  51,52  ,  visual 

 objects  53  ,  cognitive  maps  41,54,55  ,  and  abstract  concepts  56,57  .  Collectively,  these  findings  reveal  a  striking 

 capacity  for  invariance  in  neural  activity,  and  implicate  critical  roles  for  specific  regions  in  this  capacity, 

 including  prefrontal  cortex  28,42,43,47,48,51,52  and  medial  temporal  lobe  41,43,49,54,56,57  .  However,  it  is  unclear 

 whether  these  representations  exhibit  the  other  properties  expected  for  symbols.  First,  with  a  few 

 exceptions  51,52  ,  these  prior  studies  did  not  systematically  test  for  categorical  structure  by  assessing 

 whether  activity  varies  discretely  with  continuous  variation  in  task  parameters.  Second,  evidence  for 

 recombination  in  neural  activity  is  also  rare,  with  a  notable  exception  being  hippocampal  activity 

 encoding  spatial  paths  appearing  to  reuse  parts  of  previous  paths  in  novel  sequences  58,59  .  However, 

 whether  these  continuous  spatial  paths  reflect  recombination  of  discrete,  categorical  components  has 

 not  been  tested.  Third,  an  important  point  that  applies  to  the  navigation  tasks  in  these  hippocampal 

 studies,  and  generally  to  tasks  in  prior  studies  finding  invariant  representations,  is  that  they  did  not,  to 

 our  knowledge,  implement  behavioral  tests  of  compositional  generalization,  making  it  challenging  to 

 determine  whether  and  how  any  identified  neural  representation  contributes  to  the  cognitive  processes 

 that  support  the  ability  to  solve  novel  problems.  For  these  reasons,  we  still  lack  evidence  for  a  neural 

 representation  of  symbols—one  that  jointly  exhibits  invariance,  categorical  structure,  and  recombination 

 in the behavioral setting of compositional generalization. 

 To  identify  neural  populations  that  may  express  these  properties  of  symbols,  we  established  a  task 

 paradigm  involving  symbol-based  compositional  generalization,  implemented  in  macaque  monkeys,  a 
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 species  with  extensive  abilities  for  abstract  cognition  28,42,43,47,48,52,54,60  (  Fig.  1a,  b  ).  This  paradigm  was 

 designed  to  capitalize  on  the  brain’s  remarkable  ability  to  generate  novel,  goal-directed  actions,  an 

 ability  hypothesized  to  involve  symbolic  representations  in  the  form  of  discrete  units  of  action  (action 

 symbols)  that  are  recombined  into  sequences  16,17,19,21,61–68  .  Action  symbols  may  be  especially  important 

 when  complex  actions  must  be  generated  to  solve  problems,  such  as  in  the  problem  of  imitating  a  new 

 dance  by  observation,  which  may  depend  on  internal  representations  of  symbols  corresponding  to 

 dance  poses  19,69  .  Action  symbols  also  form  the  basis  of  models  that  capture  behavioral  findings  in 

 action  sequencing,  including  in  handwriting  16,61  ,  drawing  17,62  ,  object  manipulation  63  ,  and  tool  use  64  . 

 These  studies  suggest  that  a  task  involving  compositional  generalization  in  action  sequencing  would 

 enable  the  systematic  investigation  of  action  symbols.  Here,  we  establish  such  a  task  paradigm.  We 

 then  show  that  behavior  in  this  task  exhibits  invariance,  categorical  structure,  and  recombination, 

 indicating  an  internal  symbolic  representation  of  action.  In  multi-area  neuronal  recordings,  we  found  a 

 neural  population,  localized  to  ventral  premotor  cortex  (PMv),  which  encodes  actions  in  a  manner  that 

 reflects  these  three  properties  of  symbols.  This  finding  therefore  identifies  a  neural  substrate  of  action 

 symbols in PMv. 
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 Results 

 Learned stroke primitives in a drawing-like task paradigm. 

 We  developed  a  drawing-like  task  paradigm  for  macaque  monkeys  modeled  after  studies  of  symbolic 

 structure  in  human  drawing  17  and  handwriting  16,61  .  We  trained  two  subjects  to  draw  geometric  figures  by 

 tracing  them  on  a  touchscreen  (  Fig.  1a,c,d  ;  videos  of  behavior  in  Supplementary  Videos  1-10  ; 

 experimental  setup  in  Extended  Data  Fig.  1  ).  On  each  trial,  subjects  were  presented  with  an  image  of 

 a  figure,  and  were  rewarded  for  making  an  accurate  copy  of  the  image,  quantified  as  the  spatial 

 similarity between the drawing and image (primarily using the Hausdorff distance; see Methods). 

 Once  subjects  understood  the  core  requirements  of  the  task  paradigm  (i.e.,  to  make  accurate  traces  of 

 images),  they  practiced  drawing  a  diverse  set  of  simple  shapes,  each  using  one  stroke  (  Fig.  1e  ).  Each 

 subject  converged  on  a  set  of  consistently  reused  stroke  spatio-temporal  trajectories,  one  for  each 

 shape,  which  we  call  the  subject’s  “primitives”  (  Fig.  1e  ).  Analysis  of  stroke  trajectories  revealed  that 

 primitives  were  idiosyncratic  to  each  subject  and  shape.  We  devised  a  “trajectory  distance”  metric, 

 which  measures  the  mean  Euclidean  distance  between  the  velocity  time  series  of  two  strokes  (after 

 normalizing  scale  and  duration;  see  Methods).  For  each  subject,  each  shape  was  drawn  in  a  consistent 

 manner  across  trials  (example  drawings  in  Fig.  1f  ;  low  trajectory  distance  in  Fig.  1g  ).  However,  stroke 

 trajectories  differed  for  the  same  shape  across  subjects  (compare  drawings  between  subjects  in  Fig. 

 1e,f  ; high trajectory distance in  Fig. 1g  ) and for  the same subject across shapes (  Fig. 1e, g  ). 

 These  findings—that  stroke  primitives  were  idiosyncratic  to  each  shape  and  subject—raised  the 

 possibility  that  these  primitives  reflect  learned  action  symbols.  To  test  this  possibility,  we  tested  how 

 subjects  generalize  to  draw  new  figures  designed  to  assess  three  behavioral  properties  that,  in 

 combination,  indicate  an  underlying  symbolic  representation:  motor  invariance,  categorical  structure, 

 and recombination (  Fig. 1b  ). 
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 Fig. 1. Learned stroke primitives in a drawing-like task paradigm. 

 (a)  Experimental  paradigm.  Given  an  image  of  a  (potentially  novel)  figure,  we  hypothesize  that  subjects 
 internally represent actions as a composite of learned symbols. 

 (b)  Three  essential  features  of  a  hypothesized  symbolic  representation,  which  we  test  in  behavior  and  neural 
 activity:  invariance,  categorical  structure,  and  recombination.  Schematics  depict  predicted  behavior  if 
 subjects  represent  actions  in  a  symbolic  manner.  Predictions  consistent  with  alternative  hypotheses  are 
 presented in  Figs. 2a, f, k  . 

 (c)  Trial  structure,  showing  a  sequence  of  discrete  events  (dashed  box)  and  sustained  epochs  (solid  box) 
 represented  on  a  touchscreen.  During  the  “plan”  epoch,  subjects  see  the  image  but  are  not  allowed  to 
 remove  their  finger  from  the  “start  button”.  During  the  “draw”  epoch,  subjects  produce  strokes,  and  can  report 
 completion  at  any  time  by  pushing  the  “done”  button  (which  appears  after  the  go  cue).  They  then  receive 
 juice  reward  based  on  drawing  performance  (see  Methods).  The  range  of  epoch  durations  reflects  the  range 
 of  mean  durations  across  task  variants  and  sessions  (further  trial-by-trial  jitter  was  also  added  within  each 
 session; see Methods). Note that “buttons” refers to virtual touchscreen buttons. 

 (d)  Photograph,  showing  top-down  view  of  subject  drawing  (during  in-cage  training).  The  metal  tube  is  the 
 reward spout. See videos of behavior in  Supplementary  Videos 1-10  . 
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 (e)  Learned  stroke  primitives  for  each  subject,  one  for  each  practiced  shape.  Stroke  onsets  are  marked  with  a 
 ball.  Blue  shading  marks  images  for  which  subjects  did  not  readily  learn  stereotyped  stroke  primitives,  either 
 because  they  used  two  strokes  or  they  executed  a  single  stroke  variably  across  trials  (see  Methods). 
 Drawings are averages over 15 trials. 

 (f)  Example  single-trial  stroke  trajectories  for  the  “circle”  shape,  depicted  in  two  ways,  instantaneous  speed  as  a 
 heatmap on the stroke trajectory (top) or as velocity vs. time (bottom). Shown are four trials per subject. 

 (g)  Summary  of  pairwise  trajectory  distances  across  trials,  where  pairs  of  trials  are  grouped  along  two 
 dimensions:  whether  they  refer  to  the  same  shape  and  to  the  same  subject.  Violin  plots  represent  kernel 
 density  estimates,  with  overlaid  medians  and  quartiles.  Starting  from  a  pool  of  300  trials  (15  shapes  x  10 
 trials  x  2  subjects),  each  data  point  represents  a  single  trial’s  average  distance  to  a  specific  shape,  such  that 
 N  =  300  for  both  “same  shape,  same  subject”  and  “same  shape,  different  subject”  (15  shapes  x  10  trials  x  2 
 subjects),  N  =  4200  for  “same  subject,  different  shape”  (15  shapes  x  10  trials  x  14  other  shapes  x  2 
 subjects).  ***,  p  <  0.0005,  two-sided  Wilcoxon  signed-rank  test,  performed  on  data  first  averaged  over  trials 
 (N = 15 shapes, each averaged across subjects and trial-pairs). 

 Stroke primitives exhibit motor invariance over location and size. 

 If  subjects  represent  stroke  primitives  as  symbols,  then  stroke  primitives  should  exhibit  motor 

 invariance.  Each  primitive’s  idiosyncratic  trajectory  should  generalize  across  low-level  motor 

 parameters  (e.g.,  muscle  activity  patterns),  as  seen  in  handwriting  and  other  skills  70  .  To  test  motor 

 invariance,  we  presented  each  shape  at  a  size  and  location  that  varied  across  trials,  including  novel 

 location-size  conditions.  Motor  invariance  predicts  similar  stroke  trajectories  across  location  and  size 

 (“Symbols”,  Fig.  2a  ).  Alternatively,  if  responses  were  memorized  by  rote,  one  for  each  specific  stimulus, 

 the  subject  would  have  difficulty  generalizing,  as  seen  in  inflexible  automatized  skills  71  (“Fail”  in  Fig.  2a  ). 

 A  third  alternative  strategy  could  prioritize  efficiency  by  minimizing  movement  from  the  starting  position 

 of  the  hand.  This  would  predict  different  trajectories  dependent  on  location  and  size  (“Efficient”  in  Fig. 

 2a  ).  We  found  that  stroke  trajectories  were  similar  across  locations  and  sizes  (  Figs.  2b-e  ),  indicating 

 that stroke primitives exhibit motor invariance. 
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 Fig.  2.  Behavioral  evidence  for  action  symbols:  motor  invariance,  categorical  structure,  and 
 recombination into sequences. 

 (a)  Experiment  designed  to  test  motor  invariance  over  location  and  size.  Each  trial  presents  one  shape,  which 
 varies  in  size  and  location  across  trials.  Shown  are  three  possibilities  for  how  subjects  will  draw;  only  a 
 symbolic representation predicts reuse of stroke primitives. 

 (b)  Example  drawings  for  a  “circle”  shape,  across  trials  varying  in  location  (left,  middle,  right)  and  size  (small, 
 medium, large). Three trials are overlaid on each panel (subject 2). 

 (c)  Example drawings for more shapes (columns), varying in location and size. 

 (d)  Heatmap  of  pairwise  trajectory  distances  between  each  combination  of  shape,  location,  and  size,  plotting  the 
 mean distance across trial-pairs (N = 9 trials per shape-location-size condition). 

 (e)  Summary  of  pairwise  trajectory  distances,  where  pairs  of  trials  are  grouped  along  three  dimensions:  same 
 shape,  same  size,  and  same  location.  Violin  plots  represent  kernel  density  estimates,  with  overlaid  medians 
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 and  quartiles.  Each  underlying  datapoint  is  one  trial’s  average  distance  to  one  shape/size/location  condition. 
 N  =  648  (same  shape/size/location  =  YYY),  1296  (YYN),  1296  (YNY),  2592  (YNN),  5184  (NYY),  taken  from  a 
 pool of 729 trials (81 shape-location-size conditions x 9 trials each). 

 (f)  Experiment  designed  to  test  for  categorical  structure.  Given  novel  images  generated  by  morphing  between 
 two  well-practiced  shapes,  we  consider  two  hypotheses,  “Tracing”  and  “Symbols”.  A  tracing  strategy  predicts 
 that  drawings  should  closely  match  each  interpolated  figure,  and  thus  their  properties  will  vary  linearly  across 
 the  morphed  images.  A  symbolic  representation  predicts  drawings  with  two  hallmarks  of  categorical  structure: 
 sigmoidal non-linearity and trial-by-trial discrete variation. 

 (g)  Example  experiment  for  one  morph  set.  Across  trials,  images  varied  linearly  (randomly  sampled)  between  two 
 well-practiced  images:  morph  i  (mixture  ratio  of  100%  “U”,  0%  circle)  and  morph  vii  (0%  “U”,  100%  circle). 
 Example  drawings  are  shown  for  each  morph.  Two  drawings  are  shown  for  morph  v  ,  because  it  elicited 
 trial-by-trial  variation  between  two  primitives  (A1,  A2).  We  define  “trial  conditions”  that  group  morphs  based  on 
 whether  they  are  well-practiced  images  (P),  are  unambiguously  drawn  as  one  primitive  (U),  or  are 
 ambiguously drawn as one primitive or the other across trials (A). 

 (h)  Heatmap  of  pairwise  trajectory  distances  between  morphs  for  the  example  morph  set  in  panel  g.  The  category 
 boundary  is  defined  as  the  morph  that  was  found  to  elicit  trial-by-trial  variation  in  drawing  (i.e.,  “ambiguous” 
 morph).  Trials  for  morph  v  are  split  into  two  trial  conditions  based  on  the  drawing  (A1,  A2).  N  =  5  -  30  trials 
 (range across morphs, counting A1 and A2 separately). 

 (i)  Primitive  alignment  vs.  morph  number  for  morph  set  in  panel  g.  N  =  5  -  30  trials  (range  across  images, 
 counting  A1  and  A2  separately).  For  primitive  alignment  using  image  data,  instead  of  drawing  data,  see 
 Extended Fig. 2c  ). 

 (j)  Summary  of  primitive  alignment  (PA)  vs.  trial  condition  across  all  experiments,  showing  scores  based  on 
 image  data  (green,  mean  and  95%  CI)  and  drawing  trajectories  (black).  Each  drawing  datapoint  represents  a 
 single  morph  set  [N  =  20  morph  set,  combining  subjects  1  (13)  and  2  (7)].  The  reason  that  primitive 
 alignments  using  drawing  data  for  P1  and  P2  are  not  exactly  0  and  1  is  due  to  trial-by-trial  variation  in 
 behavior.  ###,  p<0.0005  testing  for  sigmoidal  nonlinearity,  i.e.,  that,  compared  to  the  image,  primitive 
 alignment  for  drawings  is  closer  to  0  (U1)  and  1  (U2).  Drawing  scores  were  first  normalized  so  that  the  means 
 of  P1  and  P2  trials  were  0  and  1,  respectively,  and  data  were  aggregated  across  U1  and  U2;  ***,  p<0.0005, 
 testing  for  trial-by-trial  switching  (drawing  distribution  in  A2  higher  than  in  A1);  two-sided  Wilcoxon 
 signed-rank tests. 

 (k)  Experiment  designed  to  test  for  recombination  of  primitives  into  sequences,  using  character  tasks.  Four 
 possible  drawing  responses  are  shown,  each  differing  along  three  properties:  success  in  copying  the  figure, 
 use  of  multiple  strokes,  and  reuse  of  a  subject’s  own  primitives.  Combined  evidence  for  all  three  properties  is 
 consistent with a symbolic representation. 

 (l)  Example  drawings  in  character  tasks  by  subjects  1  and  2  given  the  same  set  of  images.  Strokes  are 
 color-coded  by  their  assigned  primitive  from  the  subject’s  own  primitive  set  (see  Methods).  “Primitives”  plots 
 each subject’s “ground-truth” primitives taken from the single-shape task. 

 (m)  Example  character  strokes  that  were  assigned  to  one  particular  primitive  (“reversed  C”),  uniformly  ranging 
 from  best  to  worst  match.  Stroke  background  color  indicates  whether  strokes  are  high  (blue)  or  low  (red) 
 quality matches. Data from subject 1. 

 (n)  Example  character  strokes  organized  by  the  primitive  they  were  assigned  to  (columns),  showing  four  example 
 high-quality  matches.  Strokes  are  ordered  from  high  (top  row)  to  median  (bottom  row)  quality  (based  on 
 trajectory  distance  to  primitive),  most  to  least  frequent  (columns),  showing  only  the  thirteen  most  frequent 
 (see frequency distribution in panel o). Data from subject 1. 

 (o)  Frequency  histogram  of  strokes  matched  to  each  primitive.  Stacked  bars  separate  high-  and  low-quality 
 matches.  Inset,  fraction  of  all  strokes  that  received  a  high-quality  score  and  were  thus  considered  cases  of 
 primitive reuse. Data from subject 1. 

 207 

 208 

 209 

 210 

 211 

 212 

 213 

 214 

 215 

 216 

 217 

 218 

 219 

 220 

 221 

 222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

 235 

 236 

 237 

 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2025. ; https://doi.org/10.1101/2025.03.03.641276doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.03.641276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 (p)  Summary  of  primitive  recombination,  showing  fraction  of  strokes  labeled  as  high-quality  match  to  a  primitive 
 and  were  thus  considered  cases  of  primitive  reuse,  including  only  characters  performed  by  both  subjects. 
 Results  show  each  subject’s  strokes  (data)  tested  against  each  subject’s  primitives.  Bars  show  mean  and 
 95%  CI.  N  (characters)  =  133  (subject  1,  practiced),  90  (S1,  novel),  70  (S2,  P),  135  (S2,  N);  note  that  a 
 character  could  contribute  a  data  point  to  both  practiced  and  novel  groups,  thus  explaining  the  different 
 sample  sizes  between  subjects.  ***,  p  <  0.0005,  two-sided  Wilcoxon  signed-rank  test,  performed 
 independently for practiced and novel data. 

 Stroke primitives exhibit categorical structure. 

 If  subjects  represent  stroke  primitives  as  categorically  structured  action  symbols,  we  would  expect  them 

 to  preferentially  draw  using  their  idiosyncratic  set  of  learned  primitives  when  challenged  with  new 

 figures  that  interpolate,  or  “morph”,  between  the  shapes  the  primitives  were  associated  with  during 

 learning  (  Fig.  2f,  “Symbols”).  This  would  indicate  that  stroke  primitives  are  represented  as  a  set  of 

 discrete  types  of  action,  similar  to  stroke  categories  in  Chinese  characters  61  or  phonemes  in  speech  20  . 

 In  contrast,  if  subjects  simply  trace  images  without  interpreting  them  as  action  symbols,  then  we  would 

 expect  drawings  to  closely  match  the  interpolated  figures  (  Fig.  2f  ,  “Tracing”).  We  presented  subjects 

 with  images  that  were  randomly  sampled  on  each  trial  by  linearly  morphing  between  two  practiced 

 shapes  (each  “morph  set”  consisted  of  two  practiced  shapes  and  four  to  five  morphed  figures).  We 

 tested  whether  the  resulting  drawings  reflected  a  categorical  boundary  in  the  subject’s  interpretation  of 

 these  images,  which  would  manifest  in  two  behavioral  hallmarks  (  Fig.  2f,  “Symbols”):  a  steep  sigmoidal 

 relationship  between  image  variation  and  drawing  variation  72,73  —such  that  images  on  the  same  side  of 

 the  category  boundary  are  drawn  similarly,  while  images  across  are  drawn  differently—and  trial-by-trial 

 variation between distinct stroke primitives for images close to the boundary. 

 We  found  evidence  for  both  of  these  hallmarks  of  categorical  structure.  In  the  example  shown  in  Fig.  2g 

 (more  examples  in  Extended  Data  Fig.  2a,b  ),  the  images  varied  in  the  extent  to  which  the  top  was 

 closed,  ranging  linearly  between  two  practiced  shapes,  a  “U”  (morph  i  )  and  a  circle  (morph  vii  ).  We 

 defined  a  category  boundary  as  the  morph  that  was  found  to  elicit  trial-by-trial  variation  between 

 primitives  1  and  2  (morph  v  ).  We  found  that  drawings  for  morphs  to  the  left  of  that  boundary  (U1)  were 

 drawn  similarly  to  primitive  1  (P1),  and  drawings  for  morphs  to  the  right  (U2)  were  similar  to  primitive  2 
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 (P2,  Fig.  2g  ).  This  discrete,  as  opposed  to  smoothly  varying,  distinction  across  the  category  boundary 

 was  evident  as  two  blocks  in  a  heatmap  of  the  pairwise  trajectory  distances  between  all  morphs  (  Fig. 

 2h  ).  This  block  structure  implies  high  similarity  within  each  block,  and  low  similarity  across  blocks.  To 

 quantify  this  effect,  we  calculated  a  “primitive  alignment”  score  for  each  trial.  Primitive  alignment 

 quantifies  the  relative  similarity  of  a  given  trial’s  drawing  to  primitive  1  (alignment  =  0)  and  primitive  2 

 (alignment  =  1),  and  is  defined  as  d  1  /(d  1  +  d  2  )  ,  where  d  1  (or  d  2  )  is  that  trial’s  average  trajectory  distance 

 to  primitive  1  (or  2)  trials.  First,  we  confirmed  that  applying  this  metric  to  score  the  images  produced  a 

 linear  relationship  with  morph  number  (  Extended  Data  Fig.  2c  ).  In  contrast,  applied  to  behavior, 

 primitive  alignment  varied  nonlinearly  in  a  sigmoidal  manner  across  morph  number  (  Fig.  2i  ).  This 

 analysis  also  captured  the  trial-by-trial  variation  in  behavior  for  morphs  at  the  category  boundary 

 (morph  v  ,  Fig.  2i  ).  These  effects—nonlinearity  and  trial-by-trial  discrete  variation—were  consistent 

 across  morph  sets  (  Fig.  2j  ),  indicating  that  subjects  internally  represent  primitives  as  categorical  stroke 

 types. 

 Stroke primitives are recombined into sequences. 

 If  subjects  represent  stroke  primitives  as  symbols,  they  should  readily  recombine  primitives  to  construct 

 multi-stroke  drawing  sequences.  We  tested  this  using  two  tasks  that  challenge  subjects  with  complex 

 figures,  including  novel  ones.  The  first  “multi-shape”  task  presented  figures  that  combined  multiple  (two 

 to  four)  disconnected  shapes,  which  could  be  drawn  in  any  order.  We  reasoned  that  one  possible 

 strategy  was  to  use  a  single  trajectory  that  efficiently  traces  over  all  shapes  with  appropriately  timed 

 touches  and  raises  to  produce  strokes  and  gaps  (“Single  trajectory”,  Extended  Data  Fig.  3a  ).  With  this 

 strategy,  behavior  would  be  biased  to  minimize  the  movement,  or  gaps,  between  shapes,  ignoring 

 whether  this  leads  to  reuse  of  primitives.  A  second  strategy,  consistent  with  a  symbolic  representation, 

 would  be  to  draw  by  recombining  the  learned  stroke  primitives,  at  the  expense  of  longer  movements 

 during  gaps  between  strokes  (“Symbols”,  Extended  Data  Fig.  3a  ).  We  analyzed  all  pairs  of 

 consecutive  strokes  for  which  these  two  strategies  predicted  different  stroke  trajectories  (  Extended 

 Data  Fig.  3b,  top  schematic).  In  virtually  all  cases,  subjects  preferred  to  recombine  primitives,  at  the 
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 expense  of  longer  movements  in  gaps,  consistent  with  a  symbolic  representation  (  Extended  Data  Fig. 

 3b  , bottom). 

 In  the  second  “characters”  task,  we  presented  complex  figures  called  characters,  each  designed  by 

 connecting  multiple  simple  shapes  (inspired  by  logographic  writing  systems),  such  that  there  was 

 ambiguity  regarding  their  components.  We  considered  four  possible  drawing  outcomes  (  Fig.  2k  ): 

 subjects  may  fail  to  accurately  draw  these  novel  figures  (“Failure”),  they  may  succeed  using  a  single 

 unsegmented  trajectory  (“Single  trajectory”),  they  may  use  multiple  strokes  that  are  not  in  their  set  of 

 learned  primitives  (“Non-symbolic  strokes”),  or  they  may  successfully  draw  by  reusing  their  own 

 primitives (“Symbols”). 

 We  found  that  drawings  were  consistent  with  a  symbolic  representation.  Subjects  successfully  drew 

 novel  characters,  and  did  so  using  multiple  strokes  (thus  contradicting  “Failure”  and  “Single  trajectory” 

 predictions).  Critically,  stroke  trajectories  matched  each  subject’s  own  primitives,  rather  than  the  other 

 subject’s  primitives,  leading  to  idiosyncratic  differences  in  the  way  the  same  figures  were  drawn  by  the 

 two  subjects  (thus  contradicting  “Non-symbolic  strokes”  predictions;  Fig.  2l  ,  videos  in  Supplementary 

 Videos  1-10  ).  To  quantify  primitive  recombination,  we  collected  all  strokes  from  each  subject’s 

 character  drawings  and  quantified  how  often  these  strokes  matched  closely  at  least  one  of  the  subject’s 

 own  primitives.  To  do  so,  we  scored  each  stroke’s  trajectory  distance  to  each  of  the  subject’s  own 

 primitives  (“ground-truth”  strokes  from  single-shape  tasks)  and  assigned  each  stroke  to  its 

 best-matching  primitive.  We  then  classified  that  match  as  either  high-  or  low-quality,  defined  so  that 

 high-quality  means  that  a  stroke  falls  within  “natural”  trial-by-trial  variation  in  drawings  of  its  assigned 

 primitive,  thus  counting  as  primitive  reuse  (see  Methods,  and  example  resulting  matches  in  Fig.  2m,  n  ). 

 We  found  that  a  large  majority  of  strokes  were  classified  as  high-quality  matches  to  a  primitive  (>80%, 

 Fig.  2o  ).  We  further  restricted  our  analysis  to  just  the  characters  that  both  subjects  had  drawn,  and 

 found  that  a  given  subject’s  strokes  matched  its  own  primitives,  and  not  those  of  the  other  subject  (  Fig. 
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 2p  ).  This  finding—that  even  on  identical  figures  subjects  selectively  reused  their  own 

 primitives—indicates that drawings build on prior knowledge of primitives. 

 Multi-area neuronal recordings across frontal cortex. 

 Together,  the  findings  that  stroke  primitives  exhibit  motor  invariance  (  Fig.  2a-e  ),  categorical  structure 

 (  Fig.  2f-j  )  and  recombination  (  Fig.  2k-p  )  indicate  they  have  an  underlying  symbolic  representation.  We 

 next  searched  for  neural  correlates  of  these  putative  stroke  symbols.  In  order  to  search  broadly,  we 

 recorded  simultaneously  from  neurons  across  multiple  areas  of  frontal  cortex,  using  chronically 

 implanted  multi-electrode  arrays  (sixteen  32-channel  arrays  per  subject,  Fig.  3a,  b  ,  and  Extended  Data 

 Fig.  4  ).  We  targeted  regions  that  have  been  associated  with  a  wide  range  of  motor,  planning,  and  other 

 cognitive  functions  that  may  be  relevant  to  this  task  (see  Methods),  including  (but  not  limited  to)  motor 

 control  in  primary  motor  (M1),  dorsal  premotor  (PMd),  and  ventral  premotor  cortex  (PMv)  74  ;  motor 

 planning  and  decision-making  in  PMd  and  ventral  premotor  cortex  (PMv)  75  ;  motor  abstraction  in  PMv  44  ; 

 abstract  reasoning  and  planning  in  dorsolateral  and  ventrolateral  prefrontal  cortex  76,77  (dlPFC  and 

 vlPFC)  and  frontopolar  cortex  78  (FP);  and  action  sequencing  in  the  supplementary  motor  areas  46  (SMA 

 and  preSMA).  We  recorded  48.4  +/-  19.9  units  per  area  (mean  and  S.D.  across  sessions)  for  subject  1 

 and 48.0 +/- 16.0 for subject 2 (see details in Methods). 

 We  found  clear  task-related  activity  in  all  recorded  areas  except  FP.  This  is  evident  as  non-zero 

 baseline-subtracted  trial-aligned  activity  in  Fig.  3c  .  A  coarse  inspection  revealed  that  different  areas 

 exhibited  grossly  different  activity  patterns  in  relation  to  the  ongoing  trial.  For  example,  many  units  in 

 prefrontal  areas  vlPFC  and  dlPFC  and  premotor  areas  PMd  and  PMv  had  rapid  responses  locked  to 

 the  image  onset  (  Fig.  3c  ,  at  around  0.1  s  post-onset)  and  varied  activity  patterns  during  the  planning 

 epoch.  In  contrast,  motor  area  M1  had  relatively  weak  visual  and  planning-related  activity,  but  strong 

 movement-related  activity  during  the  stroke  epoch  (  Fig.  3c  ).  Paralleling  the  behavioral  experiments,  we 

 tested  whether  activity  in  these  areas  encodes  stroke  primitives  in  a  manner  that  exhibits  motor 
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 invariance,  categorical  structure,  and  recombination.  We  found  that  a  single  area,  PMv,  exhibited  all  of 

 these properties. 

 Fig.  3.  Multi-area  neuronal  recordings  across 
 frontal cortex. 

 (a)  Recordings  were  targeted  to  multiple  areas  of 
 right  frontal  cortex,  contralateral  to  the  hand  used 
 for  drawing.  Arrays  were  targeted  stereotactically 
 and  registered  to  sulcal  landmarks,  including 
 central  sulcus  (cs),  arcuate  sulcus  (as),  and 
 principal sulcus (ps). R, rostral. D, dorsal. 

 (b)  Final  locations  of  arrays,  depicted  to  scale  on 
 3D  rendering  of  cortical  surface.  Note  that  SMA 
 and  preSMA  electrodes  targeted  the  medial  wall  of 
 the  hemisphere  (  Extended  Data  Fig.  4  ).  The 
 caudal  dlPFC  array  for  subject  2  was  implanted  but 
 malfunctioned due to cable damage. 

 (c)  Average  activity  across  trials,  grouped  by  brain 
 area  (panels)  and  split  by  unit  (inner  rows).  Before 
 averaging,  trials  were  aligned  by  linear 
 time-warping  to  a  median  trial,  aligned  at  “anchor” 
 events  that  consistently  occurred  across  trials  (see 
 Methods).  Both  single-  and  multi-units  are 
 included.  Each  unt’s  activity  was  z-scored  relative 
 to  the  baseline  time  window  preceding  image 
 onset,  and  sorted  within  each  area  from  low  to  high 
 activity  in  the  planning  epoch.  Sorting  was  done  in 
 a  cross-validated  manner,  by  determining  sort 
 indices  using  one  subset  of  data  (N  =  50  trials)  and 
 applying  those  indices  to  the  remaining  subset  that 
 is  plotted  (N  =  235).  This  plot  includes  from  a 
 single session of single-shape trials (subject 2). 

 PMv encodes stroke primitives in a manner that is invariant over location and size. 

 In  single-shape  tasks,  where  subjects  drew  primitives  that  varied  in  location  across  trials  (  Fig.  2a-e  ),  we 

 analyzed  neural  activity  during  the  planning  epoch  (between  image  onset  and  the  go  cue).  PMv  activity 

 varied  strongly  depending  on  the  planned  primitive,  with  relatively  small  influence  of  location.  For 

 example,  the  unit  shown  in  Fig.  4a,  b  fired  strongest  for  one  specific  primitive  (red),  second  strongest 

 for  another  primitive  (orange),  and  so  on,  and  this  pattern  was  similar  across  the  four  locations.  To 

 quantify  how  strongly  population  activity  encodes  primitives,  we  first  identified  a  primitive-encoding 
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 population  subspace  using  targeted  principal  components  analysis  (i.e.,  a  linear  projection  of  population 

 activity  that  maximizes  activity  variation  related  to  primitives;  see  Methods).  PMv  activity  in  this 

 subspace  varied  strongly  depending  on  the  primitive,  and  minimally  depending  on  location  (  Fig.  4c,d  ). 

 For  example,  in  Fig.  4d  ,  within  each  location  (subpanel),  primitive  trajectories  (each  color)  differed  from 

 each  other  after  image  onset  (“x”  icon),  reflecting  strong  encoding  of  primitives;  but  across  locations, 

 trajectories  were  similar,  reflecting  minimal  encoding  of  location.  In  contrast,  in  a  different  area  known 

 for  its  role  in  cognitive  control,  dlPFC,  activity  recorded  in  the  same  trials,  and  analyzed  the  same  way, 

 strongly  reflected  location,  with  minimal  encoding  of  primitive  (  Fig.  4e-h  ).  Illustrating  this  point,  in  Fig. 

 4h  primitive trajectories were similar to each other  within location, but different across locations. 

 To  quantify  the  extent  to  which  population  activity  in  each  area  encodes  primitives  vs.  locations,  we 

 devised  a  “neural  distance”  metric,  which  quantifies  the  activity  dissimilarity  between  any  two  sets  of 

 trials  representing  two  conditions  (e.g.,  different  location-primitive  conditions).  Neural  distance  is  the 

 average  pairwise  Euclidean  distance  between  all  across-condition  trials,  normalized  by  average 

 within-condition  pairwise  Euclidean  distance,  such  that  neural  distance  ranges  between  0  and  1  (a 

 ceiling,  defined  as  the  98th  percentile  of  pairwise  Euclidean  distances).  We  computed  neural  distance 

 between  each  pair  of  primitive-location  conditions.  The  resulting  pairwise  neural  distances  in  PMv  were 

 consistently  low  for  the  same  primitive  across  locations,  visible  as  off-diagonal  streaks  in  a  heatmap  of 

 pairwise  distances  (  Fig.  4i  ).  In  contrast,  the  heatmap  for  dlPFC  had  four  blocks  along  the  diagonal, 

 indicating  similar  activity  within  each  location,  regardless  of  primitive  (  Fig.  4i  ).  Summarizing  these 

 effects,  we  found  that,  in  PMv,  the  neural  distances  between  primitives  controlling  for  location  (“primitive 

 encoding”)  were  consistently  higher  than  the  distances  between  locations  controlling  for  primitives 

 (“location  encoding”)  (  Fig.  4j,  left  column).  In  dlPFC  the  opposite  was  true:  primitive  encoding  was  low 

 and  location  encoding  was  high  (  Fig.  4j,  left  column).  A  comparison  of  all  areas  (  Fig.  4j,  right  column) 

 showed  that  PMv  was  the  only  one  to  exhibit  this  combination  of  strong  primitive  encoding  and  weak 

 location encoding. 
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 This  strong  encoding  of  primitives  and  weak  encoding  of  location  suggests  that  PMv  population  activity 

 uses  the  same  population  code  for  primitives  across  locations.  We  tested  this  by  measuring  the 

 performance  of  a  linear  decoder,  trained  to  decode  primitives  at  one  location,  in  generalizing  to  held-out 

 locations.  We  found  that  cross-location  decoder  generalization  was  strong  in  PMv  and  relatively  weak  in 

 all other areas (  Fig. 4k  ). 

 In  different  sessions,  using  the  same  methods,  we  found  that  PMv  population  activity  encodes 

 primitives  in  a  manner  that  is  also  invariant  to  size  (  Extended  Data  Fig.  5  ).  Together,  these  findings 

 indicate that PMv represents primitives in a manner invariant to location and size. 
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 Fig.  4.  PMv  encodes  stroke  primitives  in  a  manner  that  is  invariant  over  location  (for  invariance  over  size 
 see Extended Data Fig. 5). 

 (a)  Raster  plot  for  an  example  PMv  unit,  showing  single-trial  spike  patterns  aligned  to  image  onset.  Trials  (rows) 
 are  grouped  by  primitive  (separated  by  purple  lines)  and  split  by  spatial  location  of  the  drawing  (columns).  The 
 go  cue  occurred  1.1  -  1.5  seconds  after  image  onset;  therefore,  the  subject’s  finger  was  held  still,  pressing  the 
 fixation button, throughout the plotted time window. 

 (b)  Smoothed  firing  rates  for  the  example  PMv  unit,  averaged  across  trials  for  each  primitive  (colors),  split  by 
 location (columns). Curves show mean and SE (N = 13 - 20 trials per primitive-location combination). 
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 (c)  PMv  population  activity  in  primitive-encoding  principal  components  (outer  rows),  showing  average  activity  for 
 each  primitive  (inner  rows),  and  split  by  location  (columns).  Here,  activity  was  z-scored  and  baseline 
 subtracted relative to activity before image onset. 

 (d)  Average  time  course  of  PMv  population  activity  (i.e.,  state  space  trajectories)  for  each  primitive  (colors), 
 plotted  in  a  subspace  spanned  by  principal  components  2  and  3.  Data  are  all  from  before  the  “go  cue”  and 
 therefore  before  movement  onset.  No  z-scoring  or  baseline  subtraction  was  performed.  Gray  legend  depicts 
 trajectory, with image onset marked with an “x” icon. 

 (e)  Analogous to panel a, but for an example dlPFC unit recorded simultaneously as the PMv unit. 

 (f)  Analogous to panel f, but for the example dlPFC unit. 

 (g)  Analogous to panel c, but for dlPFC population activity in the same session. 

 (h)  Analogous to panel d, but for dlPFC. 

 (i)  Heatmap  of  pairwise  neural  distances  between  unique  primitive-location  conditions,  for  the  same  session  as 
 panels  a-h,  averaged  over  time  (0.05  to  0.6  s  after  image  onset).  N  =  13  -  20  trials  per  primitive-location 
 combination. 

 (j)  Summary  of  primitive  encoding  and  location  encoding  across  areas  and  sessions.  In  the  left  two  panels,  each 
 point  represents  a  unique  primitive-location  condition.  Each  condition’s  primitive  encoding  is  its  average 
 neural  distance  to  all  other  conditions  that  have  the  same  location  but  different  primitive.  Location  encoding  is 
 defined  analogously.  Only  PMv  and  dlPFC  are  plotted,  to  reduce  clutter.  N  =  37  (subject  1,  aggregating  across 
 2  sessions),  59  (subject  2,  3  sessions).  In  the  right  two  panels,  each  point  depicts  the  mean  encoding  scores. 
 The  color  denotes  statistical  significance.  It  indicates  the  number  of  other  brain  areas  that  this  area  beats  in 
 pairwise  statistical  tests  of  primitive  encoding  and  location  encoding  (represented  in  the  inset  heatmap).  For 
 example,  PMv  is  deep  blue  because  it  has  higher  primitive  encoding  than  every  other  area,  but  not  higher 
 location  encoding.  See  Methods.  For  statistics,  each  data  point  was  a  unique  pair  of  primitive-location 
 conditions  (trial-averaged).  For  testing  primitive  encoding,  these  pairs  were  the  same  location,  but  different 
 primitive  [N  =  93  (subject  1),  288  (subject  2)].  For  location  encoding,  the  pairs  were  the  same  primitive,  but 
 different  location  [N  =  114  (S1),  132  (S2)].  Statistical  tests  were  performed  on  condition  pairs  pooled  across 
 sessions (2 for S1, 3 for S2). See Methods for details. 

 (k)  Across-condition  generalization  of  linear  support  vector  machine  decoders  for  primitive  (red)  and  location 
 (gray).  Top:  schematic  of  the  train-test  split  method;  the  primitive  decoder  was  trained  on  data  from  one 
 location  and  tested  on  data  from  all  other  locations  (and  analogously  for  location  decoding).  Bottom:  accuracy 
 is  linearly  rescaled  between  0  (chance)  and  1  (100%).  The  horizontal  line  represents  within-condition 
 decoding accuracy (with train-test splits partitioning data at the level of trials). 

 PMv activity reflects categorical structure of stroke primitives. 

 In  experiments  finding  behavioral  evidence  for  categorical  structure  (  Figs.  2f-j  ,  5a  )—sigmoidal  variation 

 in  behavior  even  with  linear  variation  in  images—we  found  that  PMv  activity  diverges  towards  two 

 separate  primitive-representing  states,  in  a  manner  that  aligns  with  the  planned  primitive  on  each  trial 

 (  Fig.  5  ).  This  is  illustrated  in  a  state  space  plot  of  PMv  population  trajectories  during  the  planning  epoch 

 (  Fig.  5b  ).  After  image  onset  (“x”  icon),  trials  with  behavior  resembling  primitive  1  (morphs  i-iv  ) 

 separated  from  trials  assigned  to  primitive  2  (morphs  vi,  vii  ),  such  that  activity  diverged  to  two  states 

 representing  primitives  1  and  2  (  Fig.  5b  ).  Similarly,  for  the  image  at  the  category  boundary  (morph  v  ), 
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 the  trajectories  diverged  towards  these  two  states  depending  on  whether  the  subject  was  planning  to 

 draw primitive 1 or 2 (A1 or A2, in  Fig. 5c  ). 

 To  quantify  this  neural  separation  into  two  primitive-representing  states,  we  first  computed  the 

 Euclidean  distance  between  each  pair  of  trials,  and  then  scored  each  trial  with  its  primitive  alignment 

 score,  representing  its  relative  distance  to  activity  encoding  primitives  1  and  2  (P1  and  P2).  This 

 revealed  the  same  two  hallmarks  of  categorical  structure  that  we  saw  in  behavior:  sigmoidal 

 nonlinearity  and  trial-by-trial  switching.  Sigmoidal  nonlinearity  is  evident  in  the  heatmap  of  pairwise 

 neural  distances  as  two  main  blocks  separated  by  the  category  boundary  (  Fig.  5d  ),  and  in  the  plot  of 

 primitive  alignment  versus  morph  number  (  Fig.  5e,  f  ).  Trial-by-trial  switching  between 

 primitive-representing  states  for  ambiguous  images  was  evident  in  the  heatmap  of  pairwise  neural 

 distances  (  Fig.  5d  ,  A1  is  closer  to  morphs  i  -  iv  ,  while  A2  is  closer  to  morphs  vi  -  vii  ),  and  in  the  trial-by-trial 

 variation  in  primitive  alignment  scores  (  Fig.  5e,  f  ).  Comparing  across  areas,  this  effect  was  strongest  in 

 PMv (  Fig. 5g  ). 

 We  considered  two  explanations  for  the  trial-by-trial  switching  in  PMv’s  activity  for  the  ambiguous 

 images.  One  explanation  is  that  activity  is  biased  towards  whichever  primitive-representing  state  it 

 happens  to  be  closer  to  at  baseline,  before  image  onset.  Arguing  against  this,  we  found  that  the  relative 

 proximity  of  baseline  activity  to  states  encoding  primitive  1  or  primitive  2  did  not  predict  the  chosen 

 primitive  (in  Fig.  5h  ,  before  image  onset,  A1  and  A2  activity  is  not  different).  Another  possible 

 explanation  is  competition  between  states  after  the  image  turns  on,  with  the  winning  state  determining 

 what  primitive  will  be  drawn.  Network  modeling  suggests  that  such  competition  would  manifest  as  slow 

 temporal  evolution  of  activity  towards  one  state  or  the  other  79  .  Consistent  with  this,  the  separation  of 

 activity  after  image  onset  was  slower  for  ambiguous  images  (“A2  -  A1”  in  Fig.  5h  )  than  for  images 

 unambiguously  drawn  as  primitive  1  or  primitive  2  (“P2  -  P1”  and  “U2  -  U1”  in  Fig.  5h  ).  In  behavior  as 

 well,  reaction  time  was  slower  for  ambiguous  images  (  Extended  Data  Fig.  6  ).  This  slower  temporal 
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 dynamic  in  neural  activity  is  suggestive  of  a  winner-take-all  decision  process  occurring  after  image 

 onset. 

 Fig. 5. PMv activity reflects categorical structure of stroke primitives. 

 (a)  Example  experiment  showing  discrete  structure  in  drawing  given  continuously  varying  images.  See  also  Fig. 
 2f-i  . 

 (b)  PMv  mean  population  trajectories,  showing  divergence  of  activity  after  image  onset  (x)  towards  states 
 encoding  either  primitive  1  or  2,  depending  on  whether  the  morph  was  to  the  left  (  i-iv  )  or  right  (  vi-vii  )  of  the 
 category  boundary.  Data  are  all  from  before  the  “go  cue”,  which  occurred  1.2  -  1.6  seconds  after  image  onset; 
 therefore,  the  subject’s  finger  was  held  still  (pressing  the  fixation  button)  throughout  the  plotted  time  window. 
 Principal  components  were  identified  using  PCA  (see  Methods).  Trajectory  legend  is  under  panel  c.  N  =  14  - 
 30 trials per trajectory. 

 (c)  PMv  population  trajectories  for  morph  v  ,  split  by  whether  the  subject  will  draw  primitive  1  (A1)  or  primitive  2 
 (A2), overlaid on the same subspace from panel b. N = 9 (A1) and 5 (A2) trials. 

 (d)  Heatmap  of  neural  distance  between  PMv  activity  for  each  pair  of  morphs.  The  morph  on  the  category 
 boundary  (morph  v  )  is  split  into  two  groups  based  on  the  drawing  (A1  or  A2).  N  =  5  -  30  trials  (range  across 
 morph, considering A1 and A2 separately). 

 (e)  Primitive  alignment  vs.  morph  number  for  the  example  experiment.  Primitive  alignment  quantifies  the  relative 
 similarity  of  each  trial’s  neural  activity  to  the  neural  activity  for  primitive  1  and  for  primitive  2,  and  is  defined  as 
 d  1  /(d  1  +  d  2  )  ,  where  d  1  and  d  2  represent  that  trial’s  average  Euclidean  distance  to  primitive  1  and  primitive  2. 
 Each datapoint represents a single trial (N = 5 - 30 trials). 

 (f)  Summary  of  primitive  alignment  vs.  trial  condition  across  morph  sets.  Each  morph  set  contributes  one  point  to 
 each  condition  [N  =  14  morph  sets  (5  from  S1,  9  from  S2),  including  only  morph  sets  that  have  all  six  trial 
 conditions (14/20)]. 

 (g)  Summary  of  trial-by-trial  variation  in  primitive  alignment  for  ambiguous  images  (A2  -  A1),  showing  mean  +/- 
 SE. **, p<0.005; ***, p<0.0005, paired t-test [N = 20 morph sets, combining subjects 1 (7) and 2 (13)]. 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 

 527 

 528 

 529 

 530 

 531 

 532 

 533 

 534 

 535 

 536 

 537 

 538 

 539 

 540 

 541 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 4, 2025. ; https://doi.org/10.1101/2025.03.03.641276doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.03.641276
http://creativecommons.org/licenses/by-nc-nd/4.0/


 (h)  Average  time  course  of  difference  in  primitive  alignment,  split  by  trial  condition,  and  aligned  to  image  onset 
 (mean  +/-  SE).  [N  =  14  morph  sets  (5  from  S1,  9  from  S2),  including  only  morph  sets  that  have  all  six  trial 
 conditions (14/20)]. 

 PMv activity reflects recombination of primitives into sequences. 

 When  subjects  recombine  primitives  into  a  multi-stroke  sequence  to  draw  characters  (  Fig.  2k-p  ),  does 

 this  reflect  a  reused  primitive-representing  state  in  PMv?  For  each  primitive,  we  c  ompared  PMv  activity 

 between  when  it  was  used  in  single-shape  vs.  character  tasks  (both  from  the  same  session;  see 

 Methods).  We  focused  on  activity  in  a  time  window  immediately  preceding  stroke  onset,  because,  for 

 character  tasks,  the  alternative  approach  of  using  the  entire  planning  window  leaves  uncertain  which 

 primitive  we  would  expect  to  be  represented  in  PMv.  For  characters,  we  focused  on  the  first  stroke  to 

 ensure  a  fair  comparison  between  the  two  tasks.  This  maintained  similar  pre-stroke  gross  arm 

 movements  between  single-shape  and  character  tasks  (from  the  start  button  towards  drawing), 

 ensuring  that  any  differences  in  activity  are  unlikely  to  be  due  to  differences  in  gross  movements.  This 

 also helped ensure that activity would not be influenced by the immediately preceding stroke  80  . 

 We  found  that  PMv  encodes  primitives  in  a  similar  manner  across  single-shape  and  character  tasks. 

 This  is  evident  in  the  population  activity  plotted  in  Fig.  6a,  b  ,  where  each  primitive’s  activity  (inner  rows 

 in  Fig.  6a  ,  colored  trajectories  in  Fig.  6b  )  is  similar  across  tasks  (columns  in  Fig.  6a,  b  ).  We  contrasted 

 PMv  with  preSMA,  an  area  known  to  encode  sequence-related  information  46  ,  finding  that  preSMA 

 activity  for  the  same  primitive  differed  between  the  two  tasks  (  Fig.  6c,  d  ).  A  quantification  of  the  neural 

 distance  between  each  pair  of  primitive-task  condition  (  Fig.  6e  ,  showing  PMv  and  preSMA)  confirmed 

 that  PMv  encodes  primitives  similarly  across  tasks.  This  is  visible  in  the  off-diagonal  low-distance  streak 

 for  PMv  in  the  heatmap  of  pairwise  distances  (  Fig.  6e  ),  and  in  the  summary  plot  showing  that  in  PMv 

 the  neural  distance  between  primitives  controlling  for  task  (“primitive  encoding”)  was  high  while  the 

 neural  distance  between  task  controlling  for  primitive  (“task  encoding”)  was  low  (  Fig.  6f  ).  In  contrast, 

 preSMA  activity  was  different  when  the  same  primitive  was  used  in  single-shape  or  character  tasks. 

 This  is  evident  in  the  block  structure  in  Fig.  6e  ,  and  in  preSMA  having  lower  primitive  encoding  and 
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 higher  task  encoding  compared  to  PMv  (  Fig.  6f  ).  Across  all  areas,  PMv  activity  most  consistently  had 

 high  primitive  encoding  and  low  task  encoding  (  Fig.  6f  ).  This  finding  indicates  that  representations  of 

 primitives in PMv are reused across recombined sequences. 

 Fig. 6. PMv activity reflects recombination of primitives into sequences. 

 (a)  PMv  population  activity,  projected  to  its  first  six  principal  components  using  PCA  (outer  rows),  showing 
 average  activity  for  each  primitive  (inner  rows),  and  split  by  whether  that  primitive  was  performed  in  character 
 or  single-shape  tasks  (columns).  Here,  activity  was  aligned  to  stroke  onset  and  z-scored  over  the  entire 
 depicted window. Data from a single session for subject 2. N = 4 - 16 (single-shape), 6 - 72 (character) trials. 

 (b)  PMv  population  trajectories  for  each  primitive  (color),  plotted  in  a  subspace  spanned  by  principal  components 
 2  and  3,  and  aligned  to  stroke  onset.  Gray  legend  depicts  a  trajectory  icon,  with  stroke  onset  marked  with  an 
 “x” icon. This plot shows only a subset of primitives (7/10) to reduce clutter. 
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 (c)  Analogous to panel a, but for simultaneously recorded activity in preSMA. 

 (d)  Analogous to panel b, but for simultaneously recorded activity in preSMA. 

 (e)  Heatmap  of  pairwise  neural  distances  between  each  unique  combination  of  primitive  and  task  kind,  for  the 
 experiment in panels a-d. N = 4 - 16 (single-shape), 6 - 72 (character) trials. 

 (f)  Summary  of  primitive  encoding  and  task  encoding  across  areas  and  sessions.  Points  show  mean  encoding 
 scores  .  The  color  of  each  poi  nt  denotes  statistical  significance  (analogous  to  Fig.  4j  ).  It  indicates  the  number 
 of  other  brain  areas  that  this  area  beats  in  pairwise  statistical  tests  of  primitive  encoding  and  task  encoding 
 (represented  in  the  inset  heatmap).  Each  data  point  was  a  unique  pair  of  primitive-task  conditions 
 (trial-averaged).  For  testing  primitive  encoding,  these  pairs  were  the  same  task  type,  but  different  primitive  [N 
 =  350  (subject  1),  380  (subject  2)].  For  task  encoding,  the  pairs  were  the  same  primitive,  but  different  task 
 type  [N  =  29  (S1),  48  (S2)].  Statistical  tests  were  performed  on  condition  pairs  pooled  across  sessions  (10  for 
 S1, 9 for S2). 
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 Discussion 

 Identification of a neural substrate of symbols 

 We  identified  a  localized  neural  population  encoding  action  symbols.  We  tested  for  three  essential 

 properties  of  symbols—invariance,  categorical  structure,  and  recombination—in  both  behavior  and 

 recordings.  In  behavior,  we  found  that  monkeys  successfully  trace  complex  geometric  figures  by 

 recombining  discrete  strokes,  which  exhibit  motor  invariance  (  Fig.  2a-e  )  and  categorical  structure  (  Fig. 

 2f-j  ),  into  new  composed  sequences  (  Fig.  2k-p  ).  These  properties  indicate  that  strokes  reflect  internal 

 representations  of  action  symbols.  In  recordings  across  motor,  premotor,  and  prefrontal  cortex  (  Fig.  3  ), 

 we  found  that  population  neural  activity  in  PMv  encodes  strokes  in  a  manner  that  reflects  motor 

 invariance  (  Fig.  4),  categorical  structure  (  Fig.  5  ),  and  recombination  (  Fig.  6  ).  PMv  activity  also  shows 

 visual  invariance.  In  two  experiments  that  dissociated  image  from  action,  PMv  encoded  the  planned 

 action  instead  of  the  image.  These  were  experiments  where  (i)  the  same  ambiguous  image  was  drawn 

 across  trials  as  one  action  symbol  or  another  (  Fig.  5f  ,  “A2”  differs  from  “A1”),  and  (ii)  when  character 

 and  single-shape  tasks  presented  different  images  that  elicited  the  same  action  (  Fig.  6f  ,  PMv  has  high 

 primitive  encoding  and  low  task  encoding).  This  finding  of  a  localized  representation  of  action  symbols 

 in  PMv  indicates  an  important  role  for  symbols  in  producing  novel,  goal-directed  action  sequences. 

 More  broadly,  this  finding  supports  the  hypothesis  that  cognition  can  be  understood,  at  the  algorithmic 

 level,  in  terms  of  internal  symbolic  operations,  a  hypothesis  that  so  far  has  been  based  largely  on 

 behavioral and modeling evidence  2–7,9–11,14  . 

 The  identification  of  a  symbolic  neural  representation  in  monkeys  may  provide  more  general  insights 

 into  the  neural  basis  and  evolutionary  origins  of  symbols.  Certain  abstract  properties—notably 

 reversible  symbol  reference  81  ,  and  the  ability  to  recombine  using  higher-order  relations  9,82  and  recursive 

 syntax  7,9,83  —are  thought  to  characterize  the  kinds  of  symbolic  representations  used  in  language, 

 mathematics,  and  formal  reasoning  in  humans  7,9,81–85  .  These  abstract  properties  have  not  been  readily 

 apparent  in  animal  behavior  9,81,82,84,85  ,  suggesting  they  may  be  specific  to  humans.  At  the  same  time, 

 animals  demonstrate  a  variety  of  behaviors  that  appear  consistent  with  internal  symbolic 
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 representations  (see  Introduction)  11,23–27,29–31,31  ,  raising  the  possibility  that  symbols  may  contribute  across 

 cognitive  faculties  and  animal  species.  Different  kinds  of  symbols  may  have  different  properties 

 appropriate  for  the  abilities  they  contribute  to,  but  they  would  share  the  core  property  of  being  discrete 

 units  that  are  internally  recombined  to  support  generalization  11  .  We  discovered  that  at  least  one  kind  of 

 symbolic  neural  representation  (action  symbols)  exists  in  macaque  monkeys.  This  discovery  supports 

 the  view  that  symbolic  operations  may  in  some  form  be  common  across  species  and  cognitive 

 domains.  It  remains  to  be  determined  whether  and  how  the  neural  substrates  identified  here  relate  to 

 other  proposed  kinds  of  symbols,  including  those  with  abstract  properties  hypothesized  to  be  unique  to 

 humans  7,9,81–85  .  Nonetheless,  our  finding  of  a  representation  of  action  symbols  raises  the  possibility  that 

 a  core  set  of  neural  mechanisms  for  generating  discrete,  invariant  representations  and  recombining 

 them may exist across primates and possibly other taxa. 

 Abstraction using action symbols in ventral premotor cortex 

 There  is  strong  evidence  for  invariant  representations  in  neuronal  activity,  especially  in 

 PFC  28,42,43,47,48,50–52  and  medial  temporal  lobe  41,43,49,54,56,57  ;  in  contrast,  we  found  encoding  of  action 

 symbols  in  ventral  premotor  cortex.  Thi  s  finding  is  surprising  in  view  of  those  prior  studies,  suggesting  a 

 reassessment  of  the  brain  regions  supporting  abstraction.  In  particular,  it  suggests  that  PMv  is  also 

 critical  for  abstraction:  in  particular,  those  kinds  of  abstractions  related  to  motor  behavior.  This  may  be 

 related  to  the  fact  that  PMv  is  directly  connected  with  both  higher-order  frontal  areas  (vlPFC  and 

 preSMA)  86  and  motor  areas  (M1  and  spinal  cord)  86,87  ,  positioning  PMv  at  the  nexus  of  cognitive  and 

 motor  circuits.  Consistent  with  a  critical  role  for  premotor  areas  in  motor  abstraction  are  findings  from 

 human  functional  imaging  and  lesion  studies  linking  premotor  cortex  to  the  perception,  imitation, 

 planning,  and  imagination  of  action,  including  in  handwriting  88–90  ,  tool  use  91,92  ,  dance  93  ,  and  other 

 domains  94,95  .  A  possibility  is  that  these,  and  related  findings,  may  have  a  unified  explanation  as  internal 

 operations on action symbols. 
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 The  finding  of  action  symbol  representations  in  PMv  is  consistent  with  prior  evidence  for  invariant  action 

 representations  in  PMv,  especially  in  the  context  of  goal-directed  hand  movements,  such  as  grasping 

 and  object  manipulation  44  .  Recordings  have  revealed  a  diversity  of  motor-invariant  firing  patterns, 

 including  encoding  grasp  properties  independent  of  the  arm  being  used  96  ,  kinematics  independent  of 

 muscle  dynamics  97  ,  and  tool  use  regardless  of  hand  posture  98  .  Perhaps  most  strikingly,  PMv  conta  ins 

 “mirror  neurons”,  which  fire  similarly  whether  one  observes  or  performs  a  given  action  60  .  These  abstract 

 firing  properties  in  PMv  have  been  proposed  to  support  a  variety  of  functions,  including  object-oriented 

 visuo-motor  transformation  44,99,100  ,  understanding  of  others’  actions  60  (but  see  ref  101  ),  imitation  60  ,  and 

 mental  imagery  69  .  Perhaps  most  related  to  action  symbols,  PMv  has  been  proposed  to  encode  a 

 “vocabulary”  of  discrete  actions  44,60,99  .  All  of  these  proposals  differ  importantly  from  action  symbols, 

 both  conceptually—action  symbols  place  stronger  emphasis  on  categorical  structure  and 

 recombination—and  experimentally—we  tested  both  categorical  structure  (in  a  systematic  manner  not 

 previously  done)  and  recombination  into  novel  sequences  (differing  from  previous  studies,  which 

 behaviorally  tested  only  a  few  well-practiced  sequences  102,103  ).  We  also  recorded  more  areas  than  in 

 prior  studies,  which  was  essential  for  revealing  specialization  in  PMv.  This  action  symbol  framework 

 may thus provide a unifying understanding of PMv’s functions. 

 The  precise  neural  circuit  mechanisms  for  encoding  symbols  remain  to  be  determined,  but  our  finding 

 of  a  neural  substrate  encoding  action  symbols  provides  a  starting  point  to  address  this  question. 

 Importantly,  evidence  already  suggests  that  the  circuit  mechanisms  underlying  action  symbo  l 

 representation  in  PMv  depend  on  local  processes  within  PMv,  as  opposed  to  being  driven  entirely  by 

 image  properties  in  a  feedforward  manner,  or  by  symbol  representations  inherited  from  another  region. 

 First,  as  noted  above,  we  found  that  PMv  was  not  driven  directly  by  image  properties,  but  instead 

 encoded  the  planned  action.  Second,  we  recorded  from  two  of  the  higher-order  areas  ,  vlPFC  and 

 preSMA,  that  provide  input  to  PMv  86  ,  and  did  not  find  activity  strongly  representing  symbols  .  PMv  also 

 receives  inputs  from  the  anterior  intraparietal  area  (AIP)  104  ,  but  there  is  evidence  that  these  inputs  more 

 strongly  reflect  visual  th  an  action  parameters  100  .  Together,  these  lines  of  evidence  suggest  that  action 
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 symbol  representations  depend  on  computations  within  PMv.  These  computations  may  reflect 

 winner-take-all  dynamics  between  discrete  attractor  states  encoding  action  symbols  79  ,  which  may 

 explain  the  slow  activity  dynamics  for  ambiguous  images  (  Fig.  5h  ),  and  which  is  consistent  with  a 

 proposed  role  for  PMv  in  decision-making  105  .  Future  studies  investigating  neural  processes  in  PMv  may 

 give insight into circuit mechanisms for generating symbolic representations. 

 Action sequences as composition of symbols 

 We  introduced  a  task  paradigm  testing  compositional  generalization  by  recombining  action  symbols  into 

 novel  sequences.  This  task  has  three  critical  design  features:  (i)  a  large  set  of  possible  problems  that 

 share  common  structure  [i.e.,  shape  components  variably  transformed  (  Fig.  2a-j  )  and  connected  in 

 composites  (  Fig.  2k-p  )];  (ii)  a  lack  of  direct  instructive  cues  or  strong  constraints  on  how  to  draw,  forcing 

 subjects  to  decide  on  their  own;  and  (iii)  initial  training  to  impart  structured,  generalizable  prior 

 knowledge  (action  symbols).  Compositional  generalization  has  not,  to  our  knowledge,  been  the  subject 

 of  prior  studies  of  neural  substrates  of  motor  behavior,  which  have  used  tasks  that  fall  largely  into  the 

 following  (not  mutually  exclusive)  classes:  automatic,  instructed,  working-memory-guided,  or 

 minimally-restrained  (expanding  the  classification  scheme  from  Mizes  et  al.  106  ).  Automatic  movements 

 are  highly-practiced  sequences  (typically  thousands  of  practice  trials  or  more)  executed  with  high 

 stereotypy,  often  as  a  single  “chunk”  without  the  need  for  moment-by-moment  instruction  71,106–117  . 

 Instructed  movements  are  guided  by  external  cues  that  indicate  specific  actions,  either  directly  (e.g., 

 the  location  of  a  visual  cue  instructing  where  to  reach)  80,106,118–121  or  indirectly  from  learned  rules 

 associated  with  each  cue  (e.g.,  the  rule  that  a  red  square  means  “reach  left”)  29,47,122  . 

 Working-memory-guided  movements  are  produced  from  short-term  memory,  soon  (seconds  to  minutes) 

 after  the  movement  was  instructed  or  learned  28,106,107,121,123  .  Minimally-restrained  movements  are 

 spontaneously  produced  in  a  naturalistic  setting  that,  in  contrast  to  common  task-based  paradigms,  is 

 less  constrained  both  physically  and  in  terms  of  specifically  defined  problems  124–127  .  Previous 

 drawing-like  tasks  in  monkeys  can  be  classified  as  either  automatic  128  ,  instructed  129,130  ,  or 

 unconstrained  130  .  Our  study  therefore  complements  existing  task  paradigms  by  establishing  a  new 
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 approach  to  probe  the  neural  mechanisms  of  action  symbols  in  motor  behavior.  These  mechanisms 

 may  turn  out  to  also  underlie  other  forms  of  motor  abstraction  described  elsewhere,  including  plans  131  , 

 hierarchies  132,133  , and categories  134  . 

 We  note  that  action  symbols  differ  importantly  from  the  well-studied  concept  of  motor  primitives  135–137  . 

 While  both  motor  primitives  and  action  symbols  can  be  understood  as  building  blocks  of  movement, 

 they  operate  at  different  levels  of  abstraction  and  serve  different  roles.  Motor  primitives  reflect 

 movement  parameters  at  a  lower  level  of  abstraction,  at  the  level  of  spinal  cord  and  muscle  activity  136 

 (although  see  evidence  in  M1  activity  138  ),  and  they  contribute  to  movement  by  simplifying  complex 

 (rapidly  varying,  high-dimensional)  movements  into  simpler  (slowly  varying,  low-dimensional)  control 

 parameters,  such  as  in  muscle  synergies  135  .  In  contrast,  action  symbols  are  higher-level  cognitive 

 representations  that  internally  compose  to  organize  action  (potentially  supporting  processes  like 

 planning  and  imagination).  Consistent  with  this,  we  found  encoding  of  action  symbols  (i)  during  the 

 planning  phase  and  therefore  not  temporally  linked  to  ongoing  movements  (  Figs.  4,  5  ),  (ii)  exhibiting 

 motor  invariance  in  both  behavior  (  Fig.  2a-e  )  and  neural  activity  (  Fig.  4  ),  (iii)  supporting  compositional 

 generalization (  Fig. 6  ), and (iv) encoded in a higher-order  cortical area, PMv (  Figs. 4-6  ). 

 A foundation for understanding symbolic operations in neural representations and dynamics 

 This  action  symbol  representation  in  PMv  may  provide  an  entry  point  to  bridge  between  two  paradigms 

 that  have  dominated  the  modeling  of  cognition:  one  based  on  symbolic  representations  and  rule-based 

 operations  2–10  and  the  other  on  neural  network  architectures  and  dynamical  systems  33,34,36,37,39  .  While 

 these  views  have  sometimes  been  considered  to  be  at  odds,  it  is  recognized  that  explaining  cognition 

 depends  on  their  unification,  possibly  by  implementing  symbolic  operations  in  appropriate  neural 

 representations  and  dynamics  25,47,139–144  .  One  promising  approach  expresses  symbolic  computation  in 

 terms  of  symbolic  algorithms  analogous  to  computer  programs  4,7,10,14–17,47  .  These  algorithms,  in  turn, 

 may  potentially  be  understood  in  terms  of  neural  representations  and  dynamics  47,65,139–143  (possibly 

 building  on  insights  from  task-optimized  network  models  34,35,39,145,146  ).  Importantly,  implementations  of 
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 symbolic  algorithms  in  neural  processes  can  lead  to  specific  predictions  for  activity.  To  illustrate,  the 

 drawing  program  “repeat  circle  three  times”—represented  symbolically  as  REPEAT(◯,  3),  combining 

 the  action  symbol  ◯  with  a  syntactic  operation  REPEAT—could  be  encoded  in  a  multi-module  neural 

 architecture,  with  one  REPEAT  module  counting  up  from  one  to  three,  and  a  second  DRAW  module 

 that,  on  each  increment  of  that  counter,  draws  a  circle.  In  the  brain,  such  program-like  activity  may  be 

 observed  in  neural  populations  in  PMv,  and  perhaps  in  PFC  and  preSMA,  areas  that  are  directly 

 interconnected  with  PMv  86  ,  and  have  been  shown  to  encode  abstract  sequential  information  28,46,147–149  , 

 including,  in  PFC,  sequential  activity  states  resembling  program  operations  47  .  Looking  forward,  an 

 important  aspect  of  our  finding  an  action-symbol-encoding  population  is  that  it  could  provide  the 

 substrate  for  future  studies  to  test  for  activity  dynamics  consistent  with  symbolic  operations  in 

 programs.  Identifying  such  activity  would  be  a  significant  step  towards  a  computational  explanation  of 

 intelligence  that  spans  levels  of  behavior,  cognition,  and  neural  mechanisms,  and  that  could  generalize 

 beyond action to other abilities that seem to reflect internal  program-like algorithms  7,10,14  . 
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 Methods 

 Subjects and surgical procedures 

 Data  were  acquired  from  two  adult  male  macaques  (  Macaca  mulatta  ,  average  weights  17  kg  (S1)  and 

 10  kg  (S2),  average  ages  9  years  (S1)  and  7  years  (S2)).  All  animal  procedures  complied  with  the  NIH 

 Guide  for  Care  and  Use  of  Laboratory  Animals  and  were  approved  by  the  Institutional  Animal  Care  and 

 Use Committee of the Rockefeller University (protocol 24066-H). 

 After  undergoing  initial  task  training  in  their  home  cages,  subjects  underwent  two  surgeries,  the 

 first  to  implant  an  acrylic  head  implant  with  a  headpost,  and  the  second  to  implant  electrode  arrays. 

 Both  surgeries  followed  standard  protocol,  including  for  anesthetic,  aseptic,  and  postoperative 

 treatment.  In  the  first  surgery,  a  custom-designed  MR-compatible  Ultem  headp  ost  was  implanted, 

 surrounded  by  a  b  one  cement  cranial  implant,  or  “headcap”  (Metabond,  Parkell  and  Palacos,  Heraeus), 

 which  was  secured  to  the  skull  using  MR-compatible  ceramic  screws  (Rogue  Research).  After  a  six 

 month  interval,  to  allow  bone  to  grow  around  the  screws  and  for  the  subject  to  acclimate  to  performing 

 the  task  during  head  fixation  via  the  headpost,  we  performed  a  second  surgery  to  implant  16  floating 

 microelectrode  arrays  (32-channel  FMA,  Microprobes),  following  standard  procedures  150  .  Briefly,  after 

 performing  a  craniotomy  and  durotomy  over  the  target  area,  arrays  were  inserted  one  by  one 

 stereotactically,  held  at  the  end  of  a  stereotaxic  arm  with  a  vacuum  suction  attachment  (Microprobes). 

 Using  vacuum  suction  allowed  us  to  release  the  arrays,  after  insertion,  with  minimal  mechanical 

 perturbation  by  turning  off  the  suction.  After  all  arrays  had  been  implanted,  the  dura  mater  was  loosely 

 sutured  and  covered  with  DuraGen  (Integra  LifeSciences).  The  craniotomy  was  closed  with  bone 

 cement. 

 We  used  standard  density  arrays  (1.8  mm  x  4  mm)  for  all  areas,  except  SMA  and  preSMA,  for 

 which  we  used  four  high  density  arrays  (1.6  mm  x  2.95  mm).  Four  additional  electrodes  on  each  array 

 served  as  reference  and  ground.  T  wo  arrays  were  targeted  to  each  of  multiple  areas  of  frontal  cortex, 

 with  locations  identified  stereotactically,  and  planned  using  brain  surface  reconstructions  derived  from 

 anatomical  MRI  scans.  Locations  were  selected  based  on  their  published  functional  and  anatomical 

 properties  (see  below),  anatomical  sulcal  landmarks,  and  a  standard  macaque  brain  atlas  151  .  During 
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 surgery,  locations  were  further  adjusted  based  on  cortical  landmarks,  and  to  avoid  visible  blood  vessels. 

 Arrays were implanted in the right hemisphere (contralateral to the arm used for drawing). 

 Array  locations  are  depicted  in  Fig.  3b  (confirmed  with  intraoperative  photographs).  For  M1,  we 

 targeted  hand  and  arm  representations  (F1),  directly  medial  to  the  bend  of  the  central  sulcus  (which 

 corresponds  roughly  to  the  intersection  of  the  central  sulcus  and  the  arcuate  spur  if  the  latter  were 

 extended  caudally),  based  on  retrograde  labeling  from  spinal  cord  and  microstimulation  of  M1  87  and  M1 

 recordings  118  .  For  PMd,  we  placed  both  arrays  lateral  to  the  precentral  dimple,  with  one  (more  caudal) 

 array  directly  medial  to  the  arcuate  spur  (the  arm  representation  87,118,152  ,  F2),  and  the  other  was  placed 

 more  rostrally  (straddling  F2  and  F7).  For  PMv,  we  targeted  areas  caudal  to  the  inferior  arm  of  the 

 arcuate  sulcus  (F5),  which  are  associated  with  hand  movements  based  on  retrograde  labeling  from 

 spinal  cord  87  and  M1  153  ,  microstimulation  154  and  functional  studies  100,105,155  .  These  areas  contain  neurons 

 interconnected  with  PFC  153  .  For  SMA  (F3)  and  preSMA  (F6),  we  targeted  the  medial  wall  of  the 

 hemisphere,  with  the  boundary  between  SMA  and  preSMA  defined  as  the  anterior-posterior  location  of 

 the  genu  of  the  arcuate  sulcus,  consistent  with  prior  studies  finding  significant  differences  across  this 

 boundary  in  anatomical  connectivity  (e.g.,  direct  spinal  projections  in  SMA  but  not  preSMA  156  )  and 

 function  46,157  .  SMA  arrays  were  largely  in  the  arm  representation  156  .  For  dlPFC,  we  targeted  the  region 

 immediately  dorsal  to  the  principal  sulcus  (46d),  following  prior  studies  of  action  sequencing  28,47,158  and 

 other  cognitive  functions  159  .  For  vlPFC,  we  targeted  the  inferior  convexity  ventral  to  the  principal  sulcus, 

 with  one  (more  rostral)  array  directly  ventral  to  the  principal  sulcus  (46v)  and  the  other  rostral  to  the 

 inferior  arm  of  the  arcuate  sulcus  (45A/B),  based  on  evidence  for  encoding  of  abstract  concepts  in 

 regions  broadly  spanning  these  two  locations  52,160,161  ,  including  a  possible  heightened  role  (compared  to 

 dlPFC)  in  encoding  abstract  concepts  in  a  manner  invariant  to  temporal  or  spatial  parameters  160,162,163  . 

 For  FP,  we  targeted  a  rostral  location  similar  to  prior  recording  and  imaging  studies  (one  array  fully  in 

 area  10,  the  other  straddling  9  and  10)  164,165  .  In  general,  array  locations  targeted  the  cortical  convexity 

 immediately  next  to  sulci,  instead  of  within  the  banks,  in  order  to  allow  shorter  insertion  depths  that 

 minimize  the  risk  of  missing  the  target.  The  exceptions  were  SMA  and  preSMA  in  the  medial  wall,  for 
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 which  this  was  not  possible.  To  avoid  damaging  the  superior  sagittal  sinus,  we  positioned  the  arrays 

 laterally (2 mm from midline) and slanted the electrodes medially (  Extended Data Fig. 4  ). 

 The  lengths  of  each  electrode  were  custom-designed  to  target  half-way  through  the  gray  matter, 

 and  to  vary  substantially  across  the  array,  to  maximize  sampling  of  the  cortical  depth.  Electrode  lengths 

 spanned  1.5  -  3.5  mm  (M1),  1.5  -  3.1  mm  (PMd,  PMv),  2.8  -  5.8  mm  (SMA,  preSMA),  1.5  -  2.5  mm 

 (dlPFC,  vlPFC),  and  1.5  -  2.6  mm  (FP)  for  subject  1,  and  1.7  -  3.75  (M1),  1.5  -  3.3  mm  (PMv),  1.5  -  3.1 

 mm  (PMd),  2.65  -  5.95  mm  (SMA,  preSMA),  1.75  -  3.15  mm  (dlPFC),  1.35  -  3.2  mm  (vlPFC),  and  1.6  - 

 2.9  mm  (FP)  for  subject  2.  Reference  electrodes  were  longer  (6  mm)  to  anchor  the  arrays.  28 

 electrodes  were  Pt/Ir  (0.5  MΩ)  and  4  were  Ir  (10  kΩ)  (for  microstimulation).  Array  connectors  (Omnetics 

 A79022)  were  housed  in  custom-made  Ultem  pedestals  (Crist),  which  were  secured  with  bone  cement 

 onto the cranial implant. Four pedestals were used per subject, holding 5, 5, 4, and 2 connectors each. 

 Behavioral task 

 Task overview 

 Subjects  were  seated  comfortably  in  the  dark  with  their  head  restrained  by  fixing  the  headpost 

 to  the  chair.  They  faced  a  touchscreen  (Elo  1590L  15”  E334335,  PCAP,  768  x  1024  pixels,  refresh  rate 

 60  Hz,  with  matte  screen  protector  to  reduce  finger  friction)  that  presented  images  and  was  drawn  on. 

 The  touchscreen  location  was  optimized  to  allow  ea  ch  subject  to  easily  draw  at  all  relevant  locations  on 

 the  screen  (23  to  26  cm  away;  see  diagram  in  Extended  Data  Fig.  1  ).  Both  subjects  decided  on  their 

 own  over  the  course  of  learning  to  perform  the  task  with  the  left  hand.  The  chairs  were  designed  to 

 minimize  movements  of  the  torso  and  legs  (by  using  a  loosely  restricting  “belly  plate”),  and  of  the 

 non-drawing  arm  (by  restricting  movement  to  within  the  chair).  Gravity-delivered  reward  (water-juice 

 mixture)  was  controlled  by  the  opening  and  closing  of  a  solenoid  pinch  valve  (Cole-Parmer,  1/8"  ID). 

 Subjects  were  water-regulated,  with  careful  monitoring  that  consumption  met  the  minimum  requirement 

 per  day  (and  typically  exceeded  it),  and  weight  was  closely  monitored  to  ensure  good  health.  The  task 

 was  controlled  with  custom-written  software,  using  the  MonkeyLogic  behavioral  control  and  data 

 acquisition  MATLAB  package  166  .  (PC:  Windows  10  Pro,  Intel  Core  i7-4790K,  32GB  RAM;  DAQ:  National 
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 Instruments  PCIe-6343).  All  stimuli  (images  of  line  figures  defined  as  point  sets)  were  also  generated 

 with  custom-written  MATLAB  code.  Images  were  presented  in  a  “workspace”  area  on  the  screen  (16.6 

 cm  x  16.9  cm,  corresponding  to  approximately  37°  by  38°  visual  angle).  Shape  components  in  images 

 were on average 4.0 cm (9°) (taking the maxim  um of  width and height). 

 Each  neural  recording  session  consisted  of  a  day’s  recording  (2  -  3.5  hours).  We  collected  5-20 

 trials  per  condition  (i.e.,  each  unique  image  for  Figs.  4,  5  and  single-shape  tasks  in  Fig.  6  ;  each 

 primitive  stroke  for  character  tasks  in  Fig.  6  ).  All  trials  were  shuffled  across  all  conditions  within  the 

 session,  and  presented  in  a  randomly  interleaved  fashion,  except  for  one  case,  the  experiment  in  Fig. 

 6  , in which character and single-shape tasks were  switched in blocks. 

 Early Training 

 Before  surgery,  naive  subjects  underwent  initial  training  on  core  task  components  (i.e.,  to  trace  images 

 accurately  on  a  touchscreen,  using  a  sequence  of  discrete  strokes).  Early  training  took  place  in  the 

 home  cage,  using  custom-built  rigs  that  attached  to  an  opening  in  the  cage,  using  the  same  hardware 

 and  software  described  above,  except  for  a  different  computer  (Lenovo  IdeaPad  14"  laptop,  Windows 

 10,  AMD  Ryzen  5  3500U,  8GB  RAM)  and  DAQ  (National  Instruments  USB-6001).  This  initial  training 

 progressed  through  the  following  stages:  (1)  Touch  circle  .  Subjects  were  rewarded  for  touching  a  circle 

 anywhere  within  its  bounds.  The  circle  started  large,  filling  the  entire  screen,  and  shrank  over  trials  to 

 enforce  more  accurate  touches.  (2)  Touch  with  a  single  finger  .  We  shrank  the  circle  until  it  was  so  small 

 that  it  could  only  be  touched  with  a  single  finger.  The  trial  aborted  if  the  subject  touched  outside  the 

 circle,  or  with  multiple  fingers  simultaneously.  (3)  Hold  still  .  Subjects  were  rewarded  for  keeping  their 

 fingertip  still  on  a  dot,  with  the  duration  of  this  hold  increasing  across  trials  (up  to  a  few  seconds).  (4) 

 Track  moving  dot.  Subjects  had  to  track  the  dot  with  their  finger  as  it  moved  (a  lag  between  dot  and 

 finger  was  allowed).  (5)  Trace  a  line.  We  increased  the  speed  of  the  moving  dot  over  trials,  until 

 eventually  the  dot  moved  so  fast  that  the  line  it  traced  appeared  immediately.  We  then  positioned  the 

 line  at  locations  far  from  the  hold  position  to  train  the  subject  to  raise  its  finger  from  the  hold  position 

 and  trace  lines  at  arbitrary  locations,  angles,  and  lengths.  (6)  Trace  single  shape.  We  presented  shapes 
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 of  increasing  difficulty  (gradually  “morphing”  across  trials  from  a  straight  line),  including  arcs, 

 “L”-shapes,  and  squiggles,  and  circles.  Across  these  stages,  the  shapes  were  presented  at  random 

 locations.  We  did  not  enforce  any  particular  tracing  strategy  for  each  shape  (e.g.,  which  endpoint  to 

 start  at),  allowing  subjects  to  choose  on  their  own.  (7)  Trace  multiple  shapes.  We  presented  images 

 composed  of  multiple  disconnected  shapes.  This  trained  the  subjects  to  understand  that  they  should 

 use  multiple  strokes  to  trace  multiple  shapes.  At  this  point,  the  subject  understood  the  basic  structure  of 

 the  task—to  trace  shapes,  using  multiple  strokes  if  needed.  The  progression  across  these  stages  was 

 not  determined  by  strict  quantitative  criteria,  but  instead  on  a  combination  of  quantitative  and  qualitative 

 evaluations of how well the subjects understood the task. 

 After  this  basic  training,  subjects  practiced  various  tasks  to  incentivize  the  learning  of  stroke 

 primitives  (consistent  stroke  trajectories  for  each  shape).  They  practiced  single-shape  trials  using  the 

 set  of  diverse  simple  shapes  in  Fig.  1e  ,  varying  randomly  in  shape  and  location  across  trials.  On 

 different  days,  subjects  also  practiced  multi-shape  and  character  tasks.  Below,  we  describe  the  trial 

 structure, followed by details for single-shape, multi-shape, and character tasks. 

 Trial structure 

 As  depicted  in  Fig.  1c  ,  trials  began  when  the  subject  pressed  and  held  a  finger  fixation  button  (blue 

 square)  at  the  bottom  of  the  screen  (grey  background;  note  that  in  this  article  “button”  always  means  a 

 virtual  button;  diagram  of  screen  in  Extended  Data  Fig.  1c  ).  After  a  random  delay  (uniform,  0.2  s 

 window,  earliest  [0.4,  0.6]  s  and  latest  [0.8,  1.0]  s  across  experiments  for  subject  1  and  [0.8,  1.1]  s  for 

 subject  2)  the  image  appeared  (figure  colored  dark  grey).  After  a  random  delay  (uniform,  ranging  from 

 [0.6,  1.0]  s  to  [1.2,  1.6]  s  across  experiments  for  subject  1,  and  [1.1,  1.5]  s  to  [1.8,  2.4]  s  for  subject  2),  a 

 “go”  cue  (400  Hz  tone  and  image  blank  for  300  ms)  was  presented.  This  delay  between  image 

 presentation  and  go  cue  we  call  the  “planning”  epoch.  The  subject  had  to  keep  its  finger  still  on  the 

 fixation  button  during  the  planning  epoch.  After  the  onset  of  the  go  cue,  the  subject  was  free  to  raise  its 

 finger,  move  its  hand  towards  the  image,  and  start  drawing.  During  drawing,  the  image  stayed  visible, 

 and  the  finger  left  a  trail  of  black  “ink”  on  the  screen.  Immediately  after  the  finger  was  raised  from  the 
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 fixation  button  after  the  go  cue,  the  “fixation  button”  disappeared  and  a  “done  button”  (green  square) 

 appeared  at  its  location  and  stayed  on.  The  drawing  epoch  ended  when  the  subject  signaled  it  had 

 completed  the  drawing,  by  pressing  the  “done  button”  (no  time  limit  was  imposed).  This  was  followed  by 

 a  delay  (uniformly  sampled,  0.65  to  1  s),  followed  by  performance  feedback.  Feedback  spanned  four 

 modalities,  each  signalling  performance:  (i)  screen  color,  (ii)  sound  cue,  (iii)  duration  of  a  delay  before 

 getting  reward,  and  (iv)  reward  magnitude.  First,  screen  color  and  sound  were  signaled,  followed  by  the 

 pre-reward  delay  and  then  the  reward.  How  performance  was  scored  and  converted  to  feedback  is 

 described  below.  In  addition  to  providing  this  feedback  at  the  end  of  the  trial,  we  also  provided  feedback 

 online  by  immediately  aborting  a  trial  if  subjects  made  serious  errors,  including  (i)  if  they  touched  a 

 position  far  from  any  image  points,  and,  (ii)  for  single-shape  and  multi-shape  trials,  if  they  used  more 

 than  one  stroke  per  shape  in  the  image.  These  “online  abort”  modes  were  turned  off  for  trials  testing 

 novel characters. 

 Screen  image  changes  (including  image  presentation  and  trial  events)  were  recorded  using 

 photodiodes  (Adafruit  Light  Sensor  ALS-PT19)  and  sounds  were  recorded  using  an  electret 

 microphone  (Adafruit  Maxim  MAX4466,  20-20KHz).  We  performed  eye  tracking  (ISCAN),  but  did  not 

 enforce eye fixation. 

 Scoring behavioral performance 

 Behavior  was  scored  by  aggregating  multiple  metrics,  or  “factors”.  There  were  three  classes  of  factors. 

 The  primary  class  measured  image  similarity  ,  or  the  similarity  of  the  final  drawing  to  the  target  image 

 (ignoring  its  temporal  trajectory).  This  factor  had  the  greatest  influence  on  the  final  aggregate  score. 

 Additionally,  we  computed  factors  reflecting  behavioral  efficiency  ,  and,  in  some  cases,  factors  that  were 

 task-specific  .  These  scores  were  computed  on  behavioral  data,  which  was  represented  as  a  sequence 

 of  touched  points  (x-y  coordinates)  with  gaps  between  strokes,  and  image  data,  represented  as  a  set  of 

 x-y coordinates. First, we describe the factors, and then how they were aggregated into a single score. 

 Image  similarity  .  This  included  two  factors:  drawing-image  overlap  and  Hausdorff  distance. 

 Drawing-image  overlap  was  computed  as  the  fraction  of  the  image  points  that  were  “touched”  (within  a 
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 margin  of  error)  by  at  least  one  of  the  drawn  points.  A  subset  of  the  image  points  were  weighted  more 

 heavily  because  they  captured  unique  features  of  the  shape  (e.g.,  the  corners  and  endpoints  of  an  “L” 

 shape).  Hausdorff  distance  is  a  distance  metric  between  the  set  of  drawn  points  and  the  set  of  image 

 points (see definition below). 

 Behavioral  efficiency  .  To  incentivize  efficiency,  we  included  a  factor  comparing  the  cumulative 

 distance  traveled  in  the  drawing  (i.e.,  the  amount  of  “ink”)  to  the  cumulative  distance  of  the  edges  of  the 

 figure in the image, with its value negatively proportional to the excess of drawn ink over image ink. 

 Task-specific  factors.  During  practice  trials  for  character  tasks  (see  “Task  types”),  we  also 

 included  factors  capturing  the  extent  to  which  drawn  strokes  matched  the  shapes  used  in  the  image 

 figure.  This  included  two  factors:  one  proportional  to  the  similarity  of  the  number  of  strokes  and  the 

 number  of  image  shapes,  and  the  other  proportional  to  the  spatial  alignment  of  the  drawn  strokes  to  the 

 image  shapes.  Importantly,  these  factors  were  included  only  for  practice  images,  not  for  novel  test 

 images. 

 The  final  score  aggregated  the  image  similarity,  behavioral  efficiency,  and  task-specific  factors, 

 with  more  weight  on  image  similarity  factors.  We  first  rescaled  the  factors  linearly  between  0  and  1 

 (where  1  means  good  performance),  with  the  dynamic  range  set  by  a  lower  and  upper  bound  on  the 

 factor  values.  These  bounds  were  adaptively  updated  on  every  trial  based  on  the  distribution  of  factor 

 values  in  the  last  50  trials  (lower  bound  at  1st  percentile  and  upper  bound  at  53rd  percentile),  which 

 ensured  that  the  dynamic  range  of  feedback  matched  the  dynamic  range  of  behavioral  performance 

 from  recent  history.  We  then  weighted  each  of  those  factors  to  tune  their  relative  contributions  (using 

 hand-tuned  weights  for  each  experiment;  generally  highest  for  image  similarity),  and  computed  the  final 

 scalar score (range 0 to 1) by taking the single factor that was worst after weighting. 

 where  indexes  the  factors,  are  the  weights  (between  0  and  1)  and  are  the  factor  values 

 (rescaled between 0 and 1). We also gave each trial a categorical score: 
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 The  scalar  and  categorical  scores  were  used  to  determine  feedback  across  four  different  modalities. 

 The  meaning  of  screen  color  and  sound  were  learned  by  the  subject,  whereas  delay  and  reward  had 

 intrinsic value: 

 (1)  Screen  color.  A  linear  mapping  between  two  colors,  such  that  a  score  of  0  was  mapped  to 

 red (RBG: [1, 0.2, 0]) and a score of 1 was mapped to green ([0.2, 1, 0.2]). 

 (2)  Sound  cue.  A  sound  determined  by  :  if  great  ,  then  three  pulses  (1300  Hz,  0.16  s  on  and 

 off);  if  good  ,  then  a  single  pulse  (1000  Hz,  0.4  s);  if  ok  ,  then  no  sound;  if  fail  ,  then  a  single  pulse  (120 

 Hz, 0.27 s). 

 (3)  Delay  until  reward.  A  nonlinear  mapping  from  score  to  delay  before  reward.  We  first  applied 

 a  linear  mapping  to  the  scalar  score,  such  that  a  score  of  0  was  mapped  to  a  long  delay  (5  sec  + 

 rando  m  uniform  jitter,  [0,  2.5]  s)  and  a  score  of  1  was  mapped  to  0  s  delay.  Further,  if  was  great  , 

 good  , or  ok  , then this delay was reduced by multiplying  by 0.65. 

 (4) Reward.  The open duration of the solenoid gating  the juice line was defined as 

 where  is  a  constant  in  dimensions  of  time  (0.15  -  0.6  s,  set  manually  depending  on  the  difficulty  of 

 the  task);  is  a  multiplier  that  gives  a  bonus  for  good  performance  and  further  penalizes  bad 

 performance,  depending  on  the  value  of  :  great  (1.3),  good  (1.0),  ok  (0.8),  fail  (0);  and  is  a 

 random  variable  sampled  from  the  uniform  distribution  ,  and  defined  as 

 above.  On  average,  including  failed  trials,  subjects  received  ~0.35  ml  reward  per  trial.  The  order  in 

 which these four feedback signals were delivered is described above (“Trial structure”). 

 Task types 

 Single-shape  tasks.  Single-shape  tasks  presented  one  of  the  practiced  simple  shapes,  or,  in  the 

 “categories”  experiments,  sometimes  a  morphed  shape.  Subjects  were  allowed  only  a  single  stroke 
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 (triggering  online  abort  if  >1).  In  four  single-shape  sessions  for  subject  1,  the  ending  of  the  drawing 

 epoch  was  triggered  by  completion  of  the  stroke  (i.e.,  on  finger  raise),  and  not  on  the  subject  pressing  a 

 “done” button, as was the case in all other sessions and experiments. 

 To  test  for  motor  invariance  (  Figs.  2a-e,  4  ),  we  presented  images  of  practiced  shapes,  varying 

 across  trials  in  location,  size,  or  both.  For  location  variation,  images  spanned  a  distance  in  the  x-  and 

 y-dimensions  (measuring  from  shape  centers)  of  321  pixels  (9.6  cm),  which  is  2.38  times  the  average 

 size  of  shapes  (135  pixels,  4.0  cm,  maximum  across  width  and  diameter  ).  For  size  variation,  the 

 maximum  size  was  2.5  times  larger  than  the  smallest  (in  diameter),  except  for  two  experiments  for 

 subject 1, in which the ratio was 2.0. 

 To  test  for  categorical  structure  (  Figs.  2f-j,  5  ),  we  constructed  morph  sets  (subject  1:  N  =  7 

 morph  sets  across  3  sessions;  subject  2:  N  =  13  morph  sets  across  4  sessions),  each  consisting  of  two 

 practiced  shapes  and  four  to  five  “morphed”  versions  of  those  shapes,  which  were  constructed  by 

 linearly  interpolating  between  the  two  shapes  along  one  image  parameter,  such  as  the  extent  of  closure 

 of  the  top  of  the  U  (  Fig.  2f,  g  ).  Across  morph  sets,  we  varied  different  image  parameters  (see  examples 

 in  Extended Data Fig. 2  ). 

 Multi-shape  tasks.  Each  image  was  composed  of  two  to  four  shapes  positioned  at  random, 

 non-overlapping,  locations  spanning  the  space  of  the  screen  (four  corners  and  center).  Subjects  were 

 allowed  to  draw  the  shapes  in  any  order,  and  to  use  any  trajectory  within  the  shapes,  but  were 

 constrained  to  use  one  stroke  per  shape  and  to  not  trace  in  the  gaps  between  shapes.  In  the  Results  of 

 this  manuscript,  we  present  results  averaged  across  two  sessions,  one  from  each  subject  (  Extended 

 Data  Fig.  3  ).  On  each  trial,  an  image  was  constructed  by  sampling  a  shape  r  andomly  without 

 replacement. This led to N = 531 (S1) and N = 278 (S2) unique images. 

 Character  tasks.  Each  image  was  generated  by  connecting  two  to  six  simple  shapes  into  a 

 single  character  figure.  This  was  done  by  sampling  characters  from  a  generative  model.  A  character 

 with  N  shapes  was  defined  by  randomly  sampling  N  shapes  and  N-1  relations,  where  each  relation 

 defines  the  location  of  the  attachment  points  on  shapes  and  ;  these  attachment  points,  in  turn, 

 define  how  these  shapes  will  connect  to  each  other.  This  is  similar  to  a  published  generative  model  for 
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 handwritten  characters  16  .  Generated  characters  were  only  kept  if  there  was  minimal  crossing  of  shapes 

 over each other. 

 For  experiments  testing  behavioral  generalization  to  novel  characters  (  Fig.  2k-p  ),  we  mixed 

 practiced  and  novel  characters  (practiced  characters:  N  =  189  (mean,  range  22  to  491)  per  day;  novel 

 characters:  48  (mean,  range  0  to  155)  per  day).  For  analyses,  we  label  as  “novel”  only  the  very  first  trial 

 for  a  given  character.  Because  of  random  sampling  in  generating  characters,  it  would  in  principle  be 

 possible  that  characters  generated  on  different  days  are  in  fact  identical;  to  avoid  this,  we  ensured  that 

 all  characters  we  called  “novel”  indeed  did  not  match  any  images  the  subject  previously  encountered. 

 We  did  this  by  ensuring  that  each  novel  character  was  different  from  every  previously  encountered 

 character across all days (quantified with the Hausdorff distance). 

 For  neural  experiments  comparing  single-shape  and  character  tasks  (  Fig.  6  ),  we  analysed  the 

 sessions  for  which  we  collected  data  from  both  single-shape  tasks  and  character  tasks  [subject  1:  N  = 

 10  sessions,  median  N  matching  primitives  between  single-shape  and  character  tasks  =  9  (range  5  - 

 12);  subject  2:  N  =  9  sessions,  median  N  matching  primitives  =  10  (range  2  -  14)].  We  switched 

 between  single-shape  and  character  tasks  using  a  block  design  (2  -  5  blocks  each),  except  one  session 

 for subject 2, in which they were randomly interleaved across trials. 

 Behavioral data analysis 

 Preprocessing of touchscreen data 

 Touchscreen  data  were  represented  as  time  series  of  (x,  y)  coordinates  in  units  of  pixels  (conversion: 

 33.6  pixels/cm)  and  sampled  at  60  Hz,  which  we  upsampled  to  500  Hz  and  low-pass  filtered  (15  Hz). 

 Strokes  were  segmented  based  on  the  time  the  finger  first  touched  the  screen  (stroke  onset)  and  the 

 last time before raising off the screen (stroke offset) with 500 Hz resolution. 

 To  compute  stroke  instantaneous  velocity  and  speed—in  Fig.  1f  and  as  input  to  the  “trajectory 

 distance”  below—we  first  further  low-pass  filtered  the  data  (12.5  Hz),  and  downsampled  to  25  Hz.  We 

 then used the five-point stencil method to compute a finite difference approximation of the derivative: 
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 where  is  a  discrete  time  series  (i.e,  the  x-  or  y-coordinates)  indexed  by  integer  ,  and  is  the 

 sampling  period  in  seconds.  This  differentiation  was  performed  separately  for  the  x  and  y  coordinates. 

 The  resulting  velocity  time  series  was  upsampled  to  the  original  500  Hz  sampling  rate  with  a  cubic 

 spline. Speed was computed as the norm of the (x, y) velocity at each timepoint. 

 Computing “trajectory distance” 

 To  quantify  the  similarity  between  two  strokes,  in  a  way  that  compares  their  spatio-temporal  trajectories, 

 while  ignoring  their  relative  size  (or  scale)  and  location  (on  the  screen),  we  devised  a  “trajectory 

 distance”  metric.  This  metric  is  a  scalar  dissimilarity  score,  based  on  the  dynamic  time  warping  distance 

 between  two  strokes  represented  as  velocity  time  series  and  .  To  compute  trajectory  distance 

 between  two  strokes,  we  (1)  spatially  rescaled  each  stroke  (while  maintaining  its  x-y  aspect  ratio),  to 

 make  the  diagonal  of  its  bounding  box  unit  length  1.  (2)  We  then  linearly  interpolated  each  stroke  to  the 

 same  number  of  points  (70)  to  allow  direct  point-by-point  comparison  between  strokes.  This  was  done 

 spatially  by  interpolating  based  on  the  fraction  of  cumulative  distance  traveled  (so  that  the  distances 

 between  successive  points  were  the  same  value  over  the  entire  stroke),  in  order  to  capture  the 

 spatio-temporal  trajectory,  as  in  a  previous  study  modeling  strokes  in  handwriting  16  .  (3)  Interpolated 

 trajectories  were  then  converted  to  velocity  time  series  as  above.  (4)  We  then  computed  the  dynamic 

 time warping distance between these velocities  and  .: 

 where  and  index  the  two  velocity  trajectories,  is  the  number  of  points  (70),  is  a  set  of 

 pairs  representing  a  contiguous  path  from  (0,  0)  to  (N,  N).  The  local  distance  metric  is  the 

 Euclidean distance plus a regularization factor that discourages excessive warping: 
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 where  is  the  average.  For  the  regularization  parameter,  ,  the  purpose  of  the  summation  term  was 

 to  rescale  lambda  to  match  the  magnitude  of  velocities.  The  resulting  distance  was  then 

 rescaled to 0 and 1 to return the trajectory distance: 

 Computing “image distance” 

 To  compare  the  similarity  of  two  images—each  a  figure  represented  as  a  set  of  (x,  y)  points,  with  no 

 temporal  or  stroke-related  information—we  used  a  modified  version  of  the  Hausdorff  distance,  a 

 distance  metric  that  has  been  commonly  used  in  machine  vision  for  comparing  the  similarity  between 

 two  point  sets  based  on  their  shape  attributes  167  .  There  are,  in  principle,  at  least  24  variants  of  the 

 Hausdorff  distance  based  on  possible  variations  in  the  formula  167  ;  we  used  a  variant  that  is  minimally 

 susceptible  to  outlier  points  (because  it  is  based  on  taking  means  instead  of  minima  and  maxima; 

 variant  #23  in  the  referenced  study  167  ).  Image  distance  was  computed  as  follows:  (1)  Each  image  was 

 first  centered  so  that  its  center  of  mass  becomes  (0,0).  (2)  Image  distance  was  then  computed.  First, 

 we  define  the  distance  between  two  points,  ,  as  the  Euclidean  distance.  We  also  define  the 

 distance  between  a  point  and  a  set  of  points,  ,  and  the  distance  from  set  A  to  set  B,  , 

 as: 

 Image distance was then defined as: 

 Computing “primitive alignment score” 
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 For  experiments  on  categorical  structure,  we  generated  a  set  of  images,  with  each  set  containing  four 

 to  five  novel  images  that  morph  between  one  primitive  (P1)  and  another  primitive  (P2):  a  “morph  set”. 

 Across  morph  sets,  different  image  parameters  were  morphed  (see  Fig.  2g  and  Extended  Data  Fig.  2  ). 

 Each  trial  presents  a  single  image  from  one  morph  set.We  sought  to  quantify  the  relative  similarity 

 between  a  given  trial’s  data—either  its  behavioral,  image,  or  neural  data  (see  below)—and  data  for  the 

 two  primitives,  P1  and  P2,  in  its  morph  set.  To  do  so,  we  devised  a  “primitive  alignment”  score  defined, 

 for each individual trial, as: 

 where  is  the  average  of  the  distances  between  that  trial  and  each  of  the  P1  trials,  and  the 

 average  of  the  distances  between  that  trial  and  each  of  the  P2  trials.  A  score  closer  to  0  implies 

 similarity  to  P1,  and  a  score  close  to  1  implies  similarity  to  P2.  The  particular  metric  used  for  these 

 distances  depended  on  the  analysis.  For  images,  we  used  the  image  distance.  For  drawings,  we  used 

 the  trajectory  distance.  For  neural  activity,  we  used  the  Euclidean  distance  between  population  vectors. 

 We  confirmed  that  primitive  alignment  scores  for  image  data  varied  linearly  with  morph  number  (Fig.  2j 

 and  Extended  Data  Fig.  2c),  ensuring  that  any  deviation  from  linearity  in  behavioral  or  neural  data  could 

 not trivially be the consequence of  how the score is defined. 

 Classifying strokes from character tasks 

 To  assess  whether  subjects  drew  characters  by  reusing  their  own  stroke  primitives,  we  scored  the 

 fraction  of  character  strokes  that  were  high-quality  matches  to  one  of  the  subject’s  own  primitives,  and 

 the  fraction  that  were  high-quality  matches  to  the  other  subject’s  primitives.  If  the  fraction  of  matches  to 

 a  subject’s  own  primitives  was  high,  and  to  the  other  subject’s  primitives  was  low,  then  we  interpreted 

 this as evidence that subjects recombined their own primitives. 

 This  was  performed  by  assigning  each  stroke  the  label  of  its  nearest  primitive  using  the 

 trajectory  distance,  and  then  further  defining  this  as  a  high-quality  match  only  if  the  trajectory  distance 
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 was  sufficiently  low;  in  particular,  if  the  distance  was  within  the  95%  CI  of  the  expected  distribution  of 

 trajectory distances caused by trial-by-trial variation in behavior. 

 First,  each  stroke  was  assigned  its  best-matching  primitive,  from  a  set  of  primitives  (the 

 choice of primitive set—same or different subject—depending on the analysis; see below): 

 Where  indexes  the  primitives,  is  the  stroke  trajectory,  is  the  mean  stroke  for  primitive 

 (averaged over trials from single-shape tasks), and  is the trajectory distance. 

 Second, the quality of the stroke’s assignment to its nearest primitive was scored: 

 Where  is  an  upper-bound  on  trajectory  distances  that  would  be  expected  from  trial-by-trial 

 variation  in  primitive  .  It  is  the  97.5th  percentile  of  the  distribution  of  trajectory  distances  from 

 single-shape  trials,  determined  separately  for  each  primitive,  which  we  consider  as  a  good—if  anything, 

 conservative—estimate  of  trial-by-trial  variation,  because  single-shape  tasks  present  no  ambiguity  as  to 

 what primitive needs to be drawn. 

 These  steps  assigned  each  stroke  a  class  tuple  .  In  summary  analyses,  we  pooled 

 all  cases  of  high-quality  matches  into  a  single  “high-quality  match”  class  (no  matter  the  assigned 

 primitive),  and  all  low-quality  matches  into  a  single  “no  match”  class  (  Fig.  2o,  p  ).  In  summary  analyses 

 testing  whether  a  given  subject’s  character  strokes  aligned  better  with  its  own  primitives  vs.  the  other 

 subject’s  primitives  (  Fig.  2p  )  we  performed  the  above  analysis  separately  for  all  four  combinations  of 

 stroke data (2 subjects) x primitives (2 subjects), using only images performed by both subjects. 

 Neural recordings 

 Recordings  were  acquired  using  a  Tucker-Davis  Technologies  (TDT)  system,  including  headstage 

 (Z-Series  32  Channel  Omnetics,  LP32CH-Z),  amplifier  (PZ5M-256),  processor  (RZ2),  and  storage 

 (RS4),  sampled  at  25  kHz  (local  reference  mode),  controlled  with  TDT  Synapse  software  run  on  a 
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 Windows  10  PC  (Intel  Core  i7-3770,  32GB  RAM),  and  saved  to  disk.  Analog  and  digital  task-related 

 signals,  including  behavioral  events  (photodiode,  audio,  and  trial  event  markers)  and  eye  tracking 

 (ISCAN, 125 Hz), were synchronized external triggers recorded by the neural data acquisition system. 

 Neural data preprocessing 

 Spike sorting 

 We  extracted  for  later  analysis  both  isolated  single-unit  (SU)  and  multi-unit  (MU)  spike  clusters  from  the 

 stored  broadband  signal.  MU  clusters  consisted  of  threshold  crossings  that  were  clearly  spikes,  but 

 which  were  not  isolatable  into  distinct  SU  clusters.  We  used  a  three-step  approach  for  extracting  and 

 sorting  spikes  into  these  clusters,  with  a  first  pass  using  Kilosort  168  (v2.5)  to  extract  putative  spike 

 clusters,  a  second  pass  using  a  custom-written  program  to  label  these  clusters  as  either  SU,  MU,  or 

 noise,  and  a  final  manual  curation  step.  Note  that  Kilosort  classifies  clusters,  but  we  did  not  use  those 

 labels. 

 For  Kilosort,  we  used  the  default  parameters,  except  AUCsplit  (0.90),  Th  ([6,  4]),  and  lam  (10), 

 which  we  optimized  using  parameter  sweeps  on  data  from  representative  sessions  and  by  manual 

 evaluation of results. 

 We  next  refined  these  cluster  labels.  For  each  cluster,  we  first  removed  outlier  waveforms  (any 

 exceeding  a  3  x  interquartile-range  threshold  for  any  of  the  minima,  maxima,  or  sum-of-squares). 

 Waveforms  were  then  shifted  slightly  in  time  (<1  ms)  to  improve  their  alignment  by  peaks  (or  toughs,  for 

 negative-going  waveforms).  For  each  cluster,  we  computed  two  features.  (1)  Signal-to-noise  ratio 

 (SNR)  ,  defined  as  the  ratio  of  the  peak-to-trough  difference  (of  the  average  spike  waveform)  divided  by 

 standard  deviation  (averaged  across  time  bins).  Before  computing  SNR,  we  checked  whether  the 

 cluster  contained  both  positive-  and  negative-going  waveforms.  If  so,  SNR  was  computed  separately 

 for  these  two  subsets  of  data  and  then  averaged.  (2)  Inter-spike-interval  violations  (ISIV)  ,  defined  as  the 

 fraction  of  inter-spike  intervals  less  than  a  refractory  period  (1.5  ms).  Based  on  these  SNR  and  ISIV,  we 

 provisionally  classified  clusters  as  SU  [if  either  (SNR  >  9.6  and  ISIV  <  0.05)  or  (SNR  >  6.9  and  ISIV  < 

 0.01)], noise (SNR < 3.9), or MU (the remaining clusters). 
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 We  then  manually  curated  these  clusters.  We  visualized  every  cluster  to  either  confirm  its  label 

 (MU,  SU,  noise)  or  to  manually  re-assign  it  to  a  different  label  (including  “artifact”),  using  a 

 custom-written  MATLAB  GUI.  We  also  manually  checked  whether  multiple  SU  clusters  on  a  single 

 channel  should  be  merged  into  a  single  SU  cluster,  if  they  have  high  waveform  similarity,  inversely 

 correlated  spike  count  frequency  over  the  course  of  the  session,  or  a  negative  peak  close  to  zero  lag  in 

 a  cross-correlogram  of  spike  times.  Finally,  for  each  channel,  all  MU  clusters  were  merged  into  a  single 

 MU  cluster.  Combining  SU  and  MU,  this  yielded  the  following  total  number  of  units  per  area  (mean  +/- 

 S.D.  across  sessions).  For  subject  1:  M1  (59.9  +/-  12.5),  PMd  (44.1  +/-  6.2),  PMv  (34.2  +/-  7.3),  SMA 

 (63.0  +/-  7.9),  preSMA  (75.4  +/-  17.7),  dlPFC  (47.8  +/-  17.2),  vlPFC  (43.3  +/-  9.9),  FP  (19.2  +/-  3.8).  For 

 subject  2:  M1  (40.7  +/-  13.1),  PMd  (54.7  +/-  5.5),  PMv  (71.1  +/-  6.6),  SMA  (53.4  +/-  7.2),  preSMA  (57.9 

 +/- 11.1), dlPFC (24.6 +/- 4.8),  vlPFC (38.6 +/- 13.7), FP (42.6 +/- 5.0). 

 Converting spike times to firing rates 

 Single-trial  spike  trains  were  converted  to  firing  rate  functions  by  smoothing  with  a  0.025  s  Gaussian 

 kernel  (0.01  s  slide).  We  removed  units  with  very  low  firing  rates  (if  the  80th  percentile  of  their  firing 

 rates  across  all  trials  and  time  bins  was  less  than  1  Hz).  We  square-root  transformed  activity  to 

 normalize  its  variance.  Following  a  common  approach  in  analyses  of  population  firing  rates  148  ,  we  “soft” 

 z-scored  each  unit’s  activity  to  ensure  that  neurons  with  very  different  firing  rates  contributed  similarity 

 to population analyses, but with higher-firing-rate neurons still contributing relatively more: 

 Where  is  firing  rate  for  trial  at  time  bin  ,  and  are  the  mean  and  standard  deviation, 

 respectively  (across  trials  and  time  bins),  and  is  an  additive  factor  to  ensure  “softness”: 

 where  is  a  vector  of  mean  firing  rates,  one  for  each  unit.  All  subsequent 

 analyses used this normalized firing rate representation of the data. 

 Time-warping neural activity to a common trial template 
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 For  the  figure  showing  the  average  firing  rates  over  the  entire  trial  (  Fig.  3  ),  we  first  time-warped  each 

 trial  to  a  common  trial  template.  We  defined  a  set  of  events  that  occur  across  trials  as  “anchors” 

 (fixation  touch,  image  onset,  go  cue,  finger  raise  off  fixation,  stroke  onset,  stroke  offset,  touch  done 

 button,  reward).  We  included  only  single-stroke  trials.  We  first  generated  a  “median  trial”.  For  each 

 segment  (i.e.,  time  window  between  a  pair  of  successive  anchor  events),  we  found  its  median  duration, 

 and  then  concatenated  these  median  segments  to  construct  a  median  trial.  We  then  aligned  each  trial 

 to  this  median  trial  at  the  anchor  events,  warping  time  linearly  within  each  segment.  To  avoid  sharp 

 discontinuities  at  anchor  points,  we  smoothed  the  final  firing  rates  at  the  times  of  the  anchor  points  (2.5 

 ms Gaussian kernel). This warping did not change the firing rate values, just their timing. 

 Neural data analyses 

 Dimensionality reduction of population activity 

 We  performed  dimensionality  reduction  on  the  neural  population  activity,  in  general  because 

 high-dimensional  noise  can  reduce  the  in  terpretability  of  the  Euclidean  distance  126  ,  and  in  one  case  in 

 order  to  identify  a  potential  linear  projection  of  population  activity  (i.e.,  a  subspace)  that  preferentially 

 encodes  primitives,  a  standard  approach  47,146  .  We  represent  a  single  area’s  data  from  a  single  session 

 and  within  a  specific  within-trial  time  window  as  a  matrix  ,  of  size  N  x  KT,  where  N,  K,  and  T  are  the 

 number  of  units,  trials,  and  time  bins,  constructed  by  concatenating  time  bins  from  all  trials  along  the 

 second  dimension.  Data  were  first  binned  in  t  ime  (0.15  s  window,  0.02  s  slide)  before  constructing  this 

 data  matrix.  We  used  principal  components  analysis  (PCA),  but  instead  of  applying  PC  A  on  single-trial 

 data  ,  we  applied  PCA  on  trial-averaged  data  ,  in  order  to  minimize  the  influence  of  trial-by-trial 

 variation  (noise).  holds  the  mean  activity  for  each  trial  condition,  of  size  N  C  x  KT,  where  N  C  is  the 

 number  of  unique  conditions,  and  where  the  specific  conditions  depended  on  the  experiment  (see 

 below).  We  performed  PCA  on  ,  and  retained  the  top  eight  principal  components  (PCs).  The 

 specific  trial-averaged  conditions  used  for  identifying  PCs  were  the  following.  For  analysis  of  motor 

 invariance  (  Fig.  4  ),  the  conditions  were  each  unique  primitive  (averaging  over  location/size),  which 

 resulted  in  identifying  PCs  that  preferentially  encoded  primitives  if  they  exist  in  the  dataset.  For  analysis 
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 of  categorical  structure  (  Fig.  5  ),  PCA  was  performed  separately  for  each  morph  set,  and  the  conditions 

 were  the  unique  images  (i.e.,  the  two  endpoint  shapes  plus  the  morphed  shapes  in  between).  For  the 

 analysis  of  primitive  representational  reuse  in  characters  (  Fig.  6  ),  the  conditions  were  each  combination 

 of primitive and task kind (i.e., resulting in  num_primitives  x  2  conditions). 

 We  performed  PCA  in  a  cross-validated  manner,  to  ensure  that  it  was  not  overfitting  to  noise. 

 We  partitioned  trials  into  two  subsets  (in  a  stratified  manner),  one  “training”  set  that  was  used  only  for 

 identifying  the  PCs,  and  a  “test”  set  that  was  projected  onto  these  PCs  and  then  used  for  all 

 subsequent  analyses.  We  performed  8  randomized  train-test  splits  (including  all  downstream  analyses), 

 and averaged their results. 

 Computing "neural distance” 

 To  quantify  the  similarity  of  population  activity  between  two  sets  of  trials,  such  as  trials  for  conditions  A 

 and  B  (where  A  and  B  are  specific  values  of  task-relevant  variables),  we  devised  a  “neural  distance” 

 metric.  This  metric  has  the  useful  property  of  being  unbiased  (so  that  the  expected  value  of  the  neural 

 distance  between  two  sets  of  trials  sampled  from  the  same  distribution  is  zero).  Inspired  by  the 

 “normalized  distance”  in  Liu  et  al  169  ,  it  is  the  average  pairwise  Euclidean  distance  across  conditions  A 

 and  B,  minus  the  within-condition  distances.  This  subtraction  step  ensures  that  the  distance  is  unbiased 

 (unlike  the  mean  Euclidean  distance,  which  is  biased  upwards  45  ).  In  addition,  the  resulting  distance  is 

 normalized  by  dividing  by  an  upper-bound  distance  to  normalize  it  between  0  and  1.  Neural  distance  is 

 defined as: 

 where the normalized Euclidean distance between sets of trial indices in conditions  and  is: 

 Here,  is  the  population  activity  vector  at  time  (in  a  window  between  times  and  ),  and 

 is  a  normalization  factor  that  is  an  upper-bound  (98th  percentile)  of  the  distances  between  all  pairs  of 

 different trials combined across all conditions. 
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 Computing a variable’s encoding strength 

 To  compute  how  strongly  a  given  variable  is  encoded  in  population  activity  (e.g.,  “primitive  encoding”  in 

 Fig.  4j  ),  we  computed  the  mean  effect  of  that  variable  on  population  activity,  in  terms  of  neural  distance, 

 while  controlling  for  the  other  relevant  variables.  Consider  an  experiment  varying  two  variables, 

 primitive  and  location,  such  that  a  condition  is  represented  by  the  tuple  ,  where  and  index  the 

 primitives  and  locations.  Primitive  encoding  is  the  average  neural  distance  across  all  pairs  of  conditions 

 that have different primitives but same locations: 

 Location encoding is defined analogously: 

 This approach generalizes to any pair of variables, such as primitive and task kind in  Fig. 6  . 

 Statistically comparing brain regions in strength of variable encoding 

 In  analyses  that  compare  the  encoding  strengths  of  a  particular  pair  of  variables  (e.g.  primitive  vs. 

 location  in  Fig.  4j  ),  we  performed  the  following  statistical  tests  to  compare  each  brain  region  with  every 

 other  brain  region,  in  terms  of  how  strongly  they  encode  these  two  variables.  We  used  the  following 

 procedure.  (1)  For  each  variable  and  pair  of  brain  regions,  we  performed  a  statistical  test  comparing 

 how  strongly  these  two  regions  encoded  that  variable.  This  involved  first  extracting  a  dataset  of  neural 

 distances  between  each  pair  of  trial  conditions  for  each  of  the  two  brain  regions.  For  example,  if  the 

 variable  was  “primitive”,  then  each  of  the  two  brain  regions  would  contribute  a  dataset  consisting  of 

 neural  distance  scores  between  all  pairs  of  trial  conditions  that  have  different  primitives  but  the  same 

 location.  The  datasets  for  these  two  regions  would  be  combined  into  a  single  dataset,  to  which  we  fit  a 

 linear model to test for an effect of brain region on neural distance  , controlling for trial-condition  pair: 
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 where  is  0  or  1  depending  on  brain  region,  and  is  an  indicator  variable  for  trial-pair  condition, 

 with  as  their  coefficients.  Finally,  we  extracted  the  p-value  for  (two-sided  t-test),  which  represents 

 the  significance  of  the  difference  between  this  region  pair  in  how  strongly  they  encode  the  variable 

 being  tested.  (2)  This  procedure  was  performed  once  for  each  combination  of  variable  (2)  and  brain 

 region  pair  (28),  resulting  in  56  p-values.  We  corrected  the  p-values  for  multiple  comparisons  using  the 

 Bonferroni  method  (28  brain  region  pairs  x  2  variables  =  56  comparisons).  (3)  Using  these  56  values, 

 we  then  summarized  each  region  with  two  numbers  representing  the  number  of  regions  for  which  this 

 region  more  strongly  encodes  these  two  variables.  For  example,  for  primitive  x  location  experiments, 

 each  region  was  scored  with  a  tuple  ,  where  is  the  number  of  other  regions  that 

 this  region  beats  in  the  pairwise  statistical  tests  of  primitive  encoding  (and  analogous  for  ,  except 

 that  it  scores  location  encoding).  In  summary  plots  (  Figs.  4j,  6f  ),  the  results  of  this  entire  procedure 

 were represented by mapping each region’s resulting tuple to a color based on a 2D color map. 

 Specific analyses 

 Analysis  of  motor  invariance  in  neural  activity.  Dimensionality  reduction  was  performed  as  described 

 above,  using  a  time  window  of  0.05  s  to  0.6  s  after  image  onset  for  fitting  the  PCs  and  for  analyses  that 

 involve time-averaging (  Fig. 4i-k  ). 

 To  test  cross-condition  decoder  generalization  (  Fig.  4k  ),  we  used  a  linear  support  vector 

 machine  classifier  (SVC),  using  a  one-vs-the-rest  scheme  for  multi-class  classification  (LinearSVC, 

 scikit-learn,  regularization  parameter  C  set  to  0.1).  We  report  test  accuracy  linearly  rescaled  so  that 

 chance  level  (inverse  of  the  number  of  classes)  and  1  were  mapped  to  0  and  1.  Because  decoders 

 were  trained  and  tested  on  different  conditions  (with  non-overlapping  sets  of  trials),  there  was  no 

 concern  of  overfitting.  Decoding  was  performed  separately  for,  and  averaged  across,  time  bins  (0.05  to 

 0.6 s relative to image onset). 

 Analysis  of  categorical  structure  in  neural  activity.  Dimensionality  reduction  was  performed  as 

 described  above,  using  a  time  window  from  0.05  s  to  0.9  s  after  image  onset  for  fitting  the  PCs.  For 

 analyses  involving  time-averaging  (  Fig.  5d-g  ),  we  used  a  window  late  in  the  planning  period  (0.6  to  1.0 
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 s),  when  separation  for  A1  and  A2  trials  was  the  greatest  (  Fig.  5h  ).  Primitive  bias  index  was  computed 

 as above, using the Euclidean distance. 

 Analysis  for  recombination  of  primitive  representations  in  character  tasks  .  For  each  session,  we 

 presented  both  single-shape  and  character  tasks  using  a  block-interleaved  design  (except  one  session 

 using  a  trial-interleaved  design).  We  analyzed  primitives  that  were  performed  in  both  single-shape 

 (instructed  by  the  shape  image)  and  character  trials  (the  subject’s  choice).  For  one  experiment,  the 

 subject  performed  multi-shape  but  not  single-shape  tasks—we  therefore  used  the  first  stroke  from 

 multi-shape  trials  instead  of  single-shape  trials.  For  character  trials,  we  used  only  strokes  that  were 

 scored  as  high-quality  primitive  matches.  Dimensionality  reduction  was  performed  as  above,  using  a 

 time  window  of  -0.8  to  0.3  s  relative  to  stroke  onset  for  fitting  the  PCs.  For  analyses  involving 

 time-averaging,  we  used  a  window  -0.5  to  -0.05  s  relative  to  stroke  onset.  Neural  distance,  primitive 

 encoding,  and  task  encoding  were  computed  as  above,  using  primitive  and  task  kind  (instead  of 

 location or size) as the two relevant variables. 

 Data and code availability 

 The  data  and  code  used  in  this  study  are  available  from  the  corresponding  author  (??)  upon  reasonable 

 request. 
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 Extended Data Fig. 1. Behavioral task setup. 
 (a)  Schematic  of  subject  relative  to  screen,  profile  view.  Subjects  1  (S1)  and  2  (S2)  were  positioned  at 

 different  distances  to  accommodate  their  individual  anatomies  and  postures.  The  screen  was 
 slanted  slightly  to  optimize  the  ability  to  see  and  reach  to  the  same  part  of  the  screen  (the 
 workspace at the top of the screen). Monkey schematic here and in panel b by D. Hanuska. 

 (b)  Schematic  of  subject  position  relative  to  screen,  top  view.  Subjects  were  positioned  to  the  right,  to 
 accommodate reaching to the screen with the hand they used for drawing (left). 

 (c)  Schematic  of  screen  during  trial,  with  component  locations  and  sizes  to  scale.  The  finger  is  tracing 
 over  the  figure  (purple-gray  “V”),  leaving  a  black  trail  of  “ink”  behind.  The  thickness  and  color  of  the 
 figure  and  “ink”  are  to  scale.  The  “done  button”  is  visible  (green  square),  and  the  subject  can  press 
 it  at  any  time  to  report  completion.  The  dashed  line  indicates  the  workspace  (not  visible  to  the 
 subject). 
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 Extended  Data  Fig.  2.  Categorical  structure  in  behavior:  more  examples  and  quantification  of 
 primitive alignment for image data. 
 (a)  Example  single-trial  drawings  across  nine  different  morph  sets,  for  subject  2.  Drawings  are  colored 

 by  whether  they  reflect  use  of  primitive  1  (blue)  or  primitive  2  (orange).  Images  morph  between  two 
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 well-practiced  shapes.  The  examples  here  are  depicted  in  a  similar  manner  to  the  example  in  Fig. 
 2. 

 (b)  Same as panel a, but for subject 1. 

 (c)  Primitive  alignment  vs.  trial  condition  for  the  example  experiment  in  panel  Fig.  2b,  performed  on 
 image data (using the image distance), and not on behavioral data as in  Fig. 2i  . 
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 Extended  Data  Fig.  3.  Recombination  of  stroke  primitives  into  sequences,  in  “multi-shape” 
 tasks. 
 (a)  Experiment  testing  for  recombination  of  primitives  into  sequences,  using  “multi-shape”  tasks.  Given 

 images  composed  of  multiple  disconnected  shapes,  two  possible  drawing  responses  are  shown, 
 consistent with either the “Single trajectory” (T) or “Symbols” (S) hypotheses (see main text). 

 (b)  Fraction  of  stroke-to-stroke  transitions  in  which  the  second  stroke  is  drawn  in  a  manner  consistent 
 with  the  Single  trajectory  (T)  or  Symbols  (S)  strategies,  restricted  to  transitions  where  the  behavioral 
 predictions  of  these  two  strategies  differed  (bottom  bar  plot).  Top,  schematic  of  an  example 
 transition  between  two  strokes  labeled  1  and  2.  Stroke  2  can  be  drawn  either  starting  from  the 
 top-left,  consistent  with  primitive  reuse  (“Symbols”),  or  from  the  bottom  right,  which  would  reflect  the 
 taking of the shorter of the two gap distances (“Single trajectory”). 
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 Extended  Data  Fig.  4.  Angled  implantation  of  SMA  and  preSMA  arrays  to  avoid  the  sinus  and 
 target the medial wall. 
 (a)  Coronal  MRI  section  showing  the  location  and  angle  of  a  preSMA  array  relative  to  the  superior 

 sagittal  sinus  (“sinus”).  SMA  and  preSMA  arrays  were  implanted  ~2  mm  lateral  to  the  midline,  and 
 angled  medially,  in  order  to  target  the  medial  wall  (preSMA),  while  avoiding  the  superior  sagittal 
 sinus.  The  array  is  depicted  as  a  rectangular  blue  surface  and  two  lines  representing  the  shortest 
 (2.65  mm)  and  longest  (5.95  mm)  electrodes.  This  location  and  angle  is  our  best  estimate  based  on 
 the  stereotactic  coordinates  and  intra-operative  photographs.  The  other  two  SMA  and  one  preSMA 
 arrays were located and angled similarly. D, dorsal. L, lateral. 

 (b)  Rostral-caudal  location  of  the  coronal  section  in  panel  a  (red  arrow  and  dashed  line),  overlaid  on  a 
 brain surface model. D, dorsal. R, rostral. 
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 Extended Data Fig. 5. PMv encodes stroke primitives in a manner that is invariant to size. 
 (a)  Heatmap  of  pairwise  neural  distances  between  each  unique  combination  of  primitive  and  size, 

 averaged  over  the  planning  epoch  (0.05  to  0.6  s  relative  to  image  onset),  for  PMv  and  vlPFC. 
 Shown are data from a single session for subject 2. N = 17 - 23 trials per primitive-size combination. 

 (b)  Summary  of  primitive  encoding  and  size  encoding  across  areas  and  sessions,  with  each  point 
 depicting  the  encoding  scores  for  a  given  area.  Each  point’s  color  denotes  statistical  significance,  in 
 terms  of  the  number  of  other  brain  areas  that  this  area  beats  in  pairwise  statistical  tests  of  primitive 
 encoding  and  size  encoding  (represented  in  the  inset  heatmap);  see  Fig.  4j  and  Methods  for 
 details.  Each  data  point  was  a  unique  pair  of  primitive-size  conditions  (trial-averaged).  For  testing 
 primitive  encoding,  these  pairs  were  the  same  size,  but  different  primitive  [N  =  313  (subject  1),  253 
 (subject  2)].  For  size  encoding,  the  pairs  were  the  same  primitive,  but  different  size  [N  =  60  (S1),  56 
 (S2)].  Statistical  tests  were  performed  on  condition  pairs  pooled  across  sessions  (3  for  S1,  2  for 
 S2). 

 (c)  Across-condition  generalization  of  linear  SVM  decoders  for  primitive  (red)  and  size  (gray).  See  Fig. 
 4k  . 
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 Extended  Data  Fig.  6.  Slower  reaction  time  for  ambiguous  images  in  tasks  testing  categorical 
 structure. 

 Average  reaction  time  (between  go  cue  and  stroke  onset),  comparing  ambiguous  images  to 
 practiced  images.  Each  data  point  represents  a  single  primitive  from  one  morph  set,  its  y-value 
 indicating  reaction  time  when  the  primitive  was  drawn  in  response  to  an  ambiguous  image,  and  its 
 x-value  indicating  reaction  time  when  it  was  drawn  in  response  to  the  practiced  image.  Each  morph 
 set  has  two  primitives  and  thus  contributed  two  data  points.  *,  p  <  0.05;  **,  p  <  0.005,  two-sided 
 Wilcoxon  signed-rank  test.  N  =  14  primitives  (7  morph  sets)  for  subject  1;  N  =  26  primitives  (13 
 morph sets) for subject 2. 
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 Supplementary Video 1. Behavior in character task (example character 1, subject 1).  This depicts 
 the trial in  Fig. 2l  , 4th column from the right. 

 Supplementary Video 2. Behavior in character task (example character 1, subject 2).  This depicts 
 the trial in  Fig. 2l  , 4th column from the right. 

 Supplementary Video 3. Behavior in character task (example character 2, subject 1).  This depicts 
 the trial in  Fig. 2l  , 7th column from the left. 

 Supplementary Video 4. Behavior in character task (example character 2, subject 2).  This depicts 
 the trial in  Fig. 2l  , 7th column from the left. 

 Supplementary Video 5. Behavior in character task (example character 3, subject 1).  This depicts 
 the trial in  Fig. 2l  , 3rd column from the left. 

 Supplementary Video 6. Behavior in character task (example character 3, subject 2).  This depicts 
 the trial in  Fig. 2l  , 3rd column from the left. 

 Supplementary Video 7. Behavior in character task (example character 4, subject 1).  This depicts 
 the trial in  Fig. 2l  , 2nd column from the left. 

 Supplementary Video 8. Behavior in character task (example character 4, subject 2).  This depicts 
 the trial in  Fig. 2l  , 2nd column from the left. 

 Supplementary Video 9. Behavior in character task (example character 5, subject 1).  This depicts 
 the trial in  Fig. 2l  , 1st column from the left. 

 Supplementary Video 10. Behavior in character task (example character 5, subject 2).  This 
 depicts the trial in  Fig. 2l  , 1st column from the  left. 
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