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SUMMARY
Systems consolidation relies on coordination between hippocampal sharp-wave ripples (SWRs) and neocor-
tical UP/DOWN states during sleep. However, whether this coupling exists across the neocortex and the
mechanisms enabling it remains unknown. By combining electrophysiology in mouse hippocampus (HPC)
and retrosplenial cortex (RSC) with wide-field imaging of the dorsal neocortex, we found spatially and tempo-
rally precise bi-directional hippocampo-neocortical interaction. HPC multi-unit activity and SWR probability
were correlatedwith UP/DOWN states in the default mode network (DMN), with the highest modulation by the
RSC in deep sleep. Further, some SWRs were preceded by the high rebound excitation accompanying DMN
DOWN/UP transitions, whereas large-amplitude SWRs were often followed by DOWN states originating in
the RSC. We explain these electrophysiological results with a model in which the HPC and RSC are weakly
coupled excitable systems capable of bi-directional perturbation and suggest that the RSC may act as a
gateway through which SWRs can perturb downstream cortical regions via cortico-cortical propagation of
DOWN states.
INTRODUCTION

Theories of systems consolidation rely on hippocampal-mediated

coordination of neural activity across the neocortex in service of

reactivation during sleep.1–5 However, how and to what extent

this spontaneously occurs across regions, often many synapses

removed from the hippocampus (HPC), remains unknown. During

NREM sleep, neural populations alternate between periods of

spiking and inactivity, termed UP and DOWN states in the

neocortex, and sharp-wave ripples (SWRs) and inter-SWRs

(iSWRs) in the HPC. Both gain- and loss-of-function studies

demonstrate the importance of the tight temporal coordination

of these events for systems consolidation.6,7 However, the

observed timing of this coordination is variable across experi-

ments and regions, leading to a lack of mechanistic consensus

regarding the inter-regional interaction required for consolidation.

Most studies agree that the probability of SWRs is higher dur-

ing UP states and that the spike content of SWRs is biased by
754 Neuron 113, 754–768, March 5, 2025 ª 2024 Elsevier Inc.
All rights are reserved, including those for text and data mining,
neocortical inputs,8–13 but see 14–16. Some studies further sug-

gest that SWRs initiate neocortical UP states,14,17,18 whereas

others, in contrast, indicate that DOWN states follow

SWRs.11,12,19 These discrepancies may be due to variation in

sleep depth, which modulates the rate of both SWRs and

DOWN states,14,20–23 or differences between cortical regions,

especially given that UP/DOWN states can be localized24 or

travel across the forebrain.25,26

In an attempt to resolve these ambiguities, imaging studies

have explored the topographic relationship between SWRs

and the rest of the brain. In primates, SWRs were correlated

with an increase in the blood-oxygen-level-dependent (BOLD)

signal in regions comprising the default mode network

(DMN),23,27 similarly observed in humans using MEG.28 Although

of functional interest given the importance of the DMN for

episodic recall,29,30 only recently have rodent wide-field imaging

studies had the spatiotemporal resolution necessary to explore

short timescale interaction between the HPC and dorsal
AI training, and similar technologies.
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Figure 1. Experimental preparation and neocortical activity surrounding hippocampal SWRs

(A) Dual wavelength (blue 470 nm—thy1 GCaMP6f; green 525 nm—total blood volume) wide-field imaging (66 frames per second) of the dorsal hemisphere of a

thy1 GCaMP6f mouse. Note chronic silicon probe spanning ipsilateral CA1 and RSC beneath the imaging field of view (green).

(B) Right, example raw fluorescence frame. Left, corresponding cortical regions. Red dots indicate location of maximum correlation (rho) between wide-field

signal and RSC population rate for each mouse (n = 5).

(C–E) Aligned simultaneous wide-field imaging of dorsal cortex and electrophysiological recordings in the HPC and RSC. (C) Deconvolved wide-field time series

for 15 pixels in regions ranging fromposterior to anterior dorsal cortex as in (B).White line corresponds to RSCwide-field time series (also row 1 in heatmap); black

bars denote SWRs, height proportional to SWR amplitude. (D and E) Example LFP and single units from RSC and hippocampal CA1 pyramidal layer. Shaded

areas highlight DOWN states and SWRs in RSC and HPC, respectively. Right insets, example DOWN state and SWR (100 ms).

(F) Average RSC MUA (see STAR Methods) surrounding all SWR peaks at t = 0. Shading corresponds to standard deviation across mice (n = 5).

(G) Average deconvolved wide-field activity across all mice surrounding SWRpeak at t = 0. Sources and sinks are identified in green and red, respectively. Arrows

correspond to vector fields calculated across pairs of frames on the grand-average video, providing a qualitative view of activity flow.
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neocortex, with variable results.31–33 Thus, where, when, and

how SWRs are coupled with neocortical UP/DOWN states re-

mains an unresolved tension across theories of systems

consolidation.

Toward this goal, we developed a chronic preparation in mice

that combined wide-field imaging in the dorsal neocortex with

silicon probe recordings of the HPC and retrosplenial cortex

(RSC) in the same hemisphere. We found a topographically spe-

cific, state-dependent, bi-directional interaction between hippo-

campal SWRs and neocortical UP/DOWN states. From the

neocortex to the HPC, SWRs were less likely to occur during

DOWN states across regions in the DMN, and SWRs often fol-

lowed large rebound excitation at the DOWN-UP transition in

DMN. From the HPC to the neocortex, large-amplitude SWRs

were often followed by DOWN states in the RSC and motor

cortical regions that then propagated along the dorsal

neocortex. The highest modulation was seen in the RSC during

deep NREM sleep in all cases. We hypothesized that these

experimental observations could arise from weakly coupled

populations in the complementary excitable regimes character-
istic of NREM34 and confirmed the plausibility of this hypothesis

with amean-fieldmodel of bi-directionally interacting hippocam-

pal and RSC populations.

RESULTS

Combined wide-field imaging and chronic extracellular
electrophysiology for studying hippocampal-cortical
interaction during sleep
We combined chronic electrophysiological recordings from the

HPC and RSC, a neocortical region involved in spatial cognition

and implicated in systems consolidation,35–39 with wide-field im-

aging of the dorsal neocortex in head-fixed Thy1 GCaMP6f mice

(Figure 1A).40 To record concurrently in the same hemisphere, a

single-shank silicon probe (64 or 128 recording sites) was low-

ered through the left hemisphere to the right RSC and hippocam-

pal CA1 regions, ipsilateral to our thinned-skull cranial window

preparation (Figures 1A–1E). Following hemodynamic correction

(Ma et al.41; see STAR Methods) and alignment of wide-field

videos to the Allen Institute’s Common Coordinates Framework
Neuron 113, 754–768, March 5, 2025 755
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Figure 2. SWR and DOWN state rates in-

crease as animals move from quiet wake

to deep NREM sleep

(A) Brain-state scoring of concatenated head-

fixed and home-cage recording sessions for an

example mouse. Top, identified WAKE, NREM,

and REM states. Middle, spectrogram of RSC

LFP. Bottom, time-varying slope of the power

spectrum (PSS).

(B) Top, state scoring of the session in (A). Note

three distinct clusters, classified as active wake

(aWAKE), REM sleep, and a third cluster with

continuous variation from quiet wake (qWAKE) to

NREM sleep. Bottom, distributions of the three

variables used for behavioral-state scoring (PSS,

pseudo EMG, and theta power) in homecage and

head-fixed conditions.

(C) Average RSC power spectra (black; left) and

example RSC LFP traces (right) at three different

arousal levels from active WAKE to deep NREM,

denoted (i)–(iii) in (B) scatterplot. Inset PSS values

are the inverse of the slope of the linear fit to the

aperiodic component of the power spectra (pink

dotted lines). DOWN states are shaded in gray.

(D) Left, scatterplot of durations of UP (red) and

DOWN (black) states in the RSC across values of

PSS for all mice. Right, scatterplot of dwell time

durations for SWRs (red) and iSWR periods

(black). Vertical lines in the RSC andHPC separate

qWAKE and NREM.
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(Figure S1; Wang et al.42; see STAR Methods), we confirmed the

successful placement of our recording electrode by verifying that

the correlation between the extracellularly recorded RSC popu-

lation rate and all wide-field pixels was highest in the RSC (Fig-

ure 1B, red dots). To recover fine timescale changes in the pop-

ulation rate across our imaging field of view, we determined a

deconvolution kernel that optimally predicted the electrically re-

corded RSC population rate from the identified RSC region of in-

terest (ROI) in each mouse (Figure S2; Video S1; Peters et al.43;

see STAR Methods). We next deconvolved wide-field activity

across the neocortex for each mouse with the derived kernel,

as was successfully done previously.43 Variation in standard de-

viation of deconvolved pixel time series across regions was min-

imal (Figure S2). The remaining analyses were performed with

either deconvolved wide-field activity or unaltered fluctuations

in total blood volume (total hemoglobin [Hbt]; 525 nm), as spec-

ified. This approach uniquely combined optical measurement of

the population rate of excitatory cells across the dorsal neocor-

tical mantle (Figures 1B and 1C) with simultaneous extracellular

recordings in the HPC and RSC in the same hemisphere

(Figures 1D and 1E).

As observed electrophysiologically (Figure 1F; peak time t = 0,

cites), SWRs were preceded by elevated neocortical activity in

the deconvolved wide-field data (Figure 1G; Video S2), led by a

source in RSC (t = �0.12 s) that spread throughout midline-pos-

terior cortical regions (mouse DMN or ‘‘medial networks’’44). This

increased activity was followed by decreased activity in the RSC
756 Neuron 113, 754–768, March 5, 2025
that spread across the neocortex, ultimately terminating with a

sink in V1 (t = 0.2 s).

Joint fluctuation of SWRs and cortical DOWN states
across ultraslow (0.01–0.03 Hz), infraslow (0.04–0.5 Hz),
and slow (0.5–4 Hz) timescales
Next, we examined whether hippocampal-cortical coupling var-

ied as animals shifted from wake to sleep. Automated classifica-

tion of brain states was performed using three variables: the

time-varying slope of the RSC power spectrum (power spectral

slope [PSS]),45 HPC theta power, and LFP-derived electromyo-

gram (EMG) (pseudo-EMG) (Figures 2A and 2B).20,46 This re-

sulted in 3 clusters that corresponded to active WAKE (high

EMG), REM, and a third cluster that ranged from quiet WAKE

(low EMG) to NREM (Figure 2B). To ensure that the brain states

observed during head-fixation were comparable with natural

behavior, we state-scored concatenated head-fixed and

home-cage recording sessions within the same mouse

(Figures 2A and 2B). Although the fraction of time spent in

each state varied between conditions, the regular recurrence

of transitions from deep NREM to REM sleep in both conditions

and the qualitatively overlapping head-fixed and home-cage

brain state clusters confirmed comparable sleep quality in

head-fixed animals (Figure S3 for individual mice).

Hippocampal SWRs and RSC UP/DOWN states were

observed exclusively throughout the brain state cluster

comprised of quiet WAKE and NREM sleep (labeled ii and iii in
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Figure 3. SWR rate co-varies with RSC UP and DOWN states as a

function of brain state

(A) Probability of SWRs across time-normalized RSC UP and DOWN states.

Shading corresponds to standard deviation across mice; dots to individual

mice. S, start of state; E, end of state.

(B) PSS quintiles span quiet WAKE to deep NREM (Q1–Q5; colored from dark

to light red in all panels).

(C–E) Variables specified plotted across time-normalized RSC UP and DOWN

states as a function of PSS quintile; all mice. Shading corresponds to standard

deviation across all UP or all DOWN states. (C) Probability SWR by PSS

quintile. (D) Mean RSC MUA by PSS quintile. (E) Mean HPC MUA by PSS

quintile.
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Figure 2B). However, their frequency of occurrence varied

continuously as a function of PSS or arousal level (Figure 2C).47

From quiet WAKE (low PSS) to deep NREM sleep (high PSS), the

DOWN state rate increased (Figure 2C). This occurred because
the duration of RSCUPstates got increasingly shorter (Figure 2D,

left red) and the duration of DOWN states became increasingly

more variable (Figure 2D, left black), until the ratio of mean UP

and DOWN state durations approached one. The HPC followed

a complementary pattern: as PSS values increased, the rate of

hippocampal SWRs increased due to a decrease in the iSWR in-

terval (Figure 2D right black).

Hippocampal SWRs also co-varied with RSC UP and DOWN

states, with SWRs significantly more likely during UP states (Fig-

ure 3A). This relative change in SWR rate fromDOWN toUP (D-U)

states increased monotonically with increasing PSS, ultimately

resulting in a 3-fold increase in SWR rate from D-U states during

deep NREM (Figures 3B and 3C), parallel with increased RSC

multi-unit activity (MUA) within UP states (Figure 3D). Hippocam-

pal MUA likewise increased with increasing RSC UP state

firing rate, following RSC D-U transitions with a time lag

despite a near-synchronous decrease in RSC rate at the UP to

DOWN (U-D) transition (Figure 3E; ‘‘co-active and co-silent

frames’’).9,10,15 In sum, the modulation of hippocampal activity

by RSC UP/DOWN states depended on arousal level, as

measured by PSS. With decreasing arousal, the mean firing

rate of RSC UP states increased and was paralleled by an in-

crease in HPC MUA and subsequent increased probability

of SWRs.

Brain state, asmeasured using a variety of metrics, is known to

fluctuate in both the ‘‘ultraslow’’ (0.01–0.03 Hz) and ‘‘infraslow’’

(0.04–0.5 Hz) frequency bands48–52 (apparent in cortical blood

flow53,54). Enabled by greenwavelength (525 nm) imaging of total

blood volume (Hbt) across the neocortical mantle, we found that

fluctuations in Hbt showed a 1/f background, with peaks in the

ultraslow and infraslow frequency ranges (Figure S4; Video S3).

Variation in PSS more closely tracked fluctuation in the ultra-

slow-filtered Hbt (Figure S4D), which was globally coherent

across the cortical mantle (Figure S4E). In contrast, the infra-

slow-filtered Hbt was accompanied by a faster-timescale mod-

ulation of SWR rate, confined to the DMN (Figure S4F).28 This

phase-dependence was not restricted to SWRs but rather re-

flected a broader infraslow-timescale switch in RSC and HPC

LFP between power spectra typical of the NREM to a state domi-

nated by 4 Hz in the RSC (Figure S4G).

Together, these results reveal co-modulation of the hippo-

campal-cortical state at three timescales: (1) an ultraslow

(0.01–0.03 Hz) variation in brain state (perhaps analogous to

the ‘‘global signal’’ in fMRI,55,56 measured by the time-varying

slope of the power spectrum (PSS) and fluctuations in total blood

volume (Hbt) and accompanied by concurrent changes in the

rate of DOWN states, SWRs, and cortical spiking activity during

UP states; (2) an infraslow (0.04–0.5 Hz) fluctuation of cortical

state inmouse DMN (perhaps reflecting excitability changes dur-

ing NREM sub-stages or ‘‘packets’’20 ; and (3) a slow (.5–4 Hz)

modulation of SWR rate by RSC UP and DOWN states.

Putative bi-directional hippocampal-cortical
perturbation by transient population synchrony
Motivated by previously observed temporal coupling between

SWRs and cortical slow waves,12,57 and the finding that

SWRs cluster toward the end of time-normalized UP states

(Figures 3A and 3C), we next investigated whether UP/DOWN
Neuron 113, 754–768, March 5, 2025 757
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Figure 4. Probability of SWRs around U-D and D-U transitions is asymmetric

(A) Example LFP traces spanning layers of granular RSC, white matter, and ipsilateral CA1; RSC MUA (above); ripple-frequency-filtered CA1 trace (below; 130–

200 Hz; bandpass filtered channel designated in red).

(B–E) Data specified surrounding all DOWN states for an example mouse, centered at RSC U-D transitions (left) or D-U transitions (right) and sorted by DOWN

state duration. (B) Probability of being in an UP state, surrounding transitions. (C) RSC MUA; each row is a U-D (left) or D-U (right) transition (>30,000). Bottom,

average RSC MUA surrounding transition specified. K refers to transient rebound population synchrony at the D-U transition, K-complex or ‘‘K.’’

(D) Raster plot of all SWRs during the same RSCU-D and D-U transitions as in (C). Pink shading corresponds to RSCDOWN states identified in (C). SWRs plotted

as thin black lines, the length of which corresponds to their durations. Note decreased P(SWR) during DOWN, asymmetry in clustering of SWRs around tran-

sitions, and change in clustering as DOWN duration increases.

(E) Defining SWRs by their temporal proximity to U-D and D-U transitions yields 4 types: SWRU (yellow), SWRUD (red), SWRD (blue), and SWRDU (green); see STAR

Methods and Figure S6.

(F) Proportion of each ‘‘SWR type’’ across all mice (dots represent individual mice; colors correspond to SWR type). Note 3-fold increase in SWR rate from D-U

states. Gray shaded region in SWRUD and SWRDU represents the overlap between these categories (�30%).

(G) For each SWR type, proportion of those SWRs that occur in bursts vs. not in bursts (see STARMethods). Start and end times of the burst are denoted by gray

and black.
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state transitions in the RSC could predict the timing of SWRs.

When aligned to D-U or U-D transitions (Figures 4B–4D), RSC

MUA was asymmetric, displaying a peak at the D-U transition

not present at the U-D transition (putative K-complex, K; Fig-

ure 4D). In parallel, we observed a tight clustering of SWRs

around U-D and D-U transitions, with probability of SWR occur-

rence (pSWR) exhibiting three distinct peaks (Figures 4D and

4E). First, a peak in pSWRs occurredwithin a 50-ms timewindow

prior to the U-D transition (SWRUD). Second, pSWR peaked

within �80 ms after the U-D transition (SWRD). Finally, a peak

in pSWR occurred after an �120-ms delay after the D-U transi-

tion in the RSC (SWRDU) following the D-U peak in RSC MUA.

There were many more U-D and D-U state changes than the

number of SWRs, so these hypothesized interactions took place

during only a small fraction of cortical transitions. Nevertheless,

more than half of the SWRswere time-locked to RSCD-U or U-D

state transitions (SWRUD, SWRDU, and SWRD types; Figure 4I;

Figure S5). Although SWR bursts (defined as an iSWR interval
758 Neuron 113, 754–768, March 5, 2025
of 50–132 ms) comprised only a small fraction (<20%) of all

SWRs, burst onsets were more likely following the D-U transition

(SWRDU) and burst offsets were more likely at the U-D transition

(SWRUD), particularly surrounding long DOWNstates (Figure S5).

These observations cannot simply be explained by tonic modu-

lation of the SWR rate by UP states, as UP state probability is

symmetric surrounding U-D and D-U transitions (Figure 4B).

The clustering of SWRs around U-D and D-U transitions sug-

gests a more temporally precise, and potentially causal, hippo-

campal-neocortical interaction, whereby hippocampal SWRs

may induce U-D transitions in the cortex and the transient eleva-

tion of cortical MUA at D-U transitions (K-complex) may induce

SWRs in the HPC (Figure 5A).15,18,34 To test this possibility

further, we examined the change in the probability of RSC

DOWN states as a function of SWR amplitude (Figure 5B) and

the change in the probability of SWRs as a function of

K-complex magnitude, defined as average RSC MUA within a

20-ms window following the D-U transition (Figure 5E). As the
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Figure 5. Temporal relationship between

HPC and RSC state transitions is state-

dependent and bi-directional

(A) Schematic of hypothesis: SWRs can induce

U-D transitions and D-U transitions can induce

SWRs, conditional on magnitude of the perturba-

tion and state of the receiving region.

(B) Cross-correlograms between SWRpeaks (t = 0

s) andDOWNstate onsets across all mice, colored

by SWR amplitude octile (light to dark red; small to

large SWRs). Shading denotes boot-strapped

99% confidence intervals obtained by shuffling

both SWRALL peak andU-D time series by ±30ms,

1,000 iterations. Note increased probability of

DOWN onset at fixed 30 ± 15-ms timelag (vertical

gray line) with increasing SWR amplitude.

(C) Mean probability of DOWN state onset at a

30-ms lag from SWR peak, timelag of putative

‘‘interaction’’ as a function of depth of sleep (PSS)

and SWRALL amplitude (repeated measures two-

way ANOVA across sessions [n = 15]: R2 = 0.47.

SWR amplitude, F = 83.19, p < 0.001, h2p = 0.42;

PSS, F = 5.87, p < 0.001, h2p = 0.07; interaction,

F = 1.68, p < 0.05, h2p = 0.06). Significant effect of

amplitude SWR, depth of sleep, and their inter-

action. Note the significant effect of SWR ampli-

tude is driven by amplitude octiles 7 and 8.

(D) Mean duration of DOWN states following

SWRUD as a function of depth of sleep (PSS) and

SWRUD amplitude across all mice (GLM 5-fold CV:

R2 = 0.014. SWR amplitude b1 = �0.007, t =

0.006, p = NS; PSS b1 = 0.067, t = 7.68, p < 0.001;

interaction b1 = �0.016, t = 1.96, p < 0.05).

(E) Probability of SWRs surrounding RSC D-U

transitions (t = 0 s), colored by D-U rebound

excitation octile (light to dark green, small to

large). Note increase in P(SWR) with increasing

rebound excitation at a fixed lag of 120 ms

(vertical gray line). Confidence intervals

computed as in (B).

(F) Mean probability of SWR occurrence at a

120-ms lag from RSC D-U as a function of depth

of sleep (PSS) and D-U rebound excitation

(repeated measures two-way ANOVA: R2 = 0.58.

Rebound excitation, F = 54.01, p < 0.001, h2p =

0.32; PSS, F = 120.26, p < 0.001, h2p = 0.42;

interaction, F = 3.78, p < 0.001, h2p = 0.15.

(G) Mean magnitude of HPC sharp-waves as a function of tonic MUA HPC and D-U rebound excitation across all mice (GLM 5-fold CV: R2 = 0.05. Rebound

excitation b1 = �0.27, t = �1.65, p = NS; PSS b1 = �1.01, t = �5.02, p < 0.001; interaction b1 = 0.4, t = 1.95, p < 0.05).
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amplitude of SWRs increased, they were more likely to be fol-

lowed by a U-D transition at a fixed 30 ±15-ms delay (Figure 5B).

The consistency of this lag suggests it is the time window in

which hypothesized SWR-induced DOWN states occur. Simi-

larly, as MUA at the D-U transition increased, the probability of

SWRs increased at a fixed lag of 120 ± 15 ms (Figure 5E), sug-

gesting the lag at which K-complex induction of SWRs

may occur.

We further found that the interaction between SWRs and UP-

DOWN states was modulated by arousal level, as measured by

PSS. Large-amplitude SWRs were more likely to be followed

by DOWN states in deep NREM (high PSS), with a significant ef-

fect of SWR amplitude, PSS, and their interaction (Figure 5C). In

addition, we found a significant effect of arousal level and the
interaction of arousal level with SWR amplitude on DOWN dura-

tion (Figure 5D), implying the duration of DOWN states is condi-

tional on depth of sleep and providing further support for a po-

tential role of SWRs in DOWN state induction. Similarly,

K-complex magnitude increased the probability of SWRs at a

fixed lag of 120 ± 15 ms, with a significant effect of magnitude

K-complex, PSS, and their interaction (Figure 5F). Further, the

magnitude of sharp wave sink in stratum radiatum, a measure

of the input drive to CA1 fromCA3, became increasingly negative

(corresponding to a larger sink) as a function of PSS and interac-

tion of PSS with K-complex magnitude (Figure 5G). Overall,

these findings support the hypothesis that large-amplitude

SWRs may trigger U-D transitions (SWRUD) and that transient

spike synchrony at D-U transitions (K-complex) may trigger
Neuron 113, 754–768, March 5, 2025 759
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SWRs (SWRDU and a fraction of SWRD when UP state is short;

<100 ms). In both directions, the effectiveness of the transient

burst in spiking activity accompanying SWRs and D-U transi-

tions depended on the state of the target region, which varied

with sleep depth as operationalized by PSS.

Modulation of SWR rate by DOWN states is restricted to
mouse DMN
We next asked whether the putative bi-directional interaction

observed between HPC and RSC extended to other neocortical

regions.We first binarized our wide-field data into UP andDOWN

states using a pixel-wise 25th percentile cut-off, which produced

the best alignment of extracellularly and optically detected

DOWN states in the RSC (Figure S7A). We then plotted decon-

volved wide-field activity (Figure 6Bi), RSC MUA (Figure 6Bii),

and SWR incidence (Figure 6Biii) surrounding these DOWN

states in 7 selected neocortical regions (Figure 6A), spanning

medial networks (or DMN; red) and somatic sensorimotor net-

works (blue; networks as determined anatomically in Zingg

et al.44). Although DOWN states were reliably detected across

these regions (Figure 6Bi; Figure S7F, dotted lines), RSC MUA

only followed wide-field-detected DOWN states in RSC and re-

gions in mouse medial or default mode networks, as expected

given their dense anatomical connectivity (Figure 6Bii; Figure6Ci;

Figures S7D–S7F). Paralleling this, a decrease in SWR rate was

observed during DOWN states detected across the medial

network (positive SWR modulation index; see STAR Methods;

Figure 6Cii) but not somatic sensorimotor networks. This effect

was pronounced, with longer DOWN state duration (Figure S7G),

which occupied a greater cortical area.

To examine DOWN state topography surrounding SWRs, we

plotted the average probability of DOWN states surrounding

SWR peaks, separated by small- and large-amplitude SWRs

(Figures 7Ai and 7Bi; t = 0 s). Consistent with our electrophysio-

logical and optical observations (Figures 1 and 5), SWRs were

preceded by a significant increase in UP state probability, local-

ized to the mouse medial network, beginning 120 ms before

SWRoccurrence (Figures 7A and 7B, red).Whereas small-ampli-

tude SWRs occurred during a DOWN state that remained largely

confined to the RSC, large-amplitude SWRs occurred during UP

states and were followed by DOWN states in the RSC and lateral

M1/M2 (Figure 7Bi, arrows at 30 ms; Figure 7Bii, white outlines)

that then spread across the neocortex, as measured by a shift in

DOWN onset latencies across adjacent cortical regions (Fig-

ure 7Bii). DOWN state onset in the RSC was followed by

DOWN states in visual and somatosensory regions (Figure 7Bii,

white to blue outlines). DOWN state onset in M2 and M1 was fol-

lowed by DOWN states in midline prefrontal, anterior cingulate,

and somatosensory regions. DOWN states terminated in the

V1 and barrel cortex. This suggests that large-amplitude SWRs

are followed by DOWN states initiated in RSC and/or M1/M2

that then invade much of the neocortex with trajectories

following cortico-cortical anatomical connectivity (see Video S4).

To examine the topography of K-complex impact on hippo-

campal SWRs, we plotted the average probability of SWRs sur-

rounding the DOWN-UP transition for every pixel (Figure 7Ci; t =

0 s). A sustained decrease in the probability of SWRs following

the D-U transition was observed across the medial network, fol-
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lowed by a peak in SWR probability at �120 ms after D-U tran-

sitions in the RSC that spread toward visual areas, eventually re-

turning to the RSC (Figures 7Ci and 7Ciii; Video S5). Average

wide-field activity at the D-U transition was greater in the medial

network than in somatic sensorimotor networks (Figure 7Cii),

paralleling the regions for which SWRs were time-locked to

D-U transitions.

Model ofweakly coupled excitable systems accounts for
hippocampal-retrosplenial interactions
We hypothesized that the interactions observed between hippo-

campal SWRs and RSC DOWN states result from weakly

coupled excitable systems.34 We modeled RSC and HPC each

as an adapting inhibition-stabilized network (aISN, Figure 8A,

see STAR Methods)58 with slow feedback on excitatory activ-

ity,34,59 corresponding to adaptation in the HPC60,61 and Ih in

the cortex.62–64

In the presence of noise, the aISNmodel generates alternation

dynamics with asymmetric durations of UP/DOWN states in the

RSC and SWRs/iSWR intervals in the HPC (Levenstein et al.34;

Figures 8B and S8A), which were used to select model parame-

ters that best matched the data (Figure S8A). These duration sta-

tistics emerge because both populations spend their time in

complementary excitable states (low-rate iSWR in HPC; high-

rate UP in RSC; Figure 8C). In the HPC, noise can cause a tran-

sition to a transiently stable high-rate SWR state, which is subse-

quently destabilized by the effect of adaptation (Figure 8C, red

shading). In the RSC, noise can cause a transition to a transiently

stable DOWN state, which is subsequently destabilized by the

effect of Ih (Figure 8C, gray shading).

In addition to each region’s local connectivity, we coupled the

RSC and HPC using excitatory projections that targeted the

excitatory and inhibitory populations in the partner region (Fig-

ure 8A; STAR Methods). This coupled network exhibited

increased incidence of SWRs prior to DOWN states (Figure 8E,

compare with Figures 4D and 4E), decreased hippocampal pop-

ulation rate and SWR probability (pSWR) during cortical DOWN

states (Figure 8D, compare with Figure 3), and increased SWR

probability following cortical DOWN-UP transitions (Figure 8E,

compare with Figures 4D and 4E), as in our experimental find-

ings. Analysis of the phase planes revealed that these temporal

relationships emerged because the influence of each region on

the other modulates the stability of fixed points, and thus the

probability of transitions, at critical times (Figure 8F; Video S6).

During a SWR, increased drive from the HPC decreases the sta-

bility of the RSC UP state, increasing the probability of a U-D

transition (Figure 8Fi). During the DOWN state, lower drive from

the RSC decreases the HPC firing rate during the hippocampal

iSWR and increases its stability, decreasing the probability of

an iSWR / SWR transition (Figure 8Fii). Following the DOWN

state, Ih transiently increases the firing rate of the RSC UP state

fixed point, which provides increased drive to the HPC, thus

decreasing the stability of the hippocampal iSWR state and

increasing pSWR (Figure 8Fiii).

Further analysis of the model revealed two additional insights.

First, the ability of SWRs to evoke a cortical DOWN state relied

primarily on the influence of hippocampal activity on cortical in-

terneurons (Figure S8B), as has been observed experimentally
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Figure 6. Probability of SWRs surrounding DOWN states across dorsal neocortex

(A) Map of regions visible in imaging field of view (FOV), color-coded by membership in medial network (red) or somatic sensorimotor networks (blue), as in Zingg

et al.44 Numbered regions correspond to columns in (Bi)–(Biii).

(Bi) Deconvolved wide-field activity surrounding wide-field-detected DOWN states in the region specified (25th percentile of pixel WF values and below = DOWN

state), as described in Figure S8 and STAR Methods. Sorted by duration DOWN for an example mouse, separately in each region.

(Bii) RSC MUA surrounding the same DOWN states for each region.

(Biii) Raster plot of SWRs surrounding the same DOWN states, color-coded by SWR amplitude quintiles (small to large: green, cyan, blue, black, and red). Note

that large-amplitude SWRs (red) precede U-D transitions for long DOWN states, red arrow.

(Ci) Average modulation index (MI; see STAR Methods) of RSC MUA by DOWN states detected across all pixels and all mice; positive MI corresponds to higher

RSCMUA during UP than DOWN for the given pixel (see STARMethods for details); left, MI plotted on dorsal map, right, distribution of same values separated by

medial (red) and sensorimotor networks (blue).

(Cii) Averagemodulation of SWRs relative to DOWN states across all regions; left, MI plotted on dorsal map, right, distribution of same values separated bymedial

(red) and sensorimotor networks (blue).

ll
Article
with hippocampo-cortical65,66 and cortico-cortical67 projec-

tions. Second, the temporal relationships observed between

SWRs and DOWN states relied directly on bi-directional interac-

tion between the HPC and RSC, as a ‘‘lesion’’ of RSC / HPC

projections resulted in a loss of DOWN-state modulation of hip-

pocampal MUA and thus modulation of pSWR (Figure S8C).

Conversely, lesion of the HPC / RSC projection removed the

increased probability of SWRs at U-D and D-U transitions

(Figure S8D). Together, these results indicate that a mechanism

involving coupled excitable systems is sufficient to explain the

putative state-dependent, bi-directional interaction observed

between the HPC and RSC.

DISCUSSION

Using a combination of wide-field imaging of mouse dorsal

neocortex and electrophysiological recordings from the RSC

and HPC, we found evidence of a topographically confined, bi-

directional interaction between the HPC and neocortex that var-

ied in strength, with ultraslow fluctuations in arousal level. In
addition to the modulation of SWR rate by UP/DOWN states in

the DMN, population-level state transitions in one structure

had a precise temporal relationship with state transitions in the

other. From the cortex to HPC, SWRs followed rebound excita-

tion at D-U transitions, or K-complexes, in the DMN, with a char-

acteristic latency. From the HPC to the cortex, large-amplitude

SWRs were followed by an increased probability of DOWN

states in the RSC and antero-lateral motor areas, which spread

following cortico-cortical connectivity. A model of weakly

coupled excitable systems accounted for the major experi-

mental observations.

Putative bi-directional hippocampal-neocortical
interaction
Our findings support and extend previous work suggesting a hip-

pocampal-neocortical ‘‘dialog’’ during NREM sleep. Previous

electrophysiological experiments often recorded from the HPC

and a single partner region. As a result, mechanistic hypotheses

proposed based on the observed temporal relationships varied,

including that SWRs trigger either UP states or DOWN states or
Neuron 113, 754–768, March 5, 2025 761
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Figure 7. Average topography of putative interaction between hippocampal SWRs and neocortical DOWN states

(Ai) Average probability of DOWN state occurrence across all pixels aligned to low amplitude SWRs (amplitude quintile 1 of 5; t = 0, peak of SWRs). Colored

portion of plots denotes the time points at which the given pixel is above (blue) or below (red) a 95th percentile bootstrapped confidence interval, obtained by

shuffling SWR peak times across all SWRs and re-computing cross correlograms (n = 500).

(Aii) Outline of DOWN states from the onset of DOWN in RSC (white outline) to a sink in RSC (dark blue outline), colored by latency with respect to SWR peak.

(Bi) Same as (Ai) but for SWR amplitude quintile 5 of 5. Note onset of DOWN states 30 ms following SWR peak in both RSC and regions across sensorimotor

network.

(Bii) Outline of DOWN states from onset of DOWN in RSC and sensorimotor regions (white outlines) to sinks in V1 and barrel cortex (dark blue outlines), colored by

latency with respect to SWR peak.

(Ci) The probability of SWR occurrence aligned to D-U transitions (t = 0) for every pixel. Colored portion of plots denotes the time points at which the given pixel is

above (blue) or below (red) a 95th percentile bootstrapped confidence interval, computed as in (Ai) and (Bi) but with shuffled D-U transition times.

(Cii) Mean wide-field activity within 20 ms of the D-U transition for each pixel.

(Ciii) Outline of significant increase in P(SWR) following D-U transitions for successive frames.
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that the neocortex primes the spike content of SWRs.8–16,68

Recent imaging experiments attempted to address these contra-

dictions by considering regional variation in coupling, but these

either lacked the temporal resolution needed to resolve direction

of interaction, did not record during NREM sleep, or arrived at hy-

potheses that differ from ours.31–33

From the neocortex to the HPC
Our experiments show that hippocampal spiking activity tracks

UP/DOWN states in neocortical regions restricted to mouse

DMN, with the most pronounced co-variation between the RSC

and HPC during deep NREM. Previously referred to as ‘‘frames’’

of co-activity,9,10 this co-variation may be enabled by a common

third-party drive, for example, from subcortical sources.69,70

Another possibility is that the traveling UP/DOWN states charac-

teristic of NREM sleep spread to the RSC or entorhinal cortex,

monosynaptic partners of HPC, which in turn directly drive hippo-

campal circuits. In support of the latter, in our model, increased

input to the HPC during cortical UP states increases the excit-

ability of the HPC. This caused an increase in both HPC popula-

tion rate and SWR rate due to an increase in the ease with which

noise or external perturbation can ‘‘kick’’ HPC into a SWR state. In
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support of this scenario, it was previously reported that both the

firing rates of hippocampal neurons and SWR incidence decrease

during bilateral optogenetic silencing of the medial entorhinal cor-

tex.13 The excitability of hippocampal and cortical populations has

also been demonstrated to increase with deepening NREM,34

which is reflected in the increased modulation of HPC by RSC

UP/DOWN states with deepening sleep.

In addition to the modulation of hippocampal excitability by

UP/DOWN states and NREM depth, a disproportionate number

of SWRs occurred following DMN D-U transitions at a fixed lag

(SWRDU). The putative trigger for SWRDU is the rebound excita-

tion following D-U transitions, known as the K-complex in scalp

electroencephalogram (EEG) recordings. Our model supports

our interpretation of these observations. In the model, D-U-

induced K-complexes occur because activation of the h-current

during RSC DOWN states results in transient rebound excitation

at the D-U transition prior to settling into an UP state. This D-U

‘‘rebound excitation’’ destabilizes the iSWR state in the HPC

population, thus increasing the probability of SWR occurrence.

Of note, the increase in HPC excitability lagged behind the

onset of UP states in the RSC and other DMN regions. Mirroring

this, SWRDU did not occur in tandem with K-complexes but
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Figure 8. Model of the bi-directional interactions between HPC and RSC

(A) Two-region firing rate model of HPC and RSC, with long-range projections between the two regions. Each region comprises of recurrently connected

excitatory (E) and inhibitory (I) populations with independent background noise. The E populations are subject to a slow feedback current (h-current [h] in RSC,

adaptation [a] in HPC, see STAR Methods).

(B) Model simulation outputs for E and I populations in the two regions and feedback currents.

(C) I-E phase planes for RSC andHPC. Both regions show two stable steady states (a DOWNand anUP state for RSC and an iSWR and a SWR state for HPC). The

basin of attraction for each steady state is bounded by a separatrix passing through an unstable fixed point (FP). In the HPC (left), a transition from the iSWR to the

SWR state engages the adaptative current, which destabilizes the SWR state. In the cortex (right), a transition from the UP to the DOWN state engages the

h-current, which destabilizes the DOWN state.

(D) From top to bottom: HPC MUA and P(SWR) plotted as a function of time-normalized RSC UP and preceding DOWN states (compare with Figure 3).

(E) Top, raster plot of all SWRs surrounding the DOWN state. Note as in experimental data, clustering of SWRs around UP and DOWN state transitions. Bottom,

P(SWR) surrounding state transitions reveals a peak before the U-D transition and after the D-U transition (compare with Figure 4).

(F) Analysis of the phase planes for SWR-UP/DOWN interaction. (i, SWRUD) Increased hippocampal activity in the SWR state displaces the RSC nullclines,

destabilizing the UP state fixed point and pushing the trajectory to a DOWN state. (ii) Low RSC activity in the DOWN state lowers the HPC E nullcline, reducing the

P(SWR). (iii, SWRDU) Activation of the h-current during the DOWN state results in increased RSC activity following the D-U transition. High RSC activity displaces

the HPC nullclines, destabilizing the iSWR fixed point and pushing the trajectory to a SWR.
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rather followed D-U transitions in RSC with a delay of 120 ms

(Video S5B). An explanation for this delay is not readily captured

by ourmodel, evenwith delayed differential equations (see STAR

Methods). It is possible that the excitatory drive from the RSC is

not direct and occurs primarily via a polysynaptic pathway

through either the entorhinal cortex or thalamus.13,71 However,

a similarly long delay has been observed between entorhinal

cortical D-U transitions and SWRs.9 An alternative possibility is

that excitatory input drives dentate granule cells, which exert a

transient inhibitory effect on CA3 pyramidal cells, via feed-for-

ward inhibition,9,15,72 and that the release of those CA3 pyrami-

dal cells from hyperpolarization induces synchronous rebound

spiking.73,74 Multi-site recordings in the RSC, entorhinal cortex,

HPC, and thalamus, or brief optogenetic hyperpolarization of

CA3 neurons, will be needed to test these hypotheses.

From the HPC to the neocortex
In the reverse direction, as SWR amplitude and depth of sleep

increased, the probability of retrosplenial cortical DOWN states
following SWRs at a fixed lag also increased (SWRUD).
12,19,75

This temporal relationship is not without precedence, as in hu-

mans DOWN states often follow SWRs76 and interictal epilepti-

form events in the HPC reliably induce DOWN states in both hu-

mans and rodents.7 Our model suggests a mechanism by which

SWR-induced DOWN states could occur. A SWR transiently de-

stabilizes the UP state via a strong drive of the local cortical inhib-

itory population, resulting in increased probability of transition to a

DOWN state. Deepening NREM sleep further destabilizes DOWN

states,34 contributing to this effect. This mechanism is corrobo-

rated by a recent paper that optogenetically stimulated hippo-

campal terminals in the RSC and found an increase in the firing

rate of inhibitory, but not excitatory, cells, followed by a DOWN

state.66 In our wide-field data, we further observed that sufficiently

large-amplitude SWRswere followed by DOWNstates in the RSC

or anterolateralmotor regions that then spread acrossmuchof the

neocortex, with average sinks in the barrel and primary visual

cortical regions. This may be facilitated by cortico-cortical or tha-

lamo-cortical projections. For example, the RSC is a ‘‘hub’’ in the
Neuron 113, 754–768, March 5, 2025 763
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DMN36,77 and shares dense bi-directional projectionswith regions

across the visual hierarchy. SWRUD could ultimately lead to a

DOWN state in V1 via induction of a DOWN state in the RSC

that then propagates along hierarchically connected visual areas.

Alternatively, DOWN state induction in early sensory areas could

happen via thalamo-cortical disfacilitation, supported by the

observation that numerous thalamic nuclei are silenced during

SWRs19,23,78 and the larger the amplitude SWR, the more global

it is along the longitudinal axis of the HPC.19 Overall, these obser-

vations suggest that SWRUD events exert an influence on neocor-

tical activity proportional to SWR amplitude that then propagates

across neocortex.

An unexpected observation, in light of previous claims,14,17,18

was the absence of SWRs preceding and thus putatively

inducing UP states. We observed only a small fraction of

SWRs during DOWN states, often timed by the K-complex of a

preceding short-duration UP state at �120 ms. The failure of

SWRD to induce a D-U transition could be explained by their

low probability, low amplitude, or refractoriness of the target cir-

cuits. In line with this latter explanation, SWRs during DOWN

states evoked EPSPs in entorhinal neurons but failed to

discharge them,9 preventing the propagation of excitation. We

also note that there were more U-D and D-U transitions than

SWRUD and SWRDU events, implying that only a fraction of these

transitions were induced by (or induced) a SWR. One possible

explanation for this is that traveling slow oscillations26 observed

in the DMN or RSC may fail to invade the entorhinal cortex, the

primary input to the HPC. Another explanation, afforded by our

model, is that both regions are only weakly coupled and thus

capable of noise-driven transitions independently of one

another. Further, our experimental studies examined these

interactions in ‘‘spontaneous’’ states, but we expect that these

interactions will be biased by prior learning or emotional

experience.

Putative functions of SWR types
The ability to distinguish SWRs by their timing with respect to

neocortical UP and DOWN transitions could help disentangle

the direction of spike transmission between the HPC and

neocortex and thus the mechanistic contribution of these

‘‘SWR types’’ to memory. One possibility is that the observed

SWR types support distinct functions, such as encoding, consol-

idation, or priming of recalled events. In a recent study, hippo-

campal reactivation occurred during prefrontal cortical UP

states, whereas the strongest coordination between the RSC

and HPC occurred during U-D transitions in the RSC.79 SWRD

events, some of which may be triggered by K-complexes, can

sporadically activate a few neocortical pyramidal cells during

the DOWN state. This sporadic spiking during DOWN states

has been suggested to be the critical driver of consolidation of

recently acquired experience.80 However, this explanation alone

would leave the function of the great majority of SWRs unex-

plained, other than serving subcortical, autonomic functions.81

In contrast, another study emphasized the importance of

distinct, brain-wide coordinated and uncoordinated SWR events

during UP states.82

A complementary hypothesis is that the four types of SWRs

are better understood as part of a multi-regional ‘‘dynamical
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motif’’ enabling systems consolidation,83 facilitated by the excit-

able regimes characteristic of NREM sleep.34 SWRs, if suffi-

ciently large, may induce a DOWN state (SWRUD). This DOWN

statemay invade the thalamus, inducing a thalamo-cortical spin-

dle,84 and the rebound excitation from the D-U transition may

then initiate a SWR burst (SWRDU and SWRU) in the HPC that

is coordinatedwith that induced spindle. In support of this, mem-

ory reactivations in humans occur when SWRs are coupled to

slow oscillations and spindles but not during solitary slow oscil-

lations or spindles.85 Further, SWR bursts are likely important for

consolidation in light of reports that long-duration neuronal spike

sequences, reflecting long trajectories in a previously experi-

enced environment, span several hundred milliseconds, and

often abridge two or more SWR events occurring in a burst.86

Whereas SWRDU are more likely to reflect burst onsets,

SWRUD may play a role in ending both a SWR burst in the HPC

and an UP state in neocortex. One can speculate that the

ensuing silence serves as the truncation of coordinated explora-

tion along a given attractor or the expression of a memory trace,

allowing exploration of the next.24

Arousal levels affect interregional perturbation
Ultraslow and infraslow fluctuations in arousal level have long

been observed in both humans and rodents.20 However, the

link between these slow timescale changes and fast timescale

hippocampal-neocortical interaction has remained elusive, re-

sulting in largely separate rodent and human literatures. We sug-

gest that the dynamical regime, and thus excitability, of brain cir-

cuits fluctuates across ultraslow and infraslow timescales, likely

due to the slow changes in neuromodulatory tone accompanying

transitions in arousal level.87,88 Ultraslow fluctuations may reflect

global changes in arousal level, whereas infraslow fluctuations

may reflect changes in regime within resting state networks.

Given the hypothesized fluctuations in regime, these slow

rhythms reflect the propensity with which the regions belonging

to the given resting state network can be perturbed.34 For

example, an ‘‘active’’ DMN corresponds to an increased rate

of SWRs and DOWN states in DMN regions,27 which arise due

to the more excitable regime the DMN is in, facilitating inter-

regional communication within, but not across, resting state net-

works. Finally, SWR types arise because of the transition from

less to more excitable regimes over the course of deepening

sleep. If sufficiently excitable, or if the perturbation is sufficiently

large, SWRs (SWRUD) can cause DOWN states and D-U transi-

tions can cause SWRs (SWRDU). These perturbations can then

propagate as a function of the state and anatomical connectivity

of the downstream structure. This provides a mechanism by

which SWR perturbation can propagate along the neocortical hi-

erarchy, mediated by sleep depth.

We did not distinguish explicitly between wake and sleep

SWRs. This may be considered a caveat, given the distinct func-

tions they are often assigned.87,89,90 However, our observations

and previous results91 do not support a clear delineation be-

tween wake and sleep but rather a transition toward an increas-

ingly excitable neural regime as an animal moves through

quiet wake to deep NREM sleep states. Supporting this notion,

UP-DOWN states are present during quiet wake but are notably

more localized, as is the impact of perturbation via SWRs.15,91–95
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Further experiments are needed to reveal whether waking and

NREM SWRs are qualitatively different in their interaction with

the neocortex or whether they are better understood as existing

along a continuum.
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feedback. This work was supported by NIH grants MH122391, MH 139216

(G.B. and J.B.), U19 NS107616 (G.B.), R01 NS109362 (J.B.), R01 NS109994

(J.B.), R01MH062346 (X.-J.W.), and R90DA060339 (E.C.).

AUTHOR CONTRIBUTIONS

R.A.S., G.B., and J.B. designed the research. R.A.S., N.M., and M.V. per-

formed the research. R.A.S. analyzed the data. E.C. modeled the data, guided

by R.A.S., D.L., and X.-J.W. R.A.S., G.B., and J.B. wrote the paper, with the

contribution of all authors.

DECLARATION OF INTERESTS

The authors declare no competing interests.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include

the following:

d KEY RESOURCES TABLE

d METHOD DETAILS
B Animal handling

B Surgical procedures

B Behavior

B Electrophysiological Recordings

B Widefield Recordings

B Histology

d DATA ANALYSIS

B Electrophysiological data preprocessing

B Widefield data preprocessing

B Multiple unit activity (MUA) extraction

B UP/DOWN state detection

B Ripple detection and analysis

B Tonic MUA

B Average variables across time normalized UP/DOWN states

B Brain State Scoring

B PSS Power spectrum slope (PSS)

B Computing SWR phase-relationship with infraslow blood flow

signal

B Spectrograms x infraslow phase

B Identification of SWR types
B Calculation of DOWN states in widefield data

B DOWN state modulation index

B Cross-correlograms of widefield data

B Computing cross-correlograms to test whether the strength of input

impacts population-level state transition in downstream region

B Testing the effect of input strength and state of downstream region

on probability of evoking a population-level state transition via

repeated measures ANOVA

B Predicting duration DOWN state or magnitude of sharp wave using

input strength and local state as predictors in a generalized

linear model

B Statistical methods

d MODEL SETUP

B Model implementation

B Local Connection Strengths

B Long Range Connection Strengths

B Model Parameters

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

neuron.2024.12.019.

Received: March 15, 2024

Revised: October 26, 2024

Accepted: December 18, 2024

Published: January 27, 2025

REFERENCES

1. McClelland, J.L., McNaughton, B.L., and O’Reilly, R.C. (1995). Why there

are complementary learning systems in the hippocampus and neocortex:

insights from the successes and failures of connectionist models of

learning and memory. Psychol. Rev. 102, 419–457. https://doi.org/10.

1037/0033-295X.102.3.419.

2. Kumaran, D., Hassabis, D., and McClelland, J.L. (2016). What Learning

Systems do Intelligent Agents Need? Complementary Learning

Systems Theory Updated. Trends Cogn. Sci. 20, 512–534. https://doi.

org/10.1016/j.tics.2016.05.004.

3. Alvarez, P., and Squire, L.R. (1994). Memory consolidation and the

medial temporal lobe: A simple network model. Proc. Natl. Acad. Sci.

USA 91, 7041–7045. https://doi.org/10.1073/pnas.91.15.7041.
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Mouse: C57BL/6J-Tg(Thy1-GCaMP6f)GP5.17Dkim/J Jackson Laboratories RRID: IMSR_JAX:025393

Software and algorithms

MATLAB Mathworks https://www.mathworks.com/

Buzcode (MATLAB analysis tools) Buzsaki Lab https://github.com/buzsakilab/buzcode

FMA Toolbox (MATLABtoolbox for

Freely Moving Animal (FMA))

Michael Zugaro https://fmatoolbox.sourceforge.net/

Optical-flow analysis toolbox for

wide-field neuroimaging

Majid Mohajerani https://lethbridgebraindynamics.com/ofamm/

NIS Elements Imaging Acquisition Software Nikon https://www.microscope.healthcare.

nikon.com/products/software/nis-elements

Other
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Diagnostic Biochips

H3 Probes

RHD2000 USB Interface Board Intan Technologies C3100

64 channel digital amplifiers Intan Technologies C3314

3D printed microdrives Mihaly Voroslakos &

Gyorgy Buzsaki

https://github.com/buzsakilab/3d_print_designs

Nikon AZ100 Macroscope Nikon https://www.microscopy.uk.com/sales/nikon-

microscopes/nikon-az100-microscope
METHOD DETAILS

Animal handling
All experimental procedures were conducted in accordance with the National Institutes of Health guidelines and with the approval of

the New York University Grossman School of Medicine Institutional Animal Care and Use Committee (IACUC). C57BL/6J-Tg(Thy1-

GCaMP6f) GP5.17Dkim/J (Jackson laboratories, Stock #:02539340) mice were used for all data collected; all males. Mice were

kept in the vivarium on a standard 12-hour light/dark cycle and were housed 2-5 per cage before surgery and then alone following

the surgery. Mice were provided food and water ad libitum throughout experiments, and experiments were conducted at the begin-

ning of the light cycle to maximize sleep duration and quality.

Surgical procedures
Mice were anesthetized with isoflurane, homeothermically maintained, and monitored using pulse oximetry. In a fully aseptic envi-

ronment, the scalp over the craniotomy area was resected. Skull thinning was then performedwith constant saline irrigation, avoiding

excessive drilling of the sutures but ensuring the removal of the outer and spongy bone layer. The thinning area extended over the

entire dorsal right hemisphere, from the frontal cortex to the posterior visual cortex. Once drilled to translucency with only the inner

compact bone layer remaining, the dry surface of the skull was coatedwith a thin layer of cyanoacrylate (gel-type Loctite Super Glue),

which serves to index-match the rough surface of the skull, preventing bone re-growth and provide mechanical protection. The skin

around the thinned skull preparation was sealed using cyanoacrylate tissue adhesive (e.g., 3MTM VetbondTM Tissue Adhesive). A

thin coating of clear nail polish was then applied on top of the cyanoacrylate to further index-match the skull’s surface and reduce

scatter. Finally, a ground screw coupled with a 0.005’’ stainless steel wire (A- M Systems, #792800) was implanted in the skull above

the cerebellum, and a custom 3d-printed head post was fixed to the surface of the skull using dental cement. Mice were then allowed

to recover for one week and were inspected for response to visual stimuli to confirm the expected expression and dynamics of

GCaMP6f.

In a second surgery, performed 5 days to one week following the first surgery, mice were implanted chronically with a 64-site or

128-site linear silicon probe (H3; Cambridge Neurotech) at a 60o angle, mounted onto a Cambridge Neurotech Nanodrive. The probe

spanned deep (64-cite) or deep and superficial (128-cite) layers of retrosplenial cortex and area CA1 of the hippocampus ipsilateral to
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the imaging field of view, after being lowered from a craniotomy at 0.5 mm DV and 2.95 mm AP coordinates in the contralateral (left)

hemisphere (Figure 1). The probe and nanodrive were then enclosed in the remaining components of the 3d printed head-post.

Behavior
After recovery for 1 week, animals were gradually habituated to head fixation (modified rivets system92 ) for 5 to 7 days, where the

amount of time spent head-fixed increased from 10minutes to two hours. During both habituation and head-fixed experimental ses-

sions, animals were free to run or rest on a 1.9-m length custom treadmill, duringwhich no rewardwas delivered. Animal behavior was

monitored during head-fixation using a small camera (Basler ace acA1300-60gm-NIR GigE Camera) under IR illumination, and a hall

effects sensor (Littelfuse 55140-3H-02-A) placed at the axel of one treadmill wheel. Mice were encouraged to sleep using the

following strategy: performing imaging sessions at the transition to their sleep cycle (i.e., daytime), increasing the force needed to

move the treadmill but still allowing movement, and using a heated treadmill platform that partially enclosed their bodies. Home-

cage sleep sessions allowed the mice to behave freely while plugged into the recording cable. Both head-fixed and home-cage

setups were Faraday-protected using a metal mesh connected to the ground.

Electrophysiological Recordings
Electrophysiological recordings were conducted using an Intan RHD2000 interface board with sampling at 20 kHz (IntanTech). Sig-

nals were recorded in a unipolarmanner against a reference and common ground (cerebellar screw) and digitized by a head-mounted

preamplifier. Frame times for the behavior-recording camera and the widefield imaging camera signal were recorded as digital inputs

to the Intan system. Probes were gradually lowered until sharp-wave ripple (SWR) depth profiles were clearly visible and then left in

place for the duration of the experiment.

Widefield Recordings
Widefield imaging was performed on the right hemisphere of head-fixedmice through the thinned skull preparation using theMVX-10

Macroscope (Olympus) during simultaneous chronic electrophysiological recordings of ipsilateral retrosplenial cortex and CA1. Data

were recorded using an Andor Zyla sCMOS camera with dual-wavelength LED imaging (cool LED PE-4000 system) and camera con-

trol by NIS Elements software (Nikon). 16-bit images were acquired at a rate of between 66.66 Hz and 100 Hz using global shutter

mode. Alternating illumination between 470 nm and 525 nm on a per-frame basis was used in some cases, and illumination with a

third wavelength at 630 nmwas used for a small subset of videos. Illumination was collected via a 500-nm long pass emissions filter.

Histology
After experiments, mice were anesthetized with an injection of 150 mg/kg ketamine and 10 mg/kg xylazine. After checking for the

absence of reflexes, animals were transcardially perfused by inserting a 27-gauge needle into the left ventricle of the heart while

simultaneously severing the right atrium. Following perfusionwith 1XPBS, 4%paraformaldehyde in PBSwas circulated in the animal.

The brain was removed and fixed overnight in 4% paraformaldehyde at 4�C and then sectioned into 60-mm thick horizontal slices

using a microtome (Leica VT1000S) after washing to undergo immunohistochemistry. The slices were mounted on imaging slides

in Vectashield Hard Set Mounting Medium with DAPI (Vector Laboratories). Brains were then imaged under a florescent microscope

under 350 nm to capture DAPI and 470 nm wavelengths to capture the GCaMP signal.

DATA ANALYSIS

Data analysis was performed using custom software written in Matlab (MathWorks) and adapted from the Buzsaki Lab code repos-

itory (https://github.com/buzsakilab/buzcode).

Electrophysiological data preprocessing
Data files for paired head fixed and homecage recording sessions were concatenated and downsampled to 1250Hz for LFP analysis.

Widefield data preprocessing
The following is adapted from Peters et al.43. All wide-field data were de-noised via compression using singular value decomposition

of the form F = USVT. The input to the SVD algorithm was F, the pixels x time matrix of fluorescence values. The outputs were U, the

pixels x components matrix of template images; V, the time x components matrix of component time courses; and S, the diagonal

matrix of singular values. The top 200 components were retained, found to be inclusive of a threshold determined by theMarchenko-

Pastur distribution of a random matrix93; a more theoretically-motivated noise threshold, but ultimately more time extensive and un-

necessary to compute given sufficient de-noising with 200 components. All orthogonally invariant operations (such as deconvolution,

event-triggered averaging and ridge regression to predict cortical activity from the wide-field signal) were carried out directly on the

matrix S*V, allowing a substantial saving of time and memory.

Hemodynamic effects on fluorescence were removed by regressing out a green 525 nm widefield channel, reflecting changes in

total blood volume, from the calcium-dependent signal obtained with blue illumination (470 nm). To achieve this, both signals were

band-pass filtered in the range 7–13 Hz (heartbeat frequency, expected to have the largest hemodynamic effect). Pixel traces for blue
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illumination (470 nm) were then temporally resampled to be concurrent with green illumination (525 nm, as colors were alternated),

and a scaling factor for the given pixel-wise regression was fit across colors for each pixel. The scaled fluorescence traces from

525 nm green light illumination were then subtracted from the fluorescence traces emitted from 470 nm blue light illumination. To

correct for slow drift, hemodynamic-corrected fluorescence was then high-pass filtered over 0.01 Hz and DF/F0-normalized by

dividing by the average fluorescence at each pixel within the session.

Wide-field videos were then aligned across sessions by rigid registration of the average green-illuminated image to the Allen Com-

mon Coordinate Framework5242 using two anatomical coordinates, lambda and bregma (marked during surgery). In a subset of

mice, visual stimuli were presented and average deconvolved activity was confirmed to show a response in V1 (see Figures S1

and S2; Data S1). In all mice, the closest correlation with RSC population rate was in RSC, as expected.

In some cases, for very long videos, SVDwas performed on segments of individual videos.When this was done, Umatrices differed

across sub-videos, leading to data reconstruction occurring across distinct principal axes. To combat any potential issues arising

from this, all Umatrices (200 components) were concatenated, and SVDwas performed on this matrix; data were then reconstructed

using this ‘master’ U matrix.

Fluorescence was deconvolved using a kernel fit from predicting retrosplenial cortical (RSC) multiunit activity from wide-field

GCaMP6f fluorescence using ridge regression. This kernel was estimated by using simultaneous wide-field imaging and electrophys-

iological recordings in RSC. The single pixel with the highest correlation to the population rate before deconvolution was used for this

purpose, and the population rate was calculated by binning spiking data for a spike-sorted session per mouse. 10-fold cross-vali-

dation was performed, and a lambda of 0.02 was used for regularization. The final deconvolution kernel was a mean of

maximum-normalized kernels across recordings divided by the sum of squared weights across time. The deconvolution kernel

was biphasic and roughly similar to a derivative filter (that is, [�1,1]), consistent with rises in the GCaMP signal corresponding to pe-

riods of spiking.

Analysis of traveling waves was performed using the Optical Flow Connectivity Toolbox.94 Note that vector fields were computed

using average SWR-triggered videos and thus denote changes in local widefield values from frame to frame on average, whichmay or

may not be representative of individual trajectories. For our purposes, this is sufficient to give a sense of changes in activity over time

on average.

Multiple unit activity (MUA) extraction
MUA extraction was implemented byMUAfromDat.mat (git: buzcode) via the following steps: First, a user-specified channel from the

raw .dat file in the region of interest was band-pass filtered in the 500 to 5000 Hz frequency range. Then the estimated EMG from the

LFP96 was used to replace EMG-related artifacts with ‘NaN’ values. MUAwas then normalized between 0 and 1 within each session.

Two common methods of MUA extraction, MUA via band-pass filtering vs MUA via the pooling of spike-sorted units, were

indistinguishable.

UP/DOWN state detection
DOWN states were detected using DetectSlowWavesMUA.mat (git: buzcode), parameters: smoothwin = 0.3, startbins = 40, refine-

DipEstimate = true. Briefly, MUA is detected as described above. If the distribution of the log-transformed MUA values are signifi-

cantly bimodal (Hartigan’s dip test), the trough of this bimodal distribution is identified (bz_BimodalThresh.mat), and anything above

this threshold is regarded an UP state; below a DOWN state. A Schmidt trigger (threshold), which uses the halfway points between

trough and upper peaks for onset and offset of a given state, was compared to a hard threshold, and no significant difference was

found, as expected given the high data quality (Schmidt triggers are a useful control in noisy data).

Ripple detection and analysis
Ripples were detected as described previously,95 using bz_FindRipples (git: buzcode). Briefly, the raw LFP (1250 Hz) was filtered

(130-200 Hz; Butterworth; order = 3) and was transformed to a normalized squared signal (NSS). This signal was used to identify

peaks beyond 5 standard deviations above the mean NSS. The beginning/end cutoff of the ripple was defined by a threshold of 2

standard deviations above the mean NSS. Ripple duration limits were between 15ms and 250ms. In addition, estimated EMG

from the wide-band recording96 was used to exclude EMG-related artifacts. The peak of the ripple (max power value > 5 standard

deviations) was defined as time 0 for the ripple. Ripples were defined across the entire duration of a day, including both periods in the

maze and the homecage. Ripple frequency was computed as the derivative of the ripple-band filtered LFP during ripple intervals

found above. Ripple power is the power in the ripple band found via wavelet decomposition normalized by power in the ripple

band during inter-ripple intervals. Sharp wave (SW) magnitude was the log10 normalized value of the sink after calculating the

CSD across channels spanning the pyramidal cell layer using the inverse CSD method, which is based on the inversion of the elec-

trostatic forward solution.97 All SWRs were manually inspected, and any clearly resembling noise was excluded from the analysis.

Tonic MUA
Tonic MUA was computed by calculating the median deep RSC MUA across the duration of a given UP state. Each UP state has a

single tonic MUA value.
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Average variables across time normalized UP/DOWN states
Time normalized UP and DOWN states were computed by taking the median value of interest (RSCMUA, HPCMUA, P(SWR), ampli-

tude SWR, P(burst onset SWR)) within 15 evenly spaced bins within either all UP states, or all DOWN states, and then averaging the

value of interest across all time normalized UP states or time normalized DOWN states. Because number of bins was kept constant to

allow averaging of variable duration UP and DOWN stats, bin time duration was variable.

Brain State Scoring
A previously described semi-automated sleep scoring algorithm was used.20 It calculates a spectrogram from the raw LFP (1.25kHz)

using a 10-s window FFT, sliding at 1 s intervals, at logarithmically spaced frequencies from 1 to 100 Hz. Briefly, this algorithm uses a

set of heuristics when examining the EMG, theta band ratio (4-9 Hz divided by 2-16 Hz), and broadband LFP. The estimated EMG is

the summed pairwise zero-lag correlation between non-neighboring electrodes (separate shanks; > 200umdistance) using the band-

pass filtered (300-600 Hz; 3rd order Butterworth) local field potential.96 The theta band ratio is the 4-9 Hz power from the spectrogram

divided by the 2-16 Hz power. The broadband LFP spectrogram was then compressed using principal components analysis (PC1

always corresponding to < 20Hz power). The algorithm then uses these data in a sequence of separations, finding troughs that maxi-

mally split peaks in each distribution. In all recordings, manual inspection of scoring was conducted. In some cases, manual curation

of algorithm parameters or specific segments of recordings was conducted to identify brain state best.

PSS Power spectrum slope (PSS)
We used the power spectrum slope as an estimate for brain state and as a potential index of cortical E/I balance.45 For each session,

we selected an infragranular cortical channel and extracted the slope of the power spectrum between 4-100 Hz in a 2 seconds in-

terval and a 50 ms sliding window. PSS describes state changes as a single value. Its relationship to classically defined brain state

changes can be calibrated and PSS values can then be assigned to these discrete (arbitrary threshold-separated) states. While Brain

State scoring provides isolated clouds for active waking (locomotion) and REM sleep, the relationship between quiet awake immo-

bility and NREM sleep is more of a continuum than bimodally separable states.98

Computing SWR phase-relationship with infraslow blood flow signal
Every neocortical pixel in the 520 nm wavelength (green) channel was filtered in the infraslow frequency range, [.04 to .5] Hz. The

phase angles for each timestamp when a SWR peak occurred within NREM epochs were then calculated separately for each pixel

using the real component of the Hilbert transform and plotted in a histogram. The circular mean and resultant vector were then calcu-

lated using these histograms for each widefield pixel.99 For a null distribution, widefield infraslow phase angles were circularly shifted

by a randomoffset and the phase angle histogramswere then recalculated (10 iterations). Resultant p-values are calculated based on

this bootstrapped null distribution and plotted for each pixel.

Spectrograms x infraslow phase
We first concatenated all NREM epochs for a given session within mouse of a select LFP channel, either from deep-layer RSC or the

CA1 pyramidal cell layer. We then calculated a time-resolved wavelet spectrogram by convolving this LFP time series with a family of

complex Morlet wavelets,100 log2-spaced between 1 and 200 Hz with variable time resolution, allowing for fixed five cycles per fre-

quency. The wavelet spectrogram was then mean-normalized within frequency. Next, we plotted the average power spectrum by

infraslow phase (Figure S4G) by assigning an instantaneous phase of total blood volume (520 nm channel) filtered in the infraslow

frequency range (0.04 to 0.5 Hz), to each time-point in the spectrogram, sorting the spectrogram into 20 evenly spaced phase-

bins, and then averaging across time within those bins. This allowed us to visualize changes in the power spectrum for the given

LFP by phase infraslow (see bz_LFPSpecToExternalVar).

Identification of SWR types
In main Figure 4, we observe asymmetric clustering of SWRs around U-D and D-U transitions and ultimately identify four SWR

‘‘types’’ based on their proximity to the nearest U-D and D-U transition: SWRU, SWRUD, SWRD, and SWRDU. We note that the

SWRUD and SWRDU are partially overlapping categories, as a SWR can both follow a D-U transition at a specific latency and occur

just before a U-D transition. For the purpose of our study, grouping SWRs into overlapping categories is not problematic, as we are

ultimately testing the hypothesis of bidirectional interaction between regions and do not group SWRs by ‘‘type’’ for the analyses in

main Figures 5, 6, or 7. We elaborate on our classification of SWR types in Figure S5. First, we plotted the distribution of the latency of

the specified SWRs from four time points: the latency of all UP SWRs to the closest previous U-D transition (Figure S5B), the latency

of all DOWN SWRs following the closest previous U-D transition (Figure S5C), the latency of all DOWN SWRs to the next D-U tran-

sition (Figure S5D), and the latency of all UP SWRs from the previous DOWN-UP transition (Figure S5E). From these distributions,

latency cut-offs were determined based on peaks in the latency distributions, latency intervals noted on plots, the colors in

Figures S5B–S5E corresponding to the outlined peaks in P(SWR) in Figure S5A. SWRUD in category ‘A’ (red) occurred within

40 ms of the U-D transition, SWRDU (green) in category ‘E’ occurred between 50 and 180 ms post-D-U transition, SWRU in category

‘F’ (yellow) occurred during an UP state between 180 to 200 ms following a D-U transition, and SWRD in category ‘B’ (magenta)

occurred between 1 to 80 ms following the U-D transition.
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In Figures S5F and S5G, we assign every SWR to one of 9 non-overlapping categories defined by their proximity to the closest U-D

and D-U transitions (numbered 1-9), specified by the combinations of latency intervals below each plot (more generally – how far is a

SWR from the nearest U-D and D-U transition, and how long is the UP state within which it occurs). Categories 1-7 occur during the

UP state, and 8-9 during the DOWN state. Categories 1-3 comprise SWRUD, category 5 SWRDU, category 8 SWRD, and categories 6

and 7 SWRU. In Figure S5H, we present SWR raster plots of each SWR type surrounding the D-U transition, colored by the amplitude

of the SWRs. We note the four major SWR types whose potential functions we discuss in the manuscript.

Calculation of DOWN states in widefield data
Deconvolved widefield data was binarized into putative UP and DOWN states by thresholding each pixel by its 25th percentile value,

abovewhich was anUP state and belowwhich a DOWNstate. The 25th percentile was chosen because it maximized the KS-distance

between RSC MUA values during RSC widefield detected UP vs DOWN states (Figure S7A). In more detail, we detected putative

DOWN states in RSC widefield time series using thresholds evenly spaced between 15 and 40th percentiles, leading to variation

in identified DOWN onsets and offsets. We then leveraged our simultaneous RSC widefield and electrophysiological recordings

by computing the distribution of RSCMUA values in each of the widefield-determined putative UP and DOWN states (pooled across

all videos within a given mouse to control for variation in depth of NREM). The value with the greatest distance between detected UP

and DOWN states was the 25th percentile threshold. We then calculated the 25th percentile value for each pixel within each mouse,

and applied this threshold to that pixel’s time series to identify UP and DOWN states. Although we could only perform the above elec-

trophysiologically-determined widefield threshold within RSC, we found no systematic bias in computed 25th percentile values

across regions (Figures S7B and S7C), as expected assuming an approximately uniform imaging quality.

Given the lower temporal (and thus spatial) resolution of this datatype, we performed an additional quality check, wherein we eval-

uated changes in DOWN detection quality (operationalized as UP vs DOWNKS-distance) as a function of DOWN duration deciles for

RSC and M1 ROIs (Figures S7D–S7F). In short, for the specified ROIs (Figure 7F), DOWN states were split into duration deciles, from

short to long. Then, two KS-values were computed (dotted and solid lines in Figure S7E), addressing two distinct questions. First, we

asked whether the widefield DOWN detection quality is similar across regions as DOWN state duration varies (dotted lines). It is

possible that although long, and thus global, DOWN states are easily detected across regions, shorter duration (and thus local)

DOWN states may be missed in regions not central to our investigation. This could be problematic for analyses that vary the duration

of DOWN states, such as computing SWR modulation indices. This control analysis was thus done by computing the KS-distance

between distributions of UP and DOWNwidefield values, for the given pixel, at each duration DOWN decile. Across regions, KS-dis-

tances remained similar regardless of duration DOWN – suggesting minimal variation in detection quality (Figures S7E and S7F,

dotted lines).

A second question can be addressed given our concurrent electrophysiological and widefield recordings in RSC - does widefield

DOWN detection quality vary with DOWN duration if using RSC MUA. Ideally, when calculating KS-distances using RSC widefield-

detected DOWN states to bin RSCMUA into ‘UP’ and ‘DOWN’ distributions, we would see minimal change in KS-distance, as is true

when using electrophysiologically-detected DOWNstates to bin RSCMUA (Figure S7F, black line). However, we instead observed an

increase in KS-distance with increasing DOWN duration, meaning a systematic improvement in detection quality. This is unsurpris-

ing, as it reflects the temporal resolution of widefield data. Fortunately, for our purposes, we exclude DOWNstates shorter than 80ms

in duration in order to avoid including other silent events (e.g., 4Hz or spindles) in our results. Overall, even if short-duration DOWN

states are less effectively resolved, comparisons across regions remain sound given the equivalent quality of DOWN state detection

across regions using widefield time series.

DOWN state modulation index
For every pixel, DOWN states detected for the given pixel were divided into duration quintiles, from short to long. For each quintile, a

DOWN state modulation index was computed by dividing the total number of SWRs observed during UP states minus DOWN states,

divided by the sum of SWRs in those same UP states and DOWN states. To compensate for the variable duration of UP and DOWN

states, SWRs were summed only within a 70ms window from the end of each UP state, and end of each DOWN state. (Note: DOWN

states with less than 80ms duration were excluded to avoid mid-identification of spindle troughs). Modulation indices were averaged

across mice, resulting in one modulation index per pixel (Figure 6C), or one modulation index per pixel per DOWN duration quintile

(Figure S6G), plotted in a map in Figure 6E.

Cross-correlograms of widefield data
The probability of DOWN states surrounding SWRs (Figures 7Ai and 7Bi) and SWRs surrounding U-D and D-U transitions (Figure 7Ci)

was quantified by calculating the cross-correlation between the trigger of interest for a given pixel, SWR peaks sorted by amplitude

and D-U transitions respectively, pooled across all mice. This provided a unique map in time, showing the probability of DOWN state

transitions across regions surrounding SWRs (Figure 7Ai) or probability SWRs in a single hippocampal location with respect to U-D

and D-U transitions across all regions at fixed lags from those transitions (Figure 7Ci). The frames in Figures 7Ai, 7Bi, and 7Ci are still

pictures taken from the videos in Videos S4 and S5. Data in Figure 7 are thresholded by a 95th percentile bootstrapped confidence

interval for each pixel, constructed by re-computing the cross-correlograms of interest n=500 times.
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Computing cross-correlograms to test whether the strength of input impacts population-level state transition in
downstream region
We tested the hypothesis that the hippocampus and RSC can bi-directionally ‘‘kick’’ one another by computing cross-correlograms

between putative input variables (in the hippocampus to RSC direction: SWRs; in the RSC to hippocampus direction: D-U transitions)

and putative response variables (hippocampus to RSC: DOWN states; RSC to hippocampus: SWRs), by reasoning that the larger the

input variable, the greater the probability of evoking a state transition in the downstream region.We thus split the input into octiles that

varied by input ‘‘strength’’, operationalized as the amplitude of SWRs or magnitude of synchrony at the D-U transition, for hippocam-

pus and RSC, respectively. For each cross-correlogram (CCG) between input times of a given input strength octile and all response

times, surrogate data sets were constructed by randomly and independently jittering timestamps on a uniform interval of [-20, 20] ms

1000 times. 99%confidence intervals were then calculated for each time bin, plotted as shaded regions along the CCGs in Figures 5B

and 5E.101 The larger the SWR octile, the higher the probability of a DOWN state following that SWR octile at a fixed lag of

30ms±15 ms. The larger the synchrony, the higher the probability of a SWR following the transition at a fixed lag of

120ms±15 ms. For all CCGs in Figure 5, time series were combined across animals and variations in input strength were denoted

with deepening color (light pink to dark red; or light green to dark green). The same conclusions can be drawn from cross-correlo-

grams of individual mice, suggesting strong evidence of short-timescale bi-directional interaction between hippocampus and RSC

via coordinated state transitions.

Testing the effect of input strength and state of downstream region on probability of evoking a population-level state
transition via repeated measures ANOVA
We next tested for the effect of two independent variables and their interaction on the probability of evoking an RSC DOWN state. For

this analysis, we binned SWRs not just by input strength octiles, but also by the arousal level of the animal, taken to be PSS valuewhen

a given trigger, a SWR or D-U transition, occurred. Given the fixed lag at which DOWN states occur in response to increasingly large

SWRs (30±15ms), we computedCCGs for each condition, computed a two-way repeatedmeasures ANOVAwith values of eachCCG

at this time bin, and tested for a significant effect of amplitude SWR, state, and their interaction at the session level across mice. As

expected, we found a significant effect of both factors and their interaction; the higher the PSS value (corresponding to deeper NREM

sleep) and larger the SWR, the higher the probability of an evokedDOWNstate. These effects were lost at a control time lag of 200ms.

We followed this same logic in the RSC to hippocampus direction and found a significant effect of both magnitude synchrony, PSS

value at the time of the trigger, and their interaction in probability of evoking a SWR at a lag of 120 ms (two-way repeated measures

ANOVA). At a control lag of 350ms, we found a significant effect of local state but not strength input on probability of SWRoccurrence.

Predicting duration DOWN state or magnitude of sharp wave using input strength and local state as predictors in a
generalized linear model
In events where a DOWN state followed a SWR (SWRUD), we tested whether the duration of the DOWN state varied with state, in this

case, PSS, and input strength (i.e., SWR amplitude) using a generalized linear model with both variables (PSS and SWR amplitude)

and their interaction as predictors, and duration DOWN state as the response variable. In this case, we did not bin PSS or SWR ampli-

tude and only performed this binning with average duration DOWN for visualization of results. We found a significant effect of both

predictors and their interaction. When we took all SWRs during the UP state and repeated this process for the following DOWN state

(rather than just SWRswith a putative causal impact on cortical DOWNstate given their occurrence just prior), amplitude SWRwas no

longer predictive of duration DOWN, further supporting our causal hypothesis. Note, however, that we only found a significant effect

of state using PSS, reflecting global arousal level, rather than local state.

In those cases where a SWR followed a transition from a D-U state, we tested whether the magnitude of the sharp wave, reflecting

putative degree of input, depended on the strength of the input and state, by using synchrony at the D-U transition, PSS, and their

interaction as predictors using the same GLM framework. We found a significant effect of state, but not of strength input or the inter-

action between the two predictor variables. This suggests that magnitude SW is determined largely by local excitability, which is pre-

sumed to change with depth sleep, rather than strength input.

Statistical methods
Mean or medians are given with std. dev. Significance testing of data comparisons was done by standard parametric (Student’s t test)

and non-parametric (Wilcoxon signed-rank or rank-sum tests) tests or by determining the crossings of confidence boundaries of surro-

gate datasets (compensated for type I statistical error). Multiple comparisons were corrected using Tukey-Kramer post hoc test. No sta-

tistical methods were used to predetermine sample sizes; however, sample sizeswere similar or larger than those generally employed in

the field. Data collection and analysis were not performed blind to the conditions of the experiments and no randomization was used.

MODEL SETUP

The model comprises of two local circuits, one representing the Retrosplenial Cortex (RSC) and the other the Hippocampus (HPC), in-

terconnected through long range projections. The dynamics of neural activity in each of the two regions is described through the mean

firing rate of an inhibitory and an excitatory population34. The excitatory population of theRSC is subject to a hyperpolarization-activated
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current Ih
62 whereas the excitatory population of the HPC is subject to an adaptive current34,59. This is summarized by the vector

equations:

tr _r = � r + RNðWr + ba + I + zðtÞÞ (Equation 1)

ta _a = � a + ANðrÞ (Equation 2)

where:

d tr is a vector whose entries represent the time constant for each population.We set them all equal to 1 for simplicity, time is thus

dimensionalized to units of the population rate constant.2
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is a vector of firing rates of the excitatory and inhibitory populations of cortex ðrCE ; rCI Þ and hippocampus ðrHE ; rHI Þ.
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is the matrix of connection strengths between populations, such thatwCH

EE represents the pro-
jections strength from population E of regionH (Hippocampus) to population E of regionC (Cortex). For long-range projections,

e.g. originating in HPC and terminating in RSC, we include a 10ms delay transmission to simulate the effects of synaptic trans-

mission between separate brain regions. Note: In this case wCH
EI ;w

CH
II ;wHC

EI ;w
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II are set to zero, as we only include long-range

projections originating in excitatory neurons in each region.
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is the time-dependent vector of Ornstein-Uhlenbeck (OU) noise which is applied to each population. This is
given by:
dz = � z

t
dt + s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

t
dtWt

r
(Equation 3)
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where Wt is a Weiner process. Here we use the standard deviation s = 0:37 and time scale t = 20.

d ta is a vector containing the time constants for a in each excitatory population. For simplicity these are identical in both the

cortical and the hippocampal population.

d Rg;N = gg½x � qg�2+;g = E; I represents the threshold-quadratic activation function for each excitatory and inhibitory popula-

tion. g and q are chosen such that qE < qI and gE <gI , which are necessary conditions for 3 steady states in the phase plane

dynamics of each local circuit59.

d AN = 1
1+e� kðr� r0 Þ represents the sigmoid activation function of a current for each population and depends on two parameters k

and r0. Note that for positive k this is an adaptive current which grows during periods of high firing, whereas for negative k,

this is an inactivity-activated current.
Model implementation
Simulations for Equations 1 and 2 are performed in Matlab using the dde23 solver, with OU noise precomputed independently using

the forward Euler method with time step dt = 0:01 and a delay of 10ms between inputs arriving via long-range projections from the

two regions. Because dde23 uses a variable time step to approximate the solution to the differential equations, we interpolate the

solution at every 1ms time-step, making it comparable to sampling frequency of the experimental data. Final simulation statistics

are determined for 106 time-steps, in order to have a similar number of UP and DOWN states as the experimental data.

Local Connection Strengths
The dynamics of the local circuit depend on the particular choices of local parametersW and I. To determine the parameters that best

fit the dynamics of the biological regions we perform a parameter search across variables WEE (local recurrence) and I (background

input). Note: For simplicity, we set WIE = WEE + 0:2 and II = IE � 0:2. We then compare state duration statistics (UP and DOWN

states for CTX and SWR and iSWR states for HPC) for simulations with the experimental data by calculating the Kolmogorov–

Smirnov (KS) statistic between the two distributions, as in Levenstein et al.,34 and define an overall similarity between data and

model as:

SimilarityCTX = ð1 � KSDOWNÞð1 � KSUPÞ (Equation 4)
SimilarityHPC = ð1 � KSiSWRÞð1 � KSSWRÞ (Equation 5)

Best parameter fit was defined for parameters that gave the highest similarity between model and data.

Long Range Connection Strengths
As for local connection strengths, we perform a parameter search in both E/ E and E/ I projection strengths and compare simu-

lation outputs to data. We separately test RSC/ HPC projections and HPC/ RSC projection to verify the causal effect of RSC UP

and DOWN states in HPCMUA tonic modulation and rebound excitation on P(SWR) after a DOWN to UP transition in RSC, as well as

the perturbation effect that SWR from the HPC have on the RSC inducing DOWN state transitions. Overall, we select final Long-

Range parameters such that they satisfy the following criteria:

d Maintain closest fit to data UP and DOWN state duration statistics.

d Show tonic modulation of HPCMUA by RSC UP and DOWN states, such that HPCMUA is lower during a cortical DOWN state

and higher during a cortical UP state.

d Maximize P(SWR) at the UP to DOWN and DOWN to UP transitions.
Model Parameters
Final model parameters for Equations 1 and 2 are summarized in the following table:
Parameter Value

Connection strengths2
6666664

wCC
EE wCC

EI wCH
EE 0

wCC
IE wCC

II wCH
IE 0

wHC
EE 0 wHH

EE wHH
EI

wHC
IE 0 wHH

IE wCC
II

3
7777775

2
664

3:04 �1:5 0:13793 0
3:24 �0:5 0:724137 0

0:103448 0 2:83 �1:5
0:068965 0 3:03 �0:5

3
775

(Continued on next page)
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Parameter Value

bC
E ;b

C
I � 0:8;0:8

ICE ; I
C
I ; I

H
E ; I

H
I 3:35;2:72;3:36;2:77

th 100

gE ;gI 0:02;0:05

qE ;qI 0;12

r0 2

kC;kH � 20;20
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