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Abstract

Neocortex-wide neural activity is organized into distinct networks of areas engaged in
different cognitive processes. To elucidate the underlying mechanism of flexible network
reconfiguration, we developed connectivity-constrained macaque and human whole-cortex
models. In our model, within-area connectivity consists of a mixture of symmetric, asym-
metric, and random motifs that give rise to stable (attractor) or transient (sequential)
heterogeneous dynamics. Assuming sparse low-rank plus random inter-areal connectivity
constrained by cognitive networks’ activation maps, we show that our model captures key
aspects of the cognitive networks’ dynamics and interactions observed experimentally. In
particular, the anti-correlation between the default mode network and the dorsal atten-
tion network. Communication between networks is shaped by the alignment of long-range
communication subspaces with local connectivity motifs and is switchable in a bottom-up
salience-dependent routing mechanism. Furthermore, the frontoparietal multiple-demand
network displays a coexistence of stable and dynamic coding, suitable for top-down cog-
nitive control. Our work provides a theoretical framework for understanding the dynamic
routing in the cortical networks during cognition.

1 Introduction

During behavior, widespread sets of brain areas engage in different cognitive processes [1, 2, 3,
4, 5]. These sets of areas are sometimes referred to as cognitive networks [6, 7], as they are
associated with distinct cognitive functions. For example, whether the focus of attention at any
moment is on the external world or internally-generated thoughts depends on competition between
the dorsal attention network (DAN) [8, 9, 10] and the default mode network (DMN) [11, 12, 13,
14, 15]. These two networks are each distributed in a non-contiguous arrangement with nodes
across the parietal, temporal, and prefrontal cortex [16]. Two other commonly studied higher
cognitive networks are the salience network, and the frontoparietal multiple-demand network. The
salience network activates transiently to detect salient stimuli, and may bias competition between
the DAN and DMN [17, 18] through an unknown mechanism. The frontoparietal network (also
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called the multiple demand network) [19, 20, 21, 22, 23], is engaged for cognitively demanding
tasks and can flexibly couple with the DAN or DMN depending on the task at hand [22, 24, 25, 26],
although the circuit mechanisms of how this flexible coupling is achieved are not yet understood.
An important open question in cognitive neuroscience is: where are the switches [27] that enable
the dynamic reconfiguration of cognitive networks according to task demands?

Recent multi-regional recordings in non-human primates and rodents suggest that long-range
projections in the cortex act as dimensionality bottlenecks that restrict the maximum dimension
of the routed signals across the cortex [28, 29, 30, 31]. These bottlenecks, referred to as com-
munication subspaces, allow the selective routing of some dimensions of cortical activity while
others remain private [28]. Depending on the alignment of the local cortical activity with the
communication subspaces, signals can be flexibly routed, generating time-dependent functional
subnetworks that correlate with behavior [31, 30]. This work opens the possibility that cognitive
networks dynamically coordinate through communication subspaces in space and time.

Large-scale brain models that use anatomical data as structural constraints offer a theoretical
approach to understanding the multiregional cortex [32]. Such connectome-based modeling has
been developed for the resting state [33, 34, 35, 36, 37, 38, 39, 40], more recently for working
memory [41, 42, 43, 44], decision-making [45, 46] and conscious access [47]. However, their local
circuit dynamics are modeled with only a few variables, limiting their ability to capture communi-
cation of behaviorally selective activity in high-dimensional spaces defined by the spanned activity
of a large number of neurons. By increasing the number of variables for modeling the neural
dynamics of each area, one can enhance these models’ capacity to represent higher-dimensional
dynamics, and explain how different types of information are represented and propagated along
the cortex. Using these higher-dimensional representations, one could analyze how neural dynam-
ics are routed through communication subspaces. However, increasing the number of variables
can quickly lead to a loss of interpretability in these models [48].

To balance our ability to reproduce in neural network models the routing of high-dimensional
neural dynamics through communication subspaces and maintain the model’s interpretability,
we focus on building a class of connectivity-constrained multi-regional recurrent neural networks
(MRNNs) that capture key qualitative features of population encoding of task variables. During
behavior, population activity can be stable [49, 50, 51, 52, 53], albeit with sometimes strong
temporal heterogeneities, or dynamic [54, 51, 52, 53, 55, 56] altering the encoding of task
variables over the course of a trial. Areas where stable encoding has typically been observed, such
as the parietal, secondary motor, and prefrontal cortex, can also display dynamic coding [57, 58,
59]. In our model, we hypothesize that cognitive network dynamics are shaped by the interplay
between stable and dynamic encoding through attractor dynamics and sequential population
activity, coordinated by communication subspaces, which facilitates the flexible interaction of
cognitive networks in response to changing cognitive demands.

Based on these previous observations, we build both macaque and human whole-cortex MRNN
models with a large number of neural pools (i.e., units) per area and analyze how local dynamics
and inter-area communication organize cognitive networks. We model within-area connectivity
as a mixture of symmetric [60, 61, 62], asymmetric [63, 64, 65], and random [66] motifs with
systematic variation of their strength along the cortical hierarchy [67]. Communication subspaces
are defined by modeling long-range projections as low-rank, sparse connectivity matrices [68],
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with their sparsity constrained by anatomical data [69, 36].
We find that specific alignment of local connectivity with the communication subspaces can

explain the characteristic dynamic interactions of the DAN, DMN, FPN and salience network
during cognition. Our model also demonstrates how, depending on the flexible alignment of local
connectivity and inter-areal communications subspaces, stable and dynamic coding of cognitive
variables can coexist in the frontoparietal network. Our work introduces a theoretical framework
for understanding the dynamics and interactions of cognitive networks during cognition.

2 Results

2.1 Multi-regional recurrent neural network

We build and analyze a class of connectivity-constrained multi-regional recurrent neural network
(MRNN) models to dissect how cognitive network dynamics are shaped by the interplay of attrac-
tor dynamics and sequential activity and coordinated through communication subspaces. In these
models, each region is represented by a distinct local RNN with N units. Each unit represents a
neural pool (or assembly) that is selective for specific features. Their local synaptic weight J l

ij

between a pre-synaptic unit j and a post-synaptic unit i in region l consists of a combination of
symmetric (Fig. 1a), asymmetric (Fig. 1b), and random (Fig. 1c) connectivity motifs

J l
ij = αlS

l
ij︸ ︷︷ ︸

Symmetric

+ βlA
l
ij︸ ︷︷ ︸

Asymmetric

+ glR
l
ij︸ ︷︷ ︸

Random

. (1)

The parameters αl, βl, and gl determine the strength of the symmetric, asymmetric, and
random connectivity motifs, respectively. The symmetric connectivity is such that synaptic
weights between any pair of neurons have the same strength in both directions, i.e., Sl

ij = Sl
ji

(Fig. 1a). As in network models for attractor dynamics [61, 62] the symmetric connectivity motif
in our model is built as the sum of the outer product of N -dimensional patterns (ξ⃗ in Fig. 1a,
Methods 4.4.1, Eq. (7)). This type of symmetric connectivity generates strong recurrent loops
(Fig. 1a), producing multi-stable attractor dynamics and stable persistent activity in recurrent
networks [60, 61, 62, 70].

The asymmetric connectivity motif is such that Al
ij ̸= Al

ji and has an effective feed-forward
structure [63, 64, 71, 72, 73, 74, 65] given by the sequential outer product of pA patterns (η⃗s in
Fig. 1b, Methods 4.4.1, Eq. (8)). The asymmetric connectivity motif in Eq. (8) produces transient
sequential population activity in recurrent networks [64, 63, 71, 65, 74]. Additionally, multiple
sequences can be embedded in each local RNN’s connectivity by adding multiple independent
sequences of patterns [65].

The random connectivity motif (Fig. 1c, see Methods 4.4.1, Eq. (9)) is known to produce high-
dimensional chaos in RNNs characterized by strongly temporally heterogeneous dynamics [66].

The rationale for having such a mixture of connectivity motifs is that, depending on the local
circuit’s parameters (i.e., αl, βl, and gl) and their inputs [75], local circuits can exhibit various
qualitative types of dynamics, such as attractor dynamics, sequences, and chaos.
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In our MRNNs, the synaptic weights of long-range projections that connect pre-synaptic unit
j in area l with post-synaptic unit i in area k is given by two components

Jkl
ij = Ckl

ij︸︷︷︸
Communication subspace

+ gklR
kl
ij︸ ︷︷ ︸

Random

. (2)

These projections are comprised of a structured component Ckl
ij , which we refer to as the

communication subspace, and a random component, Rkl
ij , similar to the random connectivity in

the local RNNs in Eq. (9). The effect of Ckl
ij is reading out from a selected number of directions

in a N -dimensional neural space defined by the spanned activity in the projecting area l and
projecting to another small set of selected directions in the connected area k. Therefore, long-
range projections can selectively route a small number of dimensions of neural dynamics while
maintaining others private. The random component, Rkl

ij , introduces variability that acts as
quenched random interference in the communication subspace.

In our model, communication subspaces are constructed by reading out activity patterns and
projecting to the directions of patterns ξ⃗s and η⃗s that comprise the symmetrically or asymmet-
rically connected ensembles of units in the local RNNs (Fig. 1d). For instance, symmetric-to-
symmetric communication subspaces read out from one direction (i.e. a pattern comprising a
particular symmetrically connected ensemble of units in the source area) and project in the di-
rection of another pattern (corresponding to another symmetrically connected ensemble in the
target area; Fig. 1e). Asymmetric-to-asymmetric (Fig. 1f) and asymmetric-to-symmetric (Fig. 1g)
communication subspaces work similarly.

2.2 Anatomical constraints for whole-cortex models

We use diffusion-weighted Magnetic Resonance Imaging (dMRI) tractography data for the macaque [69]
(Fig. 1h) and human [36] (Fig. S1a) cortices for constraining the long-range projections of our
macaque and human whole-cortex MRNNs. In a departure from previous large-scale models,
this anatomical data is used to construct the structural connectivity of the MRNNs, determining
which units are connected across areas but not the values of the synaptic weights, which are
determined by Eq. (2). Areas with small values in the weights of the dMRI tractography matrix
indicate a small number of fibers connecting those brain regions, while larger values indicate
denser projections. In our models, long-range connections between cortical areas are sparse. The
sparsity of the projections is modeled with a sparse random (i.e., Erdős-Rényi) structural con-
nectivity matrix, cklij , with average sparsity given by the normalized dMRI tractography matrix
Fkl (i.e., cklij = 1 with probability Fkl, cklij = 0 with probability 1 − Fkl, Methods 4.4, Eq. (4)).
Therefore, for each inter-areal connection, we first construct the (fully connected) inter-areal
synaptic weights according to Eq. (2), and then apply a sparse random mask constructed based
on the anatomical connectivity. The resulting long-range projections are a sparse version of the
long-range connectivity matrix in Eq. (2) (Fig. 1h and i; Methods 4.4, Eqs. (3,4)).

Additionally, our model assumes linear differences in the strength of local and long-range con-
nectivity across areas (Methods 4.4, Eqs. (3,5)). This assumption is based on the strong correla-
tion observed between the spine count per neuron, a proxy for the strength of synaptic excitation,
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Figure 1: Local dynamics, communication subspaces, and anatomical constraints. (a-c) Schematics of a local RNN
with symmetric (a) Eq.(7), asymmetric (b) Eq.(8), and random (c) Eq.(9) connectivity motifs. (d) Schematic
of a rank-2 communication subspace that reads out activity patterns corresponding to the symmetric (blue) and
asymmetric (green) connectivity motifs and projects these to activity patterns corresponding to the symmetric and
asymmetric connectivity motifs, respectively. (e) Schematic of symmetric-to-symmetric rank-1 communication
subspace connectivity between two areas. (f) Schematic of the same areas connecting via a asymmetric-to-
asymmetric rank-3 communication subspace. (g) Schematic of the same areas connecting via an asymmetric-to-
symmetric rank-1 communication subspace. (e-g) are schematics of sparse communication subspaces (Eq. (4)).
(h) Connectivity matrix, deriving from dMRI tractography of the macaque cortex parcellated into 89 cortical
regions [69]. (i) The sparsity of the projections across areas is proportional to the normalized entries of the
tractography data (Methods 4.4, Eq.(4)). (j) The T1w/T2w measure across the macaque cortex and dMRI
connectivity graph. The edges thicknesses are proportional to the weights in the connectivity matrix. The nodes
are colored according to the T1w/T2w value. Nodes are projected into 2-d space using the diffusion map algorithm
(Methods 4.2).

and the hierarchical position of cortical areas [67]. We use MRI-derived T1-weighted/T2-weighted
(T1w/T2w) neuroimaging value to approximate the hierarchical position of each cortical region
(Figs. 1j, S1b; Methods 4.1.2 and 4.1.4). The T1w/T2w values negatively correlate with the
spine count [35, 36]. Lastly, the MRNN dynamics are given by the standard rate equations [76, 61]
(Eq. (3)).
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2.3 Stable population coding and heterogeneous neural dynamics
in the frontoparietal network

The frontoparietal network is a large-scale brain network primarily involved in higher-order cog-
nitive functions, including executive control, decision-making, attention, and working memory.
This network spans the frontal cortex and the parietal cortex.

To define the frontoparietal network in the monkey cortex, we used the results of cross-species
functional alignment [77] of the canonical maps by Yeo and colleagues, as previously [16, 78].
We defined areas as belonging to the frontoparietal network based on overlap (Methods 4.3.2)
and added lateral intraparietal cortex (area LIP) since it is a key node in the working memory and
decision-making system [79] (Fig. 2a; Table 1).Most of these areas present elevated persistent
activity during working memory tasks [2].

For modeling the selective persistent activity observed in areas in the frontoparietal network,
we first include symmetric local connectivity only in those areas (Methods 4.4.3). The rationale
is that, as in attractor neural networks [61, 80], symmetrically connected ensembles with strong
enough connectivity will lead to discrete attractor dynamics that selectively elevate persistent
activity in a subset of neurons in each area within the frontoparietal network. However, in our
model, the local symmetric connectivity is weak, and none of the areas in the frontoparietal
network can sustain attractor dynamics on their own. Areas within the frontoparietal network
are connected by long-range symmetric-to-symmetric connectivity subspaces (Fig. 2e), in which
units locally connected by symmetric connectivity are projected to symmetrically connected units
in the projected area (Methods 4.4.3). These long-range symmetric-to-symmetric connectivity
subspaces are recurrent, connecting all areas within the frontoparietal network (Fig. 2b).

For each area, we compute the projection of the patterns comprising the symmetric and
asymmetric connectivity motifs onto the population vector for that area (see Methods 4.5). We
refer to these projections as the overlap, as they measure how aligned the population activity
of each area in the MRNNs is with the patterns comprising the local symmetric or asymmetric
connectivity motifs (Methods 4.5; Eq. (39)). The overlaps serve as a proxy for how linearly
decodable the specific pattern, from which the overlap was computed, is and provide a measure
of the extent to which the symmetric and asymmetric connectivity motifs are driving the local
RNN dynamics.

When areas in the frontoparietal network are stimulated, the network converges to a state in
which units in most areas present strong fluctuations in their activity (Fig.2d top). Multiple areas
within the frontoparietal network present stable non-zero overlaps with the pattern corresponding
to the local symmetric connectivity motif (Fig. 2d, see bottom). Although the population activ-
ity within the frontoparietal network is aligned with the symmetric-to-symmetric communication
subspace and is stable in time, the activity of single units strongly fluctuates. These fluctuations
are a signature of chaotic dynamics with stable encoding properties, which have been previously
characterized in local circuit models as attractor neural networks [81, 82] and low-rank networks
[83]. Therefore, our multi-regional network converges to a chaotic attractor in which the pop-
ulation activity within the frontoparietal network is sustained through communication subspaces
through which symmetrically connected cortical ensembles interact across areas. We developed a
mean field theory [60, 81] that predicts the overlap values (Fig. 2e; Methods 4.5), which are high
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Figure 2: Distributed stable population coding through communication subspaces coexists with heterogeneous
neural dynamics in the frontoparietal network. (a) Frontoparietal network areas. (b) dMRI connectivity graph.
The edges are proportional to the connectivity strength from the dMRI tractography matrix. The nodes are
placed using the diffusion map algorithm (Methods 4.2). Frontoparietal areas are connected by symmetric-to-
symmetric long-range and local projections (red). (c) Schematics of a symmetric-to-symmetric communication
subspace (rank-1) in frontoparietal areas. The activity within each frontoparietal area corresponds to a chaotic
attractor with stable mean population activity aligned to the communication subspace that recurrently connects
only frontoparietal areas. The overlaps with the patterns comprising the local symmetric connectivity motifs are
indicated in red. (d) Neural dynamics for 15 representative units (top), overlaps (bottom, left axis, blue), and
mean activity (bottom, right axis, yellow) for six representative areas. The horizontal dashed line at the bottom
indicates zero overlap. The areas with red traces for the activity, 9/46d (prefrontal cortex), 8l (prefrontal cortex),
7a (parietal cortex), and LIP (parietal cortex), belong to the frontoparietal network, while MT (higher visual
cortex) and TEO (temporal cortex) do not. (e) Average overlap over 4.5s vs. prediction from the mean field
theory (Methods 4.5). (f) Overlaps at 2s. (g) Mean activity at 2s.
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only in areas within the frontoparietal network (Fig. 2e and f). Units in areas that do not belong
to the frontoparietal network also display chaotic fluctuations, but their activity is not aligned
with any communication subspace (Figs. S2 and S3), and the mean activity of those areas is
generally lower (Figs. 2g, S2, and S3). There is a gradient of mean activity across areas with
predominantly higher mean activity in the frontoparietal network (Figs. 2g, S2, and S3).

2.4 Dynamic and stable population coding coexist in the frontopari-
etal network

Figure 3: Distributed dynamic population coding through communication sub-spaces in the frontoparietal network.
(a) Neural dynamics for 15 representative units (top), overlaps (bottom left axis, blue), and mean acitivity (bottom
right axis, yellow) for six representative areas. The areas with red traces for the activity, 9/46d (prefrontal cortex),
8l (prefrontal cortex), 7a (parietal cortex), and LIP (parietal cortex), belong to the frontoparietal network, while
24a (cingulate cortex) and TEO (temporal cortex) do not (gray traces). The leftmost gray dashed line represents
the moment when all frontoparietal areas are transiently stimulated with the first pattern in the sequence at the
0.5s. The rightmost vertical dashed line indicates 1s. The gray horizontal dashed line at the bottom indicates
zero overlap. (b) Schematics of an asymmetric-to-asymmetric communication subspace in frontoparietal areas.
When the population activity of each area in the frontoparietal network is transiently aligned with a given pattern
that comprises the asymmetrical local connectivity indicated by the dashed line, it projects in the direction of the
next pattern in the sequence in the connected area. (c) Mean activity at 1s. (d) Value of the 5th and 8th overlap
in the sequence at 1s. The quantities in (c) and (d) are taken at 1s in the network simulation.

During certain working memory and decision-making task conditions, population coding of
memoranda is dynamic rather than stable [54, 51, 52, 53, 55]. Recent findings indicate that
dynamic coding occurs in the parietal cortex [57] and motor cortex [58] during decision-making
tasks, as well as in the prefrontal cortex during navigation working memory tasks [59]. Can a
distributed dynamic coding emerge in our model and coexist with stable encoding?

For modeling the dynamic coding in the frontoparietal network, we incorporated asymmetric
local connectivity in addition to the previously described local symmetric connectivity (Meth-
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ods 4.4.4). Also, in addition to the symmetric-to-symmetric connectivity subspaces described
in the previous section, areas within the frontoparietal network are connected by long-range
asymmetric-to-asymmetric connectivity subspaces (Fig. 3b). In these connectivity subspaces,
ensembles of units locally connected by asymmetric connectivity project to asymmetrically con-
nected ensembles in the target area (Methods 4.4.4, Eq. (17, 18)). The dimension (i.e., rank)
of these asymmetric connectivity subspaces is equal to the number of patterns that comprise
the local asymmetric connectivity in the local circuits minus one. Importantly, they read out
the population activity of each area in the frontoparietal network when it aligns with a pattern
in the sequence, and then project the resulting current in the direction of the next pattern in
the sequence in the connected area (Fig. 3b). Similar to symmetric-to-symmetric connectivity
subspaces, these long-range asymmetric-to-asymmetric connectivity subspaces are recurrently ar-
ranged across areas (Methods 4.4.4, Eq. (17)), connecting all areas within the frontoparietal
network (Fig. 3b).

We stimulate all areas in the frontoparietal network with input current of 150ms of duration
aligned with the first pattern in the sequence. A burst of heterogeneous activity spreads across
cortical areas (Fig. 3a,c; Fig. S4). Only the population activity in areas within the frontoparietal
network shows sequential overlaps (Fig. 3a bottom, d; Fig. S5), thus transiently aligning with the
asymmetric-to-asymmetric communication subspace that recurrently connects these areas. These
regions exhibit sequential population activity (Fig. 3a, bottom, d; Fig. S5). The asymmetric-to-
asymmetric communication subspaces drive distributed sequential dynamics by connecting locally
asymmetrically connected assemblies in brain regions across the frontoparietal network. The
mean activity peaks within the frontoparietal network but elevated activity is observed across
the cortex, including in regions that do not represent the sequence information (Fig. 3a bottom,
orange trace; Fig. 3c).

When we stimulate the frontoparietal network with stimulus aligned with the symmetric-to-
symmetric communication subspace, the network converges to a state where units in most areas
exhibit strong fluctuations in their activity, but stable coding persists within the frontoparietal
network, as previously shown in Fig. 3 (Figs. S6 and S7). Therefore, both distributed dynamic
and stable coding can be observed in the frontoparietal network in our model, depending on the
stimuli.

2.5 Frontoparietal attractor dynamics coordinates DMN-DAN in-
terplay

During behavior, humans and non-human primates switch from unengaged to goal-directed be-
haviors. The default mode network (DMN), first characterized in humans [11] and later described
in non-human primates [12, 13, 14, 15], is a large-scale cognitive network that is active when
subjects are not focused on any task or the outside world [84]. In contrast, the dorsal attention
network (DAN) is a set of areas activated when subjects engage in tasks requiring sustained
externally directed attention and goal-directed behaviors [8, 9, 10]. A key observation is that
both networks show significant anti-correlation across a wide array of cognitive tasks and uncon-
strained rest [85, 9]. Neuroimaging experiments suggest that the frontoparietal network may
flexibly control the engagement of the DMN and DAN during behavior by coupling with both
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cognitive networks [22]. What is the mechanism for the competition between the DMN and DAN
and the control by the frontoparietal network? Here, we propose a possible mechanism based on
attractor dynamics mediated by communication subspaces.

We aligned the frontoparietal, DMN and DAN activation map in humans to the macaque
cortex using cross-species functional alignment [77](Fig.4a-d). We define areas in both networks
as regions in the macaque cortex that exhibit an overlap with the network map exceeding a
specific threshold (Methods 4.3.2; Table 1).

To model the competition between the DMN and DAN and the control by the frontoparietal
network, we first connect areas in the frontoparietal network through symmetric local connec-
tivity. This connectivity consists of two symmetric connectivity components that define two
distinct but partially overlapping ensembles of units (Methods 4.4.5). One of these ensembles in
the frontoparietal network connects through long-range symmetric-to-symmetric communication
sub-spaces with areas in the DMN. We will refer to these as the FP-DMN ensemble and the
corresponding overlap as the FP-DMN overlap. The other ensemble in the frontoparietal net-
work connects through a different long-range symmetric-to-symmetric communication sub-space
with the DAN. We will refer to this as the FP-DAN ensemble with the FP-DAN corresponding
overlap. Areas in both the DMN and the DAN have local connectivity consisting of only one
component of symmetric connectivity and only one long-range symmetric-to-symmetric commu-
nication sub-space that recurrently connects these areas (Fig. 1e and Fig. 4d,e). These FP-DMN
and FP-DAN ensembles of units in the frontoparietal network are connected by distinct long-range
symmetric-to-symmetric communication sub-spaces, generating two distinct distributed attrac-
tor states (Fig.1e and Fig. 4e). One attractor encompasses the frontoparietal network and DMN
(FP-DMN attractor), while the other encompasses the frontoparietal network and DAN (FP-DAN
attractor).

To investigate the transition between the FP-DMN and FP-DAN attractor states, we first
introduced a constant input to the frontoparietal network areas. Initially, the input was aligned
with the FP-DMN ensemble in the frontoparietal network. Despite the network exhibiting strong
temporal variability due to chaotic dynamics (Fig. 4f and Fig. S8), the population activity overlap
with the FP-DMN remained stable and elevated in the frontoparietal and DMN areas, while the
FP-DAN overlaps were consistently low across all cortical areas (Fig. 4g-h; Figs. S8,S9). Mean
activity peaked in the frontoparietal and DMN networks, but several areas across the cortex showed
elevated mean activity, without encoding the FP-DMN overlap pattern (Fig. 4i and Fig. S8).
When the input to the frontoparietal network shifted its alignment from the FP-DMN to the
FP-DAN ensemble (dashed line in Fig. 4f), the FP-DMN overlap decreased in the frontoparietal
and DMN areas, while the FP-DAN overlap increased (dashed line in Fig. 4f, j, k; Fig. S9).
Consequently, the mean activity decreased in the DMN areas and increased in the DAN areas
post-transition.

Therefore, our model recapitulates the anti-correlation in the mean activity between the DMN
and the DAN, mediated by the frontoparietal network.
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Figure 4: Frontoparietal control of default mode and dorsal attention networks through communication sub-spaces.
(a) Default mode network (DMN). (b) Frontoparietal network (FP). (c) Dorsal attention network (DAN). (d) dMRI
connectivity graph in diffusion map space (Methods 4.2). The edges and nodes that belong to the frontoparietal,
default mode, and dorsal attention networks are colored blue, red, and green, respectively. (d) Schematics of
two distinct attractors in the frontoparietal network. These attractors within the frontoparietal network interact
separately with the default mode and dorsal attention networks through two distinct symmetric-to-symmetric
communication subspaces. One attractor forms a distributed state, engaging both the frontoparietal and default
mode networks (FP-DMN attractor), while the other engages the frontoparietal and dorsal attention networks
(FP-DAN attractor). (f) Neural dynamics for 15 representative units (top), overlap (bottom left axis; blue: FP-
DMN attractor; green: FP-DAN attractor), and mean activity (bottom right axis, yellow) for six representative
areas. The first and second columns correspond to default mode areas 24a and 24c (activity traces in blue). The
third and fourth columns correspond to frontoparietal areas 9/46d and 8l (activity traces in red). The fifth and
sixth columns correspond to the dorsal attention network areas LIP and MIP (activity traces in green). The gray
vertical dashed line represents the moment when an external constant stimulus switches its alignment from the
FP-DMN to the FP-DAN attractor. (g and j) Overlap corresponding to the FP-DMN attractor. (h and k) Overlap
corresponding to the FP-DAN attractor. (i and l) Mean activity. (g, h, i) Before the stimulus switch. (j, k, l)
After the stimulus switch.
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2.6 Dynamic routing of sensory stimuli via salience-dependent com-
munication subspaces

Although a plethora of sensory stimuli are constantly present available to the senses, the brain
prioritizes processing of only most salient. What is the mechanism for filtering out non-salient
stimuli and selecting salient ones? We propose that communication subspaces can route salient
sensory stimuli from sensory cortices to cognitive networks involved in flexible behavior.

To demonstrate this in our model, we study the interactions between visual and auditory
cortices (Fig.5a-c) with cortical regions involved in filtering stimuli and recruiting relevant cog-
nitive networks for executive control. These areas include the cingulate and insular cortices and
are broadly defined as the salience network in humans [17, 18]. As previously done with the
frontoparietal network, we aligned the activation map of the salience network in humans to the
macaque cortex using cross-species functional alignment (Fig.5a and d). We define areas in the
salience network as regions in the macaque cortex that exhibit an overlap exceeding a specific
threshold (Methods 4.3; Table 1).

In our model, local connectivity in the visual, auditory, and salience networks is asymmetric
and composed of three patterns to model transient network activation due to sensory stimuli
lasting about 300-400ms. Areas within the visual, auditory, and salience networks are connected
through recurrent asymmetric-to-asymmetric communication sub-spaces. To model the interac-
tions between sensory cortices and the salience network, we also recurrently connected the visual
and auditory networks with the salience network separately through asymmetric-to-asymmetric
communication sub-spaces to two different sets of asymmetrically connected patterns (Fig. 5e
and Methods 4.4.6). Stimuli in the sensory areas can be aligned with the first pattern in the local
and asymmetric-to-asymmetric communication sub-space, and thus referred to as salient, or not
aligned, and thus referred to as non-salient (Fig. 5e). We use random patterns for non-salient
stimuli that are approximately orthogonal to the communication sub-space in large networks
(Methods 4.4.6).

When we stimulate the visual network with a salient input aligned with the first pattern of
the sequence that comprises the local asymmetric connectivity (Fig.5e), elevated mean activity is
widespread across the visual cortex and cortical areas belonging to the salience network (Fig.5f and
g; Figs. S10, S11). The overlaps in the visual and salience networks exhibit transient sequential
dynamics, with the overlaps being transiently activated in sequential order (Fig.5f; Figs. S10,
S11). In the salience network, an increase in the overlap is observed from the first to the third
overlap, with the highest value corresponding to the third pattern (Fig.5f; Figs. S10, S11). When
the auditory network is stimulated with a salient stimulus, similar network dynamics are observed.
In this case, both the auditory and salience networks, but not the visual network, exhibit elevated
mean activity and a transient sequential increase in the overlaps (Fig.5h and i; Figs. S12, S13).
Lastly, when the visual network is stimulated with non-salient stimuli, the salience network shows
very small transient activity (Fig. 5j and k; Figs. S14, S15). A similar effect is observed when the
auditory network is stimulated with non-salient stimuli (Figs. S16, S17).

Therefore, in our model, non-salient stimuli in the sensory areas, that are not aligned with the
asymmetric-to-asymmetric communication subspace will not elicit transient sequential activity in
the salience network areas. Salient stimuli, which are aligned with the communication subspace,
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Figure 5: Dynamic routing of sensory stimuli via saliency-dependent communication sub-spaces. (a) dMRI con-
nectivity graph in diffusion map space (Methods 4.2). The edges and nodes that belong to the visual, auditory,
and salience networks are colored yellow, green, and purple, respectively. (b) Visual areas. (c) Auditory areas.
(d) Salience network areas. (e) Schematics of an asymmetric-to-asymmetric communication subspace that con-
nects visual and auditory networks with the salience network through asymmetric-to-asymmetric communication
subspace. Stimuli into the sensory areas (visual or auditory) aligned with the asymmetric-to-asymmetric commu-
nication subspace are referred to as salient. An example of a salient visual stimulus is indicated by a red arrow.
Stimuli that are not aligned with the communication subspace are referred to as non-salient. An example of a
non-salient visual stimulus is indicated by a blue arrow. (f) Network response for a salient visual stimulus. (h)
Network response for a salient auditory stimulus. (j) Network response to a nonsalient visual stimulus. (f, h, j)
Neural dynamics for 15 representative units (top), overlaps (bottom left axis, grays), and mean activity (bottom
right axis, yellow) for six representative areas. The first and second columns correspond to visual areas V1 and V4
(activity traces in red). The third and fourth columns correspond to auditory areas LB and PBr (activity traces
in green). The fifth and sixth columns correspond to the salience network areas 23 and INS (activity traces in
purple). The leftmost gray dashed line represents the moment when all visual areas (f and j) or auditory areas
(h) are transiently stimulated at time 0s for 150 ms. (g, i, k) Mean activity and overlap with the third pattern
in the sequence for a salient visual (g), salient auditory (i), and nonsalient visual (k) stimuli at 250ms after the
stimulus onset indicated in the rightmost dashed gray line.

lead to transient and widespread elevated activity in the salience network.

2.7 Salient-frontoparietal interaction gates DMN-DAN transition

It has been suggested that the salience network, which transiently activates in response to salient
stimuli, may mediate the switch between the DMN and DAN [17, 18]. In this process, salient
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Figure 6: Salient and frontoparietal networks interaction gates the transition between DMN and DAN. (a)
Schematic illustrating the interactions between the salience network, frontoparietal network, DMN, and DAN.
A transient stimulus aligned with the local asymmetric connectivity pattern in the salience network gates transient
activity. This activity aligns with the salience-frontoparietal asymmetric-to-symmetric communication subspace,
triggering a transition from the frontoparietal-DMN attractor state to the frontoparietal-DAN attractor state. (b,
c) Network response to stimulation to the salient network for the macaque (b) and human (c) cortex. Overlaps
and mean activity in four areas: DMN (24c in macaque cortex, d23ab in human cortex), frontoparietal (9/46v in
macaque cortex, a9-46v in human cortex), DMN (MIP in both), and salience (INS in macaque cortex, AAIC in
human cortex). Blue: overlap FP-DMN attractor; Green: overlap FP-DAN attractor; Purple: overlap with the
pattern stimulated in the salience network. The gray dashed line marks the transient stimulation of salience areas
at 0s for 150 ms. Overlap for FP-DMN attractor in the macaque (d, g) and human (j, m) cortex, and for FP-DAN
attractor in the macaque (e, h) and human (k, n) cortex. Mean activity for the macaque (f, i) and human (l, o)
cortex. Panels (d–f, j–l) correspond to 500ms before salience network stimulation, and panels (g–i, m–o) show
data 400ms after stimulation for the macaque and human cortex, respectively.

stimuli might gate the transition from internally oriented to externally oriented attention. Here,
we propose a mechanism for this salience network dependent gating based on communication
subspaces.

To investigate this mechanism, we built macaque and human MRNNs. For the macaque
MRNN, as in the previous sections, we aligned the activation maps of the salience, frontopari-
etal, DMN, and DAN networks in humans to the macaque cortex using cross-species functional
alignment (Methods 4.3.2; Table 1). For the human MRNN, we used the canonical networks
from [16] (Methods 4.3.1; Table 2).
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We begin by considering MRNNs of the macaque and human cortex with connectivity be-
tween the frontoparietal network, DMN, and DAN, as shown in Fig.4 (see also Fig.6a and Meth-
ods 4.4.7). As previously demonstrated, this connectivity results in competition between the DMN
and DAN, with the frontoparietal network exerting control (Fig.4). Inputs to the frontoparietal
network govern the transitions between FP-DMN and FP-DAN attractor states (Fig.4). We
incorporate the salience network into our MRNNs, connecting regions within it through recur-
rent asymmetric-to-asymmetric communication subspaces, as the MRNN in Fig.5. To model
interactions between the salience and frontoparietal networks, we introduced an asymmetric-to-
symmetric communication subspace that projects activity from the first pattern in the asymmetric
connectivity motif in the salience network to the frontoparietal network pattern aligned with the
FP-DAN attractor (Fig.6a and Methods 4.4.7).

We initialize the MRNNs in a state aligned with the FP-DMN attractor and stimulate salience
network areas with a 150ms input aligned to the first pattern of the local asymmetric connectivity
motif. Before the stimulation, the population activity overlap with the FP-DMN remained stable
and elevated in the frontoparietal and DMN areas, while the FP-DAN overlaps were consistently
low across all cortical areas (Figs. 6d, e, S18, S19 for macaque cortex; Figs. 6j, k, S20, S21
for human cortex) similar to Fig. 4. Most frontoparietal and DMN areas showed elevated mean
activity (Fig. 6f, S18 for macaque cortex; and Fig. 6i, S21 for human cortex), although gradients
of mean activity were observed across the cortex. In response to that input, areas in the salience
network exhibit transient sequential dynamics, with the two overlaps being transiently activated
in sequential order (Figs. 6d, e, S18, S19 for macaque cortex; Figs. 6j, k, S20, S21 for human
cortex). The frontoparietal network shifted from the FP-DMN to the FP-DAN attractor (dashed
line in Figs. 6b, S19 for macaque cortex; Figs. 6c, S21 human cortex), the FP-DMN overlap
decreased in the frontoparietal and DMN areas, while the FP-DAN overlap increased (Figs. 6d,
g vs. e, h for macaque cortex; Figs. 6j, k vs. m, n for human cortex). Consequently, the mean
activity decreased in the DMN areas and increased in the DAN areas post-transition (Figs. 6f vs.
i for macaque cortex; Figs. 6l vs. o for the human cortex).

Thus, our model introduces a mechanism based on communication subspaces for saliency-
dependent gating between the DMN and DAN, mediated by the frontoparietal network.

3 Discussion

In this work, we develop a class of connectivity-constrained whole-cortex models for macaque and
human brains to understand how neocortex-wide activity can dynamically organize into distinct
large-scale cognitive networks through communication subspaces. Our modeling work explains
key aspects of cognitive network dynamics and interactions observed experimentally. First, it
provides a network mechanism for the anti-correlation [85, 9] between the default mode network
(DMN) and the dorsal attention network (DAN). Second, it presents a mechanism based on
communication subspaces for the observed frontoparietal coupling with the DMN and DAN [22].
Third, it proposes a bottom-up routing mechanism for the observed salience-dependent DMN
to DAN switching [17, 18]. Fourth, it demonstrates that the frontoparietal network can display
a coexistence of stable and dynamic coding with strong temporal variability and substantial
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heterogeneity, qualitatively matching the stable [49, 50, 51, 52, 53] and dynamic [54, 51, 52,
53, 55, 57, 58, 59] coding observed in electrophysiological recordings within the frontoparietal
network.

We model within-area connectivity as a mixture of symmetric [60, 61, 62], asymmetric [63,
64, 65], and random [66] motifs, producing either stable (attractor) or transient (sequential)
heterogeneous dynamics, integrating classic local circuit models into multi-regional models for
cortical dynamics. Unlike previous connectivity-constrained multi-regional models [33, 34, 35, 36,
86, 41, 42, 43, 44, 45, 46, 47], we use connectivity data as a proxy for inter-area connection
sparsity rather than total synaptic strength. This allows us to model long-range projections as
sparse low-rank communication subspaces. Inspired by recent electrophysiological recordings that
investigate two-area interactions [28], our model routes local dynamics through these low-rank
communication subspaces, depending on the partial alignment of sparse long-range projections
with local connectivity.

Overall, our work provides a theoretical framework that bridges neuroanatomy, electrophysi-
ology, and neuromiaging for understanding the dynamic routing of large-scale cognitive networks
during cognition.

3.1 Frontoparietal control of the DMN-DAN transition

Neuroimaging experiments suggest that the frontoparietal network may flexibly control transitions
between the DMN and DAN during behavior by coupling with both cognitive networks [22]. These
networks exhibit significant anti-correlation across a range of states [85, 9] and are thought to
realise the competition between externally- and internally-directed attention. However, despite
the central importance of this phenomenon to human cognitive neuroscience, the mechanism for
how this competition may play out is not known, and computational modeling proposals for the
underlying mechanism are rare [87, 88]. Here, we propose a mechanism based on dynamic con-
trol of two distributed attractors mediated by communication subspaces. One attractor involves
the frontoparietal network and the DMN (FP-DMN), while the other involves the frontoparietal
network and the DAN (FP-DAN). This result is consistent with multiple recent reports of two
subnetworks within the frontoparietal network [24, 25, 26, 89], and demonstrates an attractor
mechanism by which competition between these subnetworks can drive the transition between
the DMN and DAN. Our proposed mechanism - communication subspaces connecting the fron-
toparietal network with distinct higher cognitive networks - is also a mechanism by which the
frontoparietal network can be recruited during challenging tasks engaging various other cogni-
tive networks, and therefore helps explain how this network can function as a "multiple demand
network" [19].

It has been suggested that the salience network, which transiently activates in response to
salient stimuli, may mediate the switch between the DMN and DAN [17, 18]. When incorporating
the salience network and modeling interactions between the salience and frontoparietal networks,
we introduced an asymmetric-to-symmetric communication subspace that reads out activity from
one dimension comprising the local asymmetric connectivity in the salience network and projects
to a direction in the frontoparietal network activity space aligned with the FP-DAN attractor. We
show that transient inputs to the salience network, which gate sequential population activity within
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it, can control the DMN-DAN switch through these asymmetric-to-symmetric communication
subspaces, aligning transient salience network activity with FP-DAN attractor dynamics. This
introduces a mechanism for saliency-dependent gating between the DMN and DAN, mediated by
the frontoparietal network via communication subspaces.

3.2 Distributed stable and dynamic coding

Working memory and decision-making involve a distributed network of areas in the frontal and
parietal regions [19, 90, 91, 57, 92]. Recent models of have accounted for stable persistent activity
[42, 41, 43, 47] and activity-silent [42] maintenance of short-term/working memories throughout
the frontoparietal network. The distributed frontoparietal network in our model departs from
previous models by displaying both stable [49, 50, 51, 52, 53] and dynamic [54, 51, 52, 53, 55]
population coding. The dynamic coding is generated through sequential population activity, driven
by asymmetric local connectivity [64, 63, 71, 74, 73] and distributed asymmetric-to-asymmetric
communication subspaces within the frontoparietal network. This dynamic coding coexists with
stable encoding, which occurs via attractor dynamics [61, 62, 80], driven by distributed ensembles
of units connected through symmetric-to-symmetric communication subspaces. Our model shows
that these two types of coding can co-exist in the frontoparietal large-scale network, and provides
a mechanistic explanation for recent observations of dynamic coding in the parietal cortex during
decision-making tasks [57], the motor cortex during action planning [58], and the prefrontal cortex
during navigation working memory tasks [59], while also accounting for the classic observations
of stable delay activity during working memory tasks [93, 94, 2, 50].

In the frontoparietal network, during delay periods and stable coding, the encoding of mem-
oranda remains stable at the population level, while the activity of individual neurons can exhibit
significant heterogeneity [49, 95, 50]. The mechanism underlying this combination of distributed
stable encoding and heterogeneous dynamics in our network is the distributed chaotic dynamics
and stable encoding previously observed in local circuit models [81, 83, 82]. We derived a mean
field theory that successfully describes the overlaps for each area, similar to the approach de-
scribed in [96]. Our theory is designed to describe the dynamics when the network reaches stable
fixed points, approximately capturing the overlap for the chaotic phase. However, our theory
cannot predict the transition to chaos [66, 81, 83, 82].

3.3 Dynamic routing of salient sensory stimuli via communication
subspaces

In our model, salient sensory stimuli are defined as those that align with the asymmetric-to-
asymmetric communication subspaces connecting the sensory cortices to the salience network.
Salient stimuli are routed from the sensory cortices to the salience network, eliciting sequential
population activity. Non-salient sensory stimuli, defined as those not aligned with these commu-
nication subspaces, do not elicit activity in the salience network. We model the representations of
auditory and visual stimuli in the salience network as two distinct population sequences, preserving
the identity of the stimuli (e.g., auditory vs. visual) within the network.
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The mechanism we propose for salience-dependent gating is bottom-up, relying on the align-
ment of sensory signals in the sensory cortices (bottom) with predefined communication subspaces
in order to be routed to higher-order cortical regions in the salience network (up). In our model,
these communication subspaces are hard-coded, meaning they do not change over time. This is
consistent with the concept of saliency maps [97] in vision science.

In a two-area network model for context-dependent decision making [98], communication
between auditory cortex and the prefrontal cortex can be selectively routed in a context-dependent
fashion through communication subspaces. Such context-dependent mechanisms may also be
implemented in our network to selectively route auditory or visual information depending on the
context controlled by the frontoparietal network.

Disinhibitory connectivity motifs involving different cell types and cell-type-specific local con-
nections have been proposed as a mechanism for routing sensory information [99]. Our model does
not include cell types, and exploring the implementation of communication subspaces through
cell-type-specific connections is a potential direction for future research.

3.4 Communication subspaces as routing mechanism of large-scale
cognitive networks

In our MRNNs, distributed attractor dynamics and sequential population activity shape the tem-
poral evolution of the cognitive networks during task performance. Coordinating the activity of
these networks is governed by the selective routing of neural activity through communication
subspaces. These subspaces act as dimensionality bottlenecks [28, 29, 31, 30], restricting the
maximum dimension of routed signals and allowing for the dynamic reconfiguration of cognitive
networks according to task demands depending on the alignment of the local dynamics with the
communication subspaces.

Multiple different mechanisms for large-scale brain communication have been proposed, see,
for example, the Perspective in [100]. Multiple groups argue that multi-regional communication
is achieved through the synchronization of oscillatory activity [101, 102, 103, 104, 105, 106,
107, 108, 109], which serves as the mechanism enabling coordination across brain regions during
cognition. Although this remains a topic of scientific debate [110]. The mechanism proposed
here for routing large-scale cognitive networks is not mutually exclusive with the synchroniza-
tion hypothesis; both mechanisms may contribute to the coordination and routing of large-scale
cognitive networks.

In our current model, the local dynamics and the communication subspaces are low-dimensional.
This is due to the fact that the local connectivity is low-rank [83], and the dimensionality of the
mean activity is at most equal to the total number of patterns defined by the symmetric and
asymmetric connectivity motifs. Communication subspaces act as bottlenecks for routing local
dynamics, as the number of dimensions available for inter-area communication is smaller than
the dimensionality of local dynamics and significantly smaller than the number of neurons, i.e.,
Rank(C) < pA + pS ≪ N . While neural activity observed during neuroscience tasks is generally
low-dimensional, much smaller than the number of recorded neurons, recent large-scale neural
recordings show that neural activity in the brain can be high-dimensional [111, 112], with dimen-
sionality scaling linearly with the number of neurons. We expect our theory to remain applicable
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in this high-dimensional regime, one can envision an MRNN model with high-dimensional local
dynamics that scale linearly with network size, alongside communication subspaces whose dimen-
sionality also scales linearly with network size but remains smaller than the dimensionality of the
areas they connect.

3.5 Multi-regional RNN models

Computational models of multi-regional dynamics that incorporate anatomical constraints have
typically been constructed using highly simplified mean field models, which represent the overall
activity of each area with only a few dynamic variables [33, 34, 35, 36, 86, 41, 42, 43, 44, 45,
46, 47]. These models have provided valuable insights into the network mechanisms driving
multiregional dynamics during the resting state [33, 34, 35, 36], working memory [41, 42, 43, 44],
decision-making [45, 46] and conscious access [47]. However, by modeling local circuit dynamics
with only a few variables, these models fail to capture the high-dimensional activity of large
neural populations, which is likely crucial for understanding how information is represented and
dynamically routed in multi-regional brain systems.

Theoretical studies have explored the dynamics of modular networks composed of multiple
units within each module [113, 96, 114, 115, 116]. Notably, recent work has studied the dy-
namics of large networks with a rank-one structure within and across modules [114]. However,
these models primarily focus on describing transitions to chaotic dynamics [113, 96, 114, 115]
or the storage capacity of attractor states [116] and do not model specific experimental data or
incorporate biological constraints.

Recently, MRNNs with multiple units in each area have been employed to fit multi-regional
recordings using machine learning methods [117]. While these models have multiple units in each
brain region, the observed dynamics can be challenging to interpret [48]. Moreover, these models
are solely constrained by neural activity, which, due to the non-convex nature of the training
process [118], may lead to the discovery of multi-regional interactions during the fitting procedure
that are inconsistent with anatomical data. Here, we build and analyze a class of connectivity-
constrained MRNN models to dissect how cognitive network dynamics are shaped by the interplay
between attractor dynamics and sequential population activity, coordinated by communication
subspaces. We constrain our model using anatomical and neuroimaging data. Unlike previous
large-scale models, anatomical data were used to constrain the sparsity of inter-area connections
but not the synaptic weights between units. Thus, anatomy serves as a sparsity scaffold for
synaptic weights, providing a soft constraint by penalizing weaker anatomical connections with
sparser projections.

Due to the mixture of symmetric, asymmetric, and random connectivity, the network dy-
namics can be interpreted as the overlap of population activity in each area with ensembles of
units comprising the symmetric and asymmetric connectivity motifs, as demonstrated recently
for local circuit models [65, 75]. This mixture of connectivity within the local circuits of each
area leads to a straightforward interpretation of the communication subspaces as interactions
between symmetric and asymmetric connected ensembles. We show that the spatial positioning
of symmetric-to-symmetric, asymmetric-to-asymmetric, and asymmetric-to-symmetric communi-
cation subspaces allows different types of distributed attractors or transient sequential activity

19

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.11.01.621513doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.01.621513
http://creativecommons.org/licenses/by-nc-nd/4.0/


to be routed within the network. We therefore provide a model of the representation and dy-
namic routing of information within and across cognitive networks via local connectivity-aligned
communication subspaces.

4 Methods

4.1 Anatomical datasets

4.1.1 Macaque cortex diffusion MRI tractography

For macaque structural connectivity data, we used a fully reconstructed 91x91 area connectivity
matrix from [69], via the BALSA neuroimaging data sharing site https://balsa.wustl.edu/study/W336
[119]. Briefly, those authors acquired the data from postmortem diffusion MRI scans of an
immersion-fixed brain from an adult male macaque monkey (M. fascicularis), infused with gadolin-
ium contrast. The acquisition was on a 4.7T Bruker machine, 120 diffusion-weighting directions b
= 8000 s/mm2. Probabilistic tractography was performed using FSL’s probtrackx [120], seeded
from the cortical grey/white matter boundary. The connection weights were normalised such
that the normalised weight of a pathway originating in some area A and terminating in an area
B is defined as the ratio of the number of streamlines originating at A and terminating at B to
the total number of streamlines that either originate at A or terminate at B (excluding within-
area connections). The connectivity matrix was then symmetrised, by averaging the connectivity
weights for each pathway across the two directions. For further details, see [69]. In this work, we
exclude the Subiculum and the Piriform cortex from this dataset.

4.1.2 Macaque cortex T1w/T2w

We obtained the macaque cortex T1w/T2w data from the Yerkes19 group average dataset
(https://balsa.wustl.edu/reference/976nz). Briefly, this was based on structural T1-weighted
and T2-weighted (0.5 mm isotropic resolution) imaging of 19 adult macaques scanned at the
Yerkes National Primate Center, Emory, USA. The scans were processed through a macaque
variant of the Human Connectome Project pipeline [121] to extract surfaces and align the scans
to a template. We then averaged the T1w/T2w values within each of the 91 areas in the Lyon
(M132) cortical parcellation [122].

4.1.3 Human cortex dMRI tractography

For human structural connectivity data, we used a fully reconstructed 180x180 area connectivity
matrix of the left cortical hemisphere produced in [36]. The data in that study was based on 334
subjects from the Human Connectome Project [121]. The 180 areas represent the areas in the
cortical parcellation in [121]. Similarly to the macaque data, tractography was performed using
FSL’s probtrackx [120].
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4.1.4 Human cortex T1w/T2w

The human T1w/T2w data was based on the S1200 subject release of the Human Connectome
Project, and downloaded from BALSA (https://balsa.wustl.edu/reference/pkXDZ).

We then averaged the T1w/T2w values within each of the 180 areas of the Glasser parcellation
in the left cortical hemisphere [123].

4.2 Diffusion map embedding on dMRI connectivity

We use the diffusion map embedding method [124] for analyzing the dMRI connectivity data.
This method has been recently successfully applied to human and macaque connectomes for
uncovering the organization of the transmodal default-mode network [125]. The method is based
on an hypothetical diffusion processes that diffuses from the nodes along the edges of the dMRI
connectome. This diffusion process give rise a to a diffusion space in which a distance between
cortical areas is defined. Areas that are closer in diffusion space have stronger connections
and share a larger number of paths connecting them, while areas that are farther apart they
have weaker connections and share fewer paths. Using this method, the dMRI connectivity is
embedded in a low number of ‘principal gradients’, which are the principal component of the
normalized graph Laplacian of the diffusion process, leading to a low dimensional embedding of
the dMRI connectivity. Since dMRI connectivity matrix is symmetric, a requirement for applying
the method, we applied directly the diffusion map method on the dMRI connectivity matrix W .

Cognitive network Cortical area

Frontoparietal Network (FPN) 29/30, 44, 45B, 46d, 46v, 7a, 8B, 8l, 8m, 8r,
9/46d, 9/46v, DP, F3, F4, MST, V6, V6A

Default Mode Network (DMN) 10, 12, 23, 24a, 24b, 24c, 24d, 29/30, 32, 44,
45A, 45B, 46d, 46v, 8B, 9, 9/46v, F2, F3, F5,
F6, F7, FST, Gu, IPa, MT, OPRO, PBr, PGa,
ProM, STPi, STPr, TEpv, TH/TF

Dorsal Attention Network (DAN) 5, 7a, 7b, AIP, DP, F4, F5, FST, LIP, MIP,
MT, PIP, TEOm, TEa/mp, V4t, V6A, VIP

Salience Network 23, 24a, 24b, 24d, 31, 7b, 7op, 8B, 9/46d, F4,
F5, Gu, INS, Pi, SII, STPc, TPt

Visual Network Pro.St., TEO, TEOm, TEpd, TEpv, V1, V2,
V3, V3A, V4, V4t, V6

Auditory Network CORE, LB, MB, PBc, PBr

Table 1: Functionally aligned cognitive networks and corresponding cortical areas for the macaque
cortex.
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4.3 Cognitive networks

4.3.1 Human cognitive networks

The human cognitive networks are the canonical networks described by Yeo, Krienen and col-
leagues [16], aligned to the Human Connectome Project FS-LR 32k space and downloaded from
BALSA ( https://balsa.wustl.edu/reference/6V6gD ).

4.3.2 Definition of cognitive networks in the macaque cortex

A set of canonical functional networks that co-activate during rest and tasks have been widely
replicated in the human and monkey brain. The location and extent of each network has been
better delineated in the human brain. Therefore, we mapped the human networks to the macaque
cortex using cross-species functional alignment, and then assigned each cortical area to the
overlapping networks, in proportion with the degree of overlap. Cross-species functional alignment
relies on constructing a cross-species joint-similarity matrix (with cross-species similarity of each
pair of vertices based on functional connectivity with 27 homologous landmarks), calculating
cross-species gradients (by applying the diffusion map method to the joint-similarity matrix),
and creating a vertex-to-vertex mapping based on multimodal surface mapping [126] using these
gradients. For details please see [77].

Cognitive network Cortical area

Frontoparietal Network (FPN) 11l, 23d, 31a, 33pr, 44, 46, 55b, 7Pm, 8Av,
8BM, 8C, 9a, 9-46d, a9-46v, a10p, a32pr, a47r,
AV, FJa, FSa, FSp, i6-8, P1, P2, PFm, PHT,
POS2, p9-46v, p10p, p47r, SC, s6-8, TE1p

Default Mode Network (DMN) 7m, 8Ad, 8BL, 9a, 9m, 9p, 10d, 10r, 23d, 31a,
31pd, 31pv, 45, 47l, 47m, 47s, a24, a47r,
d23ab, d32, p24, p32, PCV, PGi, PGs, POS1,
SFL, s32, s6-8, SC, STGa, STSda, STSdp,
STSva, STSvp, TE1a, TE1m, TE1p, v23ab

Dorsal Attention Network (DAN) 6a, 6r, 7AL, 7Am, 7PC, 7PL, AIP, FEF, FJp,
FST, MST, MIP, PCV, Pd, PE1, PGp, PH,
PFt, PIP, POS1, P0, PS1, Pv, TE2p, TPOJ2,
TPOJ3, VIP.

Salience Network 23c, 33pr, 43, 44, 45, 55b, 5mv, 6ma, 6r, 9-46d,
AAIC, a24pr, FOP1, FOP3, FOP4, FOP5, M,
P, PEF, PF, PFcm, PFop, PoI1, PoI2, p24pr,
p32pr, PSL, SCEF, SFL, STV, TPOJ1, TPOJ2

Table 2: Cognitive networks and corresponding cortical areas for the human cortex
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4.4 Multi-regional recurrent neural network

4.4.1 Dynamics and connectivity structure

We model the neocortex as a large-scale recurrent neural network composed of n cortical areas.
In the case of the macaque cortex n = 89 and in the human cortex n = 180. We assume that
each cortical area contains an equal number of units N . The value is N = 400, unless specified
otherwise. Each unit represents a neural pool (or assembly) that is selective for specific features
rather than an individual neuron. The dynamics are given by the standard rate equations [76, 61]
written in the current formulation

τ
dhk

i

dt
= −hk

i +
n∑

l=1

N∑
j=1

cklijζkJ
kl
ij ϕ(h

l
j) + Iki (t). (3)

The variable hl
i is the current to unit i in area l, while ϕ(hl

i) corresponds to the activity. The
intrinsic time-scale of the units was taken to be τ = 60 ms, modeling the excitatory dynamics
dominated by NMDA receptor dynamics. The function ϕ is the input-output transfer function of
the model that, in our case, is sigmoidal: ϕ(x) = 1

1+exp(β(x−h0))
, with β = 2.5 and h0 = 1.13.

The function I li(t) corresponds to the external input current to neuron i in area l.
The variables ck,lij model the existence or absence of a synaptic interaction between pre-

synaptic unit j in area l and post-synaptic neuron i in area k. Therefore, the variables cklij can
take values 0 or 1. In our model, the long-range connectivity between areas is sparse and random.
We model it as independent and identically distributed (i.i.d.) Bernoulli random variables with
projection-dependent probabilities given by connectivity data

cklij
i.i.d.∼

{
1 if k = l

Ber(Fkl) if k ̸= l.
(4)

The inter-area connectivity matrix Fkl corresponds to the normalized dMRI tractography
(more in Methods 4.1) for macaque monkey (Fig. 1h) and human (Fig. S1). Therefore, although
the inter-area connectivity is random, the sparsity of the connections is constrained by dMRI
tractography data (see Fig. 1h and i).

The parameter ζk represents an area-dependent cortical gradient that affects the strength
of local and long-range incoming connections to a local RNN k. Our model assumes linear
variation in the strength of these connections across cortical areas. This assumption is based
on the strong correlation observed between spine count per neuron, which serves as a proxy for
the total number of excitatory synaptic inputs, and the hierarchical position of cortical areas
[127, 67]. We approximate the hierarchical position of each cortical area using MRI-derived
T1w/T2w neuroimaging values (Figs. 1j and S1b). T1w/T2w values are inversely correlated with
spine count [128]. Thus, the cortical gradient is defined by

ζk = aζT1w/T2w(k) + bζ , (5)

where k is the local RNN index. The parameter values are aζ = 0.6, bζ = 0.4 for the macaque
MRNN, and aζ = 1, bζ = 0.1 for the human MRNN.
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Their local synaptic weight J l
ij between a pre-synaptic unit j and a post-synaptic unit i in

region l consists of a combination of symmetric (Fig. 1a), asymmetric (Fig. 1b), and random
(Fig. 1c) connectivity motifs

J l
ij = αlS

l
ij︸ ︷︷ ︸

Symmetric

+ βlA
l
ij︸ ︷︷ ︸

Asymmetric

+ glR
l
ij︸ ︷︷ ︸

Random

. (6)

The symmetric connectivity is such that feedback and feedforward synaptic weights have the
same strength, i.e., Sl

ij = Sl
ji (Fig. 1a). As in network models for attractor dynamics [61, 62]

the symmetric connectivity motif in our model is built as the sum of the outer product of N -
dimensional patterns

Sl
ij =

1

N

(
ξ1,li ξ1,lj + · · ·+ ξpS,l

i ξpS,l
j

)
. (7)

The entries of these patterns are independently and identically distributed (i.i.d.), taking
values of −1 and 1 with a probability of 0.5. The number of symmetric connectivity motifs
per area is pS. This type of symmetric connectivity in Eq. (7) generates strong recurrent loops
(Fig. 1a), producing multi-stable attractor dynamics and stable persistent activity in recurrent
networks [60, 61, 62, 70].

The asymmetric connectivity motif is such that Al
ij ̸= Al

ji and has an effective feed-forward
structure [63, 64, 71, 72, 73, 74, 65] given by the sequential outer product of pA patterns:

Al
ij =

1

N

(
η2,li η1,lj + · · ·+ ηpA,l

i ηpA−1,l
j

)
. (8)

These patterns have the same statistics as the patterns in the symmetric connectivity motif.
The asymmetric connectivity motif in Eq. (8) produces transient sequential population activity in
recurrent networks [64, 63, 71, 65, 74]. Throughout the paper, these patterns can be the same
(ηs,li = ξs,li ) [75, 129] or different from the symmetric patterns. Additionally, multiple sequences
can be embedded in each local RNN’s connectivity by adding multiple independent sequences of
patterns [65].

The random connectivity is given by

Rl
ij =

1√
N
X l

ij, (9)

where each entry of the connectivity is independent and identically distributed as a Gaussian
variable, X l

ij
i.i.d.∼ N(0, 1) (Fig. 1c). This connectivity motif is known to produce high-dimensional

chaos in RNNs characterized by strongly temporally heterogeneous dynamics [66].

4.4.2 Arrangements of local connectivity motifs and communication subspaces

The long-range connectivity of our MRNNs (Eq. (2)) exhibits significant flexibility in selecting
communication subspaces, allowing for multiple possible configurations within a single model. For
instance, a MRNN with the same local RNNs can select various types of communication subspaces,
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such as symmetric-to-symmetric (Fig. 1e), asymmetric-to-asymmetric (Fig. 1f), asymmetric-to-
symmetric (Fig. 1g), or a mixture of these types. Importantly, the spatial arrangement of these
communication subspaces across the cortex can also vary widely. This selection qualitatively
alters the multiregional network dynamics and computations, as demonstrated in the main text.
Depending on the selected communication subspace and its spatial arrangement, different types
and spatially distributed patterns of multiregional dynamics can be routed. We used the cogni-
tive networks defined using the MRI activation maps (Methods 4.3, Tables 1 and 2) to constrain
the spatial arrangement of the connectivity parameters for both the local RNN symmetric and
asymmetric connectivity (Eqs. (6-8)) as well as the communication subspaces (Eq. (2)). As
demonstrated in the main text, these spatial arrangements restrict different and co-existing at-
tractor and sequential population dynamics to specific subsets of areas that overlap with the
cognitive networks’ spatial patterns of activation.

In the next subsection, we will detail the procedure used to constrain the MRNNs’ connectivity
and the spatial arrangement of communication subspaces across the cortex for Figs. 2-6. For
all our simulations, all local RNNs have the same random connectivity strength, denoted by
gl = gLoc = 2. Similarly, the long-range random connectivity strength will be the same for all
projections and is denoted by gkl = gLR. Its value ranges from 2 to 3 (i.e., gLR ∈ [2, 3]) and will
be specified accordingly.

4.4.3 Stable population coding and heterogeneous neural dynamics in the fron-
toparietal network

In Fig. 2, only the local RNNs within the frontoparietal network of the macaque cortex (Table 1)
have symmetric local connectivity (see Eq. (6)). The number of patterns generating the symmetric
connectivity is pS = 1 (see Eq. (7)). Consequently, the local RNNs’ connectivity is given by

J l
ij = αLocS

l
ij +

gLoc√
N
X l

ij, (10)

with

Sl
ij =

{
1
N
ξliξ

l
j l ∈ Frontoparietal

0 Otherwise.
(11)

As described in the main text, the entries of the patterns ξli are independently and identically
distributed (i.i.d.), taking values of −1 and 1 with a probability of 0.5.

The entries of the random connectivity motif are i.i.d. Gaussian variables, X l
ij

i.i.d.∼ N(0, 1).
The relative strength of the local symmetric connectivity is the same across all areas within

the frontoparietal network, with αLoc = 4.51.
For the long-range projections, the symmetric-to-symmetric communication subspace (Eq. (2))

is given by

Ckl
ij =

{
αLR
N
ξki ξ

l
j l, k ∈ Frontoparietal

0 Otherwise.
(12)
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Only the projections connecting areas within the frontoparietal network have a non-zero
symmetric-to-symmetric communication subspace. Therefore, the long-range projections are
given by

J lk
ij = Ckl

ij +
gLR√
N
Rkl

ij . (13)

The strength of the symmetric-to-symmetric communication subspace is the same across all
frontoparietal projections and is given by αLR = 7.48.

Similar to the random connectivity for the local connectivity, the entries of the long-range
random connectivity are also i.i.d. Gaussian variables, X lk

ij
i.i.d.∼ N(0, 1). The strength of the

long-range random connectivity is gLR = 2.75.
The external input current is equal to zero I li = 0.

4.4.4 Dynamic and stable population coding coexist in the frontoparietal network

In Fig. 3, similar to the connectivity for Fig. 2, only the local RNNs within the frontoparietal
network of the macaque cortex (Table 1) exhibit both symmetric and asymmetric local connec-
tivity (see Eq. (6)). The number of patterns generating symmetric connectivity is pS = 1 (see
Eq. (7)), while for asymmetric connectivity, it is pA = 8 (see Eq. (8)). Consequently, the local
RNNs’ connectivity is given by

J l
ij = αLocS

l
ij + βLocA

l
ij +

gLoc√
N
X l

ij, (14)

with

Sl
ij =

{
1
N
ξliξ

l
j l ∈ Frontoparietal

0 Otherwise,
(15)

and

Al
ij =

{
1
N

∑pA
s=2 η

s,l
i ηs,lj l ∈ Frontoparietal

0 Otherwise.
(16)

The entries of the patterns ξli and ηs,li are independently and identically distributed (i.i.d.),
taking values of −1 and 1 with a probability of 0.5. Therefore, the patterns comprising the
symmetric, ξ⃗l, and the asymmetric connectivity motifs, η⃗s,l, are uncorrelated. The strength of the
local symmetric and asymmetric connectivity is the same across all areas within the frontoparietal
network, with αLoc = 4.41 and βLoc = 4.41.

For the long-range projections, the communication subspace (Eq. (2)) is given by

Ckl
ij =

{
αLR
N
ξki ξ

l
j +

βLR
N

∑pA
s=2 η

s,k
i ηs−1,l

j l ∈ Frontoparietal
0 Otherwise.

(17)

Only the projections connecting areas within the frontoparietal network have a non-zero com-
munication subspace, otherwise Ckl

ij = 0. Therefore, the long-range projections are given by
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J lk
ij = Ckl

ij +
gLR√
N
X lk

ij . (18)

The strength of the symmetric-to-symmetric and asymmetric-to-asymmetric communication
subspaces are the same across all frontoparietal projections and are given by αLR = 7.14 and
βLR = 7.14. The strength of the long-range random connectivity motifs is gLR = 2.75. The
number of units per area is N = 500.

For Fig. 3, the external input current is aligned with the first pattern in the sequence and is
given by

I li(t) =

{
aIη

1,l
i l ∈ Frontoparietal and 0.5s ≤ t ≤ 0.65s

0 Otherwise.
(19)

For Figs. S5 and S5, the external input current is aligned with the symmetric-to-symmetric
communication subspace and is given by

I li(t) =

{
aIξ

l
i l ∈ Frontoparietal and 0.5s ≤ t ≤ 0.65s

0 Otherwise.
(20)

The magnitude of the external input current is aI = 2 for Figs. 3, S5 and S5.

4.4.5 Frontoparietal attractor dynamics coordinates DMN-DAN interplay

In Fig. 4, only the local RNNs within the frontoparietal, DMN, and DAN networks of the macaque
cortex (Table 1) have symmetric local connectivity (see Eq. (6)). The local RNNs’ connectivity
is given by

J l
ij = Sl

ij +
gLoc√
N
X l

ij, (21)

with

Sl
ij =



αLoc,DMN
N

ξl,DMN
i ξl,DMN

j l ∈ DMN
αLoc,DAN

N
ξl,DAN
i ξl,DAN

j l ∈ DAN
1
N

(
αLoc,DMNξ

l,DMN
i ξl,DMN

j + αLoc,DANξ
l,DAN
i ξl,DAN

j

)
l ∈ Frontoparietal

0 Otherwise.

(22)

The entries of the patterns ξl,DMN
i and ξl,DAN

i are independently and identically distributed
(i.i.d.), taking values of −1 and 1 with a probability of 0.5. Therefore, the patterns ξl,DMN

i

and ξl,DAN
i , which describe the local connectivity in areas within the union of the DMN and

frontoparietal networks, and the union of the DAN and frontoparietal networks, respectively,
are uncorrelated. The strengths of the local symmetric connectivity are αLoc,DMN = 2 and
αLoc,DAN = 2.3.

For the long-range projections, the communication subspace (Eq. (2)) is given by
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Ckl
ij =



αLR,DMN
N

ξk,DMN
i ξl,DMN

j k, l ∈ DMN
αLR,DAN

N
ξk,DAN
i ξl,DAN

j k, l ∈ DAN
1
N

(
αLR,DMNξ

k,DMN
i ξs−1,l,DMN

j + αLR,DANξ
k,DAN
i ξl,DAN

j

)
k, l ∈ Frontoparietal

αLR,DMN
N

ξk,DMN
i ξl,DMN

j k ∈ Frontoparietal and l ∈ DMN
αLR,DMN

N
ξk,DMN
i ξl,DMN

j k ∈ DMN and l ∈ Frontoparietal
αLR,DAN

N
ξk,DAN
i ξl,DAN

j k ∈ DAN and l ∈ Frontoparietal
αLR,DAN

N
ξk,DAN
i ξl,DAN

j k ∈ Frontoparietal and l ∈ DAN
0 Otherwise.

(23)
Projections within the union of the frontoparietal and DMN have a communication subspace

defined by the vectors ξk,DMN
i , while projections within the union of the frontoparietal and DAN

have a communication subspace defined by the vectors ξk,DAN
i . The recurrent connections within

the frontoparietal network present both communication subspaces defined by ξk,DMN
i and ξk,DAN

i .
The long-range projections are given by

J lk
ij = Ckl

ij +
gLR√
N
X lk

ij . (24)

The strength of the symmetric-to-symmetric communication subspaces are given by αLR,DMN =
7 and αLR,DAN = 8.5. The strength of the long-range random connectivity is gLR = 3.

To investigate the transition between the FP-DMN and FP-DAN attractor states, we first
introduced a constant input to the frontoparietal network areas. Initially, the input was aligned
with the FP-DMN ensemble in the frontoparietal network. At time zero input to the frontoparietal
network shifted its alignment from the FP-DMN to the FP-DAN ensemble. The external input
is given by

I li(t) =


aIξ

k,DMN
i k ∈ Frontoparietal and t ≤ 0s

aIξ
k,DAN
i k ∈ Frontoparietal and 0s ≤ t

0 Otherwise.
(25)

The magnitude of the external input current is aI = 1.15 for Fig. 4 and the corresponding
supplementary figures (Figs. S8 and S9).

4.4.6 Dynamic routing of sensory stimuli via saliency-dependent communication
subspaces

In Fig. 5, only the local RNNs within the Auditory, Visual, and Salience networks of the macaque
cortex (Table 1) have asymmetric local connectivity (see Eq. (6)). The number of patterns
generating asymmetric connectivity is pA = 3 (see Eq. (8)). The local RNNs’ connectivity is
given by
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J l
ij = Al

ij +
gLoc√
N
X l

ij, (26)

with

Al
ij =



βLoc,Aud
N

∑pA
s=2 η

s,l,Aud
i ηs−1,l,Aud

j l ∈ Auditory
βLoc,Vis

N

∑pA
s=2 η

s,l,Vis
i ηs−1,l,Vis

j l ∈ Visual
βLoc,Sal

N

∑pA
s=2

(
ηs,l,Vis
i ηs−1,l,Vis

j + ηs,l,Aud
i ηs−1,l,Aud

j

)
l ∈ Salience

0 Otherwise.

(27)

The entries of the patterns ηs,l,Aud
i and ηs,l,Vis

i are independently and identically distributed
(i.i.d.), taking values of −1 and 1 with a probability of 0.5. Therefore, the patterns ηs,l,Aud

i and
ηs,l,Vis
i , present in areas in the union of the Auditory and Salience cognitive networks and the

union of the Visual and Salience cognitive networks, respectively, are uncorrelated. The strengths
of the local asymmetric connectivity are βLoc,Aud = 6.3, βLoc,Vis = 7.35, and βLoc,Sal = 4.73.

For the long-range projections, the communication subspace (Eq. (2)) is given by

Ckl
ij =



βLR,Aud
N

∑pA
s=2 η

s,k,Aud
i ηs−1,l,Aud

j k, l ∈ Auditory
βLR,Vis
N

∑pA
s=2 η

s,k,Vis
i ηs−1,l,Vis

j k, l ∈ Visual
βLR,Sal
N

∑pA
s=2

(
ηs,k,Vis
i ηs−1,l,Vis

j + ηs,k,Aud
i ηs−1,l,Aud

j

)
k, l ∈ Salience

βLR,Sal,Aud
N

∑pA
s=2 η

s,k,Aud
i ηs−1,l,Aud

j k ∈ Salience and l ∈ Auditory
βLR,Aud,Sal

N

∑pA
s=2 η

s,k,Aud
i ηs−1,l,Aud

j k ∈ Auditory and l ∈ Salience
βLR,Vis,Sal

N

∑pA
s=2 η

s,k,Vis
i ηs−1,l,Vis

j k ∈ Visual and l ∈ Salience
βLR,Sal,Vis

N

∑pA
s=2 η

s,k,Vis
i ηs−1,l,Vis

j k ∈ Salience and l ∈ Visual
0 Otherwise.

(28)

Projections within the union of the salience and visual cognitive networks have a communi-
cation subspace defined by the vectors ηs,k,Vis

i , while projections within the union of the salience
and auditory cognitive networks have a communication subspace defined by the vectors ηs,k,Aud

i .
The recurrent connections within the salience network present both communication subspaces
defined by ηs,k,Vis

i and ηs,k,Aud
i . The long-range projections are given by

J lk
ij = Ckl

ij +
gLR√
N
X lk

ij . (29)

The strength of the asymmetric-to-asymmetric communication subspaces are given by βLR,Vis =
10.2, βLR,Aud = 11.9, βLR,Sal = 7.65, βLR,Sal,Aud = βLR,Aud,Sal = 34, βLR,Sal,Aud = βLR,Aud,Sal = 34
and βLR,Sal,Vis = βLR,Vis,Sal = 27.2. The strength of the long-range random connectivity motif is
gLR = 2.75.

For the salient visual stimulus in Figs. 5f, 5g, S10, and S11, the external input current is
aligned with the first pattern corresponding to the visual asymmetric-to-asymmetric communica-
tion subspace and is given by
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I li(t) =

{
aIη

1,k,Vis
i k ∈ Visual and 0s ≤ t ≤ 0.15s

0 Otherwise.
(30)

Similarly, for the salient auditory stimuli in Figs. 5h, 5i, S14, and S15, the external input
current is aligned with the first pattern corresponding to the auditory asymmetric-to-asymmetric
communication subspace and is given by

I li(t) =

{
aIη

1,k,Aud
i k ∈ Auditory and 0s ≤ t ≤ 0.15s

0 Otherwise.
(31)

Non-salient visual (Figs. 5j, 5k, S14, S15) and auditory (Figs. S16, S17) stimuli are de-
fined by the functions in Eqs. (30, 31), respectively, replacing η1,k,Vis

i and η1,k,Aud
i with random,

uncorrelated patterns that take values of -1 or 1 with equal probability.
The magnitude of the external input current is aI = 2 for Fig. 5 and all the corresponding

supplementary figures (Figs. S10-S17).

4.4.7 Salience Network-Frontoparietal interaction gates DMN-DAN transition

In Fig. 6, the local RNNs within the frontoparietal network, DMN, and DAN of the macaque and
human cortex (Table 1 and Table 2, respectively) are comprised of symmetric local connectivity
motifs (see Eq. (6)), while the salience network is generated by asymmetric local connectivity
motifs. The local RNNs’ connectivity is given by

J l
ij = Sl

ij + Al
ij +

gLoc√
N
X l

ij, (32)

with

Sl
ij =



αLoc,DMN
N

ξl,DMN
i ξl,DMN

j l ∈ DMN
αLoc,DAN

N
ξl,DAN
i ξl,DAN

j l ∈ DAN
1
N

(
αLoc,DMN-FPξ

l,DMN
i ξl,DMN

j + αLoc,DAN-FPξ
l,DAN
i ξl,DAN

j

)
l ∈ Frontoparietal

0 Otherwise,

(33)

and

Al
ij =

{
βLoc,Sal

N
ξl,DAN
i ηl,Sal

j l ∈ Salience
0 Otherwise.

(34)

The entries of the patterns ξl,DMN
i , ξl,DAN

i , and ηl,Sal
i are i.i.d., taking values of −1 and 1

with a probability of 0.5. The strengths of the local symmetric connectivity for the macaque
MRNN (Figs. 6b, d-i) are αLoc,DMN = αLoc,DMN-FP = 2.2, αLoc,DAN = αLoc,DAN-FP = 2.1, and
βLoc,Sal = 2.2. The strengths of the local symmetric connectivity for the human MRNN (Figs. 6c,
j-o) are αLoc,DMN = 2.1, αLoc,DAN = 2.6, αLoc,DMN-FP = 2.3, αLoc,DAN-FP = 1.6, and βLoc,Sal = 2.1.
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For the long-range projections, the communication subspace (Eq. (2)) is given by

Ckl
ij =



αLR,DMN
N

ξk,DMN
i ξl,DMN

j k, l ∈ DMN
αLR,DAN

N
ξk,DAN
i ξl,DAN

j k, l ∈ DAN
βLR,Sal
N

ξk,DAN
i ηl,Sal

j k, l ∈ Salience
1
N

(
αLR,DMN-FPξ

k,DMN
i ξs−1,l,DMN

j + αLR,DAN-FPξ
k,DAN
i ξl,DAN

j

)
k, l ∈ FP

αLR,DMN→FP
N

ξk,DMN
i ξl,DMN

j k ∈ FP and l ∈ DMN
αLR,FP→DMN

N
ξk,DMN
i ξl,DMN

j k ∈ DMN and l ∈ FP
αLR,FP→DAN

N
ξk,DAN
i ξl,DAN

j k ∈ DAN and l ∈ FP
αLR,DAN→FP

N
ξk,DAN
i ξl,DAN

j k ∈ FP and l ∈ DAN
αLR,Sal→DAN

N
ξk,DAN
i ηl,Sal

j k ∈ FP and l ∈ Salience
0 Otherwise,

(35)
where FP refers to the frontoparietal network. As in Fig. 4 (see Methods 4.4.5), projections within
the union of the frontoparietal and DMN have a communication subspace defined by the vectors
ξk,DMN
i , while projections within the union of the frontoparietal and DAN have a communication

subspace defined by the vectors ξk,DMN
i . The recurrent connections within the frontoparietal

network present both communication subspaces defined by ξk,DMN
i and ξk,DAN

i . The salience
network has an asymmetric-to-asymmetric communication subspace defined by ξk,DAN

i and ηk,Sal
i .

Finally, the salience network projects to the frontoparietal network through an asymmetric-to-
symmetric communication subspace, proportional to ξk,DAN

i ηl,DAN
j . The long-range projections

are given by

J lk
ij = Ckl

ij +
gLR√
N
X lk

ij . (36)

The strengths of the communication subspaces among the cognitive networks in Eq. (35) are
listed in Table 3. The strength of the long-range random connectivity is gLR = 2.

To investigate the transition between the FP-DMN and FP-DAN attractor states mediated
by the salience network, we introduced a transient input to the salience network areas given by

I li(t) =

{
aIη

k,Sal
i k ∈ Salience and 0ms < t ≤ 150ms

0 Otherwise.
(37)

The magnitude of the external input current is aI = 5 for Fig. 4 and the corresponding
supplementary figures (Figs. S18-S21).

4.5 Mean field theory

In Fig. 2e, we present the result of a mean field analysis of the network in the limit of an infinite
number of units per area, i.e., N → ∞. The connectivity of the network in this case is given by
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Parameter
Macaque
cortex
MRNN

Human
cortex
MRNN

αLR,DMN 7.7 7.35

αLR,DAN 7.35 9.1

βLR,Sal 7.7 7.35

αLR,DMN-FP 7.7 8.05

αLR,FP→DMN 7.7 8.05

αLR,DMN→FP 7.7 8.05

αLR,DAN-FP 7.35 5.6

αLR,FP→DAN 7.35 7

αLR,DAN→FP 7.35 4.2

αLR,Sal→FP 15.5 15.5

Table 3: Strengths of the communication subspaces across the salience network, frontoparietal
network, DMN, and DAN as described in Eq. (36) for the Macaque and Human cortex MRNNs.

Eqs.(10-13). Let us first define, the recurrent input current, h̃k
i , to a neuron i in area k, which

is given by

h̃k
i = ζk

n∑
l=1

N∑
j=1

cklij

[
αkl

N
ξki ξ

l
j +

gkl√
N
Xkl

ij

]
ϕ(hl

j). (38)

We define the overlap in area k as the covariance between the population activity of that area
and the pattern ξ⃗k, which generates the symmetric connectivity in Eqs.(10-13). Therefore, the
overlap is given by

ml =
1

N

N∑
j=1

ξljϕ(h
l
j). (39)

For building a mean field theory for the dynamics of our network, we first compute the average
input current to a neuron i in area k conditioned on the pattern ξki . The average is taken over the
randomness of the anatomical connectivity cklij (see Eq. (4)) and the random connectivity motif
Xkl

ij , represented by the triangular brackets ⟨· · · ⟩, obtaining

⟨h̃k
i ⟩ = ζkξ

k
i

n∑
l=1

αklFklml, (40)

with αkk = αLoc and αkl = αLR for l ̸= k.
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Here Fkl is the normalized dMRI tractography matrix (see Methods 4.1). The variance of the
input current is given by

⟨(h̃l
i(t))

2⟩ = ζ2k

(
Fkkg

2
Loc∆

0
k +

n∑
l ̸=k

Fklg
2
LR∆

0
l

)
, (41)

with gkk = gLoc and gkl = gLR for l ̸= k, and where

∆0
k =

1

N

N∑
j=1

ϕ2(hk
j (t)). (42)

In the above calculations, we assume that the network reaches a stationary state in which the
activity for each unit does not vary in time, and the network reaches a stable fixed-point attractor.
This is not the case for Fig. 2, as the dynamics is chaotic. However, our computations for the
overlap provide a good approximation in this chaotic regime (see Fig. 2e). Numerically solving
a dynamic mean-field theory, along the lines of what is presented in [96, 113], is necessary to
accurately describe the chaotic phase in our MRNNs.

In the limit where there are many units per area, we can express the stationary input current
in area k as

h̃k
i = ζkξ

k
i

n∑
l=1

Fklαklml +
√
∆0

kzi (43)

The variable zi is an i.i.d. Gaussian random variable with mean zero and unit variance. This
random variable represents the neuron-by-neuron variability of the input current and is assumed
to be Gaussian, based on the fact that in large networks, the variability is approximately Gaussian
distributed. Then, we compute self-consistent equations for the area-specific order parameters in
our networks which are the overlaps mk and the variance of the input current ∆0

k, which describe
the macroscopic behavior of the network in the stationary state. In the large N limit, Eq.(39)
becomes an integral. Using the expression for the input current from Eq.(43), we obtain an
equation for the overlaps

mk =
1

2

∫ ∞

−∞
Dzϕ

(
ζk

n∑
l=1

Fklαklml +
√

∆0
kz

)
− 1

2

∫ ∞

−∞
Dzϕ

(
−ζk

n∑
l=1

Fklαklml +
√

∆0
kz

)
,

(44)
where Dz = e−z2/2dz/

√
2π. Similarly, we use Eqs. (42) and Eq.(43) for obtaining a self-

consistent equation for the input currents is given by

∆0
k =

ζ2k
2

n∑
l=1

Fklg
2
kl

(∫ ∞

−∞
Dzϕ2

(
ζl

n∑
s=1

Flsαlsms +
√

∆0
l z

)
+

∫ ∞

−∞
Dzϕ2

(
−ζl

n∑
s=1

Flsαlsms +
√

∆0
sz

))
.

(45)
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Finally, we obtain 89 self-consistent equations for the overlaps, given by Eqs.(44), and 89 for
the variances of the input current, given by Eqs.(45). These equations are coupled. We solved
these self-consistent equations using a custom-made code implemented with the Python package
PyTorch (see Section 5).

5 Code availability

All code used to analyze the connectivity, simulate the networks, solve the mean field equations,
and generate figures are available at https://github.com/ulisespereira/brainwide.
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Supplementary Information

Supplementary figures

Fig. S1: Supplementary figure corresponding to Fig. 1h and j in the main text. (a) dMRI tractography of the
human cortex parcellated into 180 cortical regions [130]. (b) The T1w/T2w measure across the human cortex [36]
and dMRI connectivity graph. The edges are proportional to the value of the dMRI matrix. The nodes are colored
according to the T1w/T2w value. The nodes are placed using the diffusion map algorithm (Methods 4.2).
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Fig. S2: Supplementary figure corresponding to Fig. 2 in the main text. Each panel displays the dynamics of 15
representative units from each of the 89 cortical areas in the macaque cortex. Areas with red labels and traces
belong to the frontoparietal network.
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Fig. S3: Supplementary figure corresponding to Fig. 2 in the main text. Each panel displays the overlap (in blue)
and mean activity (in yellow) for each of the 89 cortical areas in the macaque cortex. Areas with red labels and
traces belong to the frontoparietal network.
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Fig. S4: Supplementary figure corresponding to Fig. 3 in the main text. Each panel displays the dynamics of 15
representative units from each of the 89 cortical areas in the macaque cortex. Areas with red labels and traces
belong to the frontoparietal network. We stimulate all areas in the frontoparietal network with a 150ms input
current aligned with the first pattern in the sequence at 0.5s in our simulation. The onset of the stimulus is
marked by a vertical dashed line.
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Fig. S5: Supplementary figure corresponding to Fig. 3 in the main text. Each panel displays the overlaps (in blue)
and mean activity (in yellow) for each of the 89 cortical areas in the macaque cortex. Areas with red labels and
traces belong to the frontoparietal network. We stimulate all areas in the frontoparietal network with a 150ms
input current aligned with the first pattern in the sequence at 0.5s in our simulation. The onset of the stimulus
is marked by a vertical dashed line.
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Fig. S6: Supplementary figure corresponding to Fig. 3 in the main text. Each panel displays the dynamics of 15
representative units from each of the 89 cortical areas in the macaque cortex. Areas with red labels and traces
belong to the frontoparietal network. We stimulate the frontoparietal network with a 150 ms stimulus, starting
at 0.5 seconds into the simulation (the onset is marked by a vertical dashed line), aligned with the symmetric-to-
symmetric communication subspace.
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Fig. S7: Supplementary figure corresponding to Fig. 3 in the main text. Each panel displays the overlap with
the patterns comprising the symmetric connectivity (red), asymmetric connectivity (blue), and mean activity
(yellow) for each of the 89 cortical areas in the macaque cortex. Areas with red labels and traces belong to the
frontoparietal network. We stimulate the frontoparietal network with a 150 ms stimulus, starting at 0.5 seconds
into the simulation (the onset is marked by a vertical dashed line), aligned with the symmetric-to-symmetric
communication subspace.
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Fig. S8: Supplementary figure corresponding to Fig. 4 in the main text. Neural dynamics for 15 representative
units. Blue-labeled areas and activity traces correspond to the DMN, green-labeled areas and traces correspond
to the DAN, and red-labeled areas and traces correspond to the frontoparietal network. The gray vertical dashed
line represents the moment when an external constant stimulus switches its alignment from the FP-DMN to the
FP-DAN attractor.
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Fig. S9: Supplementary figure corresponding to Fig. 4 in the main text. Blue represents the FP-DMN attractor,
green represents the FP-DAN attractor, and yellow indicates the mean activity (bottom right axis). Areas labeled
in blue, green, and red correspond to the DMN, DAN, and frontoparietal network, respectively. The gray vertical
dashed line marks the moment when an external constant stimulus shifts its alignment from the FP-DMN to the
FP-DAN attractor.
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Fig. S10: Supplementary figure corresponding to Fig. 5f in the main text. Network response to a salient visual
stimulus. Neural dynamics for 15 representative units. Areas with yellow labels and red traces belong to the
visual network. Areas with green labels and traces belong to the auditory network. Areas with purple labels and
traces belong to the salience network.
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Fig. S11: Supplementary figure corresponding to Fig. 5f in the main text. Network response to a salient visual
stimulus. Each panel shows the overlaps (in gray) and the mean activity (in yellow) for all 89 cortical areas in
the macaque cortex. Areas labeled in yellow, green, and purple correspond to the visual, auditory, and salience
networks, respectively.
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Fig. S12: Supplementary figure corresponding to Fig. 5h in the main text. Network response to a salient auditory
stimulus. Neural dynamics for 15 representative units. Areas with yellow labels and red traces belong to the
visual network. Areas with green labels and traces belong to the auditory network. Areas with purple labels and
traces belong to the salience network.
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Fig. S13: Supplementary figure corresponding to Fig. 5h in the main text. Network response to a salient auditory
stimulus. Each panel shows the overlaps (in gray) and the mean activity (in yellow) for all 89 cortical areas in
the macaque cortex. Areas labeled in yellow, green, and purple correspond to the visual, auditory, and salience
networks, respectively.
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Fig. S14: Supplementary figure corresponding to Fig. 5j in the main text. Network response to a non-salient
visual stimulus. Neural dynamics for 15 representative units. Areas with yellow labels and red traces belong to
the visual network. Areas with green labels and traces belong to the auditory network. Areas with purple labels
and traces belong to the salience network.
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Fig. S15: Supplementary figure corresponding to Fig. 5j in the main text. Network response to a non-salient
visual stimulus. Each panel shows the overlaps (in gray) and the mean activity (in yellow) for all 89 cortical
areas in the macaque cortex. Areas labeled in yellow, green, and purple correspond to the visual, auditory, and
salience networks, respectively.
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Fig. S16: Supplementary figure corresponding to Fig. 5j in the main text. Network response to a non-salient
auditory stimulus. Neural dynamics for 15 representative units. Areas with yellow labels and red traces belong
to the visual network. Areas with green labels and traces belong to the auditory network. Areas with purple labels
and traces belong to the salience network.
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Fig. S17: Supplementary figure corresponding to Fig. 5 in the main text. Network response to a non-salient
auditory stimulus. Each panel shows the overlaps (in gray) and the mean activity (in yellow) for all 89 cortical
areas in the macaque cortex. Areas labeled in yellow, green, and purple correspond to the visual, auditory, and
salience networks, respectively.
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Fig. S18: Supplementary figure corresponding to Fig. 6b in the main text. Network response to a 150ms stimulus
to areas in the salience network. Neural dynamics for 15 representative units. Areas with purple labels and traces
belong to the salience network. Areas with red labels and traces belong to the frontoparietal network. Areas with
green labels and traces belong to the DAN. Areas with blue labels and traces belong to the DAN.
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Fig. S19: Supplementary figure corresponding to Fig. 6b, d-i in the main text. Network response to a 150ms
stimulus to areas in the salience network. Blue: overlap FP-DMN attractor; Green: overlap FP-DAN attractor;
Purple: overlap with the pattern stimulated in the salience network. The gray dashed line marks the transient
stimulation of salience areas at 0s for 150 ms. Purple labels and traces: Salience network. Red: Frontoparietal
network. Green: Dorsal Attention Network (DAN). Blue: Visual network.
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Fig. S20: Supplementary figure corresponding to Fig. 6c in the main text. Network response to a 150ms stimulus
to areas in the salience network. Neural dynamics for 15 representative units. Areas with purple labels and traces
belong to the salience network. Areas with red labels and traces belong to the frontoparietal network. Areas with
green labels and traces belong to the DAN. Areas with blue labels and traces belong to the DAN.
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Fig. S21: Supplementary figure corresponding to Fig. 6c, j-o in the main text. Network response to a 150ms
stimulus to areas in the salience network. Blue: overlap FP-DMN attractor; Green: overlap FP-DAN attractor;
Purple: overlap with the pattern stimulated in the salience network. The gray dashed line marks the transient
stimulation of salience areas at 0s for 150 ms. Purple labels and traces: Salience network. Red: Frontoparietal
network. Green: Dorsal Attention Network (DAN). Blue: Visual network.

65

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 11, 2024. ; https://doi.org/10.1101/2024.11.01.621513doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.01.621513
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	Multi-regional recurrent neural network
	Anatomical constraints for whole-cortex models
	Stable population coding and heterogeneous neural dynamics in the frontoparietal network
	Dynamic and stable population coding coexist in the frontoparietal network
	Frontoparietal attractor dynamics coordinates DMN-DAN interplay
	Dynamic routing of sensory stimuli via salience-dependent communication subspaces
	Salient-frontoparietal interaction gates DMN-DAN transition

	Discussion
	Frontoparietal control of the DMN-DAN transition
	Distributed stable and dynamic coding
	Dynamic routing of salient sensory stimuli via communication subspaces
	Communication subspaces as routing mechanism of large-scale cognitive networks
	Multi-regional RNN models

	Methods 
	Anatomical datasets
	Macaque cortex diffusion MRI tractography
	Macaque cortex T1w/T2w
	Human cortex dMRI tractography
	Human cortex T1w/T2w

	Diffusion map embedding on dMRI connectivity
	Cognitive networks 
	Human cognitive networks
	Definition of cognitive networks in the macaque cortex

	Multi-regional recurrent neural network
	Dynamics and connectivity structure
	Arrangements of local connectivity motifs and communication subspaces
	Stable population coding and heterogeneous neural dynamics in the frontoparietal network 
	Dynamic and stable population coding coexist in the frontoparietal network 
	Frontoparietal attractor dynamics coordinates DMN-DAN interplay
	Dynamic routing of sensory stimuli via saliency-dependent communication subspaces
	Salience Network-Frontoparietal interaction gates DMN-DAN transition

	Mean field theory

	Code availability
	Acknowledgement
	Author contributions

