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1 Summary

The brain continuously generates predictions about the external world, allowing us to rapidly detect
and prioritize unexpected events, such as a mistuned piano note or an omitted one. Experimental stud-
ies have shown that neurons in sensory cortices respond to various types of contextual deviants across
different protocols, and sensory response is not reduced to zero when a stimulus is fully expected. To
account for diverse forms of observed deviations, here we introduce duet predictive coding, a minimal
and biologically plausible framework in which functional subgroups of neurons encode positive and
negative prediction errors separately. In contrast to classical predictive coding [34], which assumes
top-down input is purely inhibitory, our theory posits that it is context-dependent rather than abso-
lute. This model reproduces neural responses observed in diverse predictive coding paradigms across
visual and auditory cortices. Critically, our framework predicts the existence of neurons tuned to
negative prediction errors in the oddball paradigm, a prediction confirmed by our analyses, yet over-
looked by classical predictive coding models. Our findings suggest that the brain’s deviance detection
relies on duet predictive error computation, offering a unifying explanation across seemingly disparate
experimental protocols.

2 Introduction

In our daily lives, we consciously or unconsciously predict what will happen around us. We generate
internal expectations and compare them with incoming stimuli, such as a sound or a visual pattern
(Figure 1A). For example, when playing the piano, we can often predict the upcoming note and may
disengage our attention from it. Consequently, an off-key note may catch us by surprise. Similarly, we
can detect an out-of-tune sound during a live classical performance if we are familiar with the melody.
In a simplified scenario, when our internal expectations and incoming stimuli align, we tend to ignore
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Fig. 1 Concepts of duet predictive coding (dPC). (A) Illustration of deviant computation by comparing the expectation
with different types of incoming stimuli. (B) An expected case when the stimulus matches the internal expectation. (C)
Deviant cases where (Left) stimulus is received without a corresponding expectation, or (Right) an expected stimulus is
omitted. (D) Conceptual necessity in error calculation. Classic predictive coding (cPC) only considers positive prediction
error (pPE), while dPC accounts for both pPE and negative prediction error (nPE). The pPE neurons are excited by the
stimulus (S) and inhibited by the prediction (P) through local inhibitory neurons, encoding the positive error ([S−P]+).
Similarly, the nPE neurons are excited by the prediction and inhibited by the stimulus, thereby encoding the negative
error ([P−S]+). The required connectivity can be reached through local, biologically feasible learning rules [27, 18]. (E)
Firing rates of neurons in different contexts after learning based on [27]. The overall firing rate is close to baseline when
stimulus and prediction match. Importantly, in dPC, the prediction input is net excitatory when presented in isolation
but becomes net inhibitory when paired with the stimulus.

the sensory input (Figure 1B). In contrast, when expectations and stimuli do not match, the brain
may generate a deviance-related signal, enabling us to process the unexpected event with heightened
vigilance or urgency (Figure 1C). This deviance signal may arise in two forms: when a stimulus occurs
without a corresponding internal prediction, like an uninvited guest showing up, or when an expected
stimulus fails to occur, as in the case of a speaker not showing up to a seminar. Both types of errors
have been detected at the sensory areas [14, 15, 25, 24].

The mathematical formulation of deviance detection can be simplified as the computation of the
absolute difference (error) between the incoming stimulus and the internal prediction signal. This error
can be split into two components: the positive prediction error (pPE), representing the positive part of
the absolute difference, and the negative prediction error (nPE), representing the remaining negative
part (Figure 1D). Since neurons in sensory areas typically have low baseline firing rates [7, 30, 35], it
is challenging for a single group to signal bidirectional changes, which are required for representing
error. Historically, the classic predictive coding framework (cPC), developed by Rao and Ballard [34],
included only pPE neurons to explain the reduced visual response to the same stimulus when it is
expected, while allowing the units to have negative firing rates. The cPC model has also been used to

2

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 17, 2025. ; https://doi.org/10.1101/2025.07.12.664417doi: bioRxiv preprint 

https://doi.org/10.1101/2025.07.12.664417
http://creativecommons.org/licenses/by-nc/4.0/


account for mismatch negativity (MMN) observed in fMRI and electroencephalography (EEG) [13,
48]. Over the years, several extensions and modifications of this framework have been proposed [29,
43, 28], yet most continue to focus solely on top-down inhibitory effects on pPE components. However,
the notion that top-down input is purely inhibitory has been widely challenged [52, 9, 29, 10, 20]. This
limitation constrains the cPC framework’s ability to explain the neural response to omission [16, 25,
24].

To overcome the limitations of the cPC framework, one possibility is that two functionally distinct
populations in the sensory area separately encode pPE and nPE, which we will refer to as the duet
predictive coding (dPC) framework. Our previous work showed that pPE and nPE neurons can co-
emerge within a circuit via a local learning rule [27], explaining a broad range of motor-sensory
phenomena under the dPC framework [1, 21, 3]. Similar connectivity patterns can be learned by
enforcing excitation–inhibition balance at both the soma and dendrite of pyramidal cells [18]. The
core idea of dPC is that neurons remain near baseline activity when stimulus and prediction co-occur,
as in expected conditions (Figure 1E). When either input is presented alone, excitation in the driven
population outweighs inhibition in the suppressed population, allowing the population to act as an
effective error detector (Figure 1E). Unlike cPC, the overall effect of prediction input on the local
sensory circuit is net-excitatory in isolation but becomes net-inhibitory when paired with a stimulus,
making its inhibitory effect context-dependent rather than absolute.

Conceptually, including nPE neurons is counterintuitive because they encode the rectified difference
between prediction and stimulus ([P− S]+), which means some sensory-cortical neurons reduce their
activity in response to the stimulus. Nevertheless, recent studies have observed nPE neurons in primary
visual cortex (V1) during motion–visual mismatch [1, 21], audio–visual mismatch [11], and in auditory
cortex during motor–auditory mismatch [42]. In these tasks, the self-generated motor signal acts as the
prediction, compared against sensory input that either results from self-motion (closed-loop) or not
(open-loop). Because sensory responses are reduced in closed-loop compared to open-loop conditions,
these findings are taken as evidence supporting predictive coding theory [22]. Negative prediction
errors arise when expected stimuli are interrupted during movement, such as when visual flow is paused
while the animal runs on a treadmill in a virtual environment [1]. In such cases, population responses
increase, and neurons that respond selectively to negative errors are identified as nPEs. Notably, these
neurons also likely exhibit a shared transcriptomic profile that distinguishes them from pPE neurons
[31].

However, the prediction signal is often considered an internally generated signal independent of
motor output. In such cases, it arises from stimulus history rather than movement. For example, in
classic MMN studies [44], EEG responses were stronger to rare tones than to frequent ones, when
subjects remained still. Here, the prediction signal is thought to originate from prefrontal or other
higher-order cortical areas [23, 13, 20]. If the transcriptomic subtype enriched for nPE neurons in
motor-sensory tasks [31] is also present in these contexts, do they still function as nPE neurons when
predictions are history-based? If so, how can they be identified and distinguished from pPE neurons?

In this work, we systematically investigate the role of nPE neurons under the dPC framework
across diverse predictive coding paradigms using our model and analysis. We first show that the dPC
framework explains omission responses via the nPE component [25, 24], and aligns with MMN litera-
ture [12]. We then demonstrate how the model captures single-neuron responses in oddball paradigms,
predicting a joint contribution of pPE and nPE neurons during deviance detection. Importantly, the
contribution from nPE is incompatible with the cPC framework [34]. Finally, our theory predicts
distinct behavioral signatures that differentiate pPE and nPE neurons, which we validate through
analyzing experimental data.
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Fig. 2 dPC reproduces omission responses, since the predictor input is net excitatory if presented in isolation. (A)
Top: A1 can generate omission responses by internal expectation. Bottom: We use a predictor to generate the prediction
input. The model receives several repetitions of the same stimulus to build up the prediction before the omission. (B)
Predictor activity over time. The grey shading indicates the stimulus periods. (C, D) Time courses of a pPE neuron and
an nPE neuron. The omission response is contributed by nPE neurons. (E) Response of individual neurons compared to
the baseline. The neurons are sorted based on the strength of stimulus input. (F) Neural responses at the first occurrence,
last repetition, and during omission. (G) Average response over the population. (H) Average response restricted to
omission-responsive neurons. (I, J) Distribution of omission of data (I) and the model (J). (I) is modified from [24].
The dashed line indicates the mean. The red shading highlights neurons with omission index > 1/3, indicating their
response is at least twice the response during the last repetition. (K) Population-level omission response as a function
of the interstimulus interval. See [24] for the definition of omission-responsive sequence. (J, K) are generated in the
realistic model version. Here, τP = 0.1s.

3 Results

3.1 dPC reproduces omission response

Recently, studies by [25, 24] demonstrated that omission responses can be detected in single neurons
in the primary auditory cortex (A1). In their experiment, a sound was presented repetitively at fixed
time intervals, with occasional omissions—trials in which a sound was unexpectedly absent. Recordings
from the mouse A1 revealed that some neurons consistently responded to these omissions. The authors
hypothesized that mice formed an internal expectation of the upcoming sound with precise temporal
resolution. When a predicted sound failed to occur, this internally generated prediction signal reached
the auditory cortex and triggered the omission response. This suggests the top-down input excites the
sensory area. This contradicts the cPC framework, which holds that top-down input is inhibitory.

We investigated this omission protocol within our dPC framework (Figure 2A). We used the learned
local connectivity from our previous work [27] as the synaptic architecture. To simulate internal
prediction originating from a high hierarchical area, we introduced a leaky integrator acting as a
predictor, which generates the top-down prediction input (see Methods for details). This predictor
receives bottom-up input uniformly from all neurons in the sensory area and operates on a slower
timescale [5, 40] than individual sensory neurons. The top-down prediction signal is temporally aligned
with the stimulus window, an essential feature for reproducing omission responses observed at precise
expected time points in the experimental data. In our model, this temporal alignment is implemented
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via a binary timing mechanism for simplicity. The precise timing can be achieved through spike-timing-
dependent plasticity, as proposed in [48]. The stimulus is delivered at fixed intervals and adapted
across repetitions. After a set number of repetitions (Nrep = 6 in this case), the stimulus is omitted,
simulating an ’omission’ trial.

In our model, the prediction input is net excitatory when presented in isolation, as in the omission
case. This triggers the omission response naturally. In detail, the predictor starts with a high baseline
firing rate of approximately 5 Hz [19] and saturates at 10 Hz. The predictor in simulation gradually
builds up an internal expectation by integrating activity from the sensory area (Figure 2B), and
generates corresponding top-down prediction input during stimulus periods. By our choice, a predictor
with 10 Hz generates the maximum prediction input, as P = 1 in Figure 1E. During omission trials,
predictor activity decreases but remains above baseline, driving a prediction signal. Though the net
effect is excitatory for the whole population, it has differential effects on pPE and nPE neurons.
During stimulus repetitions, pPE neuron activity decreases due to both stimulus-driven adaptation
and top-down inhibition from the predictor (Figure 2C). During the omission period, their activity
remains close to zero. In contrast, nPE neurons, excited by the predictor and inhibited by the stimulus,
respond differently. During the omission, prediction input persists while stimulus-driven inhibition
disappears, resulting in a strong excitatory response in nPE neurons (Figure 2D). At the population
level, nPE neurons exhibit strong excited activity, while the low baseline firing rate limits suppression
in pPE neurons (Figure 2E, F). Thus, on average, the overall population response to omission remains
positive (Figure 2G). Among omission-responsive neurons (Figure 2H; see Methods), the response is
higher than the population average during omission, but suppressed below baseline during the first
and last repetitions, reflecting that the nPE neurons are inhibited by the stimulus.

In the experiment by [24], the authors quantified omission responses using an omission index,
defined as the firing rate difference between the omission and repeated stimulus conditions, normalized
by their sum. An omission index of 1 indicates that a neuron responds exclusively to the omission,
whereas an index of –1 indicates exclusive response to the repeated stimulus. They found that neurons
exhibited a broad distribution of omission indices with a positive mean (Figure 2I), and a subset of
neurons had indices greater than 1/3, suggesting that their omission response was at least twice as
large as their response to the repeated stimulus. We successfully reproduced these signature properties
in the realistic model (see Methods, Figure 2J). In this version, each cell receives a different total
maximum input, making the model more biologically plausible but less straightforward to interpret.
We use the realistic model for comparisons with experimental data and explicitly indicate whenever it
is applied. Additionally, [24] reported that doubling the inter-stimulus interval halved the proportion
of neurons with significant omission responses, suggesting that the internal predictor may function
as a leaky integrator. This behavior is reproduced in our realistic model and supports our modeling
choice for predictor dynamics (Figure 2K).

3.2 dPC reproduces key properties of mismatch negativity

Next, we study whether our dPC framework can explain the classic mismatch negativity (MMN)
that is measured by the electroencephalogram (EEG) at the vertex of the scalp [44]. In a typical
experiment, subjects are required to passively listen to a series of high-pitched tones and low-pitched
tones and count the number of high-pitched tones in a block of 200 trials. The probability of high-
pitch tones varied across blocks. When comparing the response to a high-pitched tone that follows a
series of low-pitched tones to a control case in which the sequence contains only high-pitched tones,
the EEG recordings show a larger response, reflected by the signature negative component peaking at
200 msec (N200), which is named as mismatch negativity (MMN). This signature is widely studied as
a biomarker in diagnosing early psychosis [46]. Previous studies show that the MMN can be explained
by a mass-type model [12, 13] that only describes the average population response and includes a
top-down inhibitory effect through the pPE component. Does including the nPE component in dPC
compromise the model’s ability to explain MMN?
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Fig. 3 dPC reproduces key properties of mismatch negativity, since predictor input is net inhibitory if it co-exists with
the stimulus. (A) Model schematic. Multiple columns of pPE and nPE neurons are included, each selective to different
stimuli. Standard and deviant stimuli are presented randomly according to specified probabilities. (B) Firing rates of
individual neurons over time. Horizontal dashed lines separate neurons by stimulus selectivity. Vertical dashed lines
mark stimulus onset and offset. (C) Average firing rate across the population. Red shading indicates deviant stimuli;
gray shading indicates standard stimuli. (D) Predictor activity for both standard and deviant stimuli. (E) Expectancy
of the standard and deviant stimuli over time. See Methods. (F) MMN is negatively correlated with expectancy. See
the main texts for details. Different symbols represent data from different simulations. Symbols are downsampled for
clarity, but fitting is performed on all data combined across runs. Here, τP = 1s.

The dPC framework claims that prediction input is net inhibitory when paired with a stimulus,
reproducing the signature behaviors in MMN. In our model, we include Ncol = 8 columns, each tuned
to a distinct stimulus frequency (Figure 3A), with a dedicated predictor. Each predictor receives
excitatory input from NpCol = 40 neurons in its column and sends the prediction signal back. Within
each column, we include both pPE and nPE neurons, responding to the corresponding stimulus and
predictor. We begin with a case where a standard stimulus x appears with p = 0.7, and a deviant
stimulus with p = 0.3. The predictors operate with a longer time constant τp = 1 s, compared to
the omission case. These predictors further inhibit each other via bell-shaped lateral inhibition (see
Methods).

In this model, individual neurons respond heterogeneously to the stimulus (Figure 3B). Neurons
from different columns are stacked vertically, with each column separated by horizontal dashed lines.
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Within each column, pPE neurons have smaller indices than nPE neurons. As expected, pPE neurons
in the stimulus-matched column are strongly activated during the stimulus period, while nPE neurons
within the same column are slightly suppressed. At the population level, the average activity in each
column remains positive, as pPE excitation outweighs nPE suppression. In addition, the average
population response varies with stimulus history (Figure 3C). Activity is highest for the deviant
stimulus y, while responses to repeated presentations of the standard stimulus x gradually decline. This
modulation reflects changes in predictor activity over time (Figure 3D): as x is repeatedly presented,
predictorx activity builds up, leading to reduced activity in column x, since the prediction input is
net inhibitory when paired with its corresponding stimulus. This pattern reverses when a deviant
stimulus y is presented. Due to lateral inhibition, predictory activity remains low while predictorx
stays elevated. The resulting reduced inhibition from predictory leads to a stronger response in column
y. Notably, column x also shows a positive response when the deviant stimulus y is presented, as
predictorx excites column x in the absence of stimulus x, mimicking an omission response. This will
be discussed further in later sections.

A previous study [44] explained the MMN in a Bayesian framework by a latent ”expectancy”
variable, which estimates leaky stimulus history using a fitted memory decay rate α (Supplementary
Figure 7A, see Methods). To test whether this expectancy also accounts for the activity changes in
the model, we quantified MMN as the difference in population responses to a stimulus presented in
a randomized sequence versus a fixed sequence containing only that stimulus (i.e., p = 1). We found
that MMN is linearly and negatively correlated with the latent expectancy (Figure 3E, F), agreeing
with the experimental observation (Supplementary Figure 7A).

The degree of leakiness in calculating the expectancy is controlled by the decay rate α. To assess
its robustness, we evaluated model fit using the explained variance R2 (Supplementary Figure 7B).
We found that α ∈ [0.5, 0.7] consistently produces a strong anti-correlation between expectancy and
MMN. With our carefully chosen parameters, the optimal decay rate is αleak = 0.6, which matches
the value reported in experimental data [44] (Supplementary Figure 7A).

To better illustrate how MMN increases with repetition, we tested our model using a fixed sequence
of Nrep standard stimuli followed by a single deviant (Supplementary Figure 8). The longer the
repetition sequence, the less expected the deviant stimulus. Here, stimulus presentation triggered
heterogeneous responses across individual neurons (Supplementary Figure 8A, D), as seen previously.
When comparing Nrep = 6 to Nrep = 2, the activity difference is larger across predictors dedicated to
the standard and the deviant stimulus (Supplementary Figure 8B, E), resulting in a stronger MMN
(Supplementary Figure 8C, F). MMN amplitude saturates aroundNrep = 5 for predictor time constant
τP = 1 (Supplementary Figure 8G, as used in Figure 3). A smaller predictor time constant leads to
faster MMN saturation with fewer repetitions (Supplementary Figure 8G), but the MMN saturates
at a smaller amplitude (Supplementary Figure 8H).

3.3 dPC predicts nPE contributions in deviance detection tasks

Though MMN is often explained through predictive coding, an alternative account attributes it to
fatigue-like mechanisms, such as stimulus-specific adaptation (SSA) [13]. To isolate top-down contri-
butions, recent studies have focused on deviance detection (DD), which measures context modulation
by comparing responses to the same stimulus presented either as a deviant or as a probability-matched
control [14, 15, 4]. The control is typically the first occurrence of the stimulus (Figure 4A) or a ver-
sion interleaved within a sequence of randomized stimuli, both minimizing adaptation effects. In this
section, we focus on using the first occurrence as the control, and address the randomized control in
the next section. In addition to the population activity, advances in techniques like calcium imaging
now enable measurement of individual neuron activity. While deviance detection at the single-neuron
level is variable and heterogeneous [14, 15], can this heterogeneity be dismissed as random noise, as in
mass models [12] that describe only population-averaged responses? Or is it functionally meaningful
for computing predictive error?
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Fig. 4 dPC predicts functional role of nPE neurons in deviant detection. (A) Left: V1 can generate deviance detection
signals in an oddball protocol. Right: simulation schematic. Responses to the same stimulus presented in different
contexts (first, repetition, deviant, or omission) are compared. (B) Predictor activity in the corresponding standard
(black) and deviant sequences (red). (C) Firing rates of individual neurons in oddball sequence 1. (D) Average population
activity across different contexts within the oddball sequences. (E) Population DD response decreases as the orientation
of the deviant stimulus diverges from the perpendicular phase. (F) The population DD response decreases with increasing
stimulus interval. (G) Firing rates of an example pPEx neuron and an example nPEy neuron when stimulus x is presented
as the first occurrence, as a deviant, or is omitted. (H) Single neuron responses. The red line indicates the deviance
detection, and the green line indicates the omission difference, calculated as the difference between the omission response
and the response at the first occurrence. (I) DD and omission differences of pPEx and nPEy population. While both
show positive DD responses, only the nPEy population exhibits an omission response greater than the first occurrence.
(J) Scatter plot of DD versus omission difference. (I, J) are generated from the realistic model version. See Methods.
Here, τP = 0.4s.

Our dPC framework reproduces DD responses at both the population and single-neuron levels in
sensory areas such as V1. The network structure remains the same as in Figure 3A, but we use a shorter
predictor timescale (τP = 0.4 s) and include stimulus adaptation across repetitions (see Methods). To
test whether neural responses reflect contextual change, we simulate two oddball sequences: sequence
no. 1 (xxxy) where stimulus x appears repeatedly until the deviant y, and sequence no. 2 (yyyx)
where x is the deviant (Figure 4A). Stimuli x and y represent orthogonal grating orientations. We
also test omission responses using the sequence yyyo with the same number of repetitions in oddball
sequence no.1 and no.2.

In later sections, we label stimulus presentations in different contexts as follows: Fx denotes the first
occurrence of stimulus x, Rx denotes the fourth or later repetitions, and Dx indicates that stimulus
x is presented as a deviant. Analogous notations Fy, Ry, and Dy apply to stimulus y. Omissions in
sequences xxxo and yyyo are labeled Ox and Oy, respectively. We refer to oddball sequence no. 1 as
the standard sequence for x and oddball sequence no. 2 as the deviant sequence, with terminology
applied symmetrically for y.
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As shown earlier in the MMN case, predictor activity increases across repetitions when the cor-
responding stimulus is presented in the standard sequence, but decreases when the corresponding
stimulus is presented in the deviant sequence due to lateral inhibition (Figure 4B). Their activities,
which are different across contexts, modulated the neuron response to the same stimulus (Figure 4C).
As a whole population, the sensory response to Rx is below that to Fx, and it is larger to Dx than to
Fx (Figure 4D). Population-level deviance detection to stimulus x (DD), quantified as the response
difference to Dx and Fx, varies with the angular difference between stimuli x and y (Figure 4E). Max-
imum deviance detection occurs when x and y are orthogonal. As the angular difference decreases,
DD diminishes. When the angular difference reaches zero, the DD flips sign, reflecting that Dx and
Rx become the same. Similar to the trend observed in the omission protocol, DD decreases exponen-
tially with increasing inter-stimulus interval, reflecting the decaying memory of the predictor (Figure
4F). The prediction on how DD changes over the angular difference and interstimulus interval can be
tested in future experiments.

At the single-cell level, unlike the context-dependent modulation seen at the population level, the
predictor consistently inhibits pPE neurons and excites nPE neurons within the same column (Supp.
Figure 9A, B). Since predictor activity is higher during Rx than Fx, and lower during Dx than Fx, the
pPEx neuron is more inhibited in the repeated condition and less inhibited in the deviant condition.
In contrast, the nPEx neuron is more excited during Rx and less excited during Dx, though its overall
response is smaller than that of pPEx. The activity of all neurons in the x-selective column is shown
in Supp. Figure 9C, D. Since the reduced response to Rx could arise from both stimulus-specific
adaptation and top-down modulation, we tested a condition without adaptation (Supp. Figure 9E). In
this case, the reduction in response to Rx is attenuated, while the increase in response to Dx remains
unchanged, suggesting that DD may be a more reliable readout of top-down prediction than MMN.

As suggested in the previous section, the population-level DD response during Dx arises from two
distinct sources in the model. The first is reduced inhibition from the predictor in the x-selective
column, as previously discussed. The second originates from the omission-like response in the y-
selective column, where predictory exerts a net excitatory effect, particularly on nPEy. Notably, nPEy

shows a DD response comparable to pPEx, but its response to Fx is much weaker (Figure 4G). This
highlights a potential confound: if we define DD solely by comparing Dx and Fx, we might mistakenly
classify nPEy as a pPEx neuron, even though nPEy does not respond to stimulus x.

Next, we find that a commonly utilized omission protocol can evoke responses that clearly differen-
tiate pPEx and nPEy neurons (Figure 4A, G), as only nPEy neurons respond to omission Oy, whereas
pPEx neurons do not (Figure 4H). In simulations using the realistic model, both populations exhibit
DD responses, but only nPEy neurons respond more strongly to Oy than to Fx. When plotting indi-
vidual neuron activity along DD magnitude and response to Oy, the two populations form distinct
branches (Figure 4J). This separation between pPEx and nPEy provides an experimental prediction
that should be tested in future studies.

Lastly, a detailed decomposition of input contributions to both pPEx and nPEy across different
protocols is shown in Supplementary Figure 10.

3.4 dPC predicts distinct pPE and nPE responses in a randomized
oddball protocol

The difference between pPEx and nPEy neurons can be further tested in a randomized oddball protocol
by comparing responses to the first occurrence (Fx) and to a control condition (Cx) in addition to
using the omission protocol (Figure 5A). Here, the first occurrence Fx refers to the presentation of
standard stimulus x immediately following the deviant stimulus y within a long sequence, not the first
appearance of x in the entire run (Figure 5A). In [14, 15, 4], a many-standard sequence was used as the
control instead of the first occurrence to avoid potential novelty effects. In the many-standard control,
eight differently oriented gratings, including those used in the oddball sequences, are presented with
equal probability. This design helps eliminate the influence of adaptation and expectation signals on
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Fig. 5 nPEy neurons show stronger responses to Fx than it to Cx. (A) Simulation schematic. The comparison focuses
on the first stimulus presentation versus the stimulus in the many-standard control condition. (B) Activity of individual
neurons in the many-standard control condition. The gray shading indicates when stimulus x is presented. (C) Predictor
activity during oddball sequence one (left) and the many-standard control (right). Orange shading indicates the Fx,
and gray shading indicates the Cx. Activity for predictorx and predictory is shown. (D) One pPEx and one nPEy

activity during the oddball sequence 1 (left) and many standard controls (right). (E) predictorx and predictory responses
compared to the baseline across the Cx, Fx, Rx and Dx contexts. Activity of predictory is significantly more larger
during Fx than during Cx. The error bar indicates the standard deviation. ∗∗: p < 0.01; ∗∗∗: p < 0.001. (F) Activity of
a pPEx and nPEy neuron across conditions. The activity of nPEy neuron is significantly larger during Fx than during
Cx. Detailed p-values are provided in the Supplementary Materials.

neural responses. The oddball sequences are randomized such that the number of repetitions between
two deviants varies, rather than being fixed, to further minimize expectation-related effects. Here, we
apply the same protocol to test our model. Individual neuron responses in the many-standard control
sequence are shown in Figure 5B.

As before, predictor activity reflects a leaky integration of stimulus history (Figure 5C). In odd-
ball sequence no. 1, since stimulus x occurs more frequently, predictorx maintains elevated activity
throughout most of the sequence, while predictory becomes active only when stimulus y appears. By
definition, Fx follows Dy. During Fx, predictorx begins to ramp up, and predictory starts to decline.
However, due to the predictors’ long timescale, predictory remains elevated during Fx compared to Rx.
In contrast, under the many-standard control protocol, predictor activity stays near baseline unless
the corresponding stimulus is presented, reflecting the randomized nature of the sequence.

When comparing predictor activity across all trials and contexts, the predictorx does not differ
significantly between Cx and Fx, whereas predictorx shows a significant increase during Fx (p < 0.01,
Welch’s t-test; Figure 5E). This pattern is mirrored in the responses of pPEx and nPEy neurons: only
the nPEy neuron shows a significantly higher response (p < 0.01) during Fx than Cx, but not the
pPEx neuron (Figure 5D, F).

All pairwise p-values are reported in the Supplementary Materials.
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Fig. 6 Putative pPEx and nPEy neurons are both observed in an oddball paradigm experiment. (A) Activity of all
identified deviant detector (DD) neurons (n = 25) in the recorded population. DD neurons are defined as those that
respond significantly more strongly to the deviant than to the control stimulus (p < 0.05). Neurons above the dashed line
also show a significant response in the many-standard control condition (p < 0.05) and are considered as pPEx neurons.
The remaining neurons, which do not respond significantly in the control, are classified as nPEy neurons. Neurons are
sorted based on average activity during the control period. The black bar below the x-axis indicates the stimulation
period. (B) Average z-scored activity of pPEx neurons (n = 15) across different contexts. (C) Average z-scored activity
of nPEy neurons (n = 9) across different contexts. (D) Left: Overlay of z-scored pPEx neuron responses across contexts.
Right: Mean z-score during the stimulus period. The error bar indicates the standard error. No significant difference is
observed between Cx and Fx (p > 0.05). (E) Same as (D), but for nPE neurons. The activity during Fx is significantly
larger than during Cx. ∗: p < 0.05; ∗∗: p < 0.01; ∗∗∗: p < 0.001.

3.5 dPC predictions are confirmed in the experiment

Our model pinpoints predictions that can be experimentally tested. We have argued that both pPEx

and nPEy neurons contribute to deviance detection and, therefore, should both exhibit stronger
responses to deviant stimuli than to the many-standard control. Additionally, in contrast to pPEx

neurons, nPEy, responding to [Py − Sy]+, should not respond to the tested stimulus in the control
condition Cx. Furthermore, nPEy neurons should respond more strongly during Fx than during Cx.
We tested these predictions using both previously published data [4] and newly collected recordings,
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comprising a total of N = 326 stimulus–neuron pairs from three mice of either sex. The average
responses of these neurons are shown in Supplementary Figure 11A–C. In these experiments, a 0.5s
stimulus was presented to the animals with jittered inter-stimulus intervals ranging from 0.4 to 0.6s.
The detailed experimental procedure is described in [4].

Among these neurons, 25 out of a total N = 326 showed significantly stronger responses in the
deviant context compared to the control (p < 0.05, Welch’s t-test; Figure 6A, Supp. Figure 11D–F). We
refer to these as deviant detectors (DDs). This proportion is consistent with other reports during basic
oddball paradigms [15, 4]. Within the DD population, 16 neurons also showed significant responses to
the control condition (p < 0.05, paired t-test), while the remaining 9 did not (p > 0.05). We classify
the former as pPEx neurons and the latter as nPEy neurons, since only pPEx neurons are expected
to respond in the control condition.

On average, the pPEx neurons reproduce the response pattern previously reported [14, 15, 4]
(Figure 6B), showing similar responses during Cx and Fx. Their activity decreases with repeated pre-
sentations but increases in Dx. In contrast, the nPEy neurons (Figure 6C) exhibit a slightly suppressed
response in the control condition. Their responses are larger during Fx and even more elevated during
Dx.

When examining average responses across the stimulus period (Figure 6D), pPEx neurons do not
show a significant difference between Cx and Fx. In contrast, nPE neurons have significantly higher
activity during Fx than Cx (p < 0.05, paired t-test; Figure 6E). This pattern can only be explained by
top-down excitatory prediction input, which is incompatible with the cPC framework that considers
top-down effects to be purely inhibitory. Importantly, our nPE neurons also cannot be interpreted as
predictor neurons under cPC. In the cPC framework, predictor neurons reflect internal expectations
and should respond strongly to the repeated stimulus, which is not observed in our data (Supp. Figure
11J–L).

In addition, we observed several differences in the average response time course. For nPEy neurons,
response onsets in the deviant context often occur slightly (about 100ms, or 3 frames in the recordings)
before stimulus onset (Figure 6E), which is consistent with the idea that prediction signals arrive
in advance of sensory input, reflecting internal expectation. These neurons also exhibit a rebound
in activity following the stimulus period. One possible explanation is that the nPEy population is
nonspecifically inhibited by the stimulus (i.e., a nPEy neuron can be inhibited by both stimulus x and
y), and that removal of the stimulus disinhibits the neurons, leading to rebound activity.

In our model, orientation selectivity is explicitly imposed, and this is supported in the motion-visual
mismatch experiment [53]. However, this constraint may not hold universally. To investigate this, we
measured the tuning curves of pPE and nPE neurons based on their responses in the many-standard
control condition (Supp. Figure 12A, B). We found that pPE neurons are more selective for orientation,
exhibit greater response variability across orientations, and display higher average response power
(Supp. Figure 12C). These results suggest that pPE neurons are more stimulus-selective, while nPE
neurons are more indifferent to the content of the sensory input.

4 Discussion

Here, we propose a duet predictive coding (dPC) framework that unifies diverse neuroscience pro-
tocols across timescales and brain regions. This framework emphasizes that both positive prediction
error (pPE) and negative prediction error (nPE) are theoretically essential to predictive coding and
are supported by experimental evidence. Our model explains a wide range of phenomena, includ-
ing motion-selective modulation of auditory responses [27], motor–visual mismatch [27], omission
responses (Figure 2), mismatch negativity (Figure 3), and deviance detection in the oddball paradigm
(Figure 5). Motivated by our theory and past work in motor-sensory predictive paradigms, we exam-
ined and confirmed putative nPE neurons, which were not previously acknowledged in the oddball
context (Figure 6). Furthermore, we predict that the activity of pPE and nPE populations should
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diverge more clearly in an omission protocol (Figure 4), a hypothesis that can be tested in future
experiments.

The pioneering work of Rao and Ballard [34] shifted the prevailing view of the sensory cortices
from a passive information-processing machine to an active organ of inference [9, 20]. In their for-
mulation, top-down input represents predictions about the external world. Incoming sensory signals
are compared against these internal predictions, and only the residual difference—i.e., the prediction
error—is propagated to higher levels of the cortical hierarchy. However, this classic predictive coding
(cPC) framework, along with its subsequent extensions, has been challenged on several fronts [9, 17,
10, 29]. First, cPC assumes that top-down predictions inhibit bottom-up sensory input, whereas cor-
ticocortical feedback and intralaminar interactions are predominantly excitatory. Although disynaptic
inhibition, via excitatory drive of local GABAergic interneurons, can account for this discrepancy,
cortico-cortical feedback also synapses on excitatory neurons [52], and activates both inhibitory and
excitatory neurons [4]. Second, the original model allows negative firing rates, enabling excitatory
neurons with low baseline activity to signal bidirectional changes, but at the cost of biological plausi-
bility. Finally, the framework has been criticized for its limited ability to generate testable predictions,
reducing its utility in guiding experimental research.

Our work suggests that duet predictive coding (dPC) can address limitations of previous models by
incorporating negative prediction error (nPE) neurons into the circuit. Inspired by recent experimental
findings [1, 22] and computational models [18], we previously argued that a biologically plausible
local learning rule can give rise to optimal connectivity for computing prediction errors. This learned
connectivity can further explain experimental observations such as motion-modulated suppression and
motor–visual mismatch in the context of corollary discharge [27]. In our model, neurons exhibit low
baseline firing rates, from which they can be robustly excited but only weakly inhibited. Consequently,
top-down input is inhibitory only when paired with an expected stimulus but becomes excitatory
in other contexts (Figure 1E). In other words, top-down inhibition is context-dependent rather than
absolute.

Under this dPC framework, the deviant response in oddball protocols can be conceptually divided
into two components: reduced top-down inhibition to the unexpected stimulus (stimulus x in the
sequence yyyx) and top-down excitation to the omitted stimulus (no stimulus y during deviant in
the sequence yyyx). These effects are mediated respectively by pPE neurons tuned to the unex-
pected stimulus and nPE neurons selective to the predictor associated with the omitted stimulus.
Based on this theory, we identified putative nPE neurons that contribute to deviance detection in the
oddball paradigm (Figure 6) and further predict that these nPE neurons will become more clearly
distinguishable when combined with an omission protocol (Figure 4).

In our model, the predictors are modeled as mutually inhibited leaky integrators with a long
time constant and baseline firing rates around 5Hz. This choice is mainly for simplicity, but requires
further evidence from experiments to elucidate. Supporting that, the prefrontal cortex is observed to
have a higher baseline firing rate [41, 19] than sensory areas, especially in the superficial layer 2/3
[7, 30, 35]. This suggests that a single predictor neuron at a higher hierarchical region can signal the
expectancy change by increasing or decreasing its firing rate. However, this is not the only possibility.
Theoretically, different pools of neurons can indicate the increasing or decreasing of internal expectancy
as we split the prediction error neurons into pPE and nPE. Furthermore, the predictors may have
attractor dynamics instead of leaky integrators. Currently, we choose the leaky integrator because
the error signal decays away with longer interstimulus intervals in a passive task [24]. However, the
predictions may be generated from attractor dynamics, especially when the internal prediction must
be held to perform an active task, like delayed-match-to-sample tasks [38, 51]. In addition, the internal
prediction may be coded through synaptic mechanisms [45, 32]. Finally, as we argued in our previous
work [27], internal predictions may be generated ad hoc, as in the cases of corollary discharge. For
example, when riding a bicycle on a rocky mountain trail, internal predictions of the visual field
are continuously updated to account for self-motion and environmental changes. In such situations,
precise predictive representations may be transient and do not require maintenance over seconds. In
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summary, the detailed mechanisms of prediction generation require further study, and they are likely
to differ across contexts.

If predictions are generated through different mechanisms in distinct brain regions, are pPE and
nPE neurons drawn from the same neuronal pool across experiments? Our previous work [27] argued
that the learned pPE or nPE identity of each neuron is determined by the initial ratio of excitatory
input from stimulus versus prediction. If the prediction input arises solely from a corollary discharge
signal, then pPE and nPE identities should remain stable as long as predictions map consistently onto
the same motion signal. In the current study, the stimulus source remains constant, but the prediction
source may vary. Since pPE neurons require strong stimulus input, we argue that the pPE population
should be conserved across protocols. This is also consistent with the fact that the pPE neurons were
strongly orientation selective (Supplementary Figure 12). However, if the prediction source differs,
the corresponding nPE population may shift. In our model, we treat variability in input strength as
heterogeneity, but recent work suggests that transcriptomic identity may also shape error signaling:
specifically, L2/3 Rrad or Baz1a pyramidal neurons are enriched for pPE responses, while Adamts2
neurons preferentially exhibit nPE responses [31, 6]. These findings raise the possibility that pPE and
nPE neurons may be further distinguished by their molecular and transcriptomic profiles.

Similarly, what are the identities of the two interneuron populations in our model? From a modeling
perspective, the simplest approach is to assume an excitation–inhibition balance at both the soma
and dendrites [18] or to posit a division of labor across interneuron subtypes [49]. Based on these
assumptions, dendrite-targeting somatostatin-positive (SST) interneurons (INs) are likely to mediate
stimulus-driven inhibition, while soma-targeting parvalbumin-positive (PV) interneurons are well-
positioned to relay prediction-related inhibition [47]. The role of SST cells in delivering stimulus-related
inhibition to nPE neurons is supported by studies on motion–visual mismatch [1, 50, 22]. However, the
identity of IN subtypes responsible for relaying top-down prediction remains less clear. In the auditory
cortex, motion-related inhibition has been attributed to PV interneurons [36, 37]. Yet, recent findings
suggest that this pathway may reflect a homogeneous gain control mechanism rather than balancing
excitation from a specific predicted stimulus [3]. Although SST cells are generally less directly activated
by long-range cortical inputs [26], emerging evidence indicates that they may, in some cases, be more
responsive than PV cells in certain top-down signaling pathways [39]. Their involvement in pPE
calculation is also supported in both auditory [37, 3] and visual studies [14]. Another major interneuron
subtype, vasoactive intestinal peptide-positive (VIP) cells, typically inhibit SST cells and disinhibit
pyramidal neurons [33, 52], making them less likely to mediate top-down inhibition directly. However,
our recent findings suggest that a subpopulation of VIP interneurons co-expressing the neuropeptide
cholecystokinin (CCK) can directly inhibit pyramidal cells with synaptic strength comparable to that
onto SST cells, implying a potential role in mediating top-down inhibition [8]. In summary, the identity
of interneurons responsible for relaying top-down inhibition remains unresolved. Given that internal
predictions can arise via diverse mechanisms and pathways, it is plausible that top-down inhibition is
mediated by a combination of IN subtypes rather than a single, dedicated class.

Classic predictive coding (cPC), developed from a normative framework, falls short in accounting
for a range of experimental observations. In this work, we proposed duet predictive coding (dPC) with
both positive prediction error (pPE) and negative prediction error (nPE) neurons as an extension of
cPC to bridge the gap between theory and diverse experimental protocols. Our framework provides
new insights into the generality of predictive coding across brain systems, elucidating how internal
prediction signals guide the processing of incoming stimuli.

Methods

4.1 Sensory area

In this work, the single-neuron and synapse models within the sensory area are the same as in our
previous study [27]. The connectivity within each column also follows the learned connectivity from
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[27]. The neuron index within each column is sorted based on the input strength of the preferred
stimulus. When showing the example traces, the pPE example neuron is always the neuron with the
smallest index (maximum stimulus input strength), and the nPE example neuron is the one with the
largest index (minimum stimulus input strength).

We employ two versions of the model in this study. The simplified version assumes homeostasis,
meaning that the total maximum input from stimulus and prediction is equal across neurons. This
version includes a small number of neurons per column (NpCol = 40) and is used throughout most
of the paper. It offers a more interpretable framework for illustrating the core mechanisms of dPC.
The realistic version, in contrast, is designed to match experimental statistics and render testable
predictions from theory. This version includes more neurons per column (NpCol = 200), and it does not
assume homeostasis. While it is less intuitive for illustrating mechanisms, it is essential for capturing
biological variability, especially since homeostasis is not guaranteed in vivo, as seen in studies of
selective modulation of auditory responses [3, 2]. Throughout the paper, we use the simplified version
by default, and results from the realistic version are always explicitly stated.

In the following sections, we adopt the same notations as in [27]. In addition, we introduce predic-
tors that generate top-down prediction inputs, and we extend the model to include multiple columns
with different orientation selectivity. The specific modifications are described below:

4.2 Predictor

The pyramidal cells within a column are connected to an integrator with the same preferred orientation
and homogeneous connectivity strength gInt,E . These integrators are modeled as

τ Int
dR

dt
= −R+ f Int(I) (1)

where τ Int has a much longer time constant. The activation function here is a saturated version of
the previous activation function f :

f(I) =
∆V

τ(Vth − Vreset)(1− exp(−a∆V/σV )
(2)

with ∆V = I/gL + Vl − Vth and the saturation as follows:

f Int(I) = 10(1− exp(−f(I)/10)) (3)

With this choice, the activity of the integrator is capped at 10Hz, which is the maximum firing
rate for the predictor in the previous model [27].

The integrators mutually inhibit each other through a bell-shaped connectivity.

W IntInt
ij = Jmaxexp(−

(ϕi − ϕj)
2

σ2
Int

) + Jmin (4)

Here, Jmin is negative to represent lateral inhibition. For simplicity, we don’t split recurrent
excitation and inhibition in different connectivity matrices.

4.3 Simulated stimulus input

The stimulus input to individual neurons within the same column is drawn from a linearly uniform
random distribution ranging from zero to a maximum value gSmax, as in our previous work [27]. In
simulations involving multiple columns, the maximum input is scaled based on the angular difference
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between a neuron’s preferred orientation (frequency) ϕicol and the stimulus orientation (frequency)
ϕ0, using a Gaussian kernel:

gS,icolmax = gSmaxexp(−(ϕ0 − ϕicol)2/σ2
S) (5)

With σs is the width of the Gaussian kernel.
In the fixed oddball protocol, we simulate the model with stimulus Sx (standard stimulus), pre-

sented at a fixed orientation for eight repetitions. Each stimulus is shown for a duration tS , with an
inter-stimulus interval of tInt. Following the eighth repetition, we present an orthogonal stimulus Sy

as the deviant. This sequence is repeated twice and then followed by two additional standard trials
with Sx. In the omission protocol, the deviant stimulus is replaced with an omission (i.e., Sy = 0). In
the randomized oddball protocol, the stimulus on each trial is determined probabilistically based on
the assigned probabilities Px and Py.

In the fixed oddball and omission protocols, adaptation is modeled by directly reducing the
maximum stimulus conductance (gSmax) for repeated stimuli.

gS,irepmax = gSmax(1− dadap(1− r
irep−1
adap )) (6)

In the simulation matching MMN (Figure 3), adaptation is set to zero (dadap = 0), based on lesion
study findings [23], and is also omitted in the randomized oddball sequences.

4.4 Top-down prediction input

In our model, we include a prefrontal cortex (PFC)-like circuit composed of leaky integrators that
accumulate temporal information. We assume that each predictor j projects only to its corresponding
sensory column, generating mismatch receptive fields that match that of the sensory receptive field
[53]. The top-down connectivity is the same as the learned connectivity matrix Wij in our previous
work [27], where j indexes the j-th predictor and i belongs to the j-th column.

These predictors excite the dendrites of pyramidal cells as well as the interneuron population I2.
Experimental evidence suggests that top-down predictions may exert their influence with temporal
precision, such that the sensory area receives prediction input only when it is computationally relevant
for local processing. This timed prediction input could be implemented biologically via spike-timing-
dependent plasticity (STDP), as proposed in [48]. For simplicity, we implement it as a binary timing
in our model: the top-down excitation deviating from baseline is only applied when a stimulus is either
presented or expected.

gj = WijR
int
0 +Wij(R

int
j − s0)IS , (7)

IS = 1 when any stimulus is presented. In the omission protocol, we also set IS = 1 when the
model is ”expecting” a stimulus.

4.5 Data analysis

In the auditory omission response analysis (Figure 2), we use the same omission index to quantify the
distribution of population responses as in [24]. Specifically, for each cell, let rs denote the response
to the last stimulus presentation, and ro the response to the omission. The omission index is defined
as: iOMI = (ro − rs)/(ro + rs). In our model, omission-responsive neurons are defined as those whose
response during the omission period is at least twice as large as during the pre-omission period.

In reproducing MMN (Figure 3), we used a similar method to calculate ”memory-based

expectancy” Ms as in [44]: M
(t)
S=x = λ

∑10
i=1 α

iIS=x(S(t − i)), with Is is an identity function where

IS=x(x) = 1 and IS=x(y) = 0, and the normalization factor λ = 1/
∑10

i=1 α
i.

In analyzing pPE and nPE population responses in the model, a neuron is labeled as a pPE neuron
if it shows a positive deviance detection and a negative omission difference. Conversely, it is labeled as
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an nPE neuron if both the deviance detection and omission difference are positive. After classification,
activity is averaged separately across the pPE and nPE populations.

To test whether nPE neurons play a functional role in the oddball paradigm, we analyzed exper-
imental data from mice of either sex (n = 3), including previously published recordings from [4].
Detailed procedures for data collection and z-score normalization are described in [4]. The total num-
ber of cell–stimulus pairs examined was 326. A cell was classified as responsive only if its response
to a stimulus in the many-standard control condition was significantly greater than its pre-stimulus
baseline (p < 0.05). We then focused on the subset of responsive cells that showed significantly higher
activity in response to the same stimulus in the deviant context compared to the many-standard con-
trol (p < 0.05). All p-values for single-cell comparisons were corrected using the Benjamini–Hochberg
(BH) procedure.

Code Availability

We analyze the model-generated data using Python 3.9 and the experimental data using MATLAB
R2024b. All analysis code will be made available on GitHub upon acceptance.
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Fig. 7 Related to figure 3. (A) Model behavior is best captured with a memory decay rate of α = 0.6. The y-axis
shows the variance explained by a linear fit between the difference in population-averaged activity and the computed
expectancy. (B) Relationship between discriminant score and expectancy, reproduced from [44] with permission. The
discriminant score is calculated based on the N200, P300, and slow waveform components. Expectancy is computed
using a memory decay rate of α = 0.6.
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Fig. 8 MMN increases with the number of repetitions Nrep. Related to figure 3. (A) Activity of individual neurons
with two repetitions of the standard stimulus (Nrep = 2). (B) Predictor activity for both standard and deviant stimuli.
(C) Average population activity over time. (D to F) Same as (A to C) but with six repetitions (Nrep = 6). (G) The
difference in predictor activity between deviant and standard stimuli (rP=y − rP=x) becomes more negative as the
number of repetitions increases. Each color represents a different τP value. A longer time constant leads to slower
saturation of the predictor signal. (H) MMN increases over the number of repetitions.
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pPEx neuron over time when the corresponding stimulus is shown as the standard (black) or deviant stimulus (red).
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Fig. 10 Input differences across channels between pPEx and nPEy neurons. Related to figure 4. (A) Activity of
pPEx during the fixed oddball sequences xxxy and yyyx. From top to bottom: neuron firing rate; somatic excitation,
representing stimulus-driven excitation; dendritic inhibition relayed by the I2 population, representing stimulus-driven
inhibition; predictor activity selective to stimulus x; dendritic excitation, representing prediction-related excitation; and
somatic inhibition relayed by the I1 population, representing prediction-related inhibition. (B) Same as (A), but for a
nPEy . (C, D) Same layout as (A), but in the omission protocol yyyo. (E) Individual neuron responses across contexts.
(F) Scatter plot of deviance detection (DD) and omission difference in the simplified model version, which assumes the
total maximum input is the same across neurons. (G) Same as (E) but based on results from the realistic model version.
(H) Deviance detection and omission difference in the realistic model version (Related to Figure 4J).
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Fig. 11 Further analysis on neurons during randomized oddball protocols. Related to Figure 6. (A) Average z-scored
activity of all recorded neurons across different contexts. The black bars below the x-axis indicate the stimulation period.
(B) Overlay of neural activity traces across contexts. (C) Mean activity across contexts. (D–F) Same as (A–C), but
limited to deviant detectors (n = 25). To test whether nPE responses could be attributed to predictors rather than
nPE, we examined responses to the perpendicular stimulus y instead of the tested stimulus x across different contexts
in the following: (G–I) Same as (A–C), but for pPEx responses to stimulus y. No significant differences are observed
across contexts. (J–L) Same as (G–I), but for nPEy neurons. Again, no significant differences are found across contexts.
∗: p < 0.05; ∗∗: p < 0.01; ∗∗∗: p < 0.001. Detailed p-values are reported in the Supplementary Materials.
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Fig. 12 Tuning curves of pPEx and nPEy neurons. Related to Figure 6. (A) Average z-scored responses to different
stimulus orientations for pPEx neurons. Gray lines represent tuning curves for individual neurons; the black line shows
the population average. (Top) The tuning curves are aligned with the tested stimulus x in the oddball protocols. (Bottom)
The same tuning curves aligned with the preferred orientation of each neuron. (B) Same as (A), but for nPEy neurons.
(C) Orientation selectivity index for pPEx and nPEy neurons, calculated as the z-score at the preferred orientation
minus the z-score at the orthogonal (null) orientation. Error bars represent the standard deviation of the mean. Note
that the preferred orientation is not necessarily 0 degree. ∗∗: p < 0.01. (D) Orientation variability, measured as the
standard deviation of z-scores across all tested orientations. (E) Average response power, computed as the geometric
mean of z-scores across orientations. ∗: p < 0.05.
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