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2Université de Paris Cité, INCC UMR 8002, 75006 Paris, France
3Bristol Computational Neuroscience Unit, School of Engineering Mathematics and Technology, University of Bristol, Bristol BS8 1UB, UK
4Center for Mind, Brain, and Consciousness, Department of Philosophy, New York University, New York City NY 10003, USA
5Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
6Institute of Neuroscience and Medicine (INM-1), Research Center J€ulich, J€ulich, Germany
7C. and O. Vogt Institute for Brain Research, Medical Faculty, University Hospital D€usseldorf, Heinrich Heine University, 40225 D€usseldorf,
Germany
8CNRS, INCC UMR 8002, Paris, France
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SUMMARY
Conscious access is suggested to involve ‘‘ignition,’’ an all-or-none activation across cortical areas. To eluci-
date this phenomenon, we carry out computer simulations of a detection task using a mesoscale connec-
tome-based model for the multiregional macaque cortex. The model uncovers a dynamic bifurcation mech-
anism that gives rise to ignition in a network of associative regions. A hierarchical N-methyl-D-aspartate
(NMDA)/a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor gradient plays a critical
role: fast AMPA receptors drive feedforward signal propagation, while slow NMDA receptors in feedback
pathways shape and sustain the ignited network. Intriguingly, the model suggests higher NMDA-to-AMPA
receptor ratios in sensory areas compared to association areas, a prediction supported by in vitro autoradi-
ography data. Furthermore, the model accounts for diverse behavioral and physiological phenomena linked
to consciousness. This work sheds light on how receptor gradients along the cortical hierarchy enable
distributed cognitive functions and provides a biologically constrained computational framework for inves-
tigating the neurophysiological basis of conscious access.
INTRODUCTION

Among the huge flow of information received by our sensory or-

gans, only a fraction of it is consciously perceived.1 The network,

cellular, and synaptic mechanisms of conscious perception are

hotly debated and largely unresolved.2–8 In many experiments

that probe the access of stimuli to consciousness, subjects (hu-

man or non-human) are presented with faint stimuli and asked to

report if they detect them. Neural activity in early sensory areas

grows approximately linearly with stimulus strength, regardless

of whether the stimulus is detected.9–14 However, when a stim-

ulus is consciously detected, activity commonly emerges across

the frontal and parietal cortex in an all-or-none fashion and is

sustained for a few hundred milliseconds9–19 in stable20 or reli-

able dynamic trajectories.21,22 This widely distributed, sudden,

and sustained activity has been termed ‘‘ignition.’’2,23

Several prominent theories of consciousness propose a cen-

tral role of recurrent synaptic interactions between excitatory
Cell Reports 44, 115372, M
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neurons.3,23 However, the timescale of excitatory synaptic inter-

actions differs drastically depending on the type of postsynaptic

glutamatergic receptors. The most widely expressed of

these are a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA) and N-methyl-D-aspartate (NMDA) receptors.

Experimental and theoretical work on working memory has

emphasized the importance of AMPA receptors for rapid re-

sponses in the early sensory cortex and of NMDA receptors for

sustaining activity in the prefrontal cortex.24–26 However, studies

of conscious perception have hypothesized a critical role of

NMDA receptors at long-distance feedback connections (which

has been partially supported experimentally,27). This may imply a

large proportion of NMDA receptors in major targets of feedback

connections, such as in the early sensory cortex, seemingly in

contrast to work from the working memory literature. It is unclear

whether these two positions are compatible or whether the igni-

tion phenomenon is critically dependent on the synapses at

which AMPA and NMDA receptors are expressed.
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Small-scale simulations of brain areas organized in perfect

hierarchy with NMDA-mediated feedback connections have

reproduced the late sustained activity.12,23,28 Though critical

for building intuitions, by abstracting away from anatomy,

small-scale simulations limit the anatomical specificity of predic-

tions andmay overlook major problems that the brain must over-

come to enable ignition, such as propagation of information

through a strongly recurrent large-scale system.29 Large-scale

modeling studies based on real cortical connectivity data have

investigated the dynamic propagation of stimulus information

into the frontoparietal network but have not captured the late

sustained activity that is seen experimentally.29–31 A realistic

large-scale model of the ignition phenomenon should create

testable, anatomically precise predictions for theories of con-

sciousness, reproduce key physiological findings from detection

experiments across the sensory and association cortex and

behavior, and offer a platform for future simulations of other

experimental paradigms.

In this study, we develop amesoscale connectome-based dy-

namic model of the macaque cortex with realistic biophysical

constraints and assess its behavior during a stimulus detection

task, similar to that used experimentally. Second, we examine

whether the parameter regime necessary for realistic model

behavior is consistent with receptor distributions in themacaque

cortex. Our model reproduces multiple aspects of monkey

behavior and physiology, including aspects that have evaded

previous models, such as strong propagation of activity through

the connectome to the prefrontal cortex, bifurcation dynamics,

and sustained activity across a distributed subsets of frontopar-

ietal regions. Furthermore, we demonstrate that sufficiently

strong stimulus propagation and ignition require NMDA/AMPA

distributions across the cortex that closely match those

measured experimentally. Therefore, our findings shed light on

the synaptic and systems-level mechanisms underlying ignition

and reconcile seemingly contradictory anatomical, physiolog-

ical, and modeling results.

RESULTS

A large-scale dynamicmodel of themacaque cortexwith
NMDA, AMPA, and GABA receptors
We built a large-scale model of the macaque cortex containing

40 different interacting cortical areas. Each cortical area contains

a local circuit with two populations of excitatory neurons and one

population of inhibitory neurons.32,33 Excitatory connections are

mediated by both NMDA and AMPA receptors, and inhibitory

connections are mediated by GABAA receptors. Cortical areas

differ in the strength of excitatory input (due to differences in

the expression of dendritic spines34) and are connected accord-

ing to weighted and directed inter-areal connections, measured

by retrograde tract tracing35 with data from 40 interconnected

areas.36

Stimulus detection is accompanied by widespread
ignition of activity throughout the frontoparietal
network
We simulated a stimulus detection task by injecting differing,

small amounts of external current to the primary visual cortex
2 Cell Reports 44, 115372, March 25, 2025
(V1) for 50 ms (Figure 1A). In the V1, average activity over trials

increased approximately linearly with stimulus intensity before

returning to baseline a few milliseconds after the stimulus was

removed (Figure 1B). In contrast, on many trials, activity in areas

throughout the prefrontal and parietal cortices reached a high

activity state at around 200 ms (Figures 1B and 1C; Data S1).

This activity remained stable until the end of the trial or until

the vigilance signal was removed. This pattern of prefrontal

and early visual activity closely matches the dynamics of neural

activity in the monkey prefrontal cortex during a similar task.12

We therefore interpret trials with late, sustained activity in area

9/46d of the dorsolateral prefrontal cortex as corresponding to

detection of the stimulus12 (i.e., hit trials) and trials without

such activity as miss trials.

Activity in the frontoparietal network, but not sensory
areas, distinguishes hit from miss trials
Average activity over trials in sensory areas was very similar for

hit (stimulus present and detected) and miss (stimulus present

but not detected) trials (Figure 1B). Therefore, regardless of

whether the stimulus was detected, neural activity in sensory

areas reliably tracked the objective stimulus strength. In

contrast, while hit trials engaged strong, sustained activity

throughout frontal and parietal cortices, miss trials led to either

a transient increase in activity, which returned to baseline, or

no increase in activity (Figure 1B). The sensory and prefrontal

findings closely correspond to experimental findings from visual

and somatosensory detection experiments,9,11,12 validating the

model. Beyond the primary sensory cortex and dorsolateral pre-

frontal cortex (dlPFC), our model therefore predicts that, when a

stimulus is detected, late stimulus-related activity should be

detectable throughout a distributed prefrontal and posterior pa-

rietal cortical network (Figure 1C).

The probability of detecting a stimulus increases
nonlinearly with stimulus intensity
Due to the stochastic single-trial behavior, it is possible to

analyze how the proportion of hit trials varies with stimulus inten-

sity. Note that late activity always proceeded to either a high or

low activity state, as seen in monkey and human experi-

ments.12,37 The proportion of hits increased with the stimulus in-

tensity, with a sigmoidal curve accurately fitting the data (Fig-

ure 2), as observed frequently in monkeys and humans.10,12,13

Transition from early unimodal to late bimodal neural
activity in stimulus detection
During stimulus detection tasks, early ðC200msÞ cortical activity
increases with increasing stimulus strength, irrespective of

whether the stimulus is later detected or missed. When plotted

across trials, this early activity creates a unimodal distribution37

and likely corresponds to pre-conscious processing.38 After

�250 ms, activity either increases to a high-activity state or re-

turns to a low-activity state,37 thus creating a bimodal cross-trial

distribution, with only the high activity state corresponding to the

conscious detection of the stimulus. Thus, Sergent and col-

leagues suggest that trial activity proceeds from a dynamic

sequence of early states to one of two possible late activity

states (for prior evidence; see, e.g., Sergent and Dehaene39).



Figure 1. Stimulus detection is accompa-

nied by widespread ignition of activity

throughout the frontoparietal network

(A) Task structure. A near-threshold stimulus is

presented to the excitatory population in area V1

for 50 ms.

(B) Top: averaged activity over trials in V1 (primary

visual cortex) and area 9/46d (prefrontal cortex)

during hit trials for differing levels of stimulus in-

tensity (200, 250, and 300 pA for weak, medium,

and strong stimulus strengths). V1 activity rapidly

increases to a peak that differs according to

stimulus intensity before falling back to baseline.

9/46d activity, in contrast, reaches a high sus-

tained activity state after about 200 ms, which

does not depend on stimulus intensity. Bottom:

averaged activity over trials in V1 and area 9/46d

during miss trials for differing levels of stimulus

intensity. V1 activity is very similar to that on hit trials. 9/46d activity differs drastically, with a smaller peak of activity followed by a return to a low firing baseline

state.

(C) Firing rates across the cortex during example hit (top) and miss (bottom) trials. Hit trials are accompanied by sustained activity throughout much of prefrontal

and posterior parietal cortex, which is absent on miss trials.

In (B) and (C), stimulus intensity and network parameters are completely matched between hit and miss trials, which differ only in the random noise.
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This may hint at a bifurcation (i.e., a change in the number or sta-

bility of internal states) occurring over time.

Following the methods of Sergent et al., we analyzed model

activity at each time point across several trials and examined

whether activity across trials was best described by a null distri-

bution (neural activity independent of the stimulus), unimodal

distribution, or bimodal distribution. Shortly following the stim-

ulus, activity was best described by a unimodal distribution. After

approximately 100 ms, the data were best described by a

bimodal distribution (Figure 3A), matching experimental obser-

vations in humans detecting auditory stimuli.37 In our model,

we detect a shift to a bimodal cross-trial distribution after about

100ms, with late activity reaching its peak in prefrontal cortex af-

ter 200 ms (Figure S1). This broadly matches the timing of stim-

ulus-induced prefrontal activity observed in monkey experi-

ments, which is observable from � 60ms following stimulus

onset and peaks after � 150 � 200ms12,40,41. Therefore, our
connectome-based dynamic model accounts for the temporal

progression of activity states observed in the brain during stim-

ulus detection tasks.

A dynamic-to-sustained progression of activity states
associated with ignition
Previous studies of conscious perception have reported that

neural dynamics evolve from a dynamic to a relatively stable ac-

tivity pattern.20,42 We aimed to decode the trial outcome (hit/

miss) from activity at each time point for a fixed stimulus near

the threshold of detection using the temporal generalization

method.43,17 We defined trial outcome based on activity in

area 9/46d and predicted this outcome using activity in all other

cortical areas (therefore avoiding circularity). We observed a dy-

namic succession of patterns coding for stimulus visibility in the

early trial stages, with reasonably high classification accuracy re-

maining close to the diagonal (Figure 3B, bottom left box). In the
Figure 2. A sigmoidal relationship between

stimulus intensity and detection probability

(A) The rate at which the large-scale cortical model

detects the stimulus (engages sustained activity

over 15 Hz in area 9/46d) increases non-linearly

with the stimulus intensity (input current in V1).

(B) The distributions of firing rates across trials for

area 9/46d in the large-scale model for strong

(about 80% detection rate) and weak (about 20%

detection rate) stimuli. The outcome of individual

trials is stochastic, depending on the noise in the

system, but the system always ends in either a

high-activity state, corresponding to stimulus

detection, or a low-activity state, corresponding to

a miss. A higher percentage of trials with a strong

stimulus end in the high-activity state compared to

trials with a weak stimulus (as seen by the darker

red in the high-activity branch after 200 ms). The

stimulus is presented at 0 ms for 50 ms.
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Figure 3. A dynamic-to-sustained progression of activity states associated with ignition

(A) Across-trial statistics of neural activity for different stimulus strengths were used to classify model neural activity as belonging to null (black), unimodal (purple),

or bimodal (red) distributions at each time point. Activity progresses from a null distribution to unimodal and finally bimodal across-trial activity distributions,

indicative of a bifurcation.

(B) Temporal generalizationmatrix. For stimuli at the detection threshold (about 50%detection rate), a classifier trained to decode trial outcome (hit/miss) from the

activity pattern at each time point in a training dataset is used to predict outcome based on the activity at each trial time point in held-out data. A diagonal pattern

(e.g., in the bottom left dashed box) indicates a quickly changing dynamic code. A square pattern (e.g., in the top right dashed box) indicates a stable code.

(C) Cortical surface representation of the mean and SD of the normalized decoder coefficients for early (0–50 ms) and late (300–350 ms) periods of the trial.

(legend continued on next page)
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later trial period, we observed a stable pattern of high decoding

accuracy, with the decoders trained between � 100 � 400 ms

generalizing to all other time points within that range (Figure 3B,

top right box). Classifiers trained on some early time points had

below-chance accuracy at decoding later time points (blue

patches in Figure 3B). This indicates that early activity patterns

are effectively reversed later in the trial. Similar results have

been reported in the human experimental literature.37,44 Our

model suggests that the below-chance generalization from early

to late time points may be due to higher associative areas

sending net inhibitory feedback to areas that are lower in the vi-

sual hierarchy. Put another way, the stable, ignited activity

pattern can lead to a reversal of the activity patterns that occur

during stimulus propagation.

Decoding coefficients were highly variable over the first 50 ms

(Figures 3C, left, and 3D) before settling on a pattern (300–

350 ms) of high coefficients throughout a distributed network

of frontal, parietal, and some temporal regions. The standard de-

viation remains high only in regions of the frontal cortex to which

activity propagates last. The coefficients of the late decoder are

higher in areas that are high in the cortical hierarchy (Figure 3D).

A significant and stable correlation between decoder coeffi-

cients and the cortical hierarchy emerges late in the trial, after

about 300 ms (Figure 3E). This demonstrates how a stable

code throughout the frontoparietal cortex can coexist with a dy-

namic activity in some areas of the cortex (Figure 3C). This pre-

diction can be tested experimentally.

A dynamic bifurcation mechanism for ignition underlies
stimulus detection
The previous analyses hinted at the possibility of a bifurcation

occurring during stimulus detection. To better understand the

dynamics determining whether individual trials would result in a

hit or a miss, we built a simplified local model with a single

area made of a single excitatory and a single inhibitory popula-

tion (Figure 4A). The equations are the same as in the full model,

only the connectivity is different. Additionally, we focused on

excitation mediated by the NMDA receptors. This reduces the

system to two dynamic variables corresponding to the synaptic

variables SNMDA and SGABA. This simplification enables us to

analyze the dynamics of individual areas by looking at their

phase portraits.45

We analyze the dynamics for hit and miss trials (Figure 4B;

Data S1). The system initially has two stable steady states (at-

tractors) corresponding to low- and high-activity states (excita-

tion close to 0 and excitation close to 0.5) and an unstable steady

state (repeller, at about excitation 0.2). Before the stimulus,

the system begins at the low steady state. The stimulus to the

excitatory neural population shifts the excitation nullcline up,

reducing the number of nullcline crossings from three to one.

The single remaining crossing represents a stable steady state,

and activity is attracted toward this high-activity state during

the stimulus. Due to noise, the speed at which the activity in-
(D)Mean (±SD) of the normalized decoder coefficients for early (0–50ms) and late

cortical area.

(E) Correlation (Pearson’s r) between the decoder coefficients at each time point

significant correlation.
creases toward the nullcline crossing differs. When the stimulus

is removed (‘‘early post stimulus’’), the nullclines rapidly shift

back to their original position. As the unstable steady state (the

middle nullcline crossing) repels activity away from itself, this

effectively acts as a threshold. When the stimulus is removed,

any activity to the left of the unstable steady state is attracted

back to the low-activity steady state, resulting in a miss, while

any activity to the right is attracted toward the high-activity

steady state, leading to a hit (Figure 4C). A stronger stimulus

will lead to a larger shift in the excitatory nullcline, which in-

creases the probability of trajectories reaching the basin of

attraction of the high-activity state (i.e., a hit). Therefore, the dy-

namic activity patterns of hits and misses can result from tran-

sient bifurcations induced by the external stimulus and noise.

Fast propagation of stimulus information to the
prefrontal cortex depends on feedforward excitation
mediated by AMPA receptors
The transient sensory activity and persistent prefrontal activity

seen above and experimentally12,11 suggest that, unusually for

a recurrent network, different parts of the cortex may act in

different dynamic regimes (i.e., monostable vs. bistable).

Although the connectivity and spine count in our model are taken

from anatomical data, the cell-type targets of the inter-areal con-

nections (excitatory or inhibitory) and which glutamatergic

receptors mediate these connections (AMPA or NMDA) are un-

known. We therefore performed a parameter search to uncover

the combinations of cell-type targets and glutamatergic recep-

tors that can reproduce such dynamics.

We allowed the parameters for feedforward and feedback

components of pathways to vary independently. We used the

fraction of supragranular labeled neurons (SLN) as a validated

marker of the degree of ‘‘feedforwardness’’ of a pathway46 but

did not explicitly include layers in the model. Here, we refer to

the sumof axons fromany area to another as a ‘‘pathway,’’ which

is made up of a combination of SLN (i.e., pure feedforward) and

1-SLN (i.e., pure feedback) components. For example, the

pathway from V1 to V2, which is a classic feedforward pathway,

has an SLN of 0.72 (from previous data36).

We found three distinct regimes of model behavior in response

to a brief, strong, 50-ms visual stimulus: transient activity that re-

turns to baseline (No Bistability), sustained activity across all

cortical areas (Whole-Cortex Bistability), and sustained activity

only in association areas of the cortex (Subnetwork Bistability)

(Figures 5A and 5B). The reference parameter set used in all fig-

ures of the study (unless specified otherwise) was taken from this

Subnetwork Bistability regime.

We observed that, to obtain subnetwork bistability dynamics,

feedforward components of pathways in the model should

target mainly excitatory cells, principally via AMPA receptors

(Figures 5A and 5B. In contrast, the feedback components of

pathways should target both excitatory and inhibitory cells,

with a greater contribution of NMDA receptors.
(300–350ms) periods of the trial as a function of the hierarchical position of each

and the cortical hierarchy. The red bar shows the time range with a statistically

Cell Reports 44, 115372, March 25, 2025 5



Figure 4. A dynamic bifurcationmechanism

for ignition underlies stimulus detection

(A) Simplified circuit for analysis of dynamics,

containing a single excitatory and a single inhibi-

tory population, interacting via NMDA and GABA

receptors.

(B) Firing rates from area 9/46d in the large-scale

system on individual hit (green) and miss (purple)

trials.

(C) Phase portrait of the simplified network at

different trial stages. Example dynamics for indi-

vidual hit and miss trials are shown in green and

purple, respectively. The stimulus causes the

excitation nullcline (red) to move up, reducing the

number of crossings with the inhibition nullcine

(blue). Removal of the stimulus moves the null-

clines back to the original positions. In the hit trial,

by the time the stimulus has been removed,

activity has reached the basin of attraction of the

high-activity steady state and progresses toward it (right nullcline crossing). In the miss trial, activity remains in the basin of attraction of the low-activity steady

state (left nullcline crossing) and returns toward it after removal of the stimulus.
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We next performed a separate parameter search to identify

parameter sets that could replicate realistic propagation times

(Figure S1). Notably, a strongly overlapping set of parameters

was required to replicate rapid ignition within the realistic 130-

to 200-ms range.10,12,40 Specifically, we found that feedforward

components targeting excitatory cells via AMPA receptors and

feedback components targeting inhibitory and excitatory cells

with a greater NMDA-dependent contribution allow the feedfor-

ward excitation to transiently ‘‘escape’’ the inhibition and suc-

cessfully propagate stimulus-related activity along the cortical

hierarchy. Therefore, the pattern of feedforward AMPA-medi-

ated excitation and mixed feedback (NMDA + AMPA) is required

to replicate the spatiotemporal activity of sensory and associa-

tive areas during stimulus detection.

We next focused on one classic feedforward pathway (V1 /

V2), two feedback pathways (V2 / V1 and LIP / V2), and one

lateral pathway (LIP / 9/46d; Figure 5C) from the cortex-wide

model (reference parameter set). The NMDA fraction (expressed

as GNtN
GNtN+GAtA

, where tN=A is the receptor time constant) was high-

est in inter-areal feedback pathways, followed by inter-areal

lateral pathways, and lowest in feedforward pathways. However,

in all of these pathways, there remains a significant AMPA contri-

bution. We then cut all the inter-areal connections but LIP to V2

and injected a strong and brief (10-ms) current in LIP. Despite LIP

to V2 being a feedback connection and having one of the largest

NMDA contributions in the network, the peak of the resulting in-

ter-areal AMPA current is over five times greater than the peak of

the NMDA current (Figure 5D). Despite the dominance of AMPA

at inter-areal connections overall, in our model, it is an important

observation that the NMDA coupling is stronger in feedback and

lateral pathways than feedforward pathways, a prediction that

remains to be measured experimentally.

Ignition depends on NMDA receptor activation in local
excitatory connections
Does ignition also depend on the receptors that mediate local

intra-areal excitation? We adjusted the model so that the

NMDA fraction of local excitatory connections varied. For a
6 Cell Reports 44, 115372, March 25, 2025
very low NMDA fraction, we see sustained activity in the fronto-

parietal network but at unrealistically high firing rates (mean fron-

toparietal delay activity = 173 Hz for local NMDA fraction = 0.2;

Figure 5E). Only models with a relatively high fraction of local

excitatory connections mediated by NMDA receptors showed

sub-network bistability and sustained activity in the frontoparie-

tal network at a reasonable firing rate (mean frontoparietal delay

activity = 40 Hz for local NMDA fraction = 0.8, Figure 5E). How-

ever, if local connections were completely mediated by NMDA

receptors, then bistability was lost. This suggests that a contri-

bution of AMPA-mediated excitation is helpful to engage

NMDA-mediated excitation and sustained activity. Therefore,

our model suggests that NMDA receptors at local excitatory

connections are crucial for ignition of cortical activity in response

to a stimulus, in support of the previous theoretical25 and exper-

imental26 findings.

The NMDA/AMPA ratio decreases along the cortical
hierarchy
We calculated the NMDA fraction (as a fraction of NMDA- and

AMPA receptor-mediated excitation) for each area in the

model (Subnetwork Bistability parameter set). In the model, we

observed a strong decrease in the NMDA fraction along a

40-area cortical hierarchy (Figure 6A, r = � 0:71; p = 33

10� 7, hierarchy data from36). This decreasing NMDA fraction

gradient is not seen in the networks that are incapable of produc-

ing realistic ignition dynamics (Whole-Cortex Bistability, No Bist-

ability parameter sets) (Figure S2). This leads to a testable non-

trivial prediction: the cortical hierarchy, if capable of subnetwork

bistability and rapid ignition, should have a decreasing NMDA

fraction gradient.

We tested this prediction by analyzing in vitro receptor autora-

diography data from 109 regions of the macaque cortex.47–51

By dividing the receptor density by the neuron density in

each area,36,51,52 we were able to estimate the NMDA and

AMPA density per neuron in each area (Figure 6B). We

found that both the NMDA ðr = 0:70;p = 1310� 5Þ and the

AMPA ðr = 0:80;p = 3310� 8Þ receptor densities per neuron



(legend on next page)

Cell Reports 44, 115372, March 25, 2025 7

Article
ll

OPEN ACCESS



Article
ll

OPEN ACCESS
increased along the cortical hierarchy (Figure 6C). We defined

the ‘‘NMDA fraction’’ in each area as the NMDA receptor density

divided by the sum of the NMDA and AMPA receptor densities.

Despite the increases in both NMDA and AMPA densities along

the hierarchy, there was a strong negative correlation between

the NMDA fraction from the experimental data and the cortical

hierarchy (Figures 6D and 6E, r = � 0:81;p = 23 10� 8), con-

firming our model prediction.

The decreasing NMDA/AMPA gradient supports ignition
We then adjusted the model parameters to match the experi-

mentally observed NMDA and AMPA receptor densities and

spine counts.53 In Figure 5, we show how the NMDA fraction at

feedforward and feedback connections critically determines

ignition time. We therefore maintained the NMDA fraction at

feedforward and feedback connections from the reference

model (an assumption on proximity of this aspect of the refer-

ence model to biology). However, we allowed the NMDA fraction

at local connections to vary across areas so that the overall

NMDA fraction of each area in the model closely matched that

observed in the receptor autoradiography data. Without chang-

ing any other parameters, we observed that this receptor data-

based simulation displayed subnetwork bistability dynamics

(Figure 6F). Therefore, our previous result is robust to amore bio-

logically constrained parameter set. This supports our prediction

that a decrease in the NMDA fraction along the hierarchy may

have evolved to enable the dynamic inter-areal interactions

required to support ignition-like dynamics.

DISCUSSION

We developed a large-scale model of the monkey cortex to

simulate a detection task, building on the previously proposed

Global Neuronal Workspace (GNW) architecture23,28 by inte-

grating newly available weighted and directed cortical connec-

tivity35,36,46,54,55 and receptor data.47–51 The model replicates

key spatial and temporal features of neural activity observed

during conscious perception. Specifically, we found that fronto-

parietal ignition depends on feedforward excitation mediated

by AMPA receptors, while NMDA receptors are crucial for sus-

taining activity. The model also predicts a decreasing NMDA/
Figure 5. Rapid ignition depends on AMPA-dominated feedforward co

back connections

(A) Top: representative connections of a parameter set resulting in subnetwork bis

vs. inhibitory neurons) and glutamatergic receptor (AMPA vs. NMDA) mediating th

corresponding approximately to feedforward (V1 to V2, SLN = 0.72), feedback (LIP

reflects the strength of each type of connection within the pathway. Top right: th

parameter set. Center: same as top for a parameter set resulting in whole-cortex

(B) Four-parameter search over glutamatergic receptors (AMPA/NMDA) and c

separately for SLN and 1-SLN, corresponding approximately to feedforward an

dynamic behaviors—subnetwork bistability (green), whole cortex bistability (re

observations. Example parameter sets from (A) are mapped onto this space for

(C) Pathway-specific NMDA contribution. Inter-areal NMDA coupling strength

reference network for a feedforward pathway (V1 / V2), two feedback pathway

(D) Inter-areal synaptic currents from LIP to V2 when all other inter-areal connec

(E) Left: average firing rate in areas showing delay activity for models with different

with different local NMDA fractions (top: local NMDA fraction = 0.2; bottom: loca

excitation mediated by NMDA receptors can reproduce realistic frontoparietal ac
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AMPA ratio along the cortical hierarchy in the macaque, which

we confirmed using receptor autoradiography data. This

decreasing ratio facilitates rapid information propagation and

ignition of distributed networks during conscious perception,

aligning with patterns observed in both human and nonhuman

animals.

A dynamic-to-stable transition of cortical activity during
conscious perception
The whole-cortex model allows us to track neural activity with

millisecond-level temporal resolution and area-level spatial res-

olution. We inject the stimulus into V1, where it propagates

through the visual streams to areas such as V2, V4, and LIP. In

the early sensory regions, activity is transient, returning to base-

line a few dozen milliseconds after stimulus removal, with stron-

ger stimuli eliciting higher activation. Although activity in these

regions is slightly higher during hit trials, it alone cannot reliably

predict conscious perception.

A second phase begins around 200 ms, marked by a sudden

ignition of a large network of associative frontoparietal regions.

These regions exhibit a late activation, with hit trials showing

firing rates of approximately 40 Hz and miss trials dropping to

near baseline (C5 Hz). Thus, when viewed across hit and miss tri-

als, late activity in these areas resembles a bimodal distribution,

as seen experimentally.37 Notably, while themodel was explicitly

fitted to ensure bistable activity in area 9/46d, the biological con-

straints of the connectome resulted in approximately 17 areas

displaying bifurcation dynamics, aligning well with the GNW pre-

dictions.23,28 Following this burst, activity in these regions stabi-

lizes for several hundred milliseconds, resembling the sustained

activity observed in conscious working memory,33,36 suggesting

a shared mechanism.

However, despite the late sustained activity, stimulus repre-

sentations were not stable throughout the trial. Temporal decod-

ing analysis reveals that the representation of the stimulus

evolves as information flows through the cortex. During the early

phase, representations are dynamic and change rapidly, but

they stabilize in the later phase, consistent with findings from

experimental studies.17

No-report paradigms experiments suggest that the strong

prefrontal activity initially linked to conscious perception might
nnections and balanced NMDA/AMPA-mediated excitation at feed-

tability. Top left: schematic of projections from V1 to V2. The target (pyramidal

e connections depend on the SLN. Top center: three representative pathways,

to V2, SLN = 0.04), and lateral pathways (LIP to 9/46d, SLN = 0.45). The opacity

e steady-state firing rate across the cortex following a strong stimulus for this

bistability. Bottom: same as top for a parameter set resulting in no bistability.

ellular targeting (excitatory/inhibitory) of inter-areal connections (performed

d feedback components of each pathway). The models exhibit three distinct

d), and no bistability (blue)—with the former most consistent with empirical

reference.

multiplied by the time constant, calculated as GNtN=ðGNtN +GAtAÞ, of the
s (LIP / V2 and V2 / V1), and a lateral pathway (LIP / 9/46d).

tions are removed and a brief stimulus is applied to LIP.

local NMDA fractions. Right: delay period activity across the cortex for models

l NMDA fraction = 0.8). Only the models with a relatively high fraction of local

tivity levels.



Figure 6. The NMDA/AMPA ratio decreases along the cortical hierarchy and supports ignition

(A) The fraction of excitatory inputs via NMDA receptors (compared to total NMDA+AMPA inputs) in the model decreases along the hierarchy.

(B) The density of (i) AMPA and (ii) NMDA receptors across 109 regions of the macaque cortex. Receptor density was measured using in vitro receptor auto-

radiography and divided by the neuron density data from Collins et al.52

(C) AMPA and NMDA densities per neuron both increase along the cortical hierarchy.

(D and E) The fraction of NMDA receptors (compared to total NMDA+AMPA receptors) in the macaque receptor autoradiography data decreases along the

hierarchy.

(F) The model was adjusted to match the receptor densities observed in the autoradiography data. The receptor data-based model shows ignition of fronto-

parietal activity in response to a visual stimulus.
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instead reflect motor preparation.37,56–61 However, recent find-

ings reveal that, even without explicit report, a network of fronto-

parietal regions continues to exhibit bifurcation dynamics,

whereas activity in premotor regions disappears.37 Future

large-scale models incorporating motor preparation tasks could

help disentangle these processes.

Network, cellular, and synaptic mechanisms of
conscious access
Using dynamic systems theory, we identified a mechanism

that could explain the ignition of a network of neurons: the

dynamic bifurcation. In this framework, the system has two

stable attractors—a resting state and an excited state. When

a stimulus is presented, the nullclines shift, leaving only the

excited attractor. The system transitions toward this attractor,

increasing neural activity. Upon stimulus removal, the system

either reaches the basin of attraction of the excited state, re-

sulting in rapid ignition, or remains in the basin of the resting

state, returning to baseline. Importantly, the stronger the stim-

ulus, the greater the nullcline shift, making it more likely for the

system to settle in the excited basin of attraction. This analyt-

ical dynamic closely aligns with the behavior observed in the

network of associative regions during our simulations. These

results position dynamic bifurcation as a compelling candidate

for explaining the ignition phenomenon underlying conscious

access.

At the macroscale level, conscious perception in our

model is defined by a sudden surge of activity spreading

nearly simultaneously across a frontoparietal network. This

network-wide activity enables a coherent representation

of the stimulus to be maintained across the cortex while exert-

ing top-down modulation that inhibits lower sensory re-

gions.33,62–64 This strong, sudden frontoparietal activity corre-

sponds closely to the ignition phenomenon predicted by the

global workspace theory.23,28 Although sustained activity in

the early sensory cortex has been observed in some

studies,65–67 its consistency remains unclear, with many

studies reporting minimal or no sustained neural activity.12,68

This aligns with our simulations, where early sensory regions

do not exhibit bimodal activity during the late phase of trials

and are not essential for maintaining the conscious percept

in working memory. A plausible explanation for the variability

in early sensory activity is that many tasks do not require rep-

resentations of fine stimulus features, making sustained activ-

ity in the early sensory cortex unnecessary.

Our model identifies NMDA receptors as crucial for the ignition

phenomenon, linking this role to broader experimental findings.

NMDA spikes, localized within the dendrites of pyramidal cells,

enhance the likelihood of plateau-like calcium spikes that prop-

agate to the soma.7 This dendrite-soma coupling diminishes un-

der anesthesia.69 Furthermore, activation of the apical dendrites

of subcortically projecting layer 5 pyramidal cells in the somato-

sensory cortex is strongly associated with stimulus detection,70

potentially by engaging subcortical vigilance signals.71–73

Together with these recent cellular discoveries, our findings

highlight NMDA receptors’ pivotal role in cortical dynamics and

provide key insights into the synaptic mechanisms underlying

conscious processing.
10 Cell Reports 44, 115372, March 25, 2025
Asymmetric feedforward and feedback excitation via
AMPA and NMDA receptors reconciles contrasting
anatomical and physiological findings
Many physiological and computational studies suggest that

early visual areas rely more on local AMPA receptors for rapid

stimulus encoding,24 while local NMDA receptors are crucial in

associative areas for working memory,25,26 pointing to an

increasing NMDA/AMPA ratio along the cortical hierarchy. How-

ever, human anatomical studies have revealed the opposite

pattern, with a decreasing NMDA/AMPA ratio as one moves up

the hierarchy.74,75

Our model, which incorporates both local and inter-areal pro-

jections, provides a new perspective on these seemingly contra-

dictory findings. To replicate the global dynamics observed in

experiments, the model required both NMDA and AMPA recep-

tors at local connections, and an increased presence of AMPA

receptors in feedforward inter-areal pathways, facilitating rapid

and robust signal propagation. Conversely, NMDA receptors

were relatively more abundant in feedback pathways, although

their absolute proportion remained small and targeted more

inhibitory populations, enabling modulation of lower areas and

preserving the integrity of the information represented in

the associative network. With lower hierarchical regions being

heavily targeted by NMDA-mediated feedback pathways, we

observe a decreasing NMDA/AMPA gradient along the hierar-

chy. This model prediction was tested in vivo using autoradiog-

raphy, and the receptor fractions were incorporated into the

model, reproducing experimentally observed neural dynamics.

These results underscore the robustness and plausibility of the

model. This predicts that NMDA-mediated excitation increases

progressively from inter-areal feedforward connections to feed-

back connections and finally to local recurrent connections. To

our knowledge, this has not yet been explicitly measured and re-

mains a testable prediction of the model.

Many studies have reported NMDA/AMPA ratios at excitatory

synapses,76–85 although they typically do not distinguish between

inter-areal feedforward, feedback, and local recurrent connec-

tions. These studies consistently show contributions from both

NMDA- and AMPA-mediated excitatory transmission, with the ra-

tio varying based on experimental conditions and neither receptor

type completely dominating at higher membrane potentials.

Limited indirect evidence27 suggests that AMPA receptors drive

feedforward visual information propagation, while NMDA recep-

tors support slower responses in recurrent and feedback connec-

tions. Similarly, in our model, excitatory transmission is never

purely mediated by NMDA or AMPA receptors, reflecting the bal-

ance observed experimentally. Although few studies have exam-

ined the net effects of feedforward and feedback connec-

tions,62–64 one recent study found that feedback connections

exert a slight net inhibitory effect on their targets,64 contrasting

with the strong net excitatory effects of feedforward connections.

This finding aligns with our model’s results, which highlight the

same distinction, and should be further tested experimentally,

including through ultrastructural analyses.

Integration of the model in the consciousness literature
The present work proposes a neural mechanism for conscious

access, the cognitive function that lets a stimulus enter in the
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current stream of consciousness 1 and makes it reportable,

verbally or non-verbally.2,5 The other cognitive functions associ-

ated with consciousness, such as metacognition, self-aware-

ness, or any form of attention, are not addressed. Twomajor cur-

rent theories of consciousness, among many,86 are GNW

theory23 and integrated information theory (IIT).4 Our model fits

in the GNW literature, as it possesses the major characteristics

of the global workspace; namely, independent sensory modules

competing to pass their information to a widely distributed set of

areas that broadcast the information to vast parts of the cortex. It

differs from previous computational models of the GNW in that it

is built explicitly on mesoscopic connectome data and therefore

makes predictions for cortex-wide neural activity during detec-

tion tasks as well as receptor distributions across the cortex.

The associative areas responsible for ignition in the model, het-

erogeneously connected by the fraction of labeled neurons ma-

trix, resemble the core of the mesoscopic connectome54 as well

as the specialized majority network taken as an example of a

high Phi complex,87 as stated by the IIT for the origin of phenom-

enological consciousness.4 However the location of the cortical

areas, predominantly in the frontal and parietal cortices, seems

to fit more precisely with GNW theory than IIT, which attributes

conscious perception primarily to a posterior cortical ‘‘hot

zone.’’88 Further anatomically constrained large-scale modeling,

or analysis of our model, could make explicit the areas of agree-

ment and disagreement between GNW and IIT. Future work

addressing aspects of metacognition, attention, predictive pro-

cessing, emotional awareness, conscious volition, or conscious

thinking could aim to further bridge GNW with other prominent

theories of consciousness6,89–93 and providemuch-needed test-

able predictions about behavior and neural dynamics to distin-

guish between such theories.94–96

Our current model was specifically designed to replicate brain

activity triggered by a brief, faint stimulus. This approach is often

used in the study of neural correlates of conscious percep-

tion.12,37 Despite this, there is a host of other experimental para-

digms where the identical stimulus can alternatively be

perceived or missed. These paradigms include masking,97,98

attentional blink,99,100 and binocular rivalry.101,102 Recent ad-

vancements in no-report binocular rivalry experiments have un-

veiled precise patterns of activity in the temporal and prefrontal

cortices. These studies allow for effective decodability of the

conscious percept in both the infero-temporal cortex102 and

the lateral prefrontal cortex.101 Future work could investigate

the network activity during such experiments, replicating these

precise electrophysiological results and enabling predictions at

the whole-cortex scale.

According to the global workspace rheory, this sudden ignition

of neural activity is the neural correlate of the broadcasting of in-

formation across the brain, which corresponds to the moment a

stimulus reaches conscious awareness (conscious access). By

proposing a specific neurobiological implementation of this hy-

pothesis, our model makes predictions at the theoretical and

mechanistic levels. The theoretical prediction is that a dynamic

bifurcation, spatially distributed across the brain, underlies the

ignition phenomenon. The mechanistic prediction is that, to sup-

port the ignition phenomenon at realistic timescales, NMDA-

mediated excitation must be (1) low at inter-areal feedforward
synapses, (2) relatively higher at inter-areal feedback synapses,

and (3) relatively high at local recurrent synapses. Global work-

space theory can be invalidated by demonstrating that ignition

does not correspond to the access of a stimulus to conscious

awareness (e.g., conscious access without ignition or vice

versa). However, note that, even if GNW happens to be wrong,

and the ignition event recorded in the previous experiments is

not a signature of conscious access, our work still provides a

mechanistic hypothesis for these large-scale cortical activity

patterns (while no longer describing conscious access). It is

possible to disprove our theoretical prediction by uncovering

an alternative dynamic mechanism for ignition. It is also possible

to disprove our mechanistic hypothesis by showing that ignition

relies on a distinct neurobiological mechanism. Experimentalists

can also disprove our mechanistic hypothesis by measuring

NMDA fractions at inter-areal (feedforward and feedback) and

local recurrent connections that are inconsistent with our predic-

tion. Therefore, it is possible to disprove the model and to

disprove GNW. However, disproving themechanistic hypothesis

of the model is not sufficient to disprove GNW.

Limitations of the study
In this study, we use a mesoscale biophysical model to investi-

gate conscious access dynamics, adopting several structural

simplifications to focus on fundamental neural processes.

Notably, the model does not incorporate layer-specific cortical

organization or distinctions between inhibitory cell types, both

of which play distinct roles in cortical dynamics. Furthermore,

neurons are represented in a simplified form, with homogeneous

populations within each cortical region and without axonal de-

lays, potentially overlooking the impact of diverse cell morphol-

ogies and conduction times on network activity. Additionally,

our model uses only a subset of the macaque connectome,

focusing exclusively on the cortex and omitting subcortical

structures that may also contribute to conscious processing.

Systematically adding these features in future versions could

reveal how they interact with the core dynamics we identify here.

Conclusions
Webuilt a connectome-based dynamic model of the primate cor-

tex that successfully accounted for salient results on the spatio-

temporal activity and behavior of primates performing tasks de-

signed to assess conscious access. Our model predicts that

feedforward excitatory connections should be dominated by

AMPA receptors for rapid propagation of stimulus-related activity,

while NMDA receptors in local recurrent connections and feed-

backprojectionsare required for the ignitionandsustainedactivity

that accompaniesconsciousaccess.Ourmodel reconciles seem-

ingly contradictory anatomical and physiological data on the rela-

tiveproportionofAMPAandNMDAreceptorsalong thecortical hi-

erarchy and takes a step toward a cross-level (bridging network,

cellular, and synaptic mechanisms) theory of consciousness.
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https://github.com/ulyssek/atoum.

d Any additional information required to reanalyze the data reported in this
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Software and algorithms
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Connectome-Based Model Github https://github.com/ulyssek/atoum
METHOD DETAILS

Model overview
We developed a connectome-based dynamical model of the macaque cortex to investigate the synaptic and network mechanisms

underlying the ignition of distributed neural activity that accompanies conscious perception. We simulated local cortical circuits at

each of 40 cortical areas and set the existence and strength of directed connections between areas using retrograde tract-tracing

data. Cortical areas differed based on their inter-areal connectivity and dendritic spine count on pyramidal cells. As a starting point,

we adapted a recently developed model of distributed working memory in 30 cortical areas.33

Retrograde tract-tracing data
The inter-areal connectivity data in this paper was acquired by Henry Kennedy and colleagues as part of an ongoing effort to map the

cortical mesoscopic connectome of the macaque using retrograde tract-tracing.35,46,54,55 Here we use the directed, weighted con-

nectivity data between 40 cortical areas, which is the most recent release.36

A few details of how the connectivity data was collected and processed will help the reader understand the connectome-based

dynamical model. For each target area, a retrograde tracer was injected into the cortex. The tracer was taken up in the axon terminals

in this area, and retrogradely transported to the cell bodies of neurons that projected to the target. The cortical areas ðlÞ that send
axons to the target area ðkÞ are called source areas. For a given injection, all marked cell bodies in the cortex outside of the injected

(target) area was counted as labeled neurons. The number of labeled neurons ðLNÞ within a source cortical area was then divided by

the number of labeled neurons in thewhole cortex (excluding the target area), to give a fraction of labeled neurons (FLN). The FLNwas

averaged across all injections in a given target area. For this calculation, we include all cortical areas (nareas = 91 ) defined in the Lyon

atlas.35

FLN½k;l� =
LN½k;l�Pnareas

l = 1 LN½k;l�
(Equation 1)

Note that there are 91 cortical areas in the Lyon atlas, and currently 40 areas have been injected with retrograde tracers. This gives

the connection strength from all 91 areas to the 40 injected areas, and the full bidirectional connectivity of a subgraph of 40 areas. We

use this 40-area subgraph as an anatomical basis for the dynamical model.

In addition, for each inter-areal connection we defined the supragranular labeled neurons (SLN) as the fraction of neurons in the

source area whose cell bodies were in the superficial (aka supragranular) layers.

SLN½k;l� =
LNsupra

½k;l�
LNsupra

½k;l� +LNinfra
½k;l�

(Equation 2)

The subiculum (SUB) and piriform cortex (PIR) have a qualitatively different laminar structure to the neocortical areas, and therefore

supra- and infra-laminar connections (and thus the SLN) from these areas are undefined. We removed all connections from these

areas from the following calculations (nareas;SLN = 89 ). These connectivity data are available on the core-nets website (register, click

the ‘‘Download’’ button, and select the data associated with36).

Dendritic spine data
The spine count data were taken from a series of studies by Elston and colleagues34 and mapped onto the Yerkes19 cortical sur-

face,103 as described in.36,51 Locations on the Yerkes19 cortical surface are represented by 32,492 vertices. The spine count data

was obtained by Elston and colleagues from 27 injection sites across the cortex. For each injection site we estimated the number

of vertices overlapping with each area in the Lyon atlas. If a cortical area contained only one injection site, the mean spine count
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from pyramidal cells in that site was taken as the spine count for the area. If a cortical area contained multiple injection sites, we per-

formed a weighted average of the spine counts, according to the number of vertices of overlap. In this way we estimated the spine

counts on pyramidal cells in 24 of the 40 injected regions in the Lyon atlas. Based on the strong positive correlation between spine

count and cortical hierarchy (r = 0.61, p = 0.001), and following previous work,30,33,36 we inferred the spine count for the remaining

regions based on the hierarchy using linear regression.

Local cortical circuit architecture
In each cortical area we simulated a local circuit, with two interacting excitatory populations (E1 and E2), and one population of inhib-

itory ðIÞ neurons. This is based on a mean-field reduction of a spiking neural network model of cortex.32,104

Description of dynamical variables
The neural populations interact via synapses that contain NMDA, AMPA and GABA receptors. Each receptor has its own dynamics,

governed by the following equations.

The synaptic variables are updated as follows25,32

dsNMDA

dt
= � sNMDA

tNMDA
+
�
1 � sNMDA

�
gNMDArE (Equation 3)

dsAMPA

dt
= � sAMPA

tAMPA
+
�
1 � sAMPA

�
gAMPArE (Equation 4)

dsGABA

dt
= � sGABA

tGABA
+gGABArI (Equation 5)

where s is the fraction of open synaptic ion channels due to bound receptors, t is the time constant of decay of that receptor and

gNMDA, gAMPA and gGABA are constants. rE and rI are the firing rates of the presynaptic excitatory and inhibitory cells that stimulate

the NMDA, AMPA and GABA receptors, calculated below.

NMDA/AMPA ratio
We explored the effects of different NMDA/(NMDA+AMPA) fractions, k, at local and long-range feedforward and feedback connec-

tions. The values used for the main simulations, unless otherwise stated, are in Table S1.

Modulation of excitatory connections by dendritic spines
Approximately 90% of excitatory synapses on neocortical pyramidal cells are on dendritic spines.105 On this basis, we modulate the

strength of excitatory connections according to the dendritic spine count.

c½k� =
craw
½k� � craw

min

craw
max � craw

min

for all cortical areas ½k�. craw
½k� is the spine count for area craw

½k� , and craw
min and craw

max are theminimum andmaximum spine counts observed

in the data. c½k� is therefore the spine count of area k rescaled to lie in the [0,1] range.

We then apply the gradient of excitation as follows.

zE;½k� = zmin +c½k�
�
1 � zmin

�
(Equation 6)

where zmin sets the lower bound for the modulation of excitatory connections by the spine count, c. zE;½k� therefore defines how spine

count modulates excitatory connections in area k.

Description of local currents
The local NMDA current onto each population Ei˛ fE1;E2g in area ½k� is calculated as follows

INMDA;local
Ei;½k� = zE;½k�k

localGNMDA;loc
E;E sNMDA

Ei;½k� (Equation 7)

Where zE;½k� is the dendritic spine count gradient, klocal the NMDA receptor fraction of the postsynaptic population,GNMDA;loc
E;E the local

NMDA coupling from the population to itself.

Local connections tend to target the perisomatic area (soma and proximal dendrites) of pyramidal cells.106–108 The soma and prox-

imal dendrites act as a single functional compartment that is separate from a distal dendritic compartment.109 As our dendritic func-

tion F (described below) models this distal dendritic compartment, we do not pass local excitatory connections through F.
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Similarly local excitatory connections via the AMPA receptors are scaled by the AMPA receptor fraction 1 � klocal, the dendritic

spine count gradient zE;½k�, and GAMPA;loc
E;E the local AMPA coupling from the population to itself.

IAMPA;local
Ei;½k� = zE;½k�

�
1 � klocal

�
GAMPA;loc

E;E sAMPA
Ei;½k� (Equation 8)

Local inhibitory connections are not directly modulated by the dendritic spine count (as spines indicate excitatory synapses on

pyramidal cells,105).

IGABA
Ei;½k� = GGABA

E;I sGABA
½k� (Equation 9)

Where GGABA
E;I is the connection strength from the inhibitory pool to the excitatory pools.

In order to keep the spontaneous activity level similar across brain areas, the local NMDA input to the I population increases with

the spine count, and is defined as follows33

INMDA;local
I;½k� = zI;½k�G

NMDA;loc
I;E

X
EiefE1 ;E2g

sNMDA
Ei;½k� (Equation 10)

with

zI;½k� = zmin
I +c½k�

�
1 � zmin

I

�
(Equation 11)

For the Main Figures in the manuscript, there is no local AMPA current targeting the inhibitory population. However, including

AMPA input to inhibitory cells does not significantly change the results.

Description of noise, background and vigilance currents
Noise is modeled as an Ornstein-Uhlenbeck process, separately for each population i in E1,E2,I.

dInoisei ðtÞ = � 1

tAMPA
Inoisei ðtÞdt + hðtÞsi;noise (Equation 12)

where si;noise is the standard deviation of the noise and h is Gaussian white noise with zero mean and unit variance.

A constant background current Ibgi was also added to each population (Table S1). This represents input from brain areas that are

not explicitly modeled.

In addition, we examined the effect of an extra, weak excitatory current, Ivig, to each unit in associative areas (top 75% of areas

ranked according to the hierarchy), which simulated the effect of vigilance on the model.23,28,71–73

As a simplification, each of these currents targets the perisomatic compartment (i.e., it is not passed through the distal dendritic

function F).

Large-scale connectivity structure
In the model, cortical areas are connected using connectivity strengths derived from the retrograde tract-tracing data. The long-

range connectivity matrices are built from the FLN matrix. However, as noted in,35,46,55 the FLN matrix spans 5 orders of magnitude.

The relationship between anatomical and physiological connectivity strengths is not clear, but if we were to use the raw FLN values in

the large-scalemodel, many of theweaker connections would become irrelevant. To deal with this, we follow55,33 and rescale the FLN

matrix in order to increase the influence of smaller connections while maintaining the topological structure.55 found this rescaling was

necessary to reproduce the significant inter-areal interactions found in,110 and give a range of effective connectivity values similar to

previous estimates.111

w½k;l� =
FLNb1

½k;l�Pnsub

l = 1 FLN
b1
½k;l�

(Equation 13)

Here we restrict calculations to the injected cortical areas i, j, which allows us to simulate the complete bidirectional connectivity

structurewithin the subgraph (nsub = 40 ). Note that intra-areal connections are not quantified in the dataset.We use the same param-

eter value b1 as in55,33 (Table S1) to construct our inter-areal connectivity matrix.

Calculation of long-range currents
Excitatory cells in different cortical areas with the same receptive fields are more likely to be functionally connected.112 This is re-

flected in our model as follows. In the source area, there are two excitatory populations, 1 and 2, each sensitive to a particular feature

of a visual stimulus (such as a location in the visual field). Likewise in the target area, there are two populations 1 and 2, sensitive to the

same visual features. We assume that the output of population 1 in the source area goes to population 1 in the target area, and the

output of population 2 in the source area goes to population 2 in the target area.
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The total long-range connections mediated by the NMDA receptors on the excitatory population Ei in area ½k� is calculated as

follows:

INMDA;LR
Ei ½k� = GNMDA

E zE;½k�

 Xnsub
l = 1

w½k;l�
�
SLN½k;l�k

sup
N r

sup
E +

�
1� SLN½k;l�

�
k
dp
N r

dp
E

�
sNMDA
Ei½l�

!
(Equation 14)

See below for further details:
Equations 16, 17, 18, and 19 can be understood similarly. Note that distinct layers were not explicitly simulated in the model. How-

ever, in the real brain, connections from superficial and deep layers may have different impacts on brain dynamics. Therefore, we

allowed the cell-type targets and receptors mediating interareal connections from superficial and deep layers to be variables. We

investigate the impact of modifying these variables in Figure 2.

To be precise,GNMDA
E is the global coupling for NMDA-mediated inter-areal connections, zE;½k� is the dendritic spine count value for

area k (as defined above),w½k;l� is the anatomical connection strength from area l to area k, SLN½k;l� is the fraction of neurons projecting

from area l to area k that have their cell bodies in the superficial layers (as above), ksupN is the fraction of excitation that is mediated by

NMDA receptors for connections from superficial layers, rsupE is the fraction of superficial layer projections targeting excitatory cells

and sNMDA
½l� is the NMDA synaptic gating variable from the corresponding excitatory population in source area l. Similarly, kdpN is the

fraction of excitation from deep layer projections mediated by NMDA receptors, and r
dp
E is the fraction of deep layer projections tar-

geting excitatory cells. i = 1; 2 denotes the excitatory population.

Long-distance connections tend to targetmoredistal parts of thedendrites,107which act asa functionally separatecompartment from

the perisomatic area.109 For this reason, we pass the long-distance connections through the dendritic function F before they reach

the soma.

Similarly, the total long-range connections of the excitatory population in area ½k� mediated by AMPA receptors is calculated as

follows:

IAMPA;LR
Ei½k� = GAMPA

E zE;½k�

 Xnsub
l = 1

w½k;l�
�
SLN½k;l�ð1 � k

sup
N ÞrsupE +

�
1 � SLN½k;l�

��
1 � k

dp
N

�
r
dp
E

�
sAMPA
Ei½l�

!
(Equation 15)

where ð1 � k
sup
N Þ and ð1 � k

dp
N Þ are the fraction of inter-areal connections from superficial and deep layers mediated by AMPA recep-

tors. This is scaled by the global excitatory AMPA coupling strength ðGAMPA
E Þ.

The total excitatory long-range current in then computed as follow:

ILREi½k� = F
�
INMDA;LR
Ei½k� + IAMPA;LR

Ei½k�

�
(Equation 16)

The function F is a simplification of a dendritic function used in previous local and large-scale models.36,113 It helps the network

stabilize, and avoid epileptic behaviors.

FðXÞ =

8<
:

0pA for X% 0pA
300pA; for XR300pA

X; otherwise

9=
; (Equation 17)

The total long-range connections targeting inhibitory population in area ½k� that are mediated by NMDA receptors is calculated as

follows:

INMDA;LR
I½k� = GNMDA

I zI;½k�

 Xnsub
l = 1

w½k;l�
�
SLN½k;l�k

sup
N ð1 � r

sup
E Þ + �1 � SLN½k;l�

�
k
dp
N

�
1 � r

dp
E

��
sNMDA
½l�

!
(Equation 18)

where ð1 � r
sup
E Þ and ð1 � r

dp
E Þ are the fraction of feedforward and feedback inter-areal connections targeting inhibitory cell popula-

tions. We assume different effective strengths for long-range connections targeting excitatory and inhibitory pools, captured by

GNMDA
I and GAMPA

I . Although cortical inhibitory interneurons do not contain dendritic spines, we assume that the level of excitation

onto inhibitory scales similarly with the spine count. This has been shown to be an effective way of maintaining spontaneous activity

levels across areas.33
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The total long-range connections targeting the inhibitory population in area ½k� that are mediated by AMPA receptors is

calculated as:

IAMPA;LR
I½k� = GAMPA

I zI;½k�

 Xnsub
l = 1

w½k;l�
�
SLN½k;l�ð1 � k

sup
N Þð1 � r

sup
E Þ + �1 � SLN½k;l�

��
1 � k

dp
N

��
1 � r

dp
E

��
sAMPA
½l�

!
(Equation 19)

with all variables as described above.

Application of external stimuli for tasks
In all simulations, the stimulus is applied for 50ms to excitatory population 1 in area V1. In the brain, visual input from LGN to V1 tar-

gets layer IV local excitatory neurons, which then excite the perisomatic areas of layer III pyramidal cells. For this reason we model

external input to the perisomatic compartment of excitatory neurons in V1 (i.e., it is not passed through the dendritic function F). In all

equations, the stimulus is designated by the term Istim.

Total current in large-scale model
The total current for each neural population Ei in each area k equals the sum of all long-range, local and external inputs, and intrinsic

currents,

ItotalEi ½k� = F
�
INMDA;LR
Ei ½k�

�
+ F
�
IAMPA;LR
Ei ½k�

�
+ INMDA;local

Ei ½k� + IAMPA;local
Ei ½k� + IGABA;local

Ei ½k� + InoiseEi ½k� + IbgEi
+ IstimEi ½k� + IvigEi ½k� (Equation 20)

ItotalI½k� = INMDA;LR
I½k� + IAMPA;LR

I½k� + INMDA;local
I½k� + IAMPA;local

I½k� + IGABA;local
I½k� + InoiseI½k� + IbgI (Equation 21)

where ief1;2g, (E1: excitatory population 1; E2: excitatory population 2; I: inhibitory population).

Description of f-I curves
The f-I (current to frequency) curve of the excitatory population is

f
�
ItotalE

�
=

aItotalE � b

1 � e�dðaItotalE
�bÞ (Equation 22)

where ItotalE is the total input to the population, a is a gain factor, d determines the curvature of fðItotalE Þ, such that if d is large, fðItotalE Þ acts
like a threshold-linear function, with threshold b.114

The f-I curves for the inhibitory neuron populations are modeled using a threshold-linear function

f
�
ItotalI

�
=

(
bi

�
ItotalI � Ith

�
for ItotalI R Ith

0; otherwise

)
(Equation 23)

where ItotalI is the total input to the population, bi is the gain and Ith is the threshold.

See Table S1 for parameter values.

The firing rates are updated as follows

tr
dr

dt
= � r + f

�
Itotal

�
(Equation 24)

for all cell types.

In-vitro receptor autoradiography
Quantitative in-vitro receptor autoradiography was applied to determine the densities of NMDA and receptors in cytoarchitectonically

identified cortical areas of the macaque monkey brain.47–50,115,116

Brain tissue was shock frozen at �40�C in isopentane, hemispheres serially sectioned in the coronal plane at 20mm by means of a

cryomicrotome, and sections thaw mounted onto glass slides. Alternating sections were processed for the visualization of cell

bodies117 or of receptor densities according to previously published established protocols (118; Table S2). In short, receptor incuba-

tion protocols consisted of a preincubation to rehydrate sections and remove endogenous ligands, amain incubation, and a washing

step to stop the binding process and remove surplus ligand and buffer salts. Themain incubation encompassed parallel experiments

to identify the total and non-specific binding of each ligand, whereby sections were incubated with the radiolabeled ligand alone or

with the radiolabeled ligand in conjunction with a non-labelled displacer, respectively.

Radiolabeled sectionswere co-exposedwith plastic standards calibrated to account for total brain protein content andwith known

concentrations of radioactivity against tritium (3H) sensitive films. The ensuing autoradiographs were digitizedwith an 8-bit gray value

resolution for densitometric analysis (Palomero-Gallagher and Zilles, 2018). Hereby, calibration curves computed by non-linear,

least-squares fitting were used to define the relationship between gray values and concentrations of radioactivity derived from
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the plastic standards. Radioactivity concentrations (R; in counts per minute, cpm) were converted to binding site concentrations (Cb;

in fmol/mg protein) using the following equation:

Cb =
R

E$B$Wb$Sa

$
KD+L

L
(Equation 25)

Where E is the efficiency of the scintillation counter, B is a constant representing the number of decays per unit of time and

radioactivity (Ci/min), Wb the protein weight of a standard (mg), Sa the specific activity of the ligand used to label the target

receptor (Ci/mmol), KD the dissociation constant of the ligand (nM), and L the concentration of the ligand in the main incubation

buffer (nM; determined by scintillation). Thus, the gray value of each pixel in a receptor autoradiograph could be transformed into

a receptor density in fmol/mg protein. The location and extent of each cytoarchitectonically identified area was transferred to the

neighboring autoradiographs and, for each receptor type separately, the mean (averaged over all cortical layers) of the gray

values contained in 3-5 sections of the area in question was transformed into a receptor concentration per unit protein (fmol/

mg protein).

Receptor data-based model
For the receptor data-based model, we matched the total NMDA fraction to that seen in the data, adjusting for a constant mean shift

between the model and receptor data, which we assume to be due to unmodelled connections (e.g., background inputs).

We calculate the overall NMDA fraction X½k�;model (fraction of NMDA receptors over total number of excitatory receptors) in each area

of the model.

X½k�;model = NMDA½k�
� �

NMDA½k� + AMPA½k�
�

(Equation 26)

where NMDAk and AMPAk are the total local and inter-areal connections mediated by each receptor type.

Here

NMDAk = Nloc
½k� +Nlr

½k� (Equation 27)

NMDAk = Nloc
½k�E;E +Nloc

½k�I;E +Nlr
½k�E;E +Nlr

½k�I;E (Equation 28)

With.

Nloc
½k�E;E the number of NMDA receptors on the excitatory neurons coming from local connections.

Nloc
½k�I;E the number of NMDA receptors on the inhibitory neurons coming from local connections.

Nlr
½k� the total number of NMDA receptors coming from long-range connections.

Nlr
½k�E;E the number of NMDA receptors on the excitatory neurons coming from long-range connections.

Nlr
½k�I;E the number of NMDA receptors on the inhibitory neurons coming from long-range connections.

In the model, GNMDA;loc
E;E and GAMPA;loc

E;E are set as follow:

GNMDA;loc
E;E

gNMDA
=

GAMPA;loc
E;E

gAMPA
= Gloc

E;E (Equation 29)

With gNMDA the conductance due to one bound NMDA receptor and gAMPA the conductance due to one bound AMPA receptor. We

also define:

GNMDA;loc
I;E

gNMDA
= Gloc

I;E (Equation 30)

This equations can be expanded based on Equations 7, 10, 14, and 17

NMDAk = zE;½k�k
locGloc

E;E

+ zI½k�G
loc
I;E

+ zE;½k�G
lr
E;E

Xnsub
l = 1

w½k;l�
�
SLN½k;l�k

suprsup +
�
1 � SLN½k;l�

�
kdprdp

�

+ zI½k�G
lr
I;E

Xnsub
l = 1

w½k;l�
�
SLN½k;l�k

supð1 � rsupÞ+ �1 � SLN½k;l�
�
kdp
�
1 � rdp

��
(Equation 31)

In the reference model, used throughout Figures 1, 2, 3, 4, 5 and 6 kloc is the same across all cortical areas.
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Similarly:
AMPAk = Aloc

½k�E;E +Alr
½k� (Equation 32)

AMPAk = Aloc
½k�E;E +Alr

½k�E;E +Alr
½k�I;E (Equation 33)

It is worth noting that their are no local AMPA connections targeting the inhibitory pool.

AMPAk = zE;½k�
�
1 � kloc

�
Gloc

E;E

+ zE;½k�G
lr
E;E

Xnsub
l = 1

w½k;l�
�
SLN½k;l�ð1 � ksupÞrsup +

�
1 � SLN½k;l�

��
1 � kdp

�
rdp
�

+ zI½k�G
lr
I;E

Xnsub
l = 1

w½k;l�
�
SLN½k;l�ð1 � ksupÞð1 � rsupÞ + �1 � SLN½k;l�

��
1 � kdp

��
1 � rdp

��
(Equation 34)

In practice, both NMDAk and AMPAk should be doubled (to represent the two excitatory populations), but as this affects all terms in

the numerator and denominator, it will not affect the fraction X½k�.
We show in Figure 2 how the proportion of superficial and deep layer projections mediated by AMPA and NMDA receptors should

lie in a particular range in order to enable rapid ‘ignition’ of cortical activity. Therefore, for the receptor data-based model, we treat

these long-range feedforward and feedback NMDA and AMPA fractions as fixed. We then set the overall NMDA fraction in each area

to match the experimentally-measured value X½k�;data, shifted by a constant term c to account for the a mean shift between the raw

receptor data and the reference model used in the rest of the paper. We can then calculate the local NMDA fraction klocal½k� in each area

required to match the observed NMDA fraction distribution across the cortex.

By reorganising Equations 26, 27, 28, 29, 30, 31, 32, 33, and 34, we can compute the local fraction klocal½k� as a function of network

parameters and real receptor data X½k�;data. We forced klocal½k� to lie between 0 and 1 using a clip function.

QUANTIFICATION AND STATISTICAL ANALYSIS

Classification of model dynamics
This section corresponds to the analysis in Figure 3A.

Model 0: Null model

In this model, the external input has no effect on the activity. Irrespective of whether a stimulus was presented or not, and irrespective

of its strength, activity follows a Gaussian distribution centered on m with a standard deviation of s.

p0ðactivity = xjIstim = IÞ =
1

s
ffiffiffiffiffiffi
2p

p e
� ðx�mÞ2

2s2 (Equation 35)

There are two free parameters: m and s

Model 1: Unimodal non-linear

In this model, the activity evoked for each stimulus strength I follows a Gaussian distribution centered on a mean m - following a sig-

moid function of I - and a standard deviation s, following a linear function of themean m. For thismodel, the probability to reach activity

level x for an input I is given by:

p1ðactivity = xjIstim = IÞ =
1

sðIÞ ffiffiffiffiffiffi
2p

p e
� ðx�mðIÞÞ2

2sðIÞ2 (Equation 36)

with

mðIÞ =
mmax � mmin

1+e� kðI� I0Þ +mmin (Equation 37)

and

sðIÞ = sslopemðIÞ+ sintercept (Equation 38)

There are six free parameters: mmax, mmin, k, I0, sslope and sintercept

Model 2: Bifurcation

In this model, the activity evoked for each stimulus strength I has a probability bðIÞ to belong to a high state (Gaussian

distribution centered on mhigh of variance shigh), and a probability ð1 � bðIÞÞ to belong to a low state (Gaussian distribution centered
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on mlow of variance slow, the baseline activity observed in the absence of stimulation). For this model, the probability to reach activity

level x for an input I is given by:

p2ðactivity = xjIstim = IÞ = bðIÞ

0
B@ 1

shigh

ffiffiffiffiffiffi
2p

p e
�ðx�mhighÞ2

2s2
high

1
CA

+ ð1 � bðIÞÞ
 

1

slow

ffiffiffiffiffiffi
2p

p e
�ðx�mlowÞ2

2s2
low

!
(Equation 39)

with

bðIÞ =
1

1+e� kðI� I0Þ (Equation 40)

There are six free parameters: mhigh, mlow, shigh, slow, k and I0
Bayesian model comparison

We compared the performance of the different models simulating 100 simulations for four different input current values (400 trials in

total). The activity was sampled every 40ms and the activity was averaged over all 40 areas. The best parameters for eachmodel were

estimated by maximum likelihood, i.e., by finding the parameters maximizing the product of the likelihoods across the different trials

(or, equivalently, maximizing the sum of the log likelihoods). The parameter search was achieved using the scipy.optimize function. In

order to compare our different models, we used the following formula, where PðMijxðtÞÞ is the posterior probability of the model i˛
f0;1; 2g at the time step t.119

PðMijxðtÞÞ =
e

BICiðtÞ � MINi˛ f0;1;2gðBICiðtÞÞ
2

P
i˛ f0;1;2ge

BICiðtÞ � MINi˛ f0;1;2gðBICiðtÞÞ
2

(Equation 41)

where BICiðtÞ correspond to the Bayesian Information Criterion of model i at time step t for the best parameter set of this model.

Temporal generalization of stimulus detection decoders
This section corresponds to the analysis in Figures 3B–3E.

To decode the trial outcome from instantaneous trial activity patterns, we first separated the data from 400 trials into a training set

(300 trials) and a test set (100 trials). All trials received a near-threshold (50% detection rate) stimulus input to population E1 of area

V1. The combined training and test set contained 200 hit and 200 miss trials, and these were randomly shuffled and allocated to the

training and test sets.

As activity in region 9/46d was used to readout the trial outcome, we trained the classifier on activity in all other areas. Trials were

considered a ‘Hit’ if the mean activity in area 9/46d in the last 500ms before the end of the trial was greater than 15Hz, and a ‘Miss’

otherwise.We trained each support vector classifier using scikit-learn in Python and standard parameter settings.120 A separate clas-

sifier was trained for each timepoint in the training data. We then used each of these classifiers to predict the trial outcome based on

activity at each time point in a separate test set. Finally, we compared these predictions to the actual trial outcome (defined according

to the late sustained activity in 9/46d).

To estimate whether the coding pattern is similar between times t and t0, we can train a classifier at time t (across trials) and test it at

time t0. When applied across all pairs of timepoints, this leads to a square T3T temporal generalization matrix, where T is the number

of timepoints.17,43,44

We assessed the strength of correlation between decoder coefficients (for the decoder trained at each timepoint) and the cortical

hierarchy using Pearson correlations (Figure 3E). We conservatively judged the correlation at a particular timepoint to be significant

only if the p value was less than 0.001 for all timepoints within a 10ms period centered on the timepoint.
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Supplemental Figures

Supplemental Figure 1. Dynamics of AMPA and NMDA Receptor Activity and Their Impact
on Ignition Timing Across Inter-Areal Connections A) The dynamics of activity in area V2

(normalized firing rate) reflects the distinct dynamics of AMPA and NMDA receptors at feedforward and
feedback connections. B) Impact of Receptor Type on Ignition Timing. Ignition times (time to reach 95% of

peak dlPFC activity) vary with the fraction of NMDA receptors in inter-areal connections from B) SLN
projections and C) 1-SLN projections.

Supplemental Figure 2. NMDA Fraction Along the Cortical Hierarchy in Alternative Models
For both alternative models, the fraction of excitatory inputs via NMDA receptors (compared to total

NMDA+AMPA inputs) increases along the cortical hierarchy.
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Supplemental Tables

Supplemental Table 1, Parameters for Numerical Simulations

Table S1. Parameters for Numerical Simulations

Parameter Description Value

τNMDA, τAMPA E synaptic time con-
stants

60ms,2ms

gNMDA, gAMPA Channel Conductances 1000pA, 10000pA
τGABA I synaptic time con-

stant
5ms

τR Firing rate time con-
stant

2ms

γNMDA, γAMPA, γI Synaptic rise constants 1.282, 2, 2
κsup, κdp, κlocal NMDA fraction 0., 0.8, 0.91
ρsup, ρdp Long-range E/I targets 1., 0.015
zmin Min excitation value 0.6
zmin
I Min excitation value 0.218
σnoise std. dev. of noise 2.5pA

IbgE , IbgI Background inputs 329.4pA, 260pA
a, b, d f-I curve (E cells) 0.135 Hz/pA, 54Hz,

0.308s
βi, Ith f-I curve (I cells) 153,75Hz/nA, 252Hz
b1 Rescale FLN 0.3

GN,loc
E,E Excitatory NMDA

strengths
480pA

GA,loc
E,E Excitatory AMPA

strengths
4800pA

GN,loc
I,E Excitatory NMDA

strengths to the Inhib
Unit

10pA

gE,I , gI,I Inhibitory strengths -8800pA, -120pA
GNDMDA

E , GNMDA
I Long-range NMDA

strength
1500pA, 10.5pA

GAMPA
E , GAMPA

I Long-range AMPA
strength

15000pA, 105pA

G0 Local balanced cou-
pling

215pA

Istim Stimulus strength 250pA

Please note that this is a current-based model, so all synaptic strengths area given in units of pA.

Supplemental Table S2, Incubation protocols
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Table S2: Incubation protocols

Table S2 AMPA NMDA

[3H]-Ligand AMPA (10 nM) MK-801 (3.3 nM)

Displacer quisqualate (10 μM) MK-801 (100 μM)

Incubation buffer 50mM Tris-acetate (pH
7.2)
+ 100 mM KSCN*

50mM Tris-acetate (pH
7.2)
+ 50 μM glutamate
+ 30 μM glycine*
+ 50 μM spermidine*

Preincubation 3 x 10 min, 4°C 15 min, 4°C
Main incubation 45 min, 4°C 60 min, 22°C
Final rinsing 1. 4 x 4 sec, 4°C

2. 2 x 2sec in 100/2.5
acetone/glutaraldehyde,
4°C

1. 2 x 5 min, 4°C
2. rinse in distilled water,
22 °C

* substance only included in buffer for the main incubation
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