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Abstract16

Recent advances in connectome and neurophysiology make it possible to probe whole-brain17

mechanisms of cognition and behavior. We developed a large-scale model of the mouse18

multiregional brain for a cardinal cognitive function called working memory, the brain’s19

ability to internally hold and process information without sensory input. The model is built20

on mesoscopic connectome data for inter-areal cortical connections and endowed with a21

macroscopic gradient of measured parvalbumin-expressing interneuron density. We found22

that working memory coding is distributed yet exhibits modularity; the spatial pattern of23

mnemonic representation is determined by long-range cell type-specific targeting and density24

of cell classes. Cell type-specific graph measures predict the activity patterns and a core25

subnetwork for memory maintenance. The model shows numerous self-sustained internal26

states (each engaging a distinct subset of areas). This work provides a framework to interpret27

large-scale recordings of brain activity during cognition, while highlighting the need for cell28

type-specific connectomics.29
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Introduction30

In contrast to our substantial knowledge of local neural computation, such as orientation31

selectivity in the primary visual cortex or the spatial map of grid cells in the medial entorhinal32

cortex, much less is understood about distributed processes in multiple interacting brain33

regions underlying cognition and behavior. This has recently begun to change, as advances in34

new technologies enable neuroscientists to probe neural activity at single-cell resolution and35

on a large-scale by electrical recording or calcium imaging of behaving animals (Jun et al.36

2017; Steinmetz et al. 2019; Stringer et al. 2019; Musall et al. 2019; Steinmetz et al. 2021),37

ushering in a new era of neuroscience investigating distributed neural dynamics and brain38

functions (Wang 2022).39

To be specific, consider a core cognitive function called working memory, the ability40

to temporally maintain information in mind without external stimulation (Baddeley 2012).41

Working memory has long been studied in neurophysiology using delay-dependent tasks, where42

stimulus-specific information must be stored in working memory across a short time period43

between a sensory input and a memory-guided behavioral response (Fuster and Alexander44

1971; Funahashi et al. 1989; Goldman-Rakic 1995; Wang 2001). Delay-period mnemonic45

persistent neural activity has been observed in multiple brain regions, suggesting distributed46

working memory representation (Suzuki and Gottlieb 2013; Leavitt et al. 2017; Christophel47

et al. 2017; Xu 2017; Dotson et al. 2018). Connectome-based computational models of the48

macaque cortex found that working memory activity depends on interareal connectivity49

(Murray et al. 2017; Jaramillo et al. 2019), macroscopic gradients of synaptic excitation50

(Wang 2020; Mejias and Wang 2022) and dopamine modulation (Froudist-Walsh et al. 2021).51

Mnemonic neural activity during a delay period is also distributed in the mouse brain52

(Liu et al. 2014; Schmitt et al. 2017; Guo et al. 2017; Bolkan et al. 2017; Gilad et al. 2018).53

The new recording and imaging techniques as well as optogenetic methods for causal analysis54

(Yizhar et al. 2011), that are widely applicable to behaving mice, hold promise for elucidating55

the circuit mechanism of distributed brain functions in rodents. Recurrent synaptic excitation56

represents a neural basis for the maintenance of persistent neural firing (Goldman-Rakic57

1995; D. J. Amit 1995; Wang 2021). In the monkey cortex, the number of spines (sites58

of excitatory synapses) per pyramidal cell increases along the cortical hierarchy, consistent59

with the idea that mnemonic persistent activity in association cortical areas including the60

prefrontal cortex is sustained by recurrent excitation stronger than in early sensory areas.61

Such a macroscopic gradient is lacking in the mouse cortex (Gilman et al. 2017; Ballesteros-62

Yáñez et al. 2010), raising the possibility that the brain mechanism for distributed working63

memory representations may be fundamentally different between mice and monkeys.64

In this paper we report a cortical mechanism of distributed working memory that does not65

depend on a gradient of synaptic excitation. We developed an anatomically-based model of66

the mouse brain for working memory, built on the recently available mesoscopic connectivity67

data of the mouse thalamocortical system (Oh et al. 2014; Gămănuţ et al. 2018; Harris68
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et al. 2019; Kim et al. 2017). Our model is validated by capturing large-scale neural activity69

observed in recent mouse experiments (Guo et al. 2017; Gilad et al. 2018). Using this model,70

we found that a decreasing gradient of synaptic inhibition mediated by parvalbumin (PV)71

positive GABAergic cells (Kim et al. 2017; Fulcher et al. 2019; Wang 2020) and long-range72

excitatory connections shape the distributed pattern of working memory representation.73

Moreover, the engagement of inhibition through local and long range projections determines74

the stability of the local circuits, further emphasizing the importance of inhibitory circuits.75

A focus of this work is to examine whether anatomical connectivity can predict the76

emergent large-scale neural activity pattern underlying working memory. Interestingly,77

traditional graph-theory measures of inter-areal connections, which ignore cell types of78

projection targets, are uncorrelated with activity patterns. We propose new cell type-79

specific graph theory measures to overcome this problem, and differentiate contributions of80

cortical areas in terms of their distinct role in loading, maintaining, and reading out the81

content of working memory. Through computer-simulated perturbations akin to optogenetic82

inactivations, a core subnetwork was uncovered for the generation of persistent activity. This83

core subnetwork can be predicted based on the cell type-specific interareal connectivity,84

highlighting the necessity of knowing the cell type targets of interareal connections in order85

to relate anatomy with physiology and behavior. This work provides a computational and86

theoretical platform for cross-scale understanding of cognitive processes across the mouse87

cortex.88

Results89

A decreasing gradient of PV interneuron density from sensory to90

association cortex91

Our large-scale circuit model of the mouse cortex uses inter-areal connectivity provided by92

anatomical data within the 43-area parcellation in the common coordinate framework v3 atlas93

(Oh et al. 2014) (Fig. 1A, Fig. 1 - supplement 1A). The model is endowed with area-to-area94

variation of parvalbumin-expressing interneurons (PV) in the form of a gradient measured95

from the qBrain mapping platform (Fig. 1 - supplement 1B) (Kim et al. 2017). The PV cell96

density (the number of PV cells per unit volume) is divided by the total neuron density, to97

give the PV cell fraction, which better reflects the expected amount of synaptic inhibition98

mediated by PV neurons (Fig. 1B-C, neuron density is shown in Fig. 1 - supplement 1C).99

Cortical areas display a hierarchy defined by mesoscopic connectome data acquired using100

anterograde fluorescent tracers (Oh et al. 2014) (Fig. 1D-E). In Fig. 1F, the PV cell fraction101

is plotted as a function of the cortical hierarchy, which shows a moderate negative correlation102

between the two. Therefore, primary sensory areas have a higher density of PV interneurons103

than association areas, although the gradient of PV interneurons does not align perfectly104

with the cortical hierarchy.105
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Figure 1: Anatomical basis of the multi-regional mouse cortical model. (A). Flattened view of mouse
cortical areas. Figure adapted from (Harris et al. 2019). (B). Normalized PV cell fraction for each
brain area, visualized on a 3d surface of the mouse brain. Five areas are highlighted : VISp, Primary
somatosensory area, barrel field (SSp-bfd), primary motor (MOp), MOs and PL. (C). The PV cell
fraction for each cortical area, ordered. Each area belongs to one of five modules, shown in color.
(Harris et al. 2019). (D). Hierarchical position for each area on a 3d brain surface. Five areas are
highlighted as in (B), and color represents the hierarchy position. (E). Hierarchical positions for each
cortical area. The hierarchical position is normalized and the hierarchical position of VISp is set to
be 0. As in C), the colors represent the module that an area belongs to. (F). Correlation between PV
cell fraction and hierarchy (Pearson correlation coefficient r = −0.35, p < 0.05).
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A whole-mouse cortex model with a gradient of interneurons106

In our model, each cortical area is described by a local circuit (Fig. 2A), using a mean-field107

reduction (Wong and Wang 2006) of a spiking neural network (Wang 2002). We use a108

version of this model that has two excitatory neural pools selective for different stimuli and a109

shared inhibitory neural pool to describe each cortical area. The model makes the following110

assumptions. First, local inhibitory strength is proportional to PV interneuron density across111

the cortex. Second, the inter-areal long-range connection matrix is given by the anterograde112

tracing data (Oh et al. 2014; Knox et al. 2018; Wang et al. 2020). Third, targeting is113

biased onto inhibitory cells for top-down compared with bottom-up projections. Therefore,114

feedforward connections have a greater net excitatory effect than feedback connections, which115

is referred to as counterstream inhibitory bias (CIB) (Mejias and Wang 2022; Javadzadeh116

and Hofer 2022; Wang 2022). Briefly, we assume that long-range connections are scaled by117

a coefficient that is based on the hierarchy of the source and target areas. According to118

the CIB assumption, long-range connections to inhibitory neurons are stronger for feedback119

connections and weaker for feedforward connections, while the opposite holds for long range120

connections to excitatory neurons.121

Distributed working memory activity depends on the gradient of122

inhibitory neurons and the cortical hierarchy123

We simulated the large-scale network to perform a simple visual delayed response task that124

requires one of two stimuli to be held in working memory. We shall first consider the case in125

which the strength of local recurrent excitation is insufficient to generate persistent activity126

when parcellated areas are disconnected from each other. Consequently, the observed dis-127

tributed mnemonic representation must depend on long-range interareal excitatory connection128

loops. Later in the paper we will discuss the network model behavior when some local areas129

are capable of sustained persistent firing in isolation.130

The main question is: when distributed persistent activity emerges after a transient visual131

input is presented to the primary visual cortex (VISp), what determines the spatial pattern132

of working memory representation? After we remove the external stimulus, the firing rate in133

area VISp decreases rapidly to baseline. Neural activity propagates throughout the cortex134

after stimulus offset (Fig. 2B). Neural activities in the higher visual cortical areas (e.g. VISrl135

and VISpl) show similar dynamics to VISp. In stark contrast, many frontal and lateral areas136

(including prelimbic (PL), infralimbic (ILA), secondary motor (MOs) and ventral agranular137

insula (AIv) areas) sustained a high firing rate during the delay period (Fig. 2B). Areas that138

are higher in the cortical hierarchy show elevated activity during the delay period (Fig. 2C).139

This persistent firing rate could last for more than 10 seconds and is a stable attractor state140

of the network (Inagaki et al. 2019).141

The cortical hierarchy and PV fraction predict the delay period firing rate of each cortical142

area (Fig. 2C-E). Thus the activity pattern of distributed working memory depends on both143

6



Main text: Distributed working memory in the mouse brain

ACAd
ACAv

AId

AIp

AIv

AUDd

AUDp

AUDpo

AUDv

ECT FRP

GU

ILA

MOp

MOs

ORBl

ORBm

ORBvl
PERI

PL

RSPagl RSPd
RSPv

SSp-bfd

SSp-ll

SSp-m

SSp-n

SSp-tr

SSp-ulSSp-un

SSs

TEa

VISC

VISa

VISal

VISam

VISl

VISli

VISp

VISpl

VISpm

VISpor

VISrl

Low hierarchy High hierarchy

Excitatory population
Inhibitory population
Excitatory connection
Inhibitory connection

0.0 2.5
0

100

R
at

e 
(H

z)

VISp

0.0 2.5
0

100
ILA

0.0 2.5
0

100
ORBm

0.0 2.5
Time (s)

0

100

R
at

e 
(H

z)

PL

0.0 2.5
Time (s)

0

100
VISa

0.0 2.5
Time (s)

0

100
MOs

0

20

40

R
at

e 
(H

z)

0.0 0.2 0.4 0.6 0.8 1.0
Hierarchy

0

20

40

60

R
at

e 
(H

z)

VISp AUDp AUDd AIp
SSp-un

SSp-bfd
VISl
VISC

MOp
RSPv

GU

RSPagl

PERI
ECT

VISal

ILA

ORBl

AId

VISpm

ORBm

PL VISpor

FRP
AUDpo

TEa
VISa

VISam

MOs

ORBvl

ACAv

ACAd AIv

VISpSSp-bfd
MOsPL

MOp

A B

C

D E

0.02 0.04 0.06 0.08
PV cell fraction

0

20

40

60

R
at

e 
(H

z)

VISpAUDpAIp SSp-unSSp-bfdVISl MOp

GU

RSPagl

PERI
ECT

VISal

ILA

ORBl

AId

VISpm

ORBm
PL VISpor

FRP AUDpo
TEa VISa

VISam

MOs

ORBvl

ACAv

ACAdAIv

Figure 2: Distributed working memory activity depends on the gradient of PV interneurons and
the cortical hierarchy. (A). Model design of the large-scale model for distributed working memory.
Top, connectivity map of the cortical network. Each node corresponds to a cortical area and an edge
is a connection, where the thickness of the edge represents the strength of the connection. Only
strong connections are shown (without directionality for the sake of clarity). Bottom, local and
long-range circuit design. Each local circuit contains two excitatory populations (red), each selective
to a particular stimulus and one inhibitory population (blue). Long-range connections are scaled by
mesoscopic connectivity strength (Oh et al. 2014) and follows counterstream inhibitory bias (CIB)
(Mejias and Wang 2022). (B). The activity of 6 selected areas during a working memory task is
shown. A visual input of 500ms is applied to area VISp, which propagates to the rest of the large-scale
network. (C). Delay period firing rate for each area on a 3d brain surface. Similar to Fig. 1B, the
positions of 5 areas are labeled. (D). Delay-period firing rate is positively correlated with cortical
hierarchy (r = 0.91, p < 0.05). (E). Delay-period firing rate is negatively correlated with PV cell
fraction (r = −0.43, p < 0.05).
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local and large-scale anatomy. The delay activity pattern has a stronger correlation with144

hierarchy (r = 0.91) than with the PV fraction (r = −0.43). The long-range connections thus145

play a predominant important role in defining the persistent activity pattern.146

Activity in early sensory areas such as VISp displays a rigorous response to the transient147

input but returns to a low firing state after stimulus withdrawal. In contrast, many frontal148

areas show strong persistent activity. When the delay period firing rates are plotted versus149

hierarchy, we observe a gap in the distribution of persistent activity (Fig. 2D) that marks an150

abrupt transition in the cortical space. This leads to the emergence of a subnetwork of areas151

capable of working memory representations.152

We also used our circuit model to simulate delayed response tasks with different sensory153

modalities (Fig. 2 - supplement 1), by stimulating primary somatosensory area SSp-bfd and154

primary auditory area AUDp. The pattern of delay period firing rates for these sensory155

modalities is similar to the results obtained for the visual task: sensory areas show transient156

activity, while frontal and lateral areas show persistent activity after stimulus withdrawal.157

Moreover, the cortical hierarchy could predict the delay period firing rate of each cortical area158

well (r = 0.89, p < 0.05), while the PV cell fraction could also predict the delay period firing159

rate of each cortical area with a smaller correlation coefficient (r = −0.4, p < 0.05). Our model160

thus predicts that working memory may share common activation patterns across sensory161

modalities, which is partially supported by cortical recordings during a memory-guided162

response task (Inagaki et al. 2018).163

We explored the potential contributions of PV gradients and CIB in determining spatially-164

patterned activity across the cortex. To evaluate the importance of the PV gradient, we165

replaced the PV gradient across areas with a constant value (Fig. 3A(ii)). As compared166

to the model with a PV gradient (Fig. 3A(i)), we found that, during the delay period, the167

number of cortical areas displaying persistent activity is diminished, but the abrupt transition168

in delay period firing rates remains. This quantitative difference depends on the constant169

value used to scale inhibition from PV cells across areas (Fig. 3 - supplement 1A, 1B). Next,170

we performed the analogous manipulation on the CIB by scaling feedforward and feedback171

projections with a constant value across areas, thus effectively removing the CIB. In this172

case, the firing rate of both sensory and association areas exhibit high firing rates during the173

delay period (Fig. 3A(iii)). Thus, CIB may be particularly important in determining which174

areas exhibit persistent activity.175

To further explore the model parameter space and better understand the interplay between176

PV gradient and CIB, we systematically varied two critical model parameters: i) the base177

local inhibitory weight gEI,0 onto excitatory neurons, which sets the minimal inhibition for178

each cortical area and ii) the scaling factor gEI,scaling, which refers to how strongly the PV179

gradient is reflected in the inhibitory weights. We created heatmaps that show the number of180

areas with persistent activity during the delay period as a function of these parameters: in181

Fig. 3C, we simulate the network with both CIB and PV gradient, while in Fig. 3D and182

Fig. 3E we simulate networks when PV gradient or CIB is removed, respectively. In each of183

8
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these networks, we identify two regimes based on specific values for gEI,0 and gEI,scaling: a184

reference regime (used throughout the rest of the paper) and an alternative regime.185

If we remove the PV gradient in the alternative parameter regime, persistent activity is186

lost (Fig. 3B(ii)). In contrast, if we remove CIB the model still exhibits an abrupt transition187

in firing rate activity (Fig. 3B(iii)). In this regime, a strong correlation and piece-wise linear188

relationship between firing rate and PV cell fraction was uncovered that did not exist when189

CIB was present. This observation led to a model prediction: if PV cell fraction is not190

strongly correlated with delay firing rate across cortical areas (e.g., Fig. 3A(i) or Fig. 3B(i)),191

this suggests the existence of a CIB mechanism at play. Importantly, the model without CIB192

exhibits the abrupt transition in delay-period firing rates provided it is in a regime where193

some areas exhibit ‘independent’ persistent activity: persistent activity that is generated194

due to local recurrence and thus independent of long-range recurrent loops. The parameter195

regime where some areas exhibit ’independent’ persistent activity is quantified by varying the196

base value of local inhibitory connections (Fig. 3 - supplement 1C). To conclude, the model197

results suggest that CIB may be present in a large-scale brain network if the PV cell fraction198

is not strongly correlated with the delay firing rate. Furthermore, CIB may be particularly199

important in the regime where local connections are not sufficient to sustain independent200

persistent activity.201

Next, we evaluated the stability of the baseline state for the three conditions described202

above: i) original with PV gradient and CIB, ii) after removal of CIB, and iii) after removal of203

PV gradient. The heatmaps obtained after varying the base inhibitory strength and inhibitory204

scaling factor were qualitatively the same across the three conditions, as shown by the blue205

shaded squares in Fig. 3C-E. There are some regimes, such as the one depicted on the lower206

left corner, where all areas exhibit persistent activity and there is no stable baseline: a regime207

that is not biologically-realistic for a healthy brain. Thus, while PV and CIB shape the208

distribution of delay firing rates across cortical areas, they don’t qualitatively influence the209

system’s baseline stability. However, the inclusion of both PV gradient and CIB in the model210

(Fig. 3C) results in a more robust system, i.e., a far wider set of parameters can produce211

realistic persistent activity (Fig. 3D, 3E).212

Local and long-range projections modulate the stability of the baseline213

state in the cortex214

The stability of the baseline state for any given cortical area may have contributions from local215

inhibition or from long-range projections that target local inhibitory circuits. We found that216

individual local networks without long-range connections are stable without local inhibition217

(Fig. 4A, see methods for theoretical calculation of stability in a local circuit). However, in218

the full network with long-range connections, setting either the long-range connections to219

inhibitory neurons or local inhibition to zero made the network’s baseline state unstable,220

and individual areas rose to a high firing rate (Fig. 4B). Thus, inhibition from local and221

9
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long-range circuits contribute to the baseline stability of cortical areas.222

Motivated by the results on stability, we investigated whether the large-scale network223

model operates in the inhibitory stabilized network (ISN) regime (Tsodyks et al. 1997; Sanzeni224

et al. 2020), whereby recurrent excitation is balanced by inhibition to maintain stability of225

the baseline state. First, we examined whether individual brain areas (i.e., without long range226

projections) may operate in this regime. We found a parameter set in which the baseline227

firing rate is stable only when local inhibition is intact: when inhibition is removed, the228

stable baseline state disappears, which suggests that the local circuits are ISNs (Fig. 4C and229

see stability analysis in the Methods section). In the full neural network with long-range230

connections, similar analysis as in Fig. 4B shows that the network becomes unstable if231

long-range projections onto inhibitory interneurons are removed. (Fig. 4D). Thus we propose232

that the network is also in a ’global’ inhibitory stabilized network (ISN) regime, whereby233

long-range connections to inhibitory neurons are necessary to maintain a stable baseline234

state. Second, Second, we examined whether the ISN regime is consistent with distributed235

working memory patterns in the cortex (Fig. 2). In the regime with increased local excitatory236

connections but without long-range projections, some local circuits could reach a high stable237

state when an external input is applied, demonstrating the bistability of those areas (Fig.238

4E). When we considered the full network with long-range projections, the network exhibits a239

graded firing rate pattern after transient stimulation of VISp, showing that the interconnected240

ISN networks are compatible with bistability of a subset of cortical areas (Fig. 4F)241

In summary, we have shown that distinct local and long-range inhibitory mechanisms242

shape the pattern of working memory activity and stability of the baseline state.243

Thalamocortical interactions maintain distributed persistent activity244

To investigate how thalamocortical interactions affect the large-scale network dynamics,245

we designed a thalamocortical network similar to the cortical network (Fig. 5A). Several246

studies have shown that thalamic areas are also involved in the maintenance of working247

memory (Bolkan et al. 2017; Guo et al. 2017; Schmitt et al. 2017). However, the large-scale248

thalamocortical mechanisms underlying memory maintenance are unknown. We set the249

strength of connections between the thalamus and cortex using data from the Allen Institute250

(Oh et al. 2014) (Fig. 5 - supplement 1). All thalamocortical connections in the model are251

mediated by AMPA synapses. There are no recurrent connections in the thalamus within or252

across thalamic nuclei (Jones 2007). The effect of thalamic reticular nucleus neurons was253

included indirectly as a constant inhibitory current to all thalamic areas (Crabtree 2018;254

Hádinger et al. 2023). Similarly to cortical areas, the thalamus is organized along a measured255

hierarchy (Harris et al. 2019). For example, the dorsal part of the lateral geniculate nucleus256

(LGd) is lower than the cortical area VISp in the hierarchy, consistent with the fact that257

LGd sends feedforward inputs to VISp. Thalamocortical projections in the model are slightly258

more biased toward excitatory neurons in the target area if they are feedforward projections259
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Figure 3: The role of PV inhibitory gradient and hierarchy-based counter inhibitory bias (CIB)
in determining persistent activity patterns in the cortical network. (A(i)). Delay firing rate as a
function of PV cell fraction with both CIB and PV gradient present (r = −0.42, p<0.05). This figure
panel is the same as Fig. 2E. (A(ii)). Delay firing rate as a function of hierarchy after removal of
PV gradient (r= 0.85, p<0.05). (A(iii)). Delay firing rate as a function of PV cell fraction after
removal of CIB (r = −0.74, p<0.05). (B(i)). Delay firing rate as a function of PV cell fraction with
both CIB and PV gradient present, in the alternative regime (r = −0.7, p<0.05). (B(ii)). Delay
firing rate as a function of hierarchy after removal of PV gradient, in the alternative regime (r =
0.95, p<0.05). (B(iii)). Delay firing rate as a function of PV cell fraction after removal of CIB, in
the alternative regime (r = −0.84, p<0.05). (C)-(E). Number of areas showing persistent activity
(color coded) as a function of the local inhibitory gradient (gEI,scaling, X axis) and the base value of
the local inhibitory gradient (gEI,0, Y axis) for the following scenarios: (C) CIB and PV gradient,
(D) with PV gradient replaced by a constant value, and (E) with CIB replaced by a constant value.
The reference regime is located at the top left corner of the heatmap (green dot) and corresponds
to A(i)-A(iii), while the alternative regime is located at the lower right corner (purple dot) and
corresponds to B(i)-B(iii). The yellow dashed lines separate parameters sets for which none of the
areas show ‘independent’ persistent activity (above the line) from parameter sets for which some
areas are capable of maintaining persistent activity without input from other areas (below the line).
Blue shaded squares in the heatmap mark the absence of a stable baseline.
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Figure 4: Local and long-range projections modulate the baseline stability of individual cortical
areas. Steady state firing rates are shown as a function of hierarchy for different scenarios: (A)
without long-range connections in the reference regime (gE,self = 0.4nA, gEI,0 = 0.192nA), (B) with
long-range connections in the reference regime (µEE = 0.1nA), (C) without long-range connections
and increased local excitatory connections (gE,self = 0.6nA, gEI,0 = 0.5nA), and (D) with long-range
connections (increased long-range connections to excitatory neurons, µEE = 0.19nA ) and increased
local excitatory connections. (E) Firing rate as a function of hierarchy when external input given to
each area, showing bistability for a subset of areas (parameters as in (C) and ’with local inh’). (F)
Firing rate as a function of hierarchy when external input is applied to area VISp (parameters as in
(D) and ’with local inh + with long-range E-I’).
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and towards inhibitory neurons if they are feedback.260

Here, we weakened the strength of cortical interareal connections as compared to the261

cortex model of Fig. 2. Now, persistent activity can still be generated (Fig. 5B, blue) but is262

maintained with the help of the thalamocortical loop, as observed experimentally (Guo et al.263

2017). Indeed, in simulations where the thalamus was inactivated, the cortical network no264

longer showed sustained activity (Fig. 5B, red).265

In the thalamocortical model, the delay activity pattern of the cortical areas correlates266

with the hierarchy, again with a gap in the firing rate separating the areas engaged in267

persistent activity from those that do not (Fig. 5B, Fig. 5C). Sensory areas show a low268

delay firing rate, and frontal areas show strong persistent firing. Unlike the cortex, the firing269

rate of thalamic areas continuously increases along the hierarchy (Fig. 5E). On the other270

hand, cortical dynamics in the thalamocortical and cortical models show many similarities.271

Early sensory areas do not show persistent activity in either model. Many frontal and lateral272

areas show persistent activity and there is an abrupt transition in cortical space in the273

thalamocortical model, like in the cortex only model. Quantitatively, the delay firing pattern274

of the cortical areas is correlated with the hierarchy and the PV fraction (Fig. 5C, Fig.275

5D). Furthermore, the delay period firing rate of cortical areas in the thalamocortical model276

correlates well with the firing rate of the same areas in the cortical model (Fig. 5F). This277

comparison suggests that the cortical model captures most of the dynamical properties in278

the thalamocortical model; therefore in the following analyses, we will mainly focus on the279

cortex-only model for simplicity.280

Cell type-specific connectivity measures predict distributed persistent281

firing patterns282

Structural connectivity constrains large-scale dynamics (Mejias and Wang 2022; Froudist-283

Walsh et al. 2021; Cabral et al. 2011). However, we found that standard graph theory284

measures could not predict the pattern of delay period firing across areas. There is no285

significant correlation between input strength and delay period firing rate (r = 0.25, p = 0.25,286

Fig. 6A(i), A(ii)) and input strength cannot predict which areas show persistent activity287

(prediction accuracy = 0.51, Fig. 6A(iii)). We hypothesized that this is because currently288

available connectomic data used in this model do not specify the type of neurons targeted by289

the long-range connections. For instance, when two areas are strongly connected with each290

other, such a loop would contribute to the maintenance of persistent activity if projections are291

mutually excitatory, but not if one of the two projections predominantly targets inhibitory292

PV cells. Therefore, cell type-specificity of interareal connections must be taken into account293

in order to relate the connectome with the whole-brain dynamics and function. To examine294

this possibility, we introduced a cell type projection coefficient (see Calculation of network295

structure measures in the Methods), which is smaller with a higher PV cell fraction in the296

target area (Fig. 6 - supplement 1). The cell type projection coefficient also takes cell297
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Figure 5: Thalamocortical interactions help maintain distributed persistent activity. (A). Model
schematic of the thalamocortical network. The structure of the cortical component is the same as our
default model in Fig. 2A, but with modified parameters. Each thalamic area includes two excitatory
populations (red square) selective to different stimuli. Long range projections between thalamus and
cortex also follow the counterstream inhibitory bias rule as in the cortex. Feedforward projections
target excitatory neurons with stronger connections and inhibitory neurons with weaker connections;
the opposite holds for feedback projections. (B). The activity of 6 sample cortical areas in a working
memory task is shown during control (blue) and when thalamic areas are inhibited in the delay period
(red). Black dashes represent the external stimulus applied to VISp. Red dashes represent external
inhibitory input given to all thalamic areas. (C). Delay period firing rate of cortical areas in the
thalamocortical network. The activity pattern has a positive correlation with cortical hierarchy (r
= 0.78, p < 0.05). (D). Same as (C) but plotted against PV cell fraction. The activity pattern
has a negative correlation with PV cell fraction, but it is not significant (r = −0.26, p = 0.09).
(E). Delay firing rate of thalamic areas in thalamocortical network. The firing rate has a positive
correlation with thalamic hierarchy (r = 0.94, p < 0.05). (F). Delay period firing rate of cortical
areas in thalamocortical network has a positive correlation with delay firing rate of the same areas in
a cortex-only model (r = 0.77, p < 0.05). Note that only the areas showing persistent activity in both
models are considered for correlation analyses.
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type targets of long range connections into account, which, in our model, is quantified by298

counterstream inhibitory bias (CIB). As a result, the modified cell type-specific connectivity299

measures increase if the target area has a low density of PV interneurons and/or if long-range300

connections predominantly target excitatory neurons in the target area.301

We found that cell type-specific graph measures accurately predict delay-period firing302

rates. The cell type-specific input strength of the early sensory areas is weaker than the raw303

input strength (Fig. 6B(i)). The firing rate across areas is positively correlated with cell304

type-specific input strength (Fig. 6B(ii)). Cell type-specific input strength also accurately305

predicts which areas show persistent activity (Fig. 6B(iii)). Similarly, we found that the cell306

type-specific eigenvector centrality, but not standard eigenvector centrality (Newman 2018),307

was a good predictor of delay period firing rates (Fig. 6 - supplement 2).308

A core subnetwork for persistent activity across the cortex309

Many areas show persistent activity in our model. However, are all active areas equally310

important in maintaining persistent activity? When interpreting large-scale brain activity, we311

must distinguish different types of contribution to working memory. For instance, inactivation312

of an area like VISp impairs performance of a delay-dependent task because it is essential313

for a (visual) "input" to access working memory; on the other hand a "readout" area may314

display persistent activity only as a result of sustained inputs from other areas that form a315

"core", which are causally important for maintaining a memory representation.316

We propose four types of areas related to distributed working memory: input, core,317

readout, and nonessential (Fig. 7A). External stimuli first reach input areas, which then318

propagate activity to the core and non-essential areas. Core areas form recurrent loops and319

support distributed persistent activity across the network. By definition, disrupting any of320

the core areas would affect persistent activity globally. The readout areas also show persistent321

activity. Yet, inhibiting readout areas has little effect on persistent activity elsewhere in322

the network. We can assign the areas to the four classes based on three properties: a) the323

effect of inhibiting the area during stimulus presentation on delay activity in the rest of the324

network; b) the effect of inhibiting the area during the delay period on delay activity in the325

rest of the network; c) the delay activity of the area itself on trials without inhibition.326

In search of a core working memory subnetwork in the mouse cortex, in model simulations327

we inactivated each area either during stimulus presentation or during the delay period, akin328

to optogenetic inactivation in mice experiments. The effect of inactivation was quantified329

by calculating the decrement in the firing rate compared to control trials for the areas that330

were not inhibited (Fig. 7B). The VISp showed a strong inhibition effect during the stimulus331

period, as expected for an Input area. We identified seven areas with a substantial inhibition332

effect during the delay period (Fig. 7C), which we identify as a core for working memory.333

Core areas are distributed across the cortex. They include frontal areas PL, ILA, medial part334

of the orbital area (ORBm), which are known to contribute to working memory (Liu et al.335
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Figure 6: Cell type-specific connectivity measures are better at predicting firing rate pattern than
nonspecific ones. (A(i)). Delay period firing rate (orange) and input strength for each cortical area.
Input strength of each area is the sum of connectivity weights of incoming projections. Areas are
plotted as a function of their hierarchical positions. Delay period firing rate and input strength are
normalized for better comparison. (A(ii)). Input strength does not show significant correlation with
delay period firing rate for areas showing persistent activity in the model (r = 0.25, p = 0.25). (A(iii)).
Input strength cannot be used to predict whether an area shows persistent activity or not (prediction
accuracy = 0.51). (B(i)). Delay period firing rate (orange) and cell type-specific input strength for
each cortical area. Cell type-specific input strength considers how the long-rang connections target
different cell types and is the sum of modulated connectivity weights of incoming projections. Same as
(A(i)), areas are sorted according to their hierarchy and delay period firing rate and input strength are
normalized for better comparison. (B(ii)). Cell type-specific input strength has a strong correlation
with delay period firing rate of cortical areas showing persistent activity (r = 0.89, p < 0.05). Inset:
Comparison of the correlation coefficient for raw input strength and cell type-specific input strength.
(B(iii)). Cell type-specific input strength predicts whether an area shows persistent activity or not
(prediction accuracy = 0.95). Inset: comparison of the prediction accuracy for raw input strength
and cell type-specific input strength.
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Figure 7: A core subnetwork generates persistent activity across the cortex. (A). We propose four
different types of areas. Input areas (red) are responsible for coding and propagating external signals,
which are then propagated through synaptic connections. Core areas (blue) form strong recurrent loops
and generate persistent activity. Readout areas (green) inherit persistent activity from core areas.
Nonessential areas (purple) may receive inputs and send outputs but they do not affect the generation
of persistent activity. (B). Delay period firing rate for cortical areas engaged in working memory (Y
axis) after inhibiting different cortical areas during the delay period (X axis). Areas in the X axis
and Y axis are both sorted according to hierarchy. Firing rates of areas with small firing rate (<1Hz)
are partially shown (only RSPv and RSPd are shown because their hierarchical positions are close
to areas showing persistent activity). (C). The average firing rate for areas engaged in persistent
activity under each inhibition simulation. The X axis shows which area is inhibited during the delay
period, and the Y axis shows the average delay period activity for all areas showing persistent activity.
Note that when calculating the average firing rate, the inactivated area was excluded in order to focus
on the inhibition effect of one area on other areas. Average firing rates on the Y axis are normalized
using the average firing in control (no inhibition) simulation. (D). Classification of 4 types of areas
based on their delay period activity after stimulus- and delay-period inhibition (color denotes the type
for area, as in A). The inhibition effect, due to either stimulus or delay period inhibition, is the
change of average firing rate normalized by the average firing rate in the control condition. Areas
with strong inhibition effect during stimulus period are classified as Input areas; areas with strong
inhibition effect during delay period and strong delay period firing rate are classified as Core areas;
areas with weak inhibition effect during delay period but strong delay period firing rate during control
are classified as Readout areas; areas with weak inhibition effect during delay period and weak delay
period firing rate during control are classified as Nonessential areas.
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2014; Bolkan et al. 2017). Other associative and sensory areas (AId, VISpm, ectorhinal area336

(ECT), gustatory area (GU)) are also in the core. Similarly, we used the above criteria to337

classify areas as Readout or Non-essential (Fig. 7D).338

We have defined a core area for working memory maintenance as a cortical area that,339

first, exhibits persistent activity, and second, removal of this area (e.g., experimentally via a340

lesion or opto-inhibition) significantly affects persistent activity in other areas. It is possible,341

however, that effects on persistent activity at the network level only arise after lesioning342

two or more areas. Thus, we proceeded with inhibiting two, three, and four readout areas343

concurrently (Fig. 7- supplement 1A), as by definition, inhibiting any single readout area344

will not exhibit a strong inhibition effect.345

We first inhibited pairs of readout areas and evaluated the effect of this manipulation at a346

network level. Specifically, for any given readout area A, we plotted the average firing rate of347

the network when A was inhibited as part of an inhibited pair (see description in Methods).348

After inhibiting a pair of readout areas, there was a decrement in the average firing rate of the349

network (Fig. 7 - supplement 1A). The decrement became more pronounced as more readout350

areas were inhibited, e.g., triplets and quadruplets, and when a combination of readout and351

core areas were inhibited pairwise (Fig. 7 - supplement 1B). This analysis demonstrates352

that readout areas also play a role in maintaining distributed persistent activity: we may353

define ’second-order core areas’ as those readout areas that have a strong inhibition effect354

only when inhibited concurrently with another area, while third-order and fourth-order core355

areas are analogously defined via triplet and quadruplet inhibition, respectively. We note356

that the effects of silencing pairs, triplets and quadruplets of readout areas remain smaller357

than those seen after silencing single core areas listed above. We also tested the effect of358

inhibiting all core areas during the delay period (Fig. 7 - supplement 1C). After inhibiting all359

core areas, some readout areas lost persistent firing. Moreover, there was a 48% decrement360

in the average firing rate compared with a 15% decrement for a single core area and a 3%361

decrement for a single readout area. Thus, the pattern of persistent activity is more sensitive362

to perturbations of core areas, which underscores the classification of some cortical areas into363

core vs readout.364

The core subnetwork can be identified by the presence of strong365

excitatory loops366

Inhibition protocols across many areas are computationally costly. We sought a structural367

indicator that is easy to compute and is predictive of whether an area is engaged in working368

memory function. Such an indicator could also guide the interpretation of large-scale neural369

recordings in experimental studies. In the dynamical regime where individual cortical areas370

do not show persistent activity independently, distributed working memory patterns must371

be a result of long-range recurrent loops across areas. We thus introduced a quantitative372

measurement of the degree to which each area is involved in long-range recurrent loops (Fig.373
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8A).374

The core subnetwork can be identified by the presence of strong loops between excitatory375

cells. Here we focus on length-2 loops (Fig. 8A); the strength of a loop is the product of376

two connection weights for a reciprocally connected pair of areas; and the loop strength377

measure of an area is the sum of the loop strengths of all length-2 loops that the area is part378

of. Results were similar for longer loops (Fig. 8B, also see Fig. 8 - supplement 1 for results379

of longer loops). The raw loop strength had no positive statistical relationship to the core380

working memory subnetwork (Fig. 8C(i), Fig. 8C(ii)). We then defined cell type-specific loop381

strength (see Methods). The cell type-specific loop strength is the loop strength calculated382

using connectivity multiplied by the cell type projection coefficient. The cell type-specific loop383

strength, but not the raw loop strength, predicts which area is a core area with high accuracy384

(Fig. 8D(i), Fig. 8D(ii), prediction accuracy = 0.93). This demonstrates that traditional385

connectivity measures are informative but not sufficient to explain dynamics during cognition386

in the mouse brain. Cell type-specific connectivity, and new metrics that account for such387

connectivity, are necessary to infer the role of brain areas in supporting large-scale brain388

dynamics during cognition.389

To better demonstrate our cell type-specific connectivity measures, we have implemented390

two other measures for comparison: a) a loop-strength measure that adds a ‘sign’ without391

further modification, and b) a loop strength measure that takes hierarchical information - and392

not PV information- into account. These two graph-theoretic measures can be used to predict393

delay firing rate during a sensory working memory task, thus highlighting the importance of394

hierarchical information, which distinguishes excitatory from inhibitory feedback (Fig. 6 -395

supplement 3). On the other hand, the prediction of the core areas greatly depends on cell-type396

specificity: the sign-only and ‘no-PV’ mechanisms do not reliably predict whether an area is397

a core area or not, especially in the case of calculating with length 3 loops, demonstrating398

the importance of cell-type specific connectivity measures. (Fig. 8 - supplement 2).399

Multiple attractor states emerge from the mouse mesoscopic connec-400

tome and local recurrent interactions401

Different tasks lead to dissociable patterns of internally sustained activity across the brain,402

described dynamically as distinct attractor states. Generally, attractor states may enable403

computations such as decision making and working memory (Wang 1999; Wang 2002; Mejias et404

al. 2016). Specifically, a given task may be characterized by a specific attractor landscape and405

thereby define different core areas for working memory, as introduced above. We developed a406

protocol to identify multiple attractor states, then analyzed the relationship between network407

properties and the attractor states (Fig. 9A-C). For different parameters, the number of408

attractors and the attractor patterns change. Two parameters are especially relevant here.409

These are the long-range connection strength (µEE) and local excitatory connection strength410

(gE,self ). These parameters affect the number of attractors in a model of the macaque cortex411
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A B

C(i) D(i)

C(ii) D(ii)

Figure 8: The core subnetwork can be identified structurally by the presence of strong excitatory
loops. (A). Distribution of length-2 loops. X axis is the single loop strength of each loop (product
of connectivity strengths within loop) and Y axis is their relative frequency. (B). Loop strengths of
each area calculated using different length of loops (e.g., length 3 vs length 2) are highly correlated (r
= 0.96, p < 0.05). (C(i)). Loop strength (blue) is plotted alongside Core Areas (orange), a binary
variable that takes the value 1 if the area is a Core Area, 0 otherwise. Areas are sorted according to
their hierarchy. The loop strength is normalized to a range of (0, 1) for better comparison. (C(ii)).
A high loop strength value does not imply that an area is a core area. Blue curve shows the logistic
regression curve fits to differentiate the core areas versus non core areas. (D(i)). Same as (C), but
for cell type-specific loop strength. (D(ii)). A high cell type-specific loop strength predicts that an
area is a core area (prediction accuracy = 0.93). Same as (C), but for cell type-specific loop strength.
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(Mejias and Wang 2022). Increasing the long range connection strength decreases the number412

of attractors (Fig. 9D). Stronger long-range connections implies that the coupling between413

areas is stronger. If areas are coupled with each other, the activity state of an area will be414

highly correlated to that of its neighbors. This leads to less variability and fewer attractors.415

To quantify how the patterns of attractors change for different parameters, two quantities416

are introduced. The attractor fraction is the fraction of all detected attractor states to which417

an area belongs. An area "belongs" to an attractor state if it is in a high activity state in that418

attractor. The attractor size is defined by the number of areas belonging to that attractor.419

As we increased the long-range connection strength, the attractor size distribution became420

bimodal. The first mode corresponded to large attractors, with many areas. The second421

mode corresponded to small attractors, with few areas (Fig. 9D).422

When the local excitatory strength is increased, the number of attractors increased as423

well (Fig. 9E). In this regime some areas are endowed with sufficient local reverberation to424

sustain persistent activity even when decoupled from the rest of the system, therefore the425

importance of long-range coupling is diminished and a greater variety of attractor states is426

enabled. This can be understood by a simple example of two areas 1 and 2, each capable of427

two stimulus-selective persistent activity states; even without coupling there are 2× 2 = 4428

attractor states with elevated firing. Thus, local and long-range connection strength have429

opposite effects on the number of attractors.430
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Figure 9: Multiple attractors coexist in the mouse working memory network. (A-C) Example attractor
patterns with a fixed parameter set. Each attractor pattern can be reached via different external
input patterns applied to the brain network. Delay activity is shown on a 3D brain surface. Color
represents the firing rate of each area. (D-E) The distribution of attractor fractions (left) and number
of attractors as a function of size (right) for different parameter combinations are shown. Attractor
fraction of an area is the ratio between the number of attractors that include the area and the total
number of identified attractors. In (D), local excitatory strengths are fixed (gE,self = 0.44 nA) while
long-range connection strengths vary in the range µEE = 0.01-0.05 nA. Left and right panels of
(D) show one specific parameter µEE = 0.03 nA. Inset panel of (D) shows the number of attractors
under different long-range connection strengths while gE,self is fixed at 0.44 nA. In (E), long range
connection strengths are fixed (µEE = 0.02 nA) while local excitatory strengths varies in the range
gE,self = 0.4-0.44 nA. Left and right panels of (E) show one specific parameter gE,self = 0.43 nA.
Inset panel of (E) shows the number of attractors under different local excitatory strengths, while
µEE is fixed at 0.02 nA. (F). Prediction of the delay period firing rate using input strength and
cell type-specific input strength for each attractor state identified under µEE = 0.04 nA and gE,self

= 0.44 nA. 143 distinct attractors were identified and the average correlation coefficient using cell
type-specific input strength is better than that using input strength. (G). A example attractor state
identified under the parameter regime µEE = 0.03 nA and gE,self = 0.44 nA. The 5 areas with
persistent activity are shown in red. (H). Effect of single area inhibition analysis for the attractor state
in (G). For a regime where 5 areas exhibit persistent activity during the delay period, inactivation of
the premotor area MOs yields a strong inhibition effect (<0.95 orange dashed line) and is therefore a
Core area for the attractor state in (G). (I). Cell type-specific loop strength (blue) is plotted alongside
Core areas (orange) for the attractor state in (G). Only 5 areas with persistent activity are used to
calculate the loop strength. Loop strength is normalized to be within the range of 0 and 1. High cell
type-specific loop measures predict that an area is a Core area (prediction accuracy is 100% correct).
The number of areas is limited, so prediction accuracy is very high.

The cell type-specific input strength predicted firing rates across many attractors. In an431

example parameter regime (µEE = 0.04 nA and gE,self = 0.44 nA), we identified 143 attractors.432

We correlated the input strength and cell type-specific input strength with the many attractor433

firing rates (Fig. 9F). The raw input strength is weakly correlated with activity patterns. The434

cell type-specific input strength is strongly correlated with activity across attractors. This435

shows that the cell type-specific connectivity measures are better at predicting the firing rates436

in many scenarios. These results further prove the importance of having cell type-specific437

connectivity for modeling brain dynamics.438

Different attractor states rely on distinct subsets of core areas. In one example attractor, we439

found 5 areas that show persistent activity: VISa, VISam, FRP, MOs and ACAd (Fig. 9G)440

(parameter regime, µEE = 0.03 nA and gE,self = 0.44 nA). We repeated the previous inhibition441

analysis to identify core areas for this attractor state. Inhibiting one area, MOs, during the442

delay had the strongest effect on delay activity in the other parts of the attractor (Fig. 9H).443

MOs also showed strong persistent activity during delay period. This is consistent with its444

role in short-term memory and planning (Li et al. 2015; Inagaki et al. 2019). According to445

our definition, MOs is a core area for this attractor. To calculate a loop strength that was446

specific to this attractor, we only examined connections between these five areas. The cell447

type-specific loop strength was strongest in area MOs (Fig. 9I). Thus, we can identify likely448

core areas for individual attractor states from cell type-specific structural measures. This449

also demonstrates that different attractor states can be supported by distinct core areas.450
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Discussion451

We developed a connectome-based dynamical model of the mouse brain. The model was452

capable of internally maintaining sensory information across many brain areas in distributed453

activity in the absence of any input. To our knowledge this is the first biologically-based454

model of the entire mouse cortex and the thalamocortical system that supports a cognitive455

function, in this case working memory. Together with our recent work (Mejias and Wang 2022;456

Froudist-Walsh et al. 2021; Froudist-Walsh et al. 2023), it provides an important reference457

point to study the differences between mice and monkeys.458

Our main findings are threefold. First, the mnemonic activity pattern is shaped by the459

differing densities of PV interneurons across cortical areas. Areas with a high PV cell fraction460

encoded information only transiently. Those with low PV cell fraction sustained activity461

for longer periods. Thus, the gradient of PV cells (Kim et al. 2017) has a definitive role in462

separating rapid information processing in sensory areas from sustained mnemonic information463

representation in associative areas of the mouse cortex. This is consistent with the view that464

each local area operates in the "inhibition-stabilizing regime" where recurrent excitation alone465

would lead to instability but the local network is stabilized by feedback inhibition, which may466

arise from long-range excitatory inputs to inhibitory neurons. This consistent with the regime467

of the primary visual cortex (R. J. Douglas et al. 1995; Murphy and Miller 2009). Second, we468

deliberately considered two different dynamical regimes: when local recurrent excitation is not469

sufficient to sustain persistent activity and when it is. In the former case, distributed working470

memory must emerge from long-range interactions between parcellated areas. Thereby the471

concept of synaptic reverberation ( Lorente de Nó 1933; P. S. Goldman-Rakic 1995; Wang472

2001; Wang 2021) is extended to the large-scale global brain. Note that currently it is unclear473

whether persistent neural firing observed in a delay dependent task is generated locally or474

depends on long-distance reverberation among multiple brain regions. Our work made the475

distinction explicit and offers specific predictions to be tested experimentally. Third, presently476

available connectomic data are not sufficient to account for neural dynamics and distributed477

cognition, and we propose cell type-specific connectomic measures that are shown to predict478

the observed distributed working memory representations. Our model underscores that,479

although connectome databases are an invaluable resource for basic neuroscience, they should480

be supplemented with cell-type-specific information.481

We found that recurrent loops within the cortex and the thalamocortical network aided in482

sustaining activity throughout the delay period (Guo et al. 2017; Schmitt et al. 2017). The483

presence of thalamocortical connections had a similar effect on the model as cortico-cortical484

projections, with the distinct contributions of the thalamus to large-scale dynamics still to be485

uncovered (Shine et al. 2018; Jaramillo et al. 2019). The specific pattern of cortico-cortical486

connections was also critical to working memory. However, standard graph theory measures487

based on the connectome were unable to predict the pattern of working memory activity.488

By focusing on cell type-specific interactions between areas, we were able to reveal a core of489
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cortical areas. The core is connected by excitatory loops, and is responsible for generating490

a widely distributed pattern of sustained activity. This clarifies the synergistic roles of the491

connectome and gradients of local circuit properties in producing a distributed cognitive492

function.493

Previous large-scale models of the human and macaque cortex have replicated functional494

connectivity (Deco et al. 2014; Demirtaş et al. 2019; Honey et al. 2007; Schmidt et al. 2018;495

Shine et al. 2018; Cabral et al. 2011; Wang et al. 2019) and propagation of information496

along the cortical hierarchy (Chaudhuri et al. 2015; Joglekar et al. 2018; Diesmann et al.497

1999). More recently, large-scale neural circuit models have been developed specifically to498

reproduce neural activity during cognitive tasks (Mejias and Wang 2022; Froudist-Walsh499

et al. 2021; Klatzmann et al. 2022). These models consider the fact that in the macaque500

cortex, the density of spines on pyramidal cells increases along the cortical hierarchy (Elston501

and Rosa 1998; Elston 2007; Chaudhuri et al. 2015). In a large-scale model of the macaque502

cortex (Chaudhuri et al. 2015), it was shown that this ‘excitatory gradient’ (Wang 2020)503

is correlated with the distribution of intrinsic timescales in the cortex (Murray et al. 2014)504

and is consistent with spatially distributed working memory patterns (Mejias and Wang505

2022; Froudist-Walsh et al. 2021). Such excitatory gradients based on spine count are less506

pronounced, and may be entirely absent in the rodent cortex (Ballesteros-Yáñez et al. 2010;507

Gilman et al. 2017). However, there are gradients of synaptic inhibition in the mouse cortex508

(Kim et al. 2017; Wang 2021). Kim et al., showed that the ratio of SST+ neurons to PV+509

neurons is low for early sensory areas and motor areas, while it is high in association areas510

such as the frontal cortex. We have used this gradient of inhibition in our model to show511

that spatially distributed persistent-activity patterns in the mouse cortex do not require512

gradients of recurrent excitation. In our model, the PV gradient and CIB may be particularly513

important to maintain the stability of an otherwise highly excitable cortical area. Along these514

lines, we predict that local recurrency in the mouse early sensory areas is higher than in the515

primate. Consistent with this claim, both the spine density and the number of excitatory and516

inhibitory synapses in layer 2/3 pyramidal neurons in area V1 are higher in mouse compared517

to macaque (Fig. 5A in Gilman et al. 2017, Fig. 1A in Wildenberg et al. 2021).518

Other anatomical properties at the area and single cell level may be informative of the519

differences in computational and/or cognitive abilities between rodents and macaques. In the520

language of network theory, the macaque cortex is a densely connected graph at an inter-area521

level, with the connectivity spanning five orders of magnitude (Markov et al. 2014a), which is522

more than what is expected for small-world networks (Bassett and Bullmore 2017). Critically,523

the mouse ‘connectome’ (e.g., (Oh et al. 2014; Harris et al. 2019; Knox et al. 2018) has524

even denser area-to-area connections. In the visual cortex, individual neurons target more525

cortical areas in the mouse (Siu et al. 2021) and they have more inhibitory and excitatory526

synapses (Wildenberg et al. 2021). Thus, connectivity in the mouse is denser at both the527

area and single-cell levels (at least for primary visual cortex). We propose that there is a528

greater functional specialization in the primate cortex which is afforded by the sparser and529
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more targeted patterns of connectivity at the single-cell and area levels. Other differences530

to explore in future computational models include the ratio of NMDA to AMPA-mediated531

synaptic currents, which is approximately constant in the mouse cortex (Myme et al. 2003)532

but varies along the cortical hierarchy in primates (Yang et al. 2018; Klatzmann et al. 2022),533

as well as hierarchy, which is defined based on feedforward and feedback projections in the534

mouse (Harris et al. 2019) and primate (Markov et al. 2014a).535

We found that traditional graph theory metrics of connectivity were unable to predict the536

working memory activity in the mouse brain. This may be due to the almost fully connected537

pattern of interareal connectivity in the mouse cortex (Gămănuţ et al. 2018). This implies538

that, qualitatively, all areas have a similar set of cortical connections. In our model, we539

allowed the cell type target of interareal connections to change according to the relative540

position of the areas along the cortical hierarchy. Specifically, feedforward connections had541

a greater net excitatory effect than feedback connections, a hypothesis which we refer to542

as CIB. This preferential targeting of feedback projections serves to stabilize the otherwise543

excitable activity of sensory areas (Mejias and Wang 2022), and is consistent with recent544

experiments that report long-range recruitment of GABAergic neurons in early sensory areas545

(Campagnola et al. 2022; Shen et al. 2022; Naskar et al. 2021). Our model predicts that546

if there is a weak correlation between PV cell density and delay firing rate across cortical547

areas, then the CIB mechanism is at play. Moreover, the model results suggest that CIB is548

particularly important in the regime where local connections are not sufficient to sustain549

spatially-patterned persistent activity. We also showed that there are parameter regimes550

where CIB becomes less important, provided there is a gradient of synaptic inhibition as in the551

mouse cortex ((Kim et al. 2017), but see (Nigro et al. 2022)). Notably, the model’s resilience552

to parameter variations in inhibitory connection strengths is significantly enhanced when553

both the PV gradient and CIB are present. Given that working memory is a fundamental554

cognitive function observed across many individual brains with anatomical differences, the555

inclusion of multiple inhibitory mechanisms that allow for connectivity variations might confer556

evolutionary advantages. Although there is some evidence for similar inhibitory gradients557

in humans (Burt et al. 2018) and macaque (Torres-Gomez et al. 2020), the computational558

consequences of differences across species remain to be established.559

To conclude, the manner in which long-range recurrent interactions affect neural dynamics560

depends not only on the existence of excitatory projections per se, but also on the target561

neurons’ cell type. Thus, for some cortical areas afferent long-range excitatory connections562

promote working memory-related activity while for some others, e.g., early sensory areas, it563

does not. Moreover, the existence of long-range interactions is consistent with potentially564

distinct dynamical regimes. For example, in one regime some areas exhibit independent565

persistent activity, i.e., local recurrent interactions are sufficient to sustain a memory state566

for these areas, while others do not. In this regime CIB is not required for the existence of567

distributed persistent activity patterns. In another regime, none of the areas can sustain a568

memory state without receiving long-range input. These two regimes are functionally distinct569
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in terms of their robustness to perturbation as well as in the number of attractors that they570

can sustain. These regimes may be identified via perturbation analysis in future experimental571

and theoretical work.572

By introducing cell type-specific graph theory metrics, we were able to predict the pattern573

and strength of delay period activity with high accuracy. Moreover, we demonstrated how574

cell type-specific graph-theory measures can accurately identify the core subnetwork, which575

can also be identified independently using a simulated large-scale optogenetic experiment. We576

found a core subnetwork of areas that, when inhibited, caused a substantial drop in activity577

in the remaining cortical areas. This core working memory subnetwork included frontal578

cortical areas with well documented patterns of sustained activity during working memory579

tasks, such as prelimbic (PL), infralimbic (ILA) and medial orbitofrontal cortex (ORBm)580

(Schmitt et al. 2017; Liu et al. 2014; Wu et al. 2020). However, the core subnetwork for the581

visual working memory task we assessed was distributed across the cortex. It also included582

temporal and higher visual areas, suggesting that long-range recurrent connections between583

the frontal cortex and temporal and visual areas are responsible for generating persistent584

activity and maintaining visual information in working memory in the mouse.585

Some of the areas that were identified as core areas in our model have been widely studied in586

other tasks. For example, the gustatory area exhibits delay-period preparatory activity in a587

taste-guided decision-making task and inhibition of this area during the delay period impairs588

behavior (Vincis et al. 2020).589

The core visual working memory subnetwork generates activity that is then inherited by590

many readout areas, which also exhibit persistent activity. However, inhibiting readout areas591

only mildly affects the activity of other areas (Fig. 7 and Fig. 7 - supplement 1). The592

readout areas in our model were a mixture of higher visual areas, associative areas and593

premotor areas of cortex. We also concluded that MOs is a readout area and not a core area.594

This finding may be surprising considering previous studies that have shown this area to595

be crucial for short-term memory maintenance, planning, and movement execution during596

a memory-guided response task (Guo et al. 2017; Guo et al. 2014; Inagaki et al. 2019; Li597

et al. 2015; Wu et al. 2020; Voitov and Mrsic-Flogel 2022). This task has shown to engage,598

not only ALM, but a distributed subcortical-cortical network that includes the thalamus,599

basal ganglia and cerebellum (Svoboda and Li 2018). We note that in the version of the600

memory-guided response task studied by Svoboda and others, short-term memory is conflated601

with movement preparation. In our task, we proposed to study the maintenance of sensory602

information independent of any movement preparation as in delayed match-to-sample tasks603

and variations thereof. It is for this behavioral context that we found that MOs is not a core604

visual working memory area. We emphasize that readout areas are not less important than605

core areas as readout areas can use the stored information for further computations and thus606

some readout areas are expected to be strongly coupled to behavior. Indeed, there is evidence607

for a differential engagement of cortical networks depending on the task design (Jonikaitis608

et al. 2023) and on effectors (Kubanek and Snyder 2015). If ALM is indeed a readout area609
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for sensory working memory tasks, (e.g., (Schmitt et al. 2017)), then the following prediction610

arises. Inhibiting ALM should have a relatively small effect on sustained activity in core611

areas (such as PL) during the delay period. In contrast, inhibiting PL and other core areas612

may disrupt sustained activity in ALM. Even if ALM is not part of the core for sensory613

working memory, it could form part of the core for motor preparation tasks (Fig. 9G). We614

found a high cell-type-specific loop strength for area ALM, like that in core areas, which615

supports this possibility (Fig. 9I). Furthermore, we found some attractor states for which the616

MOs was classified as a core area, that do not contain area PL. This result is supported by a617

recent study that found no behavioral effect after PL inhibition in a motor planning task618

(Wang et al. 2021). Therefore, the core subnetwork required for generating persistent activity619

is likely task-dependent. Future modeling work may help elucidate the biological mechanisms620

responsible for switching between attractor landscapes for different tasks.621

Neuroscientists are now observing task-related neural activity at single-cell resolution across622

much of the brain (Stringer et al. 2019; Steinmetz et al. 2019). This makes it important to623

identify ways to distinguish the core areas for a function from those that display activity that624

serves other purposes. We show that a large-scale inhibition protocol can identify the core625

subnetwork for a particular task. We further show how this core can be predicted based on626

the interareal loops that target excitatory neurons. Were such a cell type-specific interareal627

connectivity dataset available, it may help interpretation of large-scale recording experiments.628

This could also focus circuit manipulation on regions most likely to cause an effect on the629

larger network activity and behavior. Our approach identifies the brain areas that work630

together to support working memory. It also identifies those that benefit from such activity631

to serve other purposes. Our simulation and theoretical approach is therefore ideally suited632

to understand the large-scale anatomy, recording and manipulation experiments which are at633

the forefront of modern systems neuroscience.634

Neuroscience has rapidly moved into a new era of investigating large-scale brain circuits.635

Technological advances have enabled the measurement of connections, cell types and neural636

activity across the mouse brain. We developed a model of the mouse brain and theory of637

working memory that is suitable for the large-scale era. Previous reports have emphasized the638

importance of gradients of dendritic spine expression and interareal connections in sculpting639

task activity in the primate brain (Mejias and Wang 2022; Froudist-Walsh et al. 2021).640

Although these anatomical properties from the primate cortex are missing in the mouse brain641

(Gămănuţ et al. 2018; Gilman et al. 2017), other properties such as interneuron density (Kim642

et al. 2017) may contribute to areal specialization. Indeed, our model clarifies how gradients643

of interneurons and cell type-specific interactions define large-scale activity patterns in the644

mouse brain during working memory, which enables sensory and associative areas to have645

complementary contributions. Future versions of the large-scale model may consider different646

interneuron types to understand their contributions to activity patterns in the cortex (Kim647

et al. 2017; Meng et al. 2023; Froudist-Walsh et al. 2021; Wang et al. 2004; Tremblay et al.648

2016; Nigro et al. 2022), the role of interhemispheric projections in providing robustness for649
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short-term memory encoding (Li et al. 2016a), and the inclusions of populations with tuning650

to various stimulus features and/or task parameters that would allow for switching across651

tasks (Yang et al. 2019). Importantly, these large-scale models may be used to study other652

important cognitive computations beyond working memory, including learning and decision653

making (Abbott et al. 2017; Abbott et al. 2020).654

Acknowledgements655

We thank Daniel P. Bliss and Ulises Pereira for support with analysis tools at the beginning656

of the project, and members of the Wang Lab at New York University for discussions related657

to the project.658

Declaration of Interests659

No competing interests declared.660

Methods661

Anterograde tracing, connectivity data662

We used the mouse connectivity map from Allen institute (Oh et al. 2014) to constrain our663

large-scale circuit model of the mouse brain. The Allen Institute measured the connectivity664

among cortical and subcortical areas using an anterograde tracing method. In short, they665

injected virus and expressed fluorescent protein in source areas and performed fluorescent666

imaging in target areas to measure the strength of projections from source areas. Unlike667

retrograde tracing methods used in other studies (Markov et al. 2014b), the connectivity668

strength measured using this method does not need to be normalized by the total input or669

output strength. This means that connectivity strength between any two areas is comparable.670

The entries of the connectivity matrix from the Allen Institute can be interpreted as propor-671

tional to the total number of axonal fibers projecting from unit volume in one area to unit672

volume in another area. Before incorporating the connectivity into our model, we normalized673

the data as follows. In each area, we model the dynamics of an "average" neuron, assuming674

that the neuron receive inputs from all connected areas. Thus, we multiplied the connectivity675

matrix by the volume V olj of source area j and divided by the average neuron density di in676

target area i:677

Wnorm,ij = Wraw,ij
V olj
di

(1)

where Wraw,ij is the raw, i.e., original, connection strength from unit volume in source area j678

to unit volume in target area i, V olj is the volume of source area j (Wang et al. 2020), and679

di is the neuron density in source area i (Erö et al. 2018). Wnorm,ij is the matrix that we use680
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to set the long rang connectivity in our circuit model. We can define the cortico-thalamic681

connectivity Wct,norm,ij and thalamo-cortical connectivity Wtc,norm,ij in a similar manner,682

except that we didn’t apply the normalization to thalamic connectivity due to not having683

enough neuron density data.684

Interneuron density along the cortex685

Kim and colleagues measured the density of typical interneuron types in the brain (Kim686

et al. 2017). They expressed fluorescent proteins in genetically labeled interneurons and687

counted the number of interneurons using fluorescent imaging. We took advantage of these688

interneuron density data and specifically used the PV cell fraction to set local and long-range689

inhibitory weights.690

The PV cell density of all layers is first divided by the total neuron density di in the area i,691

to give the PV cell fraction PVraw,i, which better reflects the expected amount of synaptic692

inhibition mediated by PV neurons. The PV cell fraction is then normalized across the whole693

cortex.694

PVi =
PVraw,i −min(PVraw,i)

max(PVraw,i)−min(PVraw,i)
(2)

PVraw,i is the PV cell fraction in area i, and PVi is the normalized value of PVraw, which695

will be used in subsequent modeling.696

Hierarchy in the cortex697

The concept of hierarchy is important for understanding the cortex. Hierarchy can be698

defined based on mapping corticocortical long range connections onto feedforward or feedback699

connections (Felleman and Essen 1991; Markov et al. 2014a; Harris et al. 2019). Harris and700

colleagues measured the corticocortical projections and target areas in a series of systematic701

experiments in mice (Harris et al. 2019). Projection patterns were clustered into multiple702

groups and the label "feedforward" or "feedback" was assigned to each group. Feedforward703

and feedback projections were then used to determine relative hierarchy between areas. For704

example, if the projections from area A to area B are mostly feedforward, then area B has705

a higher hierarchy than area A. This optimization process leads to a quantification of the706

relative hierarchy of cortical areas hraw,i. We defined the normalized hierarchy value hi as707

hi =
hraw,i −min(hraw,i)

max(hraw,i)−min(hraw,i)
(3)

where hraw,i is the raw, i.e., original hierarchical ordering from (Harris et al. 2019). Due to708

data acquisition issues, 6 areas did not have a hierarchy value assigned to them (SSp-un,709

AUDv, GU, VISC, ECT, PERI) (Harris et al. 2019). We estimated hierarchy through a710

weighted sum of the hierarchy value of 37 known areas, while the weight is determined711

through the connectivity strength. The parameters αh and βh are selected so that hi,estimate712

are close to hi for areas with known hierarchy.713
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hi,estimate = αh

∑37
j=1Wraw,ijhj∑37
j=1Wraw,ij

+ βh (4)

For the thalamocortical model, we also used the hierarchy value for thalamic areas (Harris714

et al. 2019). The hierarchy of thalamic areas are comparable to cortical areas, so in order to715

use it in the model, we also normalized them.716

hth,i =
hth,raw,i −min(hraw,i)

max(hraw,i)−min(hraw,i)
(5)

To estimate the hierarchy value of thalamic areas with missing values, we used the known717

hierarchy value of the thalamic area next to the missing one as a replacement.718

Description of the local circuit719

Our large-scale circuit model includes 43 cortical areas. Each area includes two excitatory

populations, labeled A and B, and one inhibitory population, C. The two excitatory popula-

tions are selective to different stimuli. The synaptic dynamics between populations are based

on previous firing rate models of working memory (Wang 1999; Wong and Wang 2006). The

equations that define the dynamics of the synaptic variables are

dSA

dt
= −SA

τN
+ γ(1− SA)rA (6)

dSB

dt
= −SB

τN
+ γ(1− SB)rB (7)

dSC

dt
= −SC

τG
+ γIrC (8)

where SA and SB are the NMDA synaptic variables of excitatory populations A and B, while720

SC is the GABA synaptic variable of the inhibitory population C. rA, rB and rC are the721

firing rates of populations A, B and C, respectively. τN and τG are the time constants of722

NMDA and GABA synaptic conductances. γ and γI are the parameters used to scale the723

contribution of presynaptic firing rates. The total currents received Ii (i = A,B,C) are given724

by725

IA = gE,selfSA + gE,crossSB − gEISC + I0A + ILR,A + xA(t) (9)

IB = gE,selfSB + gE,crossSA − gEISC + I0B + ILR,B + xB(t) (10)

IC = gIESA + gIESB − gIISC + I0C + ILR,C + xC(t) (11)

In these equations, gE,self , gE,cross denote the connection strength between excitatory neurons726

with same or different selectivity, respectively. These connection strengths are the same for727

different areas, since there is no significant gradient for excitatory strength in mice. gIE are the728

connection strengths from excitatory to inhibitory neurons, while gEI , and gII are connection729

strengths from inhibitory to excitatory neurons and from inhibitory to inhibitory neurons,730

respectively. These connections will be scaled by PV cell fraction PVi in the corresponding731

area. We will discuss the details in the next section. I0i (i = A,B,C) are constant background732
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currents to each population. ILR,i (i = A,B,C) are the long range (LR) currents received733

by each population. The term xi(t) where i = A,B,C represents noisy contributions from734

neurons external to the network. It is modeled as an Ornstein-Uhlenbeck process:735

τnoise
dxi

dt
= −xi +

√
τnoiseσiζi(t) (12)

where ζi(t) is Gaussian white noise, τnoise describes the time constant of external AMPA736

synapses and σi sets the strength of the noise for each population. σA = σB = 5pA while737

σC = 0pA.738

The steady state firing rate of each population is calculated based on a transfer function ϕi(I)

of input current received by each population Ii (i = A,B,C) given by

ϕA,B(IA,B) =
aIA,B − b

1− exp[−d(aIA,B − b)]
(13)

ϕC(IC) = [
1

gI
(c1I − c0) + r0]

+ (14)

Note that the transfer functions ϕi(t) are the same for two excitatory populations. x+ denotes

the positive part of the function x. The firing rate of each population follows equations:

τr
drA,B

dt
= −rA,B + ϕA,B(IA,B) (15)

τr
drC
dt

= −rC + ϕC(IC) (16)

Interneuron gradient and local connections739

We scaled local interneuron connectivity with the interneuron density that was obtained

using fluorescent labeling (Kim et al. 2017). Specifically, local I-I connections and local

I-E connections are scaled by the interneuron density by setting the connection strength

gk,i(k = EI, II) as a linear function of PV cell fraction PVi in area i.

gEI,i = gEI,0(1 + gEI,scalingPVi) (17)

gII,i = gII,0(1 + gII,scalingPVi) (18)

where gk,0 (k = EI, II) is the base value of I to E connections and gk,scaling (k = EI, II) is740

the scaling factor of PV value. gk,0 also accounts for the inhibition of other cell types not741

explicitly considered in this study.742

Hierarchy and long range connections743

Long range (LR) connections between areas are scaled by connectivity data from the Allen

Institute (Oh et al. 2014). We consider long-range connections that arise from excitatory

neurons because most long-range connections in the cortex correspond to excitatory connec-

tions (Petreanu et al. 2009). Long-range connections will target excitatory populations in

other brain areas with the same selectivity (Zandvakili and Kohn 2015) and will also target
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inhibitory neurons. These long-range connections are given by the following equations:

IA,B,LR,i = ΣjµEEWE,ijSA,B,j (19)

IC,LR,i = ΣjµIEWI,ij(SA,j + SB,j) (20)

where WE is the normalized long-range connectivity to excitatory neurons, and WI is the744

normalized long-range connectivity to inhibitory neurons. µEE and µIE are coefficients scaling745

the long-range E to E and E to I connection strengths, respectively.746

Here, we assume that the long-range connections will be scaled by a coefficient that is based747

on the hierarchy of source and target area. To quantify the difference between long-range748

feedforward and feedback projections, we introduce mij to measure the "feedforwardness" of749

projections between two areas. According to our assumption of counterstream inhibitory bias750

(CIB), long-range connections to inhibitory neurons are stronger for feedback connections751

and weaker for feedforward connections, while the opposite holds for long range connections752

to excitatory neurons. Following this hypothesis, we define mij as a sigmoid function of753

the difference between the hierarchy value of source and target areas. For feedforward754

projections, mij > 0.5; for feedback projections, mij < 0.5. Excitatory and inhibitory755

long-range connection strengths are implemented by multiplying the long-range connectivity756

strength Wij by mij and (1−mij), respectively:757

mij =
1

1 + e−β(hi−hj)
(21)

WE,ij = mijWij (22)

WI,ij = (1−mij)Wij (23)

with

Wscale,ij = (Wnorm,ij)
kscale (24)

Wij =
Wscale,ij

max(Wscale,ij)
(25)

The connectivity Wnorm,ij is then rescaled to translate the broad range of connectivity values758

(over five orders of magnitude) to a range more suitable for our firing rate models. kscale is759

the coefficient used for this scaling. kscale < 1 effectively makes the range much smaller than760

the original normalized connectivity Wnorm,ij. After that, the scaled connectivity Wscale,ij is761

then normalized so that the maximum value is fixed at 1.762

Simulations of replacing the PV gradient and CIB763

In order to demonstrate the importance of PV gradient and CIB, we replace the PV gradient

value/CIB with the average value accordingly in the simulation. Specifically, we replace PV
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gradient with the average PV cell fraction.

PVmean =

∑
i PVi

nareas

(26)

gEI,i = gEI,0(1 + gEI,scalingPVmean) (27)

gII,i = gII,0(1 + gII,scalingPVmean) (28)

We also replace CIB with its average value 0.5, which means there is no bias to inhibitory

cells for all long range connections.

mij = 0.5 (29)

WE,ij = 0.5Wij (30)

WI,ij = 0.5Wij (31)

For the simulations of varying the local inhibitory connection strengths, we specifically change764

the value of gEI,0 and gEI,scaling for gEI,i. For each combination of parameters of gEI,0 and765

gEI,scaling, simulations are performed for default parameters (no changes to PV gradient766

or CIB), PV average (PV gradient is replaced by average value) and CIB average (CIB is767

replaced by average value). The average firing rate of all areas and number of areas showing768

persistent activity are quantified for each parameter combination.769

In other simulations, we varied the parameters gEI,0 and gEI,scaling with long range connections770

µEE and µIE set to be 0. This enabled us to discover the range of parameter values for which771

individual areas were capable of maintaining persistent activity without input from other772

areas. In practice, the only key parameter that determines this behaviour is the smallest773

inhibitory connection strength of any area, gEI,i = gEI,0.774

Simulations and theoretical calculation of the baseline stability of775

the network776

In the simulation focusing on the stability of the baseline state of the network, there was no777

external input provided to any of the areas apart from noise (Eq. 12). The steady firing rate778

of each area after 10 s is recorded as a measure of the baseline stability.779

We tested the baseline stability on five different scenarios (Fig. 4A-B) : In (1) and (2) we780

set the long-range connections µEE and µIE to zero since we focus on the local network. In781

(2), we also set the local inhibitory connections gEI,0 to zero. In (3) - (5) the long-range782

connections are intact. In (4), we set the long-range connection to inhibitory neurons µIE to783

zero. In (5), we set the local inhibitory connections gEI,0 to zero.784

We analytically calculated the stability of baseline state for a local circuit when the long785

range connections µEE and µIE are set to zero, which means ILR,A, ILR,B, ILR,C are zero786

in Eqs 9-11. In Eqs 15 and 16, we assume that rA, rB and rC reach their steady states787

instantaneously, since its time constant τr is much smaller than the time constant of NMDA788

synaptic variable τN in Eqs 6 and 7. Thus, we can express the firing rate rA, rB and rC as789
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functions of synaptic variables SA, SB and sC (Eqs. 13-16):790

rA = ϕA(gE,selfSA + gE,crossSB − gEISC + I0A) (32)

rB = ϕA(gE,selfSB + gE,crossSA − gEISC + I0A) (33)

rC = ϕC(gIESA + gIESB − gIISC + I0C) (34)

where ϕA and ϕC have the same form as Eqs 13 and 14.791

Then we can insert Eqs 32-34 into Eqs 6-8 to obtain a differential equation for SA, SB and792

SC .793

dSA

dt
= −SA

τN
+ γ(1− SA)ϕA(gE,selfSA + gE,crossSB − gEISC + I0A) (35)

dSB

dt
= −SB

τN
+ γ(1− SB)ϕA(gE,selfSB + gE,crossSA − gEISC + I0A) (36)

dSC

dt
= −SC

τG
+ γIϕC(gIESA + gIESB − gIISC + I0C) (37)

The steady state of SA, SB and SC can be solved numerically by setting the left side of the794

above equations to be zero. We denote the right side of the equations as FA, FB and FC.795

Then we can calculate the Jacobian matrix and its eigenvalues.796

JSA,SB ,SC
=


dFA
dSA

dFA
dSB

dFA
dSC

dFB
dSA

dFB
dSB

dFB
dSC

dFC
dSA

dFC
dSB

dFC
dSC

 (38)

If the real part of all the eigenvalues are negative, then that means the baseline state is stable.797

The eigenvalues of the scenario (1) are -10.4, -12.5 and -229.8, while those of scenario (2),798

where local inhibitory connections gEI,0 are zero, are -7.4, -7.9, -232.3. These results coincide799

with the simulation results of Fig. 4A.800

We also considered an alternative parameter regime, where the local excitatory connections801

gE,self is set to a higher level gE,self = 0.6nA. The local inhibitory connections strength gEI,0802

is also set to a higher level gEI,0 = 0.5nA to balance the increased excitatory connections.803

Under such alternative parameter regime, we performed similar analysis as the five different804

scenarios in Fig. 4A-B. The results are shown in Fig. 4C-D. In simulations of a network805

with intact long-range connections and increased local excitatory connections (in Fig. 4D806

and also in Fig. 4F), we changed the long-range connections strength µEE = 0.19nA. In Fig.807

4C, when we gradually decrease the inhibitory connection strength gEI,0 from 0.5nA to 0808

(from blue dots to orange dots), analytical calculations demonstrate that the stable low firing809

rate state disappears via a saddle node bifurcation at gEI,0 = 0.175nA (for area AIp). This810

demonstrates that, upon removal of inhibition, the high firing rate in Fig. 4C corresponds to811

a distinct state and not simply a shift of the baseline state.812

In the increased local excitatory connection regime, we further introduced temporary external813

input to each local brain areas and record its stable firing rate shown in Fig. 4E.814
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In the simulation of Fig. 4F, we used the classic simulation protocol: an temporary external815

input is given to primary visual cortex and the delay period firing rate of each areas are816

recorded and shown.817

Thalamocortical network model818

Corticothalamic connectivity. We introduced thalamic areas in the network to examine their819

effect on cortical dynamics. Each thalamic area includes 2 excitatory populations, A and B,820

with no inhibitory population. These two populations share the same selectivity with the821

corresponding cortical areas. Unlike cortical areas, there are no recurrent connections between822

thalamic neurons (Sherman 2007). Thalamic currents have the following contributions (tc823

stands for thalamocortical connections and ct for corticothalamic connections):824

Ith,A,B = Ict,A,B + Ith,0,A,B + Ith,noise,A,B (39)

where Ith,i (i = A,B) is the total current received by each thalamic population, Ict,i (i = A,B)825

is the long range current from cortical areas to target thalamic area, Ith,0,i (i = A,B) is826

the background current for each population, and Ith,noise,i (i = A,B) is the noise input to827

thalamic population A and B, which we set to 0 in our simulations. Ict,i (i = A,B) has the828

following form:829

Ict,A,B,i = gctWct,E,ijSk,j (40)

where Wct,E,ij is the LR connectivity to thalamic neurons, and Sk,j is the synaptic variable830

of population k (k = A,B) in cortical area j. Since all thalamic neurons are excitatory, we831

model corticothalamic projections as in the previous section:832

mct,ij =
1

1 + e−β(hth,i−hj)
(41)

Wct,E,ij = mct,ijWct,ij (42)

(43)

where

Wct,scale,ij = (Wct,norm,ij)
kscale (44)

Wct,ij =
Wct,scale,ij

max(Wct,scale,ij)
(45)

Wct,norm,ij is the normalized connection strength from cortical area j to thalamic area i. mct,ij833

is the coefficient quantifying how the long range connections target excitatory neurons based834

on cortical hierarchy hj and thalamic hierarchy hth,i.835

The thalamic firing rates are described by:836

τr
drth,A,B

dt
= −rth,A,B + ϕth,A,B(Ith,A,B) (46)
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with the activation function for thalamic neurons given by:837

ϕth,A,B(Ith,A,B) =
aIth,A,B − b

1− exp[−d(aIth,A,B − b)]
(47)

Thalamic neurons are described by AMPA synaptic variables (Jaramillo et al. 2019):838

dSth,A,B

dt
= −Sth,A,B

τA
+ γArth,A,B (48)

Thalamocortical connectivity. The connections from thalamic neurons to cortical neurons

follow these equations

Itc,A,B,i = gE,tcWE,tc,ijSth,A,B,j (49)

Itc,C,i = gI,tcWI,tc,ij(Sth,A,j + Sth,B,j) (50)

and connectivity

mtc,ij =
1

1 + e−β(hi−hth,j)
(51)

WE,tc,ij = mtc,ijWtc,ij (52)

WI,tc,ij = (1−mtc,ij)Wtc,ij (53)

and connectivity matrix

Wtc,scale,ij = (Wtc,norm,ij)
kscale (54)

Wtc,ij =
Wtc,scale,ij

max(Wtc,scale,ij)
(55)

The thalamocortical input is added to the total input current of each cortical population.839

IA = gE,selfSA + gE,crossSB + gEISC + I0A + ILR,A + Itc,A + xA(t) (56)

IB = gE,selfSB + gE,crossSA + gEISC + I0B + ILR,B + Itc,B + xB(t) (57)

IC = gIESA + gIESB + gIISC + I0C + ILR,C + Itc,C + xC(t) (58)

Calculation of network structural measures840

We considered three types of structural measures. The first one is input strength. Input841

strength of area i is the summation of the connection strengths onto node i. It quantifies the842

total external input onto area i.843

Winput,i =
n∑

j=1

Wij (59)

The second one is eigenvector centrality (Newman 2018). Eigenvector centrality of area i is

the ith element of the leading eigenvector of the connectivity matrix. It quantifies how many

areas are connected with the target area i and how important these neighbors are. W is a
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matrix where each element is Wij.

W = QΛQ−1 (60)

Ceig,i = qi1 (61)

The third structural measure is loop strength, which quantifies how each area is involved in844

strong recurrent loops. We first define the strength of a single loop k845

Lk =
∏

Ai,Aj∈loopk

Wij (62)

and then the loop strength SAi
of a single area Ai846

SAi
=

∑
Ai∈loopk

Lk (63)

We now focus on cell type-specific structural measures. Cell type specificity is introduced847

via a coefficient kcell that scales all long range connection strengths (cell type projection848

coefficient):849

kcell = mij − PVi(1−mij) (64)

Thus, we can define cell type-specific connectivity as:

Wcell,ij = (mij − PVi(1−mij))Wij (65)

The cell type-specific connectivity is further normalized so that the maximum value is 1.850

W̃ij =
Wcell,ij

max(Wcell,ij)
(66)

and cell type-specific input strength could be defined as:851

Winput,i,cellspec =
n∑

j=1

W̃ij (67)

Similarly, cell type-specific eigenvector centrality is defined as

W̃ = Q̃Λ̃Q̃−1 (68)

Ceig,i,cellspec = q̃i1 (69)

where W̃ is a matrix where each element is W̃ij and the cell type-specific loop strength is

defined as:

Lk,cellspec =
∏

Ai,Aj∈loopk

W̃ij (70)

SAi,cellspec =
∑

Ai∈loopk

Lk,cellspec (71)

As a comparison, we also calculated the sign-only loop strength and no PV loop strength.852

We can define sign-only connectivity as:

Wsignonly,ij = sgn(mij − (1−mij))Wij (72)
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where sgn(x) is the sign function, which returns positive or negative values based on the sign853

of x. The major difference between sign only connectivity and cell type specific connectivity854

is that the strength of long range projection bias are not considered except the sign of it.855

We can also define no-PV connectivity as:

WnoPV,ij = (mij − (1−mij))Wij (73)

The difference between no-PV connectivity and cell-type specific connectivity is that the856

different strengths of local connections for each area are not considered in the no-PV connec-857

tivity.858

We also used the sign-only and no-PV variants of connectivity measures to predict the859

delay period firing rate and classify core areas. This enabled us to compare these simplified860

measures to the cell-type-specific connectivity measures.861

Stimulation protocol and inhibition analysis862

The model is simulated using an stochastic differential equation solver: Euler-Maruyama863

method. We write customized program using Python to implement this numerical method.864

The time step is set to be dt, and all the firing rates, synaptic variables and currents are865

initialized to be zero.866

We simulate a working memory task by applying an external current Istim to one of the867

excitatory populations, which represents a sensory (e.g., visual) stimulus that is to be868

remembered across a delay period. The external current is a pulsed input with start time Ton869

and offset time Toff . Without losing generality, we assume that the external input is provided870

to population A. In most of the simulations in this study, we simulate a visual working871

memory task, with the external input applied to VISp. The simulation duration is Ttrial and872

we used a time step of dt. The delay period is defined as the duration between the offset time873

Toff and trial end Ttrial. In order to obtain a stable firing rate, the delay period firing rate is874

calculated by averaging the firing rate from 2 seconds until the end of the delay period to875

0.5 seconds until end. Firing rate, PV cell fraction, and hierarchy are plotted on a 3d brain876

surface using the website scalable brain atlas (https://scalablebrainatlas.incf.org/index.php).877

We apply inhibition analysis to understand the robustness of attractors and, more importantly,878

to investigate which areas play an important role in maintaining the attractor state. Excitatory879

input was applied to the inhibitory population I to simulate opto-genetic inhibition. The880

external input Iinh is strong as compared to Istim and results in an elevated firing rate of the881

inhibitory population, which in turn decreases the firing rate of the excitatory populations.882

Usually the inhibition is applied to a single area. When inhibition is applied during the883

stimulus period, its start and end times are equal to Ton and Toff , respectively. When884

inhibition is applied during delay period, its start time is later than Toff to allow the system885

settle to a stable state. Thus, the onset of inhibition starts 2 seconds after Toff and lasts886

until the end of trial. In the case of thalamocortical network simulations, we inhibit thalamic887
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areas by introducing a hyperpolarizng current to both excitatory populations, since we do888

not have inhibitory populations in thalamic areas in the model.889

To quantify the effect of single area or multiple areas inhibition, we calculate the average firing890

rate of areas that satisfy two conditions: i) the area shows persistent activity before inhibition891

and ii) the area does not receive inhibitory input. The ratio between such average firing892

rate after inhibition and before inhibition is used to quantify the overall effect of inhibition.893

If the ratio is lower than 100%, this suggests that inhibiting certain area(s) disrupts the894

maintenance of the attractor state. Note that the inhibition effect is typically not very strong,895

and only in rare cases, inhibition of a single area leads to loss of activity of other areas (Fig.896

7B, Fig. 7C). To quantify such differences, we use a threshold of 10% to differentiate them.897

We will use (relatively) "weak inhibition effect" and "strong inhibition effect" to refer to898

them afterwards.899

We used the three measures to classify areas into 4 types (Fig. 7D): i) inhibition effect900

during delay period, ii) inhibition effect during stimulus period, and iii) delay period firing901

rate. Areas with strong inhibition effect during stimulus period are classified as input areas;902

areas with strong inhibition effect during delay period and strong delay period firing rate are903

classified as core areas; areas with weak inhibition effect during delay period but strong firing904

rate are classified as readout areas; areas with weak inhibition effect during delay period and905

weak firing rate during delay period are classified as nonessential areas.906

As an extension of the single area inhibition study, we focus on the role of readout areas. A907

pair of readout areas is randomly chosen and inhibited during the delay period under a similar908

protocol as the single area inhibition study. The inhibition effect, i.e., the decrement of the909

delay period firing rates of other non inhibited areas, is first quantified for each inhibition910

pair (Ai, Aj). Next, the inhibition effect is averaged one more time for each area Ai across911

all inhibition pairs that includes the area ((Ai, Aj), where j ̸= i ). An anologous procedure is912

performed for triplets and quadruplets of readout areas. Additionally, we also calculate the913

mean inhibition effect between pair of areas, which are both selected from core areas, both914

selected from readout areas, or we chose one area from core areas, one area from readout915

areas.916

Simulation of multiple attractors917

Multiple attractors coexist in the network and its properties and number depends on the918

connectivity and dynamics of each node. In this study we did not try to capture all the919

possible attractors in the network, but rather compare the number of attractors for different920

networks. Here we briefly describe the protocol used to identify multiple attractors in the921

network. We first choose k areas and then generate a subset of areas as the stimulation areas.922

We cover all possible subsets, which means we run 2k simulations in total. The external923

stimulus is given to all areas in the subset simultaneously with same strength and duration.924

The delay period activity is then quantified using a similar protocol as the standard simulation925
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protocol. The selection of k areas corresponds to a qualitative criterion. First we choose926

the areas with small PV fraction or high hierarchy, since these areas are more likely to show927

persistent activity. Second, the number of possible combination grows exponentially as we928

increase k, and if we use k = 43, the number of combinations is around 8.8e+12, which is929

beyond our simulation power. As a trade-off between the simulation power and coverage of930

areas, we choose k = 18, which correspond to 2.6e+5 different combinations of stimulation.931

For each parameter setting, we run 2.6e+5 simulations to capture possible attractor patterns.932

For each attractor pattern, a binary vector is generated by thresholding delay firing rate using933

a firing rate threshold of 5Hz. An attractor pattern is considered distinct if and only if the934

binary vector is different from all identified attractors. In these way we can identify different935

attractors in the simulation. We also apply same simulation pipeline to identify attractors936

for different parameters. Specifically we change the long range connectivity strength µEE937

and local excitatory connections gE,self .938

Data availability939

The manuscript constitutes a computational study, so no experimental data has been generated.940

The simulation and analysis code will be available in GitHub upon publication.941
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A B

C

Figure1 - Supplement 1. Anatomical details of the mouse cortex. (A). Connectivity matrix depicting
cortico-cortical connections between 43 cortical areas. Areas are sorted according to their hierarchy.
(B). The raw PV cell density for each cortical area (Y axis), with areas sorted (X axis). Each area
belongs to one of five modules, shown in color (see also Fig. 1). (Harris et al. 2019). (C). Neuron
density for each cortical area with same sorted order as (B). The data is from Erö et al. 2018.
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A B C

D E F

Figure2 - Supplement 1. Example simulation for different sensory modalities. The simulation protocol
is the same as the default one in Fig. 2, except that the external input is applied to primary sensory
areas related to two other sensory modalities: somatosensory and auditory. (A). The activity of 6
selected areas during the working memory task is shown. A somatosensory input of 500ms is applied
to primary somatosensory area SSp-bfd, which propagates to the rest of the large-scale network. (B).
Similar to the simulation where a primary visual area is stimulated (Fig. 2D), delay period firing
for somatosensory stimulation is positively correlated with cortical hierarchy (r = 0.89, p<0.05).
(C). Delay period firing rate is moderately correlated with PV cell fraction (r = −0.4, p<0.05). (D),
(E) and (F) are similar to (A), (B) and (C) except that the input is given to primary auditory area
AUDp. (E). Delay period firing is also positively correlated with cortical hierarchy (r = 0.89, p<0.05).
(F). Delay period firing rate is moderately correlated with PV cell fraction (r = −0.4, p<0.05)
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B

C

A

Figure 3 - Supplement 1. Dependence of persistent activity on inhibitory model parameters (A).
The maximum firing rate of all areas depends on the constant PV cell fraction in models without a
gradient of PV. Average PV cell fraction from the anatomical data is shown as an orange dot. (B).
Same as (A), except for the number of areas showing persistent activity. (C). Firing rate during the
delay period for local circuits without long-range projections as a function of base inhibitory strength.
If the base inhibitory strength is larger than a threshold (0.155, marked by the dashed line), none of
the areas show independent persistent activity.
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Figure 5 - Supplement 1. Anatomical data of thalamus and cortical connectivity. (A). Connectivity
matrix of corticothalamic connections: 43 cortical areas to 40 thalamic areas. (B). Connectivity
matrix of thalamocortical connections: 40 thalamic areas to 43 cortical areas.
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Figure 6 - Supplement 1. Details of cell type-specific connectivity measures. (A). The matrix of
cell type projection coefficients between cortical areas. The cell type projection coefficient is given
by the formula kcell = mij − PVi(1−mij). (B). The matrix of connectivity strengths, modified by
cell type projection coefficient between cortical areas. The modified connectivity strength is given by
W̃ij = (mij − PVi(1−mij))Wij.

54



Main text: Distributed working memory in the mouse brain

A(i)

A(ii)

A(iii)

B(i)

B(ii)

B(iii)

C D

VI
Sp

AU
D
p

SS
p-
ll

AU
D
d

SS
p-
n

SS
p-
ul AI
p

SS
p-
m

SS
p-
un

SS
p-
bf
d

VI
Sl

AU
D
v

SS
s

VI
SC

SS
p-
tr

VI
Sl
i

M
O
p

VI
Sr
l

VI
Sp
l

R
SP
v

R
SP
d

G
U

R
SP
ag
l

PE
R
I

EC
T

VI
Sa
l

IL
A

O
R
Bl AI
d

VI
Sp
m

O
R
Bm P
L

VI
Sp
or
FR
P

AU
D
po TE
a

VI
Sa

VI
Sa
m

M
O
s

O
R
Bv
l

AC
Av

AC
Ad AI
v

Area

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 v
al

ue

Eigencentrality
Firing rate (Hz)

0.2 0.4 0.6 0.8 1.0
Eigencentrality

20

30

40

50

60

Fi
rin

g 
ra

te
 (H

z)

0.0 0.2 0.4 0.6 0.8 1.0
Eigencentrality

0.0

0.2

0.4

0.6

0.8

1.0

D
el

ay
 p

er
io

d 
st

at
e

VISpAUDp AUDdAIp
SSp-unSSp-bfd

VISlSSsVISC
MOp

RSPv

GU RSPagl
PERI

ECT
VISalILA ORBl

AId VISpm
ORBm

PL
VISporFRP

AUDpo
TEa VISa VISamMOs

ORBvlACAv ACAdAIv

Input Input
(cell type-
specific)

EC EC
(cell type-
specific)

0.0

0.2

0.4

0.6

0.8

r

VI
Sp

AU
D
p

SS
p-
ll

AU
D
d

SS
p-
n

SS
p-
ul AI
p

SS
p-
m

SS
p-
un

SS
p-
bf
d

VI
Sl

AU
D
v

SS
s

VI
SC

SS
p-
tr

VI
Sl
i

M
O
p

VI
Sr
l

VI
Sp
l

R
SP
v

R
SP
d

G
U

R
SP
ag
l

PE
R
I

EC
T

VI
Sa
l

IL
A

O
R
Bl AI
d

VI
Sp
m

O
R
Bm P
L

VI
Sp
or
FR
P

AU
D
po TE
a

VI
Sa

VI
Sa
m

M
O
s

O
R
Bv
l

AC
Av

AC
Ad AI
v

Area

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 v
al

ue

Eigencentrality
(cell type specific)
Firing rate (Hz)

0.2 0.4 0.6 0.8 1.0
Eigencentrality

(cell type-specific)

10

20

30

40

50

60

Fi
rin

g 
ra

te
 (H

z)

0.0 0.2 0.4 0.6 0.8 1.0
Eigencentrality

(cell type-specific)

0.0

0.2

0.4

0.6

0.8

1.0

D
el

ay
 p

er
io

d 
st

at
e

VISpAUDp AUDd

AIp
SSp-unSSp-bfdVISl

SSs

VISC
MOp

RSPv

GU
RSPagl

PERI ECT
VISal

ILA
ORBl AId VISpm

ORBm
PLVISporFRP AUDpo

TEa
VISa

VISam
MOs

ORBvl
ACAv

ACAdAIv

Input Input
(cell type-
specific)

EC EC
(cell type-
specific)

0.0

0.2

0.4

0.6

0.8

1.0

pr
ed

ic
tio

n 
sc

or
e

Figure 6 - Supplement 2. Cell type-specific eigenvector centrality measures are better at predicting
firing rate patterns than raw eigenvector centrality measures. The analysis is the same as in Fig. 6,
where we compared cell type-specific input strength and raw input strength. Eigenvector centrality (EC,
eigencentrality) of area i is the ith element of the leading eigenvector of the connectivity matrix. It
quantifies how many areas are connected with the target area i and how important are these neighbors.
Details are in the Methods section. (A(i)). Delay period firing rate (orange) and eigenvector centrality
for each cortical area (blue). (A(ii)). Eigenvector centrality does not show a significant correlation
with delay period firing rate for areas showing persistent activity in the model (r = 0.24, p = 0.29).
(A(iii)). Eigenvector centrality cannot be used to predict whether an area shows persistent activity
or not (prediction accuracy = 0.46). (B(i)). Delay period firing rate (orange) and cell type-specific
eigenvector centrality for each cortical area (blue). (B(ii)). Cell type-specific eigenvector centrality
has a strong correlation with the firing rate of cortical areas showing persistent activity (r = 0.94, p
< 0.05). (B(iii)). Cell type-specific eigenvector centrality predicts whether an area shows persistent
activity or not (prediction accuracy = 0.79). (C). Comparison of the correlation coefficient r for raw
eigenvector centrality and cell type-specific eigenvector centrality in predicting delay firing rate. Raw
input strength and cell type-specific input strength are also included for comparison. (D). Comparison
of the prediction accuracy for raw eigenvector centrality and cell type-specific eigenvector centrality.
Raw input strength and cell type-specific input strength are also included for comparison.
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A2 B2

A1 B1

Figure 6 - Supplement 3. Sign only input strength measure and noPV input strength measure predict
firing rate well. (A1). Delay period firing rate (orange) and sign only input strength for each cortical
areas. (A2). Sign only input strength has a strong correlation with delay period firing rate of cortical
areas showing persistent activity. (r =0.90, p <0.05) (B1). Delay period firing rate (orange) and
noPV input strength for each cortical areas. (B2). noPV input strength has a strong correlation with
delay period firing rate of cortical areas showing persistent activity (r =0.90, p <0.05).
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Figure 7 - Supplement 1. Multiple-area inhibition experiments demonstrate the relative importance
for core and readout areas in maintaining network-level persistent activity. (A). The x-axis shows
readout areas that are inhibited as part of a pair (blue), triplet (orange), or quadruplet (green). For
any given readout area A, the y-axis shows the average firing rate of all cortical areas that exhibit
persistent activity when A was inhibited as part of the inhibited pair (triplet, quadruplet). The
decrement in delay period activity is stronger as more areas are inhibited. (B). Bar plots showing the
average firing rate of the network after inhibition of pair-wise combinations of core and readout areas.
For example, the bar plot for ’readout-readout’ is the average firing rate for all readout-readout areas
pairs and is corresponding to the blue curve in (A). Dashed line in (A) and (B) denotes a threshold
below which we consider an ’inhibition effect’ to be significant. (C). Delay period firing rates as a
function of hierarchy after inhibition of all core areas during the delay period. Although some readout
areas show persistent firing, there is 48% decrement in average firing rate.
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A(i) B(i)

A(ii) B(ii)

Figure 8 - Supplement 1. Cell type-specific loop strengths (Length 3 loops) are also better at predicting
firing rate patterns than raw loop measures. Loop strengths (length 3 loops or L3) is calculated using
similar method as loop strengths (length 2 loops). The only difference is we considered loops with
length 3 (eg. A1->A2->A3->A1). The analysis is the same as in Fig. 7, where we compared cell
type-specific loop strengths (length 2 loops) and raw loop strengths. (A(i)). Loop strength (blue) is
plotted alongside Core Areas (orange), a binary variable that takes the value 1 if the area is indeed
a Core Area, 0 otherwise. Loop strength is normalized to a range of (0, 1) for better comparison.
(A(ii)). A high loop strength value does not imply that an area is a Core Area. (B(i)). Same as (A),
but for cell type-specific loop strength. (B(ii)). High cell type-specific loop measures predicts that
an area is a Core Area (prediction accuracy = 0.95). Same as (A), but for cell type-specific loop
strength.
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A1 B1

A2 B2

C1 D1

C2 D2

Figure 8 - Supplement 2. (A1). Relationship between core areas (orange) and length 2 (sign only)
loop strength. Areas are sorted according to their hierarchy. Whether an area is a core area is
represented in either 0 or 1. (A2). High loop strength is a good predictor of whether an area is a core
area. Blue curve shows the logistic regression analysis used to differentiate the core areas versus non
core areas (prediction accuracy = 0.83). (B1) and (B2). Same as (A1) and (A2), but with length 3
sign only loop strength. Length 3 sign only loop strength does not show a positive relationship with
core areas (prediction accuracy = 0.83) (C1). (C2). Same as (A1) and (A2), except for comparing
whether an area is a core area (orange) and length 2 noPV loop strength. Length 2 noPV loop
strength predicts the core areas. prediction accuracy = 0.90 (D1). (D2). Same to A1 and A2, except
for comparing whether an area is a core area (orange) and length 3 noPV loop strength. Length 3
noPV loop strength does not show a positive relationship with core areas. prediction accuracy = 0.83.
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Area Supporting literature
ALM (MOs) (Kopec et al. 2015; Guo et al. 2014; Li et al. 2016b),

(Inagaki et al. 2019; Erlich et al. 2011; Guo et al. 2017),
(Gilad et al. 2018; Gao et al. 2018),

(Wu et al. 2020; Voitov and Mrsic-Flogel 2022)
mPFC (PL/ILA) (Liu et al. 2014; Schmitt et al. 2017),

(Bolkan et al. 2017)
OFC (Wu et al. 2020)
PPC (VISa, VISam) (Harvey et al. 2012; Voitov and Mrsic-Flogel 2022)
AIa (AId, AIv) (Zhu et al. 2020)
Area p (VISpl) (Gilad et al. 2018)
dorsal cortex (Pinto et al. 2019)
entorhinal (in vitro persistent activity) (Egorov et al. 2002)
piriform (Zhang et al. 2019; Wu et al. 2020)
VM/VAL (Guo et al. 2017)
MD (Schmitt et al. 2017; Bolkan et al. 2017)
superior colliculus (Kopec et al. 2015)
cerebellar nucleus (Gao et al. 2018)

Table 1: Supplementary experimental evidence. The listed literature include experiments that provide
supporting evidence for working memory activity in cortical and subcortical brain areas in the mouse
or rat. These studies show either that a given area is involved in working memory tasks and/or
exhibit delay period activity. Area name corresponds to what has been reported in the literature. Some
areas do not correspond exactly to the names from the Allen common coordinate framework.
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Main text: Distributed working memory in the mouse brain

Parameter Description Task/Figure Value

Cortical circuit parameters
τNMDA NMDA synapse time constant All figures 60 ms
τGABA GABA synapse time constant All figures 5 ms
τAMPA AMPA synapse time constant All figures 2 ms
τrates neuron time constant All figures 2 ms
τnoise noise time constant All figures 2 ms
a, b, d parameters in excitatory F-I curve. All figures 140 Hz/nA, 54 Hz, 308 ms

gI , c1, c0, r0I parameters in inhibitory F-I curve. All figures 4, 615 Hz/nA, 177 Hz, 5.5 Hz
γ parameters in NMDA excitatory synaptic equations. All figures 1.282
γI parameters in GABA synaptic equations. All figures 2
γA parameters in AMPA excitatory synaptic equations. All figures 2

gE,self local self excitatory connections Figures 1-8 0.4 nA
gE,cross local cross population excitatory connections All figures 10.7 pA
gIE local E to I connections All figures 0.2656 nA

gEI,0, gEI,scaling local I to E connection strength All figures 0.192 nA, 0.83
gII,0, gII,scaling local I to I connection strength All figures 0.105 nA, 0.714

I0A, I0B background current for excitatory neurons All figures 0.305 nA
I0C background current for inhibitory neurons All figures 0.26 nA

σA, σB standard deviation of excitatory noise current All figures 5 pA
σC standard deviation of inhibitory noise current All figures 0 pA
r0E background current for excitatory neurons All figures 5 Hz
r0I background current for excitatory neurons All figures 5.5 Hz
µEE long range E to E connection strength Figures 1, 2, 3, 4, 6, 7, 8 0.1 nA
µIE long range E to I connection strength Figures 1, 2, 3, 4, 6, 7, 8 0.167 nA
β parameters in mij All figures 2.42

kscale parameters for scaling the connectivity matrix All figures 0.3
αh, βh parameters for estimation of hierarchy All figures 1.33, −0.22
Istim external stimulus strength All figures 0.5 nA
Iinh external input to inhibitory neurons All figures 5 nA
Ton stimulus start time All figures 2 s
Toff stimulus end time All figures 2.5 s
Ttrial simulation time for each trial All figures 10 s
dt simulation time step All figures 0.5 ms

Thalamocortical network
µEE long range E to E connection strength Figure 5 0.01 nA
µIE long range E to I connection strength Figure 5 0.0167 nA
gct cortico thalamic connections strength Figure 5 0.32 nA
gE,tc thalamo-cortical connections to excitatory neurons Figure 5 0.6 nA
gI,tc thalamo-cortical connections to inhibitory neurons Figure 5 1.38 nA

Simulation of multiple attractors
µEE long range E to E connection strength Figure 9 0.01, 0.02, 0.03, 0.04, 0.05 nA
µIE long range E to I connection strength Figure 9 0.0167, 0.033, 0.05, 0.066, 0.083 nA

gE,self local self excitatory connections Figure 9 0.4, 0.41, 0.2, 0.43, 0.44 nA

Table 2: Parameters for numerical simulations
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