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Abstract17

Recent advances in connectomic and neurophysiological tools make it possible to probe18

whole-brain mechanisms in the mouse that underlie cognition and behavior. Based on19

experimental data, we developed a large-scale model of the mouse brain for a cardinal20

cognitive function called working memory, the brain’s ability to internally hold and process21

information without sensory input. In the model, interregional connectivity is constrained22

by mesoscopic connectome data. The density of parvalbumin-expressing interneurons in the23

model varies systematically across the cortex. We found that the long-range cell type-specific24

targeting and density of cell classes define working memory representations. A core cortical25

subnetwork and the thalamus produce distributed persistent activity, and the network exhibits26

numerous attractor states. Novel cell type-specific graph theory measures predicted the27

activity patterns and core subnetwork. This work highlights the need for cell type-specific28

connectomics, and provides a theory and tools to interpret large-scale recordings of brain29

activity during cognition.30
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Introduction31

In contrast to our substantial knowledge of local neural computation, such as orientation32

selectivity in the primary visual cortex or spatial map of grid cells in the medial entorhinal33

cortex, much less is understood about distributed processes in multiple interacting brain34

regions underlying cognition and behavior. This has recently begun to change, as advances in35

new technologies enable neuroscientists to probe neural activity at single-cell resolution and36

on a large-scale by electrical recording or calcium imaging of behaving animals (Jun et al.37

2017; Steinmetz et al. 2019; Stringer et al. 2019; Musall et al. 2019; Steinmetz et al. 2021),38

ushering in a new era of neuroscience investigating distributed neural dynamics and brain39

functions (Wang 2022).40

To be specific, consider a core cognitive function called working memory, the ability41

to temporally maintain information in mind without external stimulation (Baddeley 2012).42

Working memory has long been studied in neurophysiology using delay-dependent tasks, where43

stimulus-specific information must be stored in working memory across a short time period44

between a sensory input and a memory-guided behavioral response (Fuster and Alexander45

1971; Funahashi et al. 1989; Goldman-Rakic 1995; Wang 2001). Delay-period mnemonic46

persistent neural activity has been observed in multiple brain regions, suggesting distributed47

working memory representation (Suzuki and Gottlieb 2013; Leavitt et al. 2017; Christophel48

et al. 2017; Xu 2017; Dotson et al. 2018). Connectome-based computational models of the49

macaque cortex found that working memory activity depends on interareal connectivity50

(Murray et al. 2017; Jaramillo et al. 2019), macroscopic gradients of synaptic excitation51

(Wang 2020; Mejias and Wang 2022) and dopamine modulation (Froudist-Walsh et al. 2021a).52

Mnemonic neural activity during a delay period is also distributed in the mouse brain53

(Liu et al. 2014; Schmitt et al. 2017; Guo et al. 2017; Bolkan et al. 2017; Gilad et al. 2018).54

The new recording and imaging techniques as well as optogenetic methods for causal analysis55

(Yizhar et al. 2011), that are widely applicable to behaving mice, hold promise for elucidating56

the circuit mechanism of distributed brain functions in rodents. Recurrent synaptic excitation57

represents a neural basis for the maintenance of persistent neural firing (Goldman-Rakic58

1995; D. J. Amit 1995; Wang 2021). In the monkey cortex, the number of spines (sites59

of excitatory synapses) per pyramidal cell increases along the cortical hierarchy, consistent60

with the idea that mnemonic persistent activity in association cortical areas including the61

prefrontal cortex is sustained by recurrent excitation stronger than in early sensory areas.62

Such a macroscopic gradient is lacking in the mouse cortex (Gilman et al. 2017), raising the63

possibility that the brain mechanism for distributed working memory representations may be64

fundamentally different in mice and monkeys.65

In this paper we report a cortical mechanism of distributed working memory that does not66

depend on a gradient of synaptic excitation. We developed an anatomically-based model of67

the mouse brain for working memory, built on the recently available mesoscopic connectivity68

data of the mouse thalamocortical system (Oh et al. 2014; Gămănuţ et al. 2018; Harris69
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Main text: Distributed working memory in the mouse brain

et al. 2019; Kim et al. 2017). Our model is validated by capturing large-scale neural activity70

observed in recent mouse experiments (Guo et al. 2017; Gilad et al. 2018). Using this model,71

we found that a decreasing gradient of synaptic inhibition mediated by parvalbumin (PV)72

positive GABAergic cells (Kim et al. 2017; Fulcher et al. 2019; Wang 2020) shapes the73

distributed pattern of working memory representation.74

A focus of this work is to examine whether anatomical connectivity can predict the75

emergent large-scale neural activity pattern underlying working memory. Interestingly,76

traditional graph-theory measures of inter-areal connections, which ignore cell types of77

projection targets, are uncorrelated with activity patterns. We propose new cell type-78

specific graph theory measures to overcome this problem, and differentiate contributions of79

cortical areas in terms of their distinct role in loading, maintaining, and reading out the80

content of working memory. Through computer-simulated perturbations akin to optogenetic81

inactivations, a core subnetwork was uncovered for the generation of persistent activity. This82

core subnetwork can be predicted based on the cell type-specific interareal connectivity,83

highlighting the necessity of knowing the cell type targets of interareal connections in order84

to relate anatomy with physiology and behavior. This work provides a computational and85

theoretical platform for cross-scale understanding of cognitive processes across the mouse86

cortex.87

Results88

A decreasing gradient of PV interneuron density from sensory to89

association cortex90

Our large-scale circuit model of the mouse cortex uses inter-areal connectivity provided by91

anatomical data within the 43-area parcellation in the common coordinate framework v3 atlas92

(Oh et al. 2014) (Fig. 1A, Fig 1 - supplement 1A). The model is endowed with area-to-area93

variation of parvalbumin-expressing interneurons (PV) in the form of a gradient measured94

from the qBrain mapping platform (Fig 1 - supplement 1B) (Kim et al. 2017). The PV cell95

density (the number of PV cells per unit volume) is divided by the total neuron density, to96

give the PV cell fraction, which better reflects the expected amount of synaptic inhibition97

mediated by PV neurons (Fig. 1B-C, neuron density is shown in Fig 1 - supplement 1C).98

Cortical areas display a hierarchy defined by mesoscopic connectome data acquired using99

anterograde fluorescent tracers (Oh et al. 2014) (Fig. 1D-E). In Fig. 1F, the PV density is100

plotted as a function of the cortical hierarchy, which shows a moderate negative correlation101

between the two. Therefore, primary sensory areas have a higher density of PV interneurons102

than association areas, although the gradient of PV densities does not align perfectly with103

the cortical hierarchy.104
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Figure 1: Anatomical basis of the multi-regional mouse cortical model. (A). Flattened view of mouse
cortical areas. Figure adapted from (Harris et al. 2019). (B). Normalized PV cell fraction for each
brain area, visualized on a 3d surface of the mouse brain. Five areas are highlighted : VISp, Primary
somatosensory area, barrel field (SSp-bfd), primary motor (MOp), MOs and PL. (C). The PV cell
fraction for each cortical area, ordered. Each area belongs to one of five modules, shown in color.
(Harris et al. 2019). (D). Hierarchical position for each area on a 3d brain surface. Five areas are
highlighted as in (B), and color represents the hierarchy position. (E). Hierarchical positions for each
cortical area. The hierarchical position is normalized and the hierarchical position of VISp is set to
be 0. Same as (C), colors represent which module an area belongs to. (F). Correlation between PV
cell fraction and hierarchy (Pearson correlation coefficient r = −0.35, p < 0.05).
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Main text: Distributed working memory in the mouse brain

A whole-mouse cortex model with a gradient of interneurons105

In our model, each cortical area is described by a local circuit (Fig. 2A), using a mean-field106

reduction (Wong and Wang 2006) of a spiking neural network (Wang 2002). A minimal107

version of it has two neural pools selective for different stimuli and a shared inhibitory108

neural pool. The model makes the following assumptions. First, local inhibitory strength is109

proportional to PV interneuron density across the cortex. Second, the inter-areal long-range110

connection matrix is given by the anterograde tracing data (Oh et al. 2014; Knox et al. 2018;111

Wang et al. 2020). Third, targeting is biased onto inhibitory cells for top-down compared112

with bottom-up projections, therefore feedforward connections have a greater net excitatory113

effect than feedback connections (counterstream inhibitory bias, CIB) (Mejias and Wang114

2022; Javadzadeh and Hofer 2022; Wang 2022).115

Distributed working memory activity depends on the gradient of116

inhibitory neurons and the cortical hierarchy117

We simulated the large-scale network to perform a simple visual delayed response task that118

requires one of two stimuli to be held in working memory. We shall first consider the case in119

which the strength of local recurrent excitation is insufficient to generate persistent activity120

when parcellated areas are disconnected from each other. Consequently, the observed dis-121

tributed mnemonic representation must depend on long-range interareal excitatory connection122

loops. Later in the paper we will discuss the network model behavior when some local areas123

are capable of sustained persistent firing in isolation.124

The main question is: when distributed persistent activity emerges after a transient visual125

input (a 500 ms current pulse to a selective excitatory population) is presented to the primary126

visual cortex (VISp), what determines the spatial pattern of working memory representation?127

After we remove the external stimulus, the firing rate in area VISp decreases rapidly to128

baseline. Neural activity propagates throughout the cortex after stimulus offset (Fig. 2B).129

Neural activities in the higher visual cortical areas (e.g. VISrl and VISpl) show similar130

dynamics to VISp. In stark contrast, many frontal and lateral areas (including prelimbic131

(PL), infralimbic (ILA), secondary motor (MOs) and ventral agranular insula (AIv) areas)132

sustained a high firing rate during the delay period (Fig. 2B). Areas that are higher in the133

cortical hierarchy show elevated activity during the delay period (Fig. 2C). This persistent134

firing rate could last for more than 10 seconds and is a stable attractor state of the network135

(Inagaki et al. 2019).136

The cortical hierarchy and PV fraction predict the delay period firing rate of each cortical137

area (Fig. 2C-E). Thus the activity pattern of distributed working memory depends on both138

local and large-scale anatomy. The delay activity pattern has a stronger correlation with139

hierarchy (r = 0.91) than with the PV fraction (r = −0.43). The long-range connections thus140

play a predominant important role in defining the persistent activity pattern.141

Activity in early sensory areas such as VISp displays a rigorous response to the transient142
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Figure 2: Distributed working memory activity depends on the gradient of PV density and the
cortical hierarchy. (A). Model design of the large-scale model for distributed working memory. Top,
connectivity map of the cortical network. Each node corresponds to a cortical area and an edge
is a connection, where the thickness of the edge represents the strength of the connection. Only
strong connections are shown (without directionality for the sake of clarity). Bottom, local and
long-range circuit design. Each local circuit contains two excitatory populations (red), each selective
to a particular stimulus and one inhibitory population (blue). Long-range connections are scaled by
mesoscopic connectivity strength (Oh et al. 2014) and follows counterstream inhibitory bias (CIB)
(Mejias and Wang 2022). (B). The activity of 6 selected areas during a working memory task is
shown. A visual input of 500ms is applied to area VISp, which propagates to the rest of the large-scale
network. (C). Delay period firing rate for each area on a 3d brain surface. Similar to Fig. 1B, the
positions of 5 areas are labeled. (D). Delay-period firing rate is positively correlated with cortical
hierarchy (r = 0.91, p < 0.05). (E). Delay-period firing rate is negatively correlated with PV cell
fraction (r = −0.43, p < 0.05).
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input but returns to a low firing state after stimulus withdrawal. In contrast, many frontal143

areas show strong persistent activity. When the delay period firing rates are plotted versus144

hierarchy, we observe a gap in the distribution of persistent activity (Fig. 2D) that marks an145

abrupt transition in the cortical space. This leads to the emergence of a subnetwork of areas146

capable of working memory representations.147

We also used our circuit model to simulate delayed response tasks with different sensory148

modalities (Fig 2 - supplement 1), by stimulating primary somatosensory area SSp-bfd and149

primary auditory area AUDp. The pattern of delay period firing rates for these sensory150

modalities is similar to the results obtained for the visual task: sensory areas show transient151

activity, while frontal and lateral areas show persistent activity after stimulus withdrawal.152

Moreover, the cortical hierarchy could predict the delay period firing rate of each cortical153

area well (r = 0.89, p < 0.05). Our model thus predicts that working memory may share154

common activation patterns across sensory modalities, which is partially supported by cortical155

recordings during a memory-guided response task (Inagaki et al. 2018).156

Thalamocortical interactions maintain distributed persistent activity157

To investigate how thalamocortical interactions affect the large-scale network dynamics,158

we designed a thalamocortical network similar to the cortical network (Fig. 3A). Several159

studies have shown that thalamic areas are also involved in the maintenance of working160

memory (Bolkan et al. 2017; Guo et al. 2017; Schmitt et al. 2017). However, the large-scale161

thalamocortical mechanisms underlying memory maintenance are unknown. We set the162

strength of connections between the thalamus and cortex using data from the Allen Institute163

(Oh et al. 2014) (Fig 3 - supplement 1). All thalamocortical connections in the model are164

mediated by AMPA synapses. There are no recurrent connections in the thalamus within165

or across thalamic nuclei (Jones 2007). The effect of thalamic reticular nucleus neurons166

was included indirectly as a constant inhibitory current to all thalamic areas. Similarly to167

cortical areas, the thalamus is organized along a measured hierarchy (Harris et al. 2019). For168

example, the dorsal part of the lateral geniculate nucleus (LGd) is lower than the cortical169

area VISp in the hierarchy, consistent with the fact that LGd sends feedforward inputs to170

VISp. Thalamocortical projections in the model are slightly more biased toward excitatory171

neurons in the target area if they are feedforward projections and towards inhibitory neurons172

if they are feedback.173

Here, we weakened the strength of cortical interareal connections as compared to the174

cortex model of Fig. 2. Now, persistent activity can still be generated (Fig. 3B, blue) but is175

maintained with the help of the thalamocortical loop, as observed experimentally (Guo et al.176

2017). Indeed, in simulations where the thalamus was inactivated, the cortical network no177

longer showed sustained activity (Fig. 3B, red).178

In the thalamocortical model, the delay activity pattern of the cortical areas correlates179

with the hierarchy, again with a gap in the firing rate separating the areas engaged in180
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Figure 3: Thalamocortical interactions help maintain distributed persistent activity. (A). Model
schematic of the thalamocortical network. The structure of the cortical component is the same as our
default model in Fig. 2A, but with modified parameters. Each thalamic area includes two excitatory
populations (red square) selective to different stimuli. Long range projections between thalamus and
cortex also follow the counterstream inhibitory bias rule as in the cortex. Feedforward projections
target excitatory neurons with stronger connections and inhibitory neurons with weaker connections;
the opposite holds for feedback projections. (B). The activity of 6 sample cortical areas in a working
memory task is shown during control (blue) and when thalamic areas are inhibited in the delay period
(red). Black dashes represent the external stimulus applied to VISp. Red dashes represent external
inhibitory input given to all thalamic areas. (C). Delay period firing rate of cortical areas in the
thalamocortical network. The activity pattern has a positive correlation with cortical hierarchy (r
= 0.78, p < 0.05). (D). Same as (C) but plotted against PV cell fraction. The activity pattern
has a negative correlation with PV cell fraction, but it is not significant (r = −0.26, p = 0.09).
(E). Delay firing rate of thalamic areas in thalamocortical network. The firing rate has a positive
correlation with thalamic hierarchy (r = 0.94, p < 0.05). (F). Delay period firing rate of cortical
areas in thalamocortical network has a positive correlation with delay firing rate of the same areas in
a cortex-only model (r = 0.77, p < 0.05). Note that only the areas showing persistent activity in both
models are considered for correlation analyses.
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Main text: Distributed working memory in the mouse brain

persistent activity from those that do not (Fig. 3B, Fig. 3C). Sensory areas show a low181

delay firing rate, and frontal areas show strong persistent firing. Unlike the cortex, the firing182

rate of thalamic areas continuously increases along the hierarchy (Fig. 3E). On the other183

hand, cortical dynamics in the thalamocortical and cortical models show many similarities.184

Early sensory areas do not show persistent activity in either model. Many frontal and lateral185

areas show persistent activity and there is an abrupt transition in cortical space in the186

thalamocortical model, like in the cortex only model. Quantitatively, the delay firing pattern187

of the cortical areas is correlated with the hierarchy and the PV fraction (Fig. 3C, Fig.188

3D). Furthermore, the delay period firing rate of cortical areas in the thalamocortical model189

correlates well with the firing rate of the same areas in the cortical model (Fig. 3F). This190

comparison suggests that the cortical model captures most of the dynamical properties in191

the thalamocortical model; therefore in the following analyses, we will mainly focus on the192

cortex-only model for simplicity.193

Cell type-specific connectivity measures predict distributed persistent194

firing patterns195

Structural connectivity constrains large-scale dynamics (Mejias and Wang 2022; Froudist-196

Walsh et al. 2021a; Cabral et al. 2011). However, we found that standard graph theory197

measures could not predict the pattern of delay period firing across areas. There is no198

significant correlation between input strength and delay period firing rate (r = 0.25, p = 0.25,199

Fig. 4A(i), A(ii)) and input strength cannot predict which areas show persistent activity200

(prediction accuracy = 0.51, Fig. 4A(iii)). We hypothesized that this is because currently201

available connectomic data used in this model do not specify the type of neurons targeted by202

the long-range connections. For instance, when two areas are strongly connected with each203

other, such a loop would contribute to the maintenance of persistent activity if projections are204

mutually excitatory, but not if one of the two projections predominantly targets inhibitory205

PV cells. Therefore, cell type-specificity of interareal connections must be taken into account206

in order to relate the connectome with the whole-brain dynamics and function. To examine207

this possibility, we introduced a cell type projection coefficient (see Calculation of network208

structure measures in the Methods), which is smaller with a higher PV cell fraction in209

the target area (Fig 4 - supplement 1). The cell type projection coefficient also takes cell210

type targets of long range connections into account, which, in our model, is quantified by211

counterstream inhibitory bias (CIB). As a result, the modified cell type-specific connectivity212

measures increase if the target area has a low density of PV interneurons and/or if long-range213

connections predominantly target excitatory neurons in the target area.214

We found that cell type-specific graph measures accurately predict delay-period firing215

rates. The cell type-specific input strength of the early sensory areas is weaker than the raw216

input strength (Fig. 4B(i)). The firing rate across areas is positively correlated with cell217

type-specific input strength (Fig. 4B(ii)). Cell type-specific input strength also accurately218
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Figure 4: Cell type-specific connectivity measures are better at predicting firing rate pattern than
nonspecific ones. (A(i)). Delay period firing rate (orange) and input strength for each cortical area.
Input strength of each area is the sum of connectivity weights of incoming projections. Areas are
plotted as a function of their hierarchical positions. Delay period firing rate and input strength are
normalized for better comparison. (A(ii)). Input strength does not show significant correlation with
delay period firing rate for areas showing persistent activity in the model (r = 0.25, p = 0.25). (A(iii)).
Input strength cannot be used to predict whether an area shows persistent activity or not (prediction
accuracy = 0.51). (B(i)). Delay period firing rate (orange) and cell type-specific input strength for
each cortical area. Cell type-specific input strength considers how the long-rang connections target
different cell types and is the sum of modulated connectivity weights of incoming projections. Same as
(A(i)), areas are sorted according to their hierarchy and delay period firing rate and input strength are
normalized for better comparison. (B(ii)). Cell type-specific input strength has a strong correlation
with delay period firing rate of cortical areas showing persistent activity (r = 0.89, p < 0.05). Inset:
Comparison of the correlation coefficient for raw input strength and cell type-specific input strength.
(B(iii)). Cell type-specific input strength predicts whether an area shows persistent activity or not
(prediction accuracy = 0.95). Inset: comparison of the prediction accuracy for raw input strength
and cell type-specific input strength.
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Main text: Distributed working memory in the mouse brain

predicts which areas show persistent activity (Fig. 4B(iii)). Similarly, we found that the cell219

type-specific eigenvector centrality, but not standard eigenvector centrality (Newman 2018),220

was a good predictor of delay period firing rates (Fig. 4 - supplement 2).221

A core subnetwork for persistent activity across the cortex222

Many areas show persistent activity in our model. However, are all active areas equally223

important in maintaining persistent activity? When interpreting large-scale brain activity, we224

must distinguish different types of contribution to working memory. For instance, inactivation225

of an area like VISp impairs performance of a delay-dependent task because it is essential226

for a (visual) "input" to access working memory; on the other hand a "readout" area may227

display persistent activity only as a result of sustained inputs from other areas that form a228

"core", which are causally important for maintaining a memory representation.229

We propose four types of areas related to distributed working memory: input, core,230

readout, and nonessential (Fig. 5A). External stimuli first reach input areas, which then231

propagate activity to the core and non-essential areas. Core areas form recurrent loops and232

support distributed persistent activity across the network. By definition, disrupting any of233

the core areas would affect persistent activity globally. The readout areas also show persistent234

activity. Yet, inhibiting readout areas has little effect on persistent activity elsewhere in235

the network. We can assign the areas to the four classes based on three properties: a) the236

effect of inhibiting the area during stimulus presentation on delay activity in the rest of the237

network; b) the effect of inhibiting the area during the delay period on delay activity in the238

rest of the network; c) the delay activity of the area itself on trials without inhibition.239

In search of a core working memory subnetwork in the mouse cortex, in model simulations240

we inactivated each area either during stimulus presentation or during the delay period, akin241

to optogenetic inactivation in mice experiments. The effect of inactivation was quantified242

by calculating the decrement in the firing rate compared to control trials for the areas that243

were not inhibited (Fig. 5B). The VISp showed a strong inhibition effect during the stimulus244

period, as expected for an Input area. We identified eight areas with a substantial inhibition245

effect during the delay period (Fig. 5C), which we identify as a core for working memory.246

Core areas are distributed across the cortex. They include frontal areas PL, ILA, medial part247

of the orbital area (ORBm), which are known to contribute to working memory (Liu et al.248

2014; Bolkan et al. 2017). Other associative and sensory areas (AId, VISpm, ectorhinal area249

(ECT), perihinal area (PERI), gustatory area (GU)) are also in the core. Similarly, we used250

the above criteria to classify areas as Readout or Non-essential (Fig. 5D).251

The core subnetwork can be identified by the presence of strong252

excitatory loops253

Inhibition protocols across many areas are computationally costly. We sought a structural254

indicator that is easy to compute and is predictive of whether an area is engaged in working255
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Figure 5: A core subnetwork generates persistent activity across the cortex. (A). We propose four
different types of areas. Input areas (red) are responsible for coding and propagating external signals,
which are then propagated through synaptic connections. Core areas (blue) form strong recurrent
loops and generate persistent activity. Readout areas (green) inherit persistent activity from core
areas. Nonessential areas (purple) may receive inputs and send outputs but they do not affect the
generation of persistent activity. (B). Delay period firing rate for cortical areas engaged in working
memory (Y axis) after inhibiting different cortical areas (X axis). Areas in the X axis and Y axis are
both sorted according to hierarchy. Firing rates of areas with small firing rate (<1Hz) are partially
shown (only RSPv and RSPd are shown because their hierarchical positions are close to areas showing
persistent activity). (C). The average firing rate for areas engaged in persistent activity under each
inhibition simulation. The X axis shows which area is inhibited, and the Y axis shows the average
delay period activity for all areas showing persistent activity. Note that when calculating the average
firing rate, the inactivated area was excluded in order to focus on the inhibition effect of one area on
other areas. Average firing rates on the Y axis are normalized using the average firing in control
(no inhibition) simulation. (D). Classification of 4 types of areas based on their delay period activity
after stimulus- and delay-period inhibition. The inhibition effect, due to either stimulus or delay
period inhibition, is the change of average firing rate normalized by the average firing rate in the
control condition. Areas with strong inhibition effect during stimulus period are classified as Input
areas; areas with strong inhibition effect during delay period and strong delay period firing rate are
classified as Core areas; areas with weak inhibition effect during delay period but strong delay period
firing rate during control are classified as Readout areas; areas with weak inhibition effect during
delay period and weak delay period firing rate during control are classified as Nonessential areas.
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Main text: Distributed working memory in the mouse brain

memory function. Such an indicator could also guide the interpretation of large-scale neural256

recordings in experimental studies. In the dynamical regime where individual cortical areas257

do not show persistent activity independently, distributed working memory patterns must258

be a result of long-range recurrent loops across areas. We thus introduced a quantitative259

measurement of the degree to which each area is involved in long-range recurrent loops (Fig.260

6A).261

The core subnetwork can be identified by the presence of strong loops between excitatory262

cells. Here we focus on length-2 loops (Fig. 6A); the strength of a loop is the product of263

two connection weights for a reciprocally connected pair of areas; and the loop strength264

measure of an area is the sum of the loop strengths of all length-2 loops that the area is part265

of. Results were similar for longer loops (Fig. 6B, also see Fig. 6 - supplement 1 for results266

of longer loops). The raw loop strength had no statistical relationship to the core working267

memory subnetwork (Fig. 6C(i), Fig. 6C(ii)). We then defined cell type-specific loop strength268

(see Methods). The cell type-specific loop strength is the raw loop strength multiplied by269

the cell type projection coefficient. The cell type-specific loop strength, but not the raw270

loop strength, predicts which area is a core area with high accuracy (Fig. 6D(i), Fig. 6D(ii),271

prediction accuracy = 0.93). This demonstrates that traditional connectivity measures are272

informative but not sufficient to explain dynamics during cognition in the mouse brain. Cell273

type-specific connectivity, and new metrics that account for such connectivity, are necessary274

to infer the role of brain areas in supporting large-scale brain dynamics during cognition.275

Multiple attractor states emerge from the mouse mesoscopic connec-276

tome and local recurrent interactions277

Different tasks lead to dissociable patterns of internally sustained activity across the brain,278

described as separate attractor states. We developed a protocol to identify other attractor279

states, then analyzed the relationship between network properties and the attractor states280

(Fig. 7A-C). For different parameters, the number of attractors and the attractor patterns281

change. Two parameters are especially relevant here. These are the long-range connection282

strength (µEE) and local excitatory connection strength (gE,self ). These parameters affect the283

number of attractors in a model of the macaque cortex (Mejias and Wang 2022). Increasing284

the long range connection strength decreases the number of attractors (Fig. 7D). Stronger285

long-range connections implies that the coupling between areas is stronger. If areas are286

coupled with each other, the activity state of an area will be highly correlated to that of its287

neighbors. This leads to less variability and fewer attractors.288

To quantify how the patterns of attractors change for different parameters, two quantities289

are introduced. The attractor fraction is the fraction of all detected attractor states to which290

an area belongs. An area "belongs" to an attractor state if it is in a high activity state in that291

attractor. The attractor size is defined by the number of areas belonging to that attractor.292

As we increased the long-range connection strength, the attractor size distribution became293
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Figure 6: The core subnetwork can be identified structurally by the presence of strong excitatory
loops. (A). Distribution of length-2 loops. X axis is the single loop strength of each loop (product
of connectivity strengths within loop) and Y axis is their relative frequency. (B). Loop strengths of
each area calculated using different length of loops (e.g., length 3 vs length 2) are highly correlated (r
= 0.96, p < 0.05). (C(i)). Loop strength (blue) is plotted alongside Core Areas (orange), a binary
variable that takes the value 1 if the area is a Core Area, 0 otherwise. Areas are sorted according to
their hierarchy. (C(ii)). A high loop strength value does not imply that an area is a core area. Blue
curve shows the logistic regression curve fits to differentiate the core areas versus non core areas.
(D(i)). Same as (C), but for cell type-specific loop strength. (D(ii)). A high cell type-specific loop
strength predicts that an area is a core area (prediction accuracy = 0.93). Same as (C), but for cell
type-specific loop strength.
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Main text: Distributed working memory in the mouse brain

bimodal. The first mode corresponded to large attractors, with many areas. The second294

mode corresponded to small attractors, with few areas (Fig. 7D).295

When the local excitatory strength is increased, the number of attractors increased as296

well (Fig. 7E). In this regime some areas are endowed with sufficient local reverberation to297

sustain persistent activity even when decoupled from the rest of the system, therefore the298

importance of long-range coupling is diminished and a greater variety of attractor states is299

enabled. This can be understood by a simple example of two areas 1 and 2, each capable of300

two stimulus-selective persistent activity states; even without coupling there are 2× 2 = 4301

attractor states with elevated firing. Thus, local and long-range connection strength have302

opposite effects on the number of attractors.303

The cell type-specific input strength predicted firing rates across many attractors. In304

an example parameter regime (µEE = 0.04 nA and gE,self = 0.44 nA), we identified 143305

attractors. We correlated the input strength and cell type-specific input strength with the306

many attractor firing rates (Fig. 7F). The raw input strength is weakly correlated with307

activity patterns. The cell type-specific input strength is strongly correlated with activity308

across attractors. This shows that the cell type-specific connectivity measures are better at309

predicting the firing rates in many scenarios. These results further prove the importance of310

having cell type-specific connectivity for modeling brain dynamics.311

Different attractor states rely on distinct subsets of core areas. In one example attractor,312

we found 5 areas that show persistent activity: VISa, VISam, FRP, MOs and ACAd (Fig.313

7G). We repeated the previous inhibition analysis to identify core areas for this attractor314

state. Inhibiting one area, MOs, during the delay had the strongest effect on delay activity315

in the other parts of the attractor (Fig. 7H). MOs also showed strong persistent activity316

during delay period. This is consistent with its role in short-term memory and planning (Li317

et al. 2015; Inagaki et al. 2019). According to our definition, MOs is a core area for this318

attractor. To calculate a loop strength that was specific to this attractor, we only examined319

connections between these five areas. The cell type-specific loop strength was strongest in320

area MOs (Fig. 7I). Thus, we can identify likely core areas for individual attractor states321

from cell type-specific structural measures. This also demonstrates that different attractor322

states can be supported by distinct core areas.323

Discussion324

We developed a connectome-based dynamical model of the mouse brain. The model was325

capable of internally maintaining sensory information across many brain areas in distributed326

activity in the absence of any input. To our knowledge this is the first biologically-based model327

of the entire mouse cortex and the thalamocortical system for a cognitive function. Together328

with our recent work (Mejias and Wang 2022; Froudist-Walsh et al. 2021a; Froudist-Walsh329

et al. 2021b), it provides a study of contrast between mice and monkeys.330

Our main findings are threefold. First, mnemonic activity pattern is shaped by the differing331
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Figure 7: Multiple attractors coexist in the mouse working memory network. (A-C) Example attractor
patterns with a fixed parameter set. Each attractor pattern can be reached via different external
input patterns applied to the brain network. Delay activity is shown on a 3D brain surface. Color
represents the firing rate of each area. (D-E) The distribution of attractor fractions (left) and number
of attractors as a function of size (right) for different parameter combinations are shown. Attractor
fraction of an area is the ratio between the number of attractors that include the area and the total
number of identified attractors. In (D), local excitatory strengths are fixed (gE,self = 0.44 nA) while
long-range connection strengths vary in the range µEE = 0.01-0.05 nA. Left and right panels of
(D) show one specific parameter µEE = 0.03 nA. Inset panel of (D) shows the number of attractors
under different long-range connection strengths while gE,self is fixed at 0.44 nA. In (E), long range
connection strengths are fixed (µEE = 0.02 nA) while local excitatory strengths varies in the range
gE,self = 0.4-0.44 nA. Left and right panels of (E) show one specific parameter gE,self = 0.43 nA.
Inset panel of (E) shows the number of attractors under different local excitatory strengths, while
µEE is fixed at 0.02 nA. (F). Prediction of the delay period firing rate using input strength and
cell type-specific input strength for each attractor state identified under µEE = 0.04 nA and gE,self

= 0.44 nA. 143 distinct attractors were identified and the average correlation coefficient using cell
type-specific input strength is better than that using input strength. (G). A example attractor state
identified under the parameter regime µEE = 0.03 nA and gE,self = 0.44 nA. The 5 areas with
persistent activity are shown in red. (H). Effect of single area inhibition analysis for the attractor state
in (G). For a regime where 5 areas exhibit persistent activity during the delay period, inactivation of
the premotor area MOs yields a strong inhibition effect (<0.95 orange dashed line) and is therefore a
Core area for the attractor state in (G). (I). Cell type-specific loop strength (blue) is plotted alongside
Core areas (orange). Only 5 areas with persistent activity are used to calculate the loop strength.
Loop strength is normalized to be within the range of 0 and 1. High cell type-specific loop measures
predict that an area is a Core area (prediction accuracy is 100% correct). The number of areas is
limited, so prediction accuracy is very high.
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Main text: Distributed working memory in the mouse brain

densities of PV interneurons across cortical areas. Areas with high PV density encoded332

information only transiently. Those with low PV density sustained activity for longer periods.333

Thus, the gradient of PV cells (Kim et al. 2017) has a definitive role in separating rapid334

information processing in sensory areas from sustained mnemonic information representation335

in associative areas of the mouse cortex. This is consistent with the view that each local area336

operates in the “inhibition-stabilizing regime" where recurrent excitation alone would lead337

to instability but the local network is stabilized by feedback inhibition even in the primary338

visual cortex (R. J. Douglas et al. 1995; Murphy and Miller 2009). Second, we deliberately339

considered two different dynamical regimes: when local recurrent excitation is not sufficient340

to sustain persistent activity and when it does. In the former case, distributed working341

memory must emerge from long-range interactions between parcellated areas, thereby the342

concept of synaptic reverberation ( Lorente de Nó 1933; P. S. Goldman-Rakic 1995; Wang343

2001; Wang 2021) is extended to the large-scale global brain. Note that currently it is unclear344

whether persistent neural firing observed in a delay dependent task is generated locally or345

depends on long-distance reverberation among multiple brain regions. Our work made the346

distinction explicit and offers specific predictions to be tested experimentally. Third, presently347

available connectomic data are not sufficient to account for neural dynamics and distributed348

cognition, and we propose cell type-specific connectomic measures that are shown to predict349

the observed distributed working memory representations.350

We found that the cortical structures form recurrent loops with the thalamus, and the351

thalamocortical loops aided in sustaining activity throughout the delay period. The specific352

pattern of cortico-cortical connections was also critical to working memory. However, standard353

graph theory measures based on the connectome were unable to predict the pattern of working354

memory activity. By focusing on cell type-specific interactions between areas, we were able to355

reveal a core of cortical areas. The core is connected by excitatory loops, and is responsible for356

generating a widely distributed pattern of sustained activity. Outside the core, we identified357

"readout" areas that inherited activity from the core. Readout areas could use this information358

for further computations. This clarifies the synergistic roles of the connectome and gradients359

of local circuit properties in producing a distributed cognitive function. This additionally360

highlights the need for a cell type-specific connectome.361

Previous large-scale models of the human and macaque cortex have replicated the func-362

tional connectivity (Deco et al. 2014; Demirtaş et al. 2019; Honey et al. 2007; Schmidt et al.363

2018; Shine et al. 2018; Cabral et al. 2011; Wang et al. 2019) and propagation of information364

along the cortical hierarchy (Chaudhuri et al. 2015; Joglekar et al. 2018; Diesmann et al. 1999).365

Recently, large-scale models of brain activity during cognitive tasks have been developed366

(Mejias and Wang 2022; Froudist-Walsh et al. 2021a; Klatzmann et al. 2022). In these models,367

the number of dendritic spines per pyramidal cell increases along the hierarchy. This enables368

associative regions of the cortex to maintain information in working memory. The increase369

of dendritic spines along the hierarchy is a robust feature of primate cortical organisation370

(Elston 2007), which does not exist in the mouse cortex (Gilman et al. 2017). Yet, in the371
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Main text: Distributed working memory in the mouse brain

mouse cortex, other properties do vary along the cortical hierarchy (Kim et al. 2017; Fulcher372

et al. 2019). We took advantage of the recent discovery of a gradient of PV interneurons in373

the mouse cortex (Kim et al. 2017), and implemented it directly in our large-scale model. We374

demonstrated how the increasing gradient of excitation along the primate cortical hierarchy375

and the decreasing gradient of PV inhibition in the mouse cortex could serve a similar role.376

Both gradients enable sustained activity to emerge in associative areas. Thus, while the neural377

activity underlying working memory may be widely distributed in both rodents and primates,378

the circuit-level mechanisms may differ. This should be considered when interpreting studies379

of working memory in rodent models of cognition and disease.380

In the macaque, long-range connectivity is a strong predictor of the working memory381

activity (Mejias and Wang 2022; Froudist-Walsh et al. 2021a). Thus, at least some of the382

functional specialization of brain areas is due to differences in interareal connections. In383

contrast, we found that traditional graph theory metrics of connectivity were unable to384

predict the working memory activity in the mouse brain. This may be due to the almost385

fully connected pattern of interareal connectivity in the mouse cortex (Gămănuţ et al. 2018).386

This implies that, qualitatively, all areas have a similar set of cortical connections. In our387

model, we allowed the cell type target of interareal connections to change according to the388

relative position of the areas along the cortical hierarchy. Feedforward connections had a389

greater net excitatory effect than feedback connections. This hypothesis (Mejias and Wang390

2022) has received some recent experimental support (Yoo et al. 2021; Huang et al. 2019;391

Javadzadeh and Hofer 2022).392

By introducing cell type-specific graph theory metrics, we were able to predict the pattern393

and strength of delay period activity with high accuracy. Connectome databases are an394

invaluable resource for basic neuroscience. However, they may be insufficient for constraining395

models of brain activity. In the future, connectome databases should be supplemented by396

cell type-specific information.397

We demonstrated how cell type-specific graph-theory measures can accurately identify398

the core subnetwork, which can also be identified independently using a simulated large-399

scale optogenetic experiment. We found a core subnetwork of areas that, when inhibited,400

caused a substantial drop in activity in the remaining cortical areas. This core working401

memory subnetwork included frontal cortical areas with well documented patterns of sustained402

activity during working memory tasks, such as prelimbic (PL), infralimbic (ILA) and medial403

orbitofrontal cortex (ORBm) (Schmitt et al. 2017; Liu et al. 2014; Wu et al. 2020). However,404

the core subnetwork for the visual working memory task we assessed was distributed across405

the cortex. It also included temporal and higher visual areas, suggesting that long-range406

recurrent connections between the frontal cortex and temporal and visual areas are responsible407

for generating persistent activity and maintaining visual information in working memory in408

the mouse.409

The core visual working memory subnetwork generates activity that is then inherited410

by many readout areas. Readout areas also exhibit persistent activity. However, inhibiting411
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Main text: Distributed working memory in the mouse brain

readout areas does not significantly affect the activity of other areas (Figure 5). Readout412

areas can use the stored information for further computations or to affect behavior. The413

readout areas in our model were a mixture of higher visual areas, associative areas and414

premotor areas of cortex. Notably, we classified the secondary motor cortex (MOs), which415

contains the anterior lateral motor (ALM) area, as a readout area despite its high level416

of persistent activity. ALM has received a lot of attention in mouse studies of working417

memory and motor preparation (Guo et al. 2017; Guo et al. 2014; Inagaki et al. 2019; Li418

et al. 2015; Wu et al. 2020; Voitov and Mrsic-Flogel 2022). If ALM is indeed a readout area419

for sensory working memory tasks, (e.g., Schmitt et al. 2017), then the following prediction420

arises. Inhibiting ALM should have a relatively small effect on sustained activity in core421

areas (such as PL) during the delay period. In contrast, inhibiting PL and other core areas422

may disrupt sustained activity in ALM. Even if ALM is not part of the core for sensory423

working memory, it could form part of the core for motor preparation tasks (Figure 7G). We424

found a high cell type-specific loop strength for area ALM, like that in core areas, which425

supports this possibility (Figure 7I). Furthermore, we found some attractor states for which426

the MOs was classified as a core area, while PL was not even active during the delay period.427

Our result is supported by a recent study that found no behavioral effect after PL inhibition428

in a motor planning task (Wang et al. 2021). Therefore, the core subnetwork required for429

generating persistent activity is likely task-dependent. Outside of this core subnetwork, there430

is a large array of readout brain areas that can use the stored information to serve behavior.431

Future modeling work may help elucidate the biological mechanisms responsible for switching432

between attractor landscapes for different tasks.433

Neuroscientists are now observing task-related neural activity at single-cell resolution434

across much of the brain (Stringer et al. 2019; Steinmetz et al. 2019). This makes it important435

to identify ways to distinguish the core areas for a function from those that display activity436

that serves other purposes. We show that a large-scale inhibition protocol can identify the437

core subnetwork for a particular task. We further show how this core can be predicted based438

on the interareal loops that target excitatory neurons. Were such a cell type-specific interareal439

connectivity dataset available, it may help interpretation of large-scale recording experiments.440

This could also focus circuit manipulation on regions most likely to cause an effect on the441

larger network activity and behavior. Our approach identifies the brain areas that are working442

together to support working memory. It also identifies those that are benefiting from such443

activity to serve other purposes. Our simulation and theoretical approach is therefore ideally444

suited to understand the large-scale anatomy, recording and manipulation experiments which445

are at the forefront of modern systems neuroscience.446

Neuroscience has rapidly moved into a new era of investigating large-scale brain circuits.447

Technological advances have enabled the measurement of connections, cell types and neural448

activity across the mouse brain. We developed a model of the mouse brain and theory of449

working memory that is suitable for the large-scale era. Previous reports have emphasized the450

importance of gradients of dendritic spine expression and interareal connections in sculpting451
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Main text: Distributed working memory in the mouse brain

task activity in the primate brain (Mejias and Wang 2022; Froudist-Walsh et al. 2021a).452

Although these anatomical properties from the primate cortex are missing in the mouse453

brain (Gămănuţ et al. 2018; Gilman et al. 2017), other properties such as interneuron density454

(Kim et al. 2017) may contribute to areal specialization. Indeed, our model clarifies how455

gradients of interneurons and cell type-specific interactions define large-scale activity patterns456

in the mouse brain during working memory, which enables sensory and associative areas457

to have complementary contributions. Future large-scale modeling studies can leverage cell458

type-specific connectivity to study other important cognitive computations beyond working459

memory, including learning and decision making (Abbott et al. 2017; Abbott et al. 2020).460
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Methods476

Anterograde tracing, connectivity data477

We used the mouse connectivity map from Allen institute (Oh et al. 2014) to constrain our478

large-scale circuit model of the mouse brain. The Allen Institute measured the connectivity479

among cortical and subcortical areas using an anterograde tracing method. In short, they480

injected virus and expressed fluorescent protein in source areas and performed fluorescent481
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Main text: Distributed working memory in the mouse brain

imaging in target areas to measure the strength of projections from source areas. Unlike482

retrograde tracing methods used in other studies (Markov et al. 2014b), the connectivity483

strength measured using this method does not need to be normalized by the total input or484

output strength. This means that connectivity strength between any two areas is comparable.485

The entries of the connectivity matrix from the Allen Institute can be interpreted as486

proportional to the total number of axonal fibers projecting from unit volume in one area487

to unit volume in another area. Before incorporating the connectivity into our model, we488

normalized the data as follows. In each area, we model the dynamics of an "average" neuron,489

assuming that the neuron receive inputs from all connected areas. Thus, we multiplied the490

connectivity matrix by the volume V olj of source area j and divided by the average neuron491

density di in target area i:492

Wnorm,ij = Wraw,ij
V olj
di

, (1)

where Wraw,ij is the raw, i.e., original, connection strength from unit volume in source area j493

to unit volume in target area i, V olj is the volume of source area j (Wang et al. 2020), and494

di is the neuron density in source area i (Erö et al. 2018). Wnorm,ij is the matrix that we495

use to set the long rang connectivity in our circuit model. We can define the connectivity496

between thalamus and cortex, Wct,norm,ij and Wtc,norm,ij in a similar manner.497

Interneuron density along the cortex498

Kim and colleagues measured the density of typical interneuron types in the brain (Kim499

et al. 2017). They expressed fluorescent proteins in genetically labeled interneurons and500

counted the number of interneurons using fluorescent imaging. We took advantage of these501

interneuron density data and specifically used the PV density to set local and long-range502

inhibitory weights. We first normalized the PV density in each area:503

PVi =
PVraw,i −min(PVraw,i)

max(PVraw,i)−min(PVraw,i)
(2)

PVraw,i is the PV interneuron density of all layers in area i, and PVi is a normalized value of504

PVraw, which will be used in subsequent modeling.505

Hierarchy in the cortex506

The concept of hierarchy is important for understanding the cortex. Hierarchy can be507

defined based on mapping corticocortical long range connections onto feedforward or feedback508

connections (Felleman and Essen 1991; Markov et al. 2014a; Harris et al. 2019). Harris and509

colleagues measured the corticocortical projections and target areas in a series of systematic510

experiments in mice (Harris et al. 2019). Projection patterns were clustered into multiple511

groups and the label "feedforward" or "feedback" was assigned to each group. Feedforward512

and feedback projections were then used to determine relative hierarchy between areas. For513

example, if the projections from area A to area B are mostly feedforward, then area B has514
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Main text: Distributed working memory in the mouse brain

a higher hierarchy than area A. This optimization process leads to a quantification of the515

relative hierarchy of cortical areas hraw,i. We defined the normalized hierarchy value hi as516

hi =
hraw,i −min(hraw,i)

max(hraw,i)−min(hraw,i)
(3)

where hraw,i is the raw, i.e., original hierarchical ordering from (Harris et al. 2019). Due to517

data acquisition issues, 6 areas did not have a hierarchy value assigned to them (SSp-un,518

AUDv, GU, VISC, ECT, PERI) (Harris et al. 2019). We estimated hierarchy through a519

weighted sum of the hierarchy value of 37 known areas, while the weight is determined520

through the connectivity strength. The parameters αh and βh are selected so that hi,estimate521

are close to hi for areas with known hierarchy.522

hi,estimate = αh

∑37
j=1wraw,ijhj∑37
j=1wraw,ij

+ βh. (4)

For the thalamocortical model, we also used the hierarchy value for thalamic areas (Harris523

et al. 2019). The hierarchy of thalamic areas are comparable to cortical areas, so in order to524

use it in the model, we also normalized them.525

hth,i =
hth,raw,i −min(hraw,i)

max(hraw,i)−min(hraw,i)
(5)

To estimate the hierarchy value of thalamic areas with missing values, we used the known526

hierarchy value of the thalamic area next to the missing one as a replacement.527

Description of the local circuit528

Our large-scale circuit model includes 43 cortical areas. Each area includes two excitatory

populations, labeled A and B, and one inhibitory population, C. The two excitatory popula-

tions are selective to different stimuli. The synaptic dynamics between populations are based

on previous firing rate models of working memory (Wang 1999; Wong and Wang 2006). The

equations that define the dynamics of the synaptic variables are

dSA

dt
= −SA

τN
+ γ(1− SA)rA (6)

dSB

dt
= −SB

τN
+ γ(1− SB)rB (7)

dSC

dt
= −SC

τG
+ γIrC (8)

where SA and SB are the NMDA synaptic variables of excitatory populations A and B, while529

SC is the GABA synaptic variable of the inhibitory population C. rA, rB and rC are the530

firing rates of populations A, B and C, respectively. τN and τG are the time constants of531

NMDA and GABA synaptic conductances. γ and γI are the parameters used to scale the532

contribution of presynaptic firing rates. The total currents received Ii (i = A,B,C) are given533

by534
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Main text: Distributed working memory in the mouse brain

IA = gE,selfSA + gE,crossSB + gEISC + I0A + ILR,A + xA(t) (9)

IB = gE,selfSB + gE,crossSA + gEISC + I0B + ILR,B + xB(t) (10)

IC = gIESA + gIESB + gIISC + I0C + ILR,C + xC(t). (11)

In these equations, gE,self , gE,cross denote the connection strength between excitatory neurons535

with same or different selectivity, respectively. These connection strengths are the same for536

different areas, since there is no significant gradient for excitatory strength in mice. gIE537

are the connection strengths from excitatory to inhibitory neurons, while gEI , and gII are538

connection strengths from inhibitory to excitatory neurons and from inhibitory to inhibitory539

neurons, respectively. These connections will be scaled by PV density in the corresponding540

area. We will discuss the details in the next section. I0i (i = A,B,C) are constant background541

currents to each population. ILR,i (i = A,B,C) are the long range (LR) currents received542

by each population. The term xi(t) where i = A,B,C represents noisy contributions from543

neurons external to the network. It is modeled as an Ornstein-Uhlenbeck process:544

τnoise
dxi

dt
= −xi +

√
τnoiseσiζi(t), (12)

where ζi(t) is Gaussian white noise, τnoise describes the time constant of external AMPA545

synapses and σi sets the strength of the noise for each population. σA = σB = 5pA while546

σC = 0pA.547

The steady state firing rate of each population is calculated based on a transfer function

ϕi(I) of input current received by each population Ii (i = A,B,C) given by

ϕA,B(IA,B) =
aIA,B − b

1− exp[−d(aIA,B − b)]
(13)

ϕC(IC) = [
1

gI
(c1I − c0) + r0]

+ (14)

Note that the transfer functions ϕi(t) are the same for two excitatory populations. x+ denotes

the positive part of the function x. The firing rate of each population follows equations:

τr
drA,B

dt
= −rA,B + ϕA,B(IA,B) (15)

τr
drC
dt

= −rC + ϕC(IC). (16)

Interneuron gradient and local connections548

We scaled local interneuron connectivity with the interneuron density that was obtained

using fluorescent labeling (Kim et al. 2017). Specifically, local I-I connections and local

I-E connections are scaled by the interneuron density by setting the connection strength

gk,i(k = EI, II) as a linear function of PV density PVi in area i.

gEI,i = JEI,min + JEI,scalingPVi (17)

gII,i = JII,min + JII,scalingPVi (18)
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Main text: Distributed working memory in the mouse brain

where Jk,min (k = EI, II) is the intercept and Jk,scaling (k = EI, II) is the slope.549

Hierarchy and long range connections550

Long range (LR) connections between areas are scaled by connectivity data from the Allen

Institute (Oh et al. 2014). We consider long-range connections that arise from excitatory

neurons because most long-range connections in the cortex correspond to excitatory connec-

tions (Petreanu et al. 2009). Long-range connections will target excitatory populations in

other brain areas with the same selectivity (Zandvakili and Kohn 2015) and will also target

inhibitory neurons. These long-range connections are given by the following equations:

IA,B,LR,i = µEEWE,ijSA,B,j (19)

IC,LR,i = µIEWI,ij(SA,j + SB,j), (20)

where WE is the normalized long-range connectivity to excitatory neurons, and WI is the551

normalized long-range connectivity to inhibitory neurons. µEE and µIE are coefficients scaling552

the long-range E to E and E to I connection strengths, respectively.553

Here, we assume that the long-range connections will be scaled by a coefficient that is based554

on the hierarchy of source and target area. To quantify the difference between long-range555

feedforward and feedback projections, we introduce mij to measure the "feedforwardness" of556

projections between two areas. According to our assumption of counterstream inhibitory bias557

(CIB), long-range connections to inhibitory neurons are stronger for feedback connections558

and weaker for feedforward connections, while the opposite holds for long range connections559

to excitatory neurons. Following this hypothesis, we define mij as a sigmoid function of560

the difference between the hierarchy value of source and target areas. For feedforward561

projections, mij > 0.5; for feedback projections, mij < 0.5. Excitatory and inhibitory562

long-range connection strengths are implemented by multiplying the long-range connectivity563

strength Wij by mij and (1−mij), respectively:564

mij =
1

1 + βe−(hi−hj)
(21)

WE,ij = mijWij (22)

WI,ij = (1−mij)Wij (23)

with565

Wij = (Wnorm,ij)
kscale (24)

The normalized connectivity Wnorm,ij is then rescaled to translate the broad range of566

connectivity values (over five orders of magnitude) to a range more suitable for our firing rate567

models. kscale is the coefficient used for this scaling. kscale < 1 effectively makes the range568

much smaller than the original normalized connectivity Wnorm,ij.569
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Main text: Distributed working memory in the mouse brain

Thalamocortical network model570

Corticothalamic connectivity. We introduced thalamic areas in the network to examine their571

effect on cortical dynamics. Each thalamic area includes 2 excitatory populations, A and B,572

with no inhibitory population. These two populations share the same selectivity with the573

corresponding cortical areas. Unlike cortical areas, there are no recurrent connections between574

thalamic neurons (Sherman 2007). Thalamic currents have the following contributions (tc575

stands for thalamocortical connections and ct for corticothalamic connections):576

Ith,A,B = Ict,A,B + Ith,0,A,B + Ith,noise,A,B (25)

where Ith,i (i = A,B) is the total current received by each thalamic population, Ict,i (i = A,B)577

is the long range current from cortical areas to target thalamic area, Ith,0,i (i = A,B) is578

the background current for each population, and Ith,noise,i (i = A,B) is the noise input to579

thalamic population A and B, which we set to 0 in our simulations. Ict,i (i = A,B) has the580

following form:581

Ict,A,B,i = gctWct,E,ijSk,j (26)

where Wct,E,ij is the LR connectivity to thalamic neurons, and Sk,j is the synaptic variable582

of population k (k = A,B) in cortical area j. Since all thalamic neurons are excitatory, we583

model corticothalamic projections as in the previous section:584

mct,ij =
1

1 + βe−(hth,i−hj)
(27)

Wct,E,ij = mct,ijWct,ij (28)

(29)

where585

Wct,ij = (Wct,norm,ij)
kscale (30)

Wct,norm,ij is the normalized connection strength from cortical area j to thalamic area i.586

mct,ij is the coefficient quantifying how the long range connections target excitatory neurons587

based on cortical hierarchy hj and thalamic hierarchy hth,i.588

The thalamic firing rates are described by:589

τr
drth,A,B

dt
= −rth,A,B + ϕth,A,B(Ith,A,B) (31)

with the activation function for thalamic neurons given by:590

ϕth,A,B(Ith,A,B) =
aIth,A,B − b

1− exp[−d(aIth,A,B − b)]
(32)

Thalamic neurons are described by AMPA synaptic variables (Jaramillo et al. 2019):591

dSth,A,B

dt
= −Sth,A,B

τA
+ γArth,A,B (33)
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Main text: Distributed working memory in the mouse brain

Thalamocortical connectivity. The connections from thalamic neurons to cortical neurons

follow these equations

Itc,A,B,i = gE,tcWE,tc,ijSth,A,B,j (34)

Itc,C,i = gI,tcWI,tc,ij(Sth,A,j + Sth,B,j) (35)

and connectivity

mtc,ij =
1

1 + βe−(hi−hth,j)
(36)

WE,tc,ij = mtc,ijWtc,ij (37)

WI,tc,ij = (1−mtc,ij)Wtc,ij (38)

and connectivity matrix592

Wtc,ij = (Wtc,norm,ij)
kscale (39)

The thalamocortical input is added to the total input current of each cortical population.593

IA = gE,selfSA + gE,crossSB + gEISC + I0A + ILR,A + Itc,A + xA(t) (40)

IB = gE,selfSB + gE,crossSA + gEISC + I0B + ILR,B + Itc,B + xB(t) (41)

IC = gIESA + gIESB + gIISC + I0C + ILR,C + Itc,C + xC(t) (42)

Calculation of network structural measures594

We considered three types of structural measures. The first one is input strength. Input595

strength of area i is the summation of the connection strengths onto node i. It quantifies the596

total external input onto area i.597

Winput,i =
n∑

j=1

Wij (43)

The second one is eigenvector centrality (Newman 2018). Eigenvector centrality of area i

is the ith element of the leading eigenvector of the connectivity matrix. It quantifies how

many areas are connected with the target area i and how important these neighbors are.

W = QΛQ−1 (44)

Ceig,i = qi1 (45)

The third structural measure is loop strength, which quantifies how each area is involved598

in strong recurrent loops. We first define the strength of a single loop k599

Lk =
∏

Ai,Aj∈loopk

wij, (46)

and then the loop strength SAi
of a single area Ai600

SAi
=

∑
Ai∈loopk

Lk (47)
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Main text: Distributed working memory in the mouse brain

We now focus on cell type-specific structural measures. Cell type specificity is introduced601

via a coefficient kcell that scales all long range connection strengths (cell type projection602

coefficient):603

kcell = mij − PVi(1−mij) (48)

Thus, we can define cell type-specific input strength as:604

Winput,i,cellspec =
n∑

j=1

(mij − PVi(1−mij))Wij (49)

Similarly, cell type-specific eigenvector centrality is defined as

W̃ij = (mij − PVi(1−mij))wij (50)

W̃ = Q̃Λ̃Q̃−1 (51)

Ceig,i,cellspec = q̃i1 (52)

and cell type-specific loop strength:

Lk,cellspec =
∏

Ai,Aj∈loopk

(mij − PVi(1−mij))wij (53)

SAi,cellspec =
∑

Ai∈loopk

Lk,cellspec (54)

Stimulation protocol and inhibition analysis605

We simulate a working memory task by applying an external current Istim to one of the606

excitatory populations. The external current is a pulsed input with start time Ton and607

offset time Toff . Without losing generality, we assume that the external input is provided to608

population A. In most of the simulations in this study, we simulate a visual working memory609

task, with the external applied to VISp. The simulation duration is Ttrial and we used a time610

step of dt.611

We apply inhibition analysis to understand the robustness of attractors and, more612

importantly, to investigate which areas play an important role in maintaining the attractor613

state. Excitatory input was applied to the inhibitory population I to simulate opto-genetic614

inhibition. The external input Iinh is strong as compared to Istim and results in an elevated615

firing rate of the inhibitory population, which in turn decreases the firing rate of the excitatory616

populations. Usually the inhibition is applied to a single area. When inhibition is applied617

during the stimulus period, its start and end times are equal to Ton and Toff , respectively.618

When inhibition is applied during delay period, its start time is later than Toff to allow the619

system settle to a stable state. Thus, the onset of inhibition starts 2 seconds after Toff and620

lasts until the end of trial. In the case of thalamocortical network simulations, we inhibit621

thalamic areas by introducing a hyperpolarizng current to both excitatory populations, since622

we do not have inhibitory populations in thalamic areas in the model.623

To quantify the effect of single area or multiple areas inhibition, we calculate the average624

firing rate of areas that satisfy two conditions: i) the area shows persistent activity before625

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 5, 2022. ; https://doi.org/10.1101/2022.12.05.519094doi: bioRxiv preprint 

https://doi.org/10.1101/2022.12.05.519094
http://creativecommons.org/licenses/by-nc-nd/4.0/


Main text: Distributed working memory in the mouse brain

inhibition and ii) the area does not receive inhibitory input. The ratio between such average626

firing rate after inhibition and before inhibition is used to quantify the overall effect of627

inhibition. If the ratio is lower than 100%, this suggests that inhibiting certain area(s)628

disrupts the maintenance of the attractor state. Note that the inhibition effect is typically629

not very strong, and only in rare cases, inhibition of a single area leads to loss of activity of630

other areas (Fig. 5B, Fig. 5C). To quantify such differences, we use a threshold of 5% to631

differentiate them. We will use (relatively) "weak inhibition effect" and "strong inhibition632

effect" to refer to them afterwards.633

We used the three measures to classify areas into 4 types (Fig. 5D): i) inhibition effect634

during delay period, ii) inhibition effect during stimulus period, and iii) delay period firing635

rate. Areas with strong inhibition effect during stimulus period are classified as input areas;636

areas with strong inhibition effect during delay period and strong delay period firing rate are637

classified as core areas; areas with weak inhibition effect during delay period but strong firing638

rate are classified as readout areas; areas with weak inhibition effect during delay period and639

weak firing rate during delay period are classified as nonessential areas.640

Simulation of multiple attractors641

Multiple attractors coexist in the network and its properties and number depends on the642

connectivity and dynamics of each node. In this study we did not try to capture all the643

possible attractors in the network, but rather compare the number of attractors for different644

networks. Here we briefly describe the protocol used to identify multiple attractors in the645

network. We first choose k areas and then generate a subset of areas as the stimulation areas.646

We cover all possible subsets, which means we run 2k simulations in total. The external647

stimulus is given to all areas in the subset simultaneously with same strength and duration.648

The delay period activity is then quantified using a similar protocol as the standard simulation649

protocol. The selection of k areas corresponds to a qualitative criterion. First we choose650

the areas with small PV fraction or high hierarchy, since these areas are more likely to show651

persistent activity. Second, the number of possible combination grows exponentially as we652

increase k, and if we use k = 43, the number of combinations is around 8.8e+12, which is653

beyond our simulation power. As a trade-off between the simulation power and coverage of654

areas, we choose k = 18, which correspond to 2.6e+5 different combinations of stimulation.655

For each parameter setting, we run 2.6e+5 simulations to capture possible attractor patterns.656

For each attractor pattern, a binary vector is generated by thresholding delay firing rate using657

a firing rate threshold of 5Hz. An attractor pattern is considered distinct if and only if the658

binary vector is different from all identified attractors. In these way we can identify different659

attractors in the simulation. We also apply same simulation pipeline to identify attractors660

for different parameters. Specifically we change the long range connectivity strength µEE661

and local excitatory connections gE,self .662
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Figure1 - Supplement 1. Anatomical details of the mouse cortex. (A). Connectivity matrix depicting
cortico-cortical connections between 43 cortical areas. Areas are sorted according to their hierarchy.
(B). The raw PV cell density for each cortical area (Y axis), with areas sorted (X axis). Each area
belongs to one of five modules, shown in color (see also Figure 1). (Harris et al. 2019). (C). Neuron
density for each cortical area. The data is from Erö et al. 2018.
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Figure2 - Supplement 1. Example simulation for different sensory modalities. The simulation protocol
is the same as the default one in Figure 2, except that the external input is applied to primary sensory
areas related to two other sensory modalities: somatosensory and auditory. (A). The activity of 6
selected areas during the working memory task is shown. A somatosensory input of 500ms is applied
to primary somatosensory area SSp-bfd, which propagates to the rest of the large-scale network. (B).
Similar to the simulation where a primary visual area is stimulated (Fig 2D), delay period firing is
positively correlated with cortical hierarchy. (r = 0.89, p<0.05) (C) and (D) are similar to (A) and
(B) except that the input is given to primary auditory area AUDp. (D). Delay period firing is also
positively correlated with cortical hierarchy. (r = 0.89, p<0.05)
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Figure 3 - Supplement 1. Anatomical data of thalamus and cortical connectivity. (A). Connectivity
matrix of corticothalamic connections: 43 cortical areas to 40 thalamic areas. (B). Connectivity
matrix of thalamocortical connections: 40 thalamic areas to 43 cortical areas.
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Figure 4 - Supplement 1. Details of cell type-specific connectivity measures. (A). The matrix of
cell type projection coefficients between cortical areas. The cell type projection coefficient is given
by the formula kcell = mij − PVi(1−mij). (B). The matrix of connectivity strengths, modified by
cell type projection coefficient between cortical areas. The modified connectivity strength is given by
W̃ij = (mij − PVi(1−mij))wij.
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Main text: Distributed working memory in the mouse brain
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Figure 4 - Supplement 2. Cell type-specific eigenvector centrality measures are better at predicting
firing rate patterns than raw eigenvector centrality measures. The analysis is the same as in Figure 4,
where we compared cell type-specific input strength and raw input strength. Eigenvector centrality (EC,
eigencentrality) of area i is the ith element of the leading eigenvector of the connectivity matrix. It
quantifies how many areas are connected with the target area i and how important are these neighbors.
Details are in the Methods section. (A(i)). Delay period firing rate (orange) and eigenvector centrality
for each cortical area (blue). (A(ii)). Eigenvector centrality does not show a significant correlation
with delay period firing rate for areas showing persistent activity in the model (r = 0.24, p = 0.29).
(A(iii)). Eigenvector centrality cannot be used to predict whether an area shows persistent activity
or not (prediction accuracy = 0.46). (B(i)). Delay period firing rate (orange) and cell type-specific
eigenvector centrality for each cortical area (blue). (B(ii)). Cell type-specific eigenvector centrality
has a strong correlation with the firing rate of cortical areas showing persistent activity (r = 0.94, p
< 0.05). (B(iii)). Cell type-specific eigenvector centrality predicts whether an area shows persistent
activity or not (prediction accuracy = 0.79). (C). Comparison of the correlation coefficient r for raw
eigenvector centrality and cell type-specific eigenvector centrality in predicting delay firing rate. Raw
input strength and cell type-specific input strength are also included for comparison. (D). Comparison
of the prediction accuracy for raw eigenvector centrality and cell type-specific eigenvector centrality.
Raw input strength and cell type-specific input strength are also included for comparison.
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Main text: Distributed working memory in the mouse brain
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Figure 6 - Supplement 1. Cell type-specific loop strengths (Length 3 loops) are also better at predicting
firing rate patterns than raw loop measures. Loop strengths (length 3 loops or L3) is calculated using
similar method as loop strengths (length 2 loops). The only difference is we considered loops with
length 3 (eg. A1->A2->A3->A1). The analysis is the same as in Figure 6, where we compared cell
type-specific loop strengths (length 2 loops) and raw loop strengths. (A(i)). Loop strength (blue) is
plotted alongside Core Areas (orange), a binary variable that takes the value 1 if the area is indeed a
Core Area, 0 otherwise. (A(ii)). A high loop strength value does not imply that an area is a Core
Area. (B(i)). Same as (A), but for cell type-specific loop strength. (B(ii)). High cell type-specific
loop measures predicts that an area is a Core Area (prediction accuracy = 0.95). Same as (A), but
for cell type-specific loop strength.
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Main text: Distributed working memory in the mouse brain

Area Supporting literature
ALM (MOs) (Kopec et al. 2015; Guo et al. 2014; Li et al. 2016),

(Inagaki et al. 2019; Erlich et al. 2011; Guo et al. 2017),
(Gilad et al. 2018; Gao et al. 2018; Wu et al. 2020)

mPFC (PL/ILA) (Liu et al. 2014; Schmitt et al. 2017),
(Bolkan et al. 2017)

OFC (Wu et al. 2020)
PPC (VISa) (Harvey et al. 2012)
AIa (AId,AIv) (Zhu et al. 2020)
Area p (VISpl) (Gilad et al. 2018)
dorsal cortex (Pinto et al. 2019)
entorhinal (in vitro persistent activity) (Egorov et al. 2002)
piriform (Zhang et al. 2019; Wu et al. 2020)
VM/VAL (Guo et al. 2017)
MD (Schmitt et al. 2017; Bolkan et al. 2017)
superior colliculus (Kopec et al. 2015)
cerebellar nucleus (Gao et al. 2018)

Table 1: Supplementary experimental evidence. The listed literature include experiments that provide
supporting evidence for working memory activity in cortical and subcortical brain areas in the mouse
or rat. These studies show either that a given area is involved in working memory tasks and/or
exhibit delay period activity. Area name corresponds to what has been reported in the literature. Some
areas do not correspond exactly to the names from the Allen common coordinate framework.
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Main text: Distributed working memory in the mouse brain

Parameter Description Task/Figure Value

Cortical circuit parameters
τNMDA NMDA synapse time constant All figures 60 ms
τGABA GABA synapse time constant All figures 5 ms
τAMPA AMPA synapse time constant All figures 2 ms
τrates neuron time constant All figures 20 ms
τnoise noise time constant All figures 2 ms
a, b, d parameters in excitatory F-I curve. All figures 140 Hz/nA, 54 Hz, 308 ms

gI , c1, c0, r0I parameters in inhibitory F-I curve. All figures 4, 615 Hz/nA, 177 Hz, 5.5 Hz
γ parameters in NMDA excitatory synaptic equations. All figures 1.282
γI parameters in GABA synaptic equations. All figures 2
γA parameters in AMPA excitatory synaptic equations. All figures 2

gE,self local self excitatory connections Figures 1-6 0.4 nA
gE,cross local cross population excitatory connections All figures 10.7 pA
gIE local E to I connections All figures 0.4087 nA

JEI,min, JEI,scaling local I to E connection strength All figures 0.192 nA, 0.16 nA
JII,min, JII,scaling local I to I connection strength All figures 0.105 nA, 0.075 nA

I0A, I0B background current for excitatory neurons All figures 0.305 nA
I0C background current for inhibitory neurons All figures 0.26 nA

σA, σB standard deviation of excitatory noise current All figures 5 pA
σC standard deviation of inhibitory noise current All figures 0 pA
r0E background current for excitatory neurons All figures 5 Hz
r0I background current for excitatory neurons All figures 5.5 Hz
µEE long range E to E connection strength Figures 1, 2, 4, 5, 6 0.1 nA
µIE long range E to I connection strength Figures 1, 2, 4, 5, 6 0.167 nA
β parameters in mij All figures 2.42

kscale parameters for scaling the connectivity matrix All figures 0.3
αh, βh parameters for estimation of hierarchy All figures 1.33, −0.22
Istim external stimulus strength All figures 0.5 nA
Iinh external input to inhibitory neurons All figures 5 nA
Ton stimulus start time All figures 2 s
Toff stimulus end time All figures 2.5 s
Ttrial simulation time for each trial All figures 10 s
dt simulation time step All figures 0.5 ms

Thalamocortical network
µEE long range E to E connection strength Figure 3 0.01 nA
µIE long range E to I connection strength Figure 3 0.0167 nA
gct cortico thalamic connections strength Figure 3 0.32 nA
gE,tc thalamo-cortical connections to excitatory neurons Figure 3 0.6 nA
gI,tc thalamo-cortical connections to inhibitory neurons Figure 3 1.38 nA

Simulation of multiple attractors
µEE long range E to E connection strength Figure 7 0.01, 0.02, 0.03, 0.04, 0.05 nA
µIE long range E to I connection strength Figure 7 0.0167, 0.033, 0.05, 0.066, 0.083 nA

gE,self local self excitatory connections Figure 7 0.4, 0.41, 0.2, 0.43, 0.44 nA

Table 2: Parameters for numerical simulations
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