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Physiological studies of visual attention have demonstrated that
focusing attention near a visual cortical neuron’s receptive field
(RF) results in enhanced evoked activity and RF shift. In this work,
we explored the mechanisms of attention induced RF shifts in
cortical network models that receive an attentional ‘spotlight’. Our
main results are threefold. First, whereas a ‘spotlight’ input always
produces toward-attention shift of the population activity profile,
we found that toward-attention shifts in RFs of single cells requires
multiplicative gain modulation. Secondly, in a feedforward two-
layer model, focal attentional gain modulation in first-layer neurons
induces RF shift in second-layer neurons downstream. In contrast
to experimental observations, the feedforward model typically fails
to produce RF shifts in second-layer neurons when attention is
directed beyond RF boundaries. We then show that an additive
spotlight input combined with a recurrent network mechanism can
produce the observed RF shift. Inhibitory effects in a surround of
the attentional focus accentuate this RF shift and induce RF
shrinking. Thirdly, we considered interrelationship between visual
selective attention and adaptation. Our analysis predicts that the RF
size is enlarged (respectively reduced) by attentional signal
directed near a cell’s RF center in a recurrent network (resp. in
a feedforward network); the opposite is true for visual adaptation.
Therefore, a refined estimation of the RF size during attention and
after adaptation would provide a probe to differentiate recurrent
versus feedforward mechanisms for RF shifts.

Keywords: computational model, feedforward network, receptive field,
recurrent network, selective attention, sensory adaptation, spotlight

Introduction

Attention is a mechanism by which the brain gates the access of

sensory stimuli to its limited processing resources (Treisman

and Gelade, 1980; Posner and Petersen, 1990; Desimone and

Duncan, 1995). In the visual system, it has been proposed that

selective attention involves a saliency map circuit (Koch and

Ullman, 1985) that uses a winner-take-all strategy to select the

attentional focus, and sends a ‘spotlight’ input to modulate

activity in visual cortical areas (Treisman and Gelade, 1980;

Crick, 1984; Crick and Koch, 1990; Colby, 1991; Colby and

Goldberg, 1999; Vidyasagar, 1999; Gottlieb et al., 1998; Büchel

and Friston, 1997; Desimone et al., 1990; Desimone, 1992;

Olshausen et al., 1993; Guillery et al., 1998; Mazer and Gallant,

2003). Attention modulation of neural responses has been

observed in studies with awake behaving monkeys. In extras-

triate areas V4 or MT, spatial attention to a single stimulus

within the receptive field (RF) of a neuron induces a moderate

(Treue and Maunsell, 1996, 1999; McAdams and Maunsell, 1999;

Spitzer et al., 1988) or small (Recanzone and Wurtz, 2000;

Seidemann and Newsome, 1999; Luck et al., 1997; Moran and

Desimone, 1985; Motter, 1993) enhancement of firing rates

(enhancement effect; see also Colby, 1991; Newsome, 1996;

Salinas and Thier, 2000). This attentional modulation effect has

been seen to correspond to an increased gain of neuronal

responses, suggesting that sensory signals and attentional

modulations interact multiplicatively (McAdams and Maunsell,

1999; Treue and Martı́nez Trujillo, 1999) at a synaptic, cellular

or network level.

Connor et al. (1996, 1997) looked more closely at the spatial

properties of the attentional modulation of neuronal receptive

fields in area V4. They found a response gradient surrounding

the attended target, as if nearby receptive fields shifted towards

the attentional focus (shift effect). They also found that

neuronal responses were differentially scaled as attention was

directed in opposite directions around the receptive field

(directionality effect). RF shift may seem to be an obvious

consequence of spatial attention being mediated by a ‘spotlight’

bias input to the recorded cortical area. Here we show that, in

fact, this is not the case. A previous attempt to explain the shift

effect (McAdams and Maunsell, 1999; Maunsell and McAdams,

2001) made use of the layered feedforward architecture of the

visual processing pathway. This feedforward scenario posits

multiplicative scaling by attention of neurons in an early visual

area (V1, V2), which project to a secondary area (V4, MT) and

induce RF shift in neurons therein. This feedforward model was

proposed as a scheme or word-model, but it has not been tested

quantitatively. The purpose of this paper is to study a mathe-

matical implementation of this feedforward model and to

consider an alternative scenario within a single recurrent circuit

receiving a focal additive excitatory input (a plausible physio-

logical substrate for the attentional ‘spotlight’). This study

focuses on attention induced RF shifts, and will not deal with

the directionality effect observed also by Connor et al. (1996,

1997).

It is known from psychological studies that selective atten-

tion interacts with adaptation mechanisms in the visual system

(Zucker, 1990; Chaudhuri, 1990; Lankheet and Verstraten,

1995; Alais and Blake, 1999). Recent physiological work ex-

plored the effects of attention on stimuli of varying contrasts,

and it was found that neuronal sensitivity to stimulus contrast is

affected by attention in an inverse manner to adaptation

(Reynolds et al., 2000; Martinez-Trujillo and Treue, 2002).

Suggestively, experiments (Müller et al., 1999; Dragoi et al.,

2000; Yao and Dan, 2001; Fu et al., 2002; Felsen et al., 2002;

Kohn and Movshon, 2004) have shown that visual adaptation

protocols induced tuning curve partial shifts along a variety of

stimulus feature dimensions (orientation and motion direction).

These observations motivated us to study both the RF shift
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properties for attention and adaptation in a model network. To

this end, we shall assume that adaptation occurs because of the

reduction in excitability of neurons, which can be implemented

as a substractive current into the neurons (Carandini and

Ferster, 1997; Sanchez-Vives and McCormick, 2000; Wang

et al., 2003), or a negative additive ‘spotlight’. We focus our

modeling on the shifts in receptive field mapping of neurons in

V4 (Connor et al., 1996, 1997). However, attention may be

focused on a stimulus feature (such as orientation or velocity),

rather than location-based (Treue and Martı́nez Trujillo, 1999).

Even though different attentional mechanisms may be involved

along different stimulus dimensions (Lee et al., 1997; Corbetta

and Shulman, 2002), our results should apply equally well to

feature-based selective attention.

Materials and Methods

We used a computational approach to explore mechanistically the

involvement of the local and feedforward circuitry in the shift of the RF

tuning of extrastriate neurons induced by attention (Connor et al., 1996,

1997). To this end we considered two alternative scenarios: a recurrent

network model and a two-layer feed-forward model.

The recurrent model is schematically represented in Figure 2A and

presented in the Results section. It obeys the self-consistent equation

RðxiÞ = ISðxiÞ + IAðxiÞ +
1

N
+
N

j = 1

J ðxi –xj ÞRðxj Þ – T
" #

+

where N is the number of cells in the network; R (xi) is the steady-

state firing rate of the neuron in location xi; T is the firing threshold

of the neurons; and [�]+ is the thresholding operator defined as:

[I]+ = I if I > 0 and [I]+ = 0 otherwise. The sensory input is given by

a truncated Gaussian function: IS ðxÞ = S0+S1expð–0:5ðx–xS Þ2=r2
S Þ if

jx – xSj < l, and IS(x) = 0 otherwise, xS being the position where

the stimulus is presented, and l the spatial spread of the feedforward

afferent projections. The attentional additive bias is IAðxÞ =A1

expð–0:5ðx –xAÞ2=r2
AÞ +A0expð–0:5ðx –xAÞ2=r92AÞ if jx – xAj < l, and

IA(x) = 0 otherwise, xA being the location of the attentional focus. A0

is either zero or negative. If A0 is negative, IA(x) provides an inhibitory

input to neurons with receptive fields peripheral to the attentional

focus (assuming r9A > rA). Finally, the recurrent input into cell xi is
1
N
+

j
J ðxi –xj ÞRðxj Þ; where J(xi–xj) is the strength of the connection

between the postsynaptic neuron at xi and its presynaptic partner at xj:

J ðxi –xj Þ=J0 + J1expð–0:5ðxi – xj Þ2=r2
J Þ if jxi – xjj < l, and J (xi – xj) = 0

otherwise. In all simulations shown here N = 512, T = 1, L = 4l, l = 3.14,

and rS = rJ = 1.31, rA = 0.35, r9A = 0.87, unless otherwise indicated. With

this parameter choice, the unattended RF radius (half width at half

height) measures 0.81, and it is larger than the attentional focus size by

~50%. The rest of parameters are typically illustrated in two different

conditions: strong excitatory recurrence (Fig. 5B) and strong inhibitory

recurrence (Fig. 5A). For strong excitatory recurrence: S0 = 0.46,

S1 = 0.66, A0 = 0, A1 = 0.089, J0 = –2.5, and J1 = 8.5. For strong inhibitory

recurrence: S0 = 0.34, S1 = 1.09, A0 = 0, A1 = 0.28, J0 = –11.9, and J1 = 15.3.

The feedforward model is represented in Figure 2B and discussed in

Results. It contains two layers of neurons and their steady-state

activations are described by the equations

RðxiÞ =
1

N
+
N

j = 1

J ðxi – yj ÞRðyj Þ – T
" #

+

Rðyj Þ = fAðyj Þ ½ISðyj Þ – T �+

8><
>:

with R (xi) and R (yj) the firing rates of neurons in locations xi and yj of

the second and first layers, respectively. The first layer receives the

sensory input IS (y) and transduces it through neuronal input-output

relationships whose slopes are modulated by the attentional signal

fA(y) = 1 + IA(y). First-layer neuronal activity is then propagated to the

second layer via a fan-out feedforward connectivity profile J (x – y). The

rest of symbols and functions have the same definitions as described

above for the recurrent networkmodel. The parameters used are:N = 512,
L = 2l, l = 5.66, T = 0, rS = rA = 0.21, rJ = 0.71, S0 = 0, S1 = 0.42, J0 = 0,

J1 = 6.38,A0 = 0 andA1 = 0.5.With this choice of parameters tuning curves

in the second layer have approximately the same tuning width than

receptive fields in the recurrent model, and are ~3.5 times larger than

first-layer RFs. Notice also that by choosing T = 0 and S0 = 0, neurons in the
first layer never use the rectification mechanism in their input-output

relationships. We choose this particular case because one can then

substitute [I]+ = I and this allows for precise analytical calculations

(shown in the Appendix). We prove, however, that our main points

regarding this model do not depend on this particular choice (see Fig.

4C). When we simulate an attentional signal with inhibitory surround

effect, we use r9A = 0.52, A0 = –0.48 and A1 = 1.5.

For each of these models, and each parameter set explored, we found

the network activity pattern in response to a single stimulus (centered

at xS), and the spatial tuning curve of a given single neuron (with RF

centered at x) in response to different spatial stimuli. This is done as

follows. Once the parameters for model connectivity and input

stimulation are chosen, we solve self-consistently the network activity

equations (Fig. 2). The solution thus obtained, the steady-state response

of each neuron in the network to fixed stimulus and attentional signal, is

what we call the population activity profile R (xjxS). We then repeat

this procedure for all possible locations xS of the stimulus signal,

keeping everything else fixed. We thus obtain a family of population

activity profiles R (x,xS). If we look at a single neuron (fix x, typically in

our graphs x = 0) and plot its responses to different locations of the

stimulus signal, we obtain the spatial tuning curve (or RF) of that given

neuron at x : R (xSjx). It is this curve that we can compare to results of

single unit recordings (Connor et al., 1996, 1997).

In order to quantify the effects of attention on the receptive field of

a neuron, we define two quantities: the receptive field shift and the

shrinking factor. Without attention, the neuron at x has a symmetric,

bell-shaped receptive field and its maximum response occurs when the

stimulus is presented at x. Under attention, the receptive field might

shift and/or change size. In order to assess the shift of the receptive

field we typically use a measure based on the location of the maximum

firing in the receptive field: If in the presence of attention at location

xA (xA > x), the maximum response occurs when the stimulus peaks at

xM 6¼ x, the receptive field shift is defined as xM – x, i.e. the distance in

cortical space between the positions of the stimuli that elicit a maximum

response when attention is present and when it is absent. When this

quantity is positive (negative), the shift is towards (away from)

attention. In a few cases (Fig. 4C) we also tried systematically another

measure of RF shift based on a Gaussian fit to ensure that our con-

clusions are not dependent on the particular measure of shift used.

Specifically, we fitted a Gaussian function (least-squares fit) to the RF

points, but only for those firing rates that exceeded one-half of the

maximum rate in the unattended tuning curve for the corresponding set

of parameters. The center xM of the fitted Gaussian was taken as the RF

center and, thus, this measure of shift was defined as xM – x. The

shrinking factor is defined as the width at half height of the attended RF

divided by the width at half height of the unattended RF. A shrinking

factor smaller (larger) than unity indicates that the spatial tuning curve

(or RF) shrinks (expands) under attention.

In all population activity profiles and spatial tuning curves shown

here, only the central half of the network is plotted to avoid showing

effects due to the free boundary conditions. In order to check for the

robustness of the effects discussed in the recurrent network model, we

carried out parameter sweeps around the values of the parameters

reported. We found that any parameter could be changed by ±10%, and
the qualitative results of the recurrent model in the paper would still

hold. In particular, the two modes of operation illustrated in Figure 5 are

robust in their qualitative features (direction of shift in neuronal RFs

relative to shift in population activity profile) to a change of ± 10% in

their parameters. In addition, we checked whether the shape of the

input-output relationship could be critical in generating the towards-

attention RF shift: we tried with the input--output function

f ðI Þ = 2 – 2exp – 1
2
ðI – T Þ

� �
and we could still see the toward-attention

shift effect for a set of parameter values very close to that reported in

Figure 5B. With respect to the feedforward model simulations and

calculations (see Appendix), we always used Gaussian functions for
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input profiles and distance-dependent network connectivity, because

they are usually seen to approximate well experimental data. However,

we have checked that our results are not critically dependent on this

choice: we have repeated our calculations and simulations when all

curves are given by Cauchy distributions (with much longer tails than

Gaussians: 1/(a2 + x2)) and our conclusions still hold, even quantitatively

(not shown).

In addition, we have also checked that our conclusion regarding the

limited range of RF shifts holds irrespective of the firing threshold used.

To this end we checked the full range of threshold values that still evoke

some sensory response in the first-layer network (see Fig. 4C).

Furthermore, for the purpose of generality we have studied how

dependent our conclusions are on the form of f (I) in the calculations

of the Appendix: our analysis (data not shown) demonstrated that our

conclusions hold qualitatively as long as cellular input-output relation-

ships are monotonously increasing functions of the input, and under the

condition that cells operate far from their strongly saturated output

regime. Both of these requirements are biologically plausible and

generally considered true for typical cortical neurons.

All these robustness checks point at the fact that the results reported

do not require fine-tuning of parameters.

Results

Our simulations were primarily motivated by the shift effect

observed by Connor et al. (1996, 1997). We observed that the

receptive field shifts towards the attentional locus could not be

reproduced as a trivial consequence of a ‘spotlight’ additive

input. Instead, we found that the shift effect could be accounted

for either by a feedforward scenario, where shifts occur as

a result of upstream multiplicative scaling (as suggested by

McAdams and Maunsell, 1999), or by an interplay between the

attentional signal and intracortical recurrent circuitry that gives

rise to a multiplicative modulation of the neural response. These

two alternatives have different properties and make different

predictions, which can help in teasing them apart. In order to

clearly describe our results, we will first provide a heuristic

argument, then show actual computer simulations from the

models.

‘Spotlight’ Bias and Shift Effect: A Heuristic Argument

In order to clarify the challenge in explaining the shift effect

(Connor et al., 1996, 1997) within a local network model where

attention acts via a ‘spotlight’ bias input, we consider the

following heuristic constructions. First, let us assume that

neurons within the network do not interact with each other,

their only inputs are bottom-up and top-down signals from

outside the network, and their only function is to add them and

transduce them into their output firing rate. We further assume

that the bottom-up sensory signal and the top-down attentional

signal are independent from each other, so that they carry

purely stimulus and attention information, respectively. We can

then plot the population activity profile for given stimuli (Fig.

1A, upper panel) and the spatial tuning curve of a single neuron

for all stimuli (Fig. 1A, lower panel). In this oversimplified

scenario, the attentional spotlight obviously shifts the popula-

tion activity profile towards the attentional input location (Fig.

1A, upper panel). However, the receptive field of a single

neuron does not show any kind of shift (Fig. 1A, lower panel).

This is intuitively easy to understand: with a fixed attentional

signal, when one records from a given neuron while the

stimulus is varied, the attentional signal is just an additive

constant on the sensory input and it does not change where the

maximum of the curve occurs. This example illustrates the

general point that shifts in population activity profiles usually do

not carry over to spatial tuning curves (RFs of single neurons).

Interactions between neurons in the network and/or between

sensory and attentional signals are necessary ingredients for the

shift effect reported by Connor et al. (1996, 1997) to occur in

the RFs of cortical neurons.

In the following argument we dissociate two different effects

in population activity profiles that might be induced by

attention: pure shift and pure multiplicative scaling. In realistic

scenarios (as we will consider later on) both of these effects are

likely to participate in attentional modulation of the network

activity. However, we can heuristically dissociate these two

Figure 1. Heuristic arguments show that shift and multiplicative scaling in the population activity profile induce opposite direction shifts in the spatial tuning curve. Each of the
upper panels shows the population activity profile for three different stimulus locations (shown by the colored arrows beneath the horizontal axis). The firing activity of the neuron at
location x5 0 is indicated by correspondingly colored dots. In the lower panels, the spatial tuning curve of the neuron at x5 0 is plotted (solid curve). To illustrate how this curve is
built, the colored dots of the upper panels are transferred to the lower panels. The neuron’s tuning curve in the absence of attentional modulation is included (dashed curve) to
visualize more easily the attentional effects. Attention is always directed to neurons with receptive fields centered around a fixed location xA, as indicated by the slender gray arrow.
The structure of the mathematical expressions that were used to generate each of the three cases shown (A, B, and C) are included at the bottom. Symbols used: R is neuronal
response, x is neuron label, xS is stimulus location, xA is attention location, IS is sensory input current, IA is attentional input current, 0\ f\1 is an attentional shift factor, and fA is
an attentional gain modulation function. Curves in upper panels are obtained by plotting R versus x for fixed xS, while in lower panels we plot R versus xS for fixed x. (A) Assuming no
recurrent and no stimulus-attention interactions, the spatial tuning curve of single neurons (lower panel, compare solid and dashed curves) does not shift at all. (B) If the network is
such that attention induces a shift of the unattended population response, but no significant multiplicative scaling (upper panel), the single-neuron spatial tuning curve (lower panel)
shifts away from attention. (C) When the effect of attention is a multiplicative scaling of the network responses, without any shift (upper panel), the spatial tuning curve of a single
neuron moves towards attention (lower panel).

Cerebral Cortex June 2006, V 16 N 6 763



effects first and then explore their interrelationship in a more

realistic setting. To this end, we first consider a situation in

which recurrent connections and/or stimulus-attention inter-

actions are such that the only action of an attentional top-down

signal on the population activity profile is to shift the un-

attended population activity profile by a fixed relative amount

toward attention. If we plot population activity profiles and the

spatial tuning curve for this case (Fig. 1B) we obtain that a pure

shift in the population activity profile induces a shift of the

spatial tuning curve in the opposite direction, i.e. away from

attention. In this case, the neuron shows the maximum re-

sponse when it is located at the peak of the population activity

profile. This happens when the stimulus is more to the left and

further away from the attentional focus than in the unattended

case, and the attentional signal shifts the population activity

profile to the right so that it peaks at the recorded neuron. This

example provides a more striking illustration of how population

activity profiles and spatial tuning curves can differ largely in

their qualitative properties. The ‘spotlight’ bias does explain the

shift in population activity profile, but it does not account by

itself for the receptive field shifts observed by Connor et al.

(1996, 1997).

Finally, we imagine a different scenario, where shifts are

completely absent in the population activity profile and the only

effect of attention is a multiplicative scaling of the profile, the

modulation factor is larger when the stimulus and attentional

signals are closer to each other. For now we do not need to

specify the mechanisms for such a multiplicative modulation.

The population activity profiles and the spatial tuning curve

(Fig. 1C) can be plotted for this situation, and we see that spatial

tuning curves now shift in the right direction (towards the

attentional focus), even though the population activity profiles

remain centered around the stimulus location. This observation

suggests a possible role of multiplicative scaling in bringing

about receptive field shifts.

To summarize, our heuristic discussions show that: (i)

qualitative properties of spatial tuning curve (the experimental

observable neuronal receptive fields) do not necessarily carry

over to population activity profiles (which are the behaviorally

relevant counterpart); (ii) either recurrent connectivity within

the local network or extrinsic interactions between stimulus

and attention signals to the local network, or both, are needed

to account for the receptive field shifts of Connor et al. (1996);

and (iii) under appropriate network interactions, the network

activity can shift towards attention and/or scale multiplicatively

as a result of attention, resulting in opposite effects on the

direction of the neuronal RF shift. Similar arguments have been

presented to link perceptual effects like the tilt effect with the

contextual modifications of tuning curves of V1 neurons

(Gilbert and Wiesel, 1990). We now turn to mechanistic

conditions under which RF shifts might be induced by attention

in cortical networks.

Recurrent versus Feedforward Cortical
Architectures for RF Shifts

There are arguably many different ways in which receptive field

modulations can be generated in biologically plausible neural

circuits. It is known that both recurrent circuitry, feedforward

connectivity and feedback connectivity are fundamental ele-

ments of cortical information processing (Douglas and Martin,

2004), and the observed attention effect is possibly produced

by a combination of these various mechanisms. However, it

remains an open question as to which of these may be

responsible for the RF shift effect observed in a given cortical

area. To shed light on this important issue, we studied two

general and contrasting scenarios from the point of view of the

connectivity: in the first case the neural circuit under consid-

eration is endowed with dense local horizontal connectivity

(a recurrent network), whereas in the second case the shift is

primarily induced in the course of activity propagation along

multiple layers of a feedforward network. Specifically we will

compare the two models depicted in Figure 2. In both models,

neurons are positioned in their network according to the center

of their receptive field on a line of length L.

In the recurrent model (Fig. 2A), only one layer of neurons is

simulated, which receive additive external inputs from both the

stimulus (IS (x)) and the attentional control system (IA(x)) and

recurrent inputs dependent on the activity of neighboring

neurons [according to a connectivity profile J (xi – xj) that

typically incorporates an inhibitory surround, in what is known

as a Mexican Hat connectivity (Amari, 1977; Salinas and Abbott,

1996; Kang et al., 2003)]. Mathematically, the firing rate of a cell

with the RF center at xi, R (xi), obeys the equation displayed in

Figure 2A.

The sensory input IS (x) and the attentional input IA(x) are

given by truncated Gaussian functions (see Materials and

Methods for details). Depending on the parameter values,

IA(x) can include an inhibitory input to neurons with receptive

fields peripheral to the attentional focus. Finally, the recurrent

input that a given cell at xi feels is a sum over all neurons in the

network, 1
N
+

j
J ðxi –xj ÞRðxj Þ; where J(xi – xj) is the strength of

the connection between the postsynaptic neuron at xi and its

presynaptic partner at xj. This Gaussian-shaped connectivity

J(xi – xj) provides cooperative excitatory interactions between

neurons nearby in cortical space (and, therefore, with over-

lapping receptive fields) and possibly inhibitory coupling

between neurons with non-overlapping receptive fields.

The feedforward model is a formal implementation of

a mechanism described by McAdams and Maunsell (1999). Its

schematic representation and its defining equations are dis-

played in Figure 2B. We simulate two layers of neurons, one

corresponding to an upstream area (V1 or V2) and the other

one to a downstream area (V4). We will refer henceforth to the

network representing the upstream area as first-layer network

and to the one representing the downstream area as second-

layer network. In accordance with the known properties of the

early visual pathway, first-layer neurons (upstream area) have

smaller receptive fields than second-layer neurons (downstream

area). This is accomplished by having the sensory input IS(y)

impinge on the first layer as a narrow Gaussian, and the activity

elicited in those neurons is then propagated to the second layer

via a fan-out feedforward connectivity profile J(x – y) that

generates much wider receptive fields. Attention enters the

feedforward model as a factor fA(y) in the slope of the input-

output relationship of first-layer neurons, and it typically affects

neurons in a region commensurate with the size of the

receptive field in that area, as suggested by McAdams and

Maunsell (1999).

The attentional factor is given by fA(y) = 1 + IA(y), so that

attention acts in the first-layer neurons by controlling their

response gain in a location-specific manner: positive attentional

modulations IA(y) generate a steepening of their input-output
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relationship, whereas negative attentional modulations (typi-

cally in a surround of the attentional focus) will result in

a reduced neuronal response gain. We use consistent nomen-

clature with the recurrent network above so that IS(y), IA(y) and

J(x – y) are given by the truncated Gaussian functions explicited

in Materials and Methods.

Parameters are chosen so that tuning curves in the second

layer have approximately the same tuning width than receptive

fields in the recurrent model (see Materials and Methods).

The Feedforward Model for RF Shifts

We first consider the feedforward model of Figure 2B. The

feedforward model proposed by McAdams and Maunsell (1999)

emphasizes the fact that the attentional input targets neurons in

a cortical area such that the size of the attentional beam (as

required by the task) matches the size of the targeted neurons’

RFs. Confirming previous proposals (McAdams and Maunsell,

1999), we found that such a model indeed produces receptive

field shifts in the downstream layer that represents area V4.

When shifts are produced, the magnitude of the shifts can be

quite large, if one assesses this through the maximum of the

tuning curve (see Methods). Note that, by definition, maximal

RF shift occurs when the tuning curve moves all the way to the

location of the attentional focus. In the feedforward model,

when RF shifts are observed the maximum of the tuning curve

can indeed be moved close to the attention focus in the

feedforward model (Fig. 3A, right panel), although in this case

the tuning curve is no longer Gaussian but has a bimodal shape.

Another interesting feature of this mechanism is the fact that

the size of the RF (assessed as half width at half height) is

reduced when attention is focused on the neuron’s RF center

(Fig. 3B), we will come back to this later. Both of this effects are

enhanced by, but not dependent on, the presence of an

inhibitory surround in the attentional beam. Thus, the feedfor-

ward model is an effective architecture for generating RF shifts

in areas downstream from the area where responses are multipli-

catively scaled. As we now show, however, there are limitations

that make this mechanism unable on its own to replicate the

data of Connor et al. (1996, 1997).

We found that, under the assumption that the attentional

focus footprint (spatial size) matches the RF size of neurons in

the first layer, the feedforward model is able to produce RF

shifts in a second-layer neuron only when attention is focused in

the vicinity of the neuron’s RF center, and not beyond the RF

boundary (Fig. 4A). This limit can be shown rigorously by

a quantitative mathematical analysis (see the Appendix). We

have checked that this result is not dependent on the value of

the firing threshold in neurons of the first-layer network, nor

on the method used to assess the magnitude of the RF shift

(Fig. 4C). Hence, the limited range for RF shifts is an intrinsic

feature of the feedforward model, not a mere consequence of

choice of parameter values. In contrast, the experiments of

Connor et al. (1996, 1997) showed very significant RF shifts

when attention was focused outside the recorded neuron’s RF.

The feedforwardmodel with attentional effects restricted to the

functional size of first-layer network responses is thus incom-

patible with the results of Connor et al. (1996, 1997). RF shifts

by away-from-RF attention in neurons of the second layer can be

obtained, if one allows the attentional focus on the first layer to

be considerably more widespread, and affect many more first-

layer neurons than strictly those whose RF overlaps the locus of

attention (Fig. 4B). By doing this, attentional shifts can be

induced when attention is focused beyond the RF boundary of

a second-layer neuron, even though the peak shift is signifi-

cantly reduced (compare left panels in Fig. 4A,B). Notice that

Figure 2. Schematic representation of the two model architectures analyzed and
compared in relation to the attentional induction of receptive field shifts. (A) the
recurrent network model consists of one population of neurons (gray circles) labeled on
a line according to the location of their RF centers (xi, i 5 1, . . ., N). Each neuron
receives additively a sensory input (IS(xi)), a more focused attentional input (IA(xi)), and
inputs from other neurons xj in the network weighed by a Mexican Hat connectivity
profile J(xi -- xj). Neurons add these inputs and transduce them into firing rate through
a linear-threshold function (schematically represented within each gray circle). (B) the
feedforward model consists of two layers of neurons disposed similarly to neurons in
(A). Neurons in the first network receive sensory input (IS), and the slope of their input--
output functions is modulated according to an attentional factor fA(yj) that induces
a gain increase in those locations where attention is being focused. The first network
activity propagates to the second network through a fan-out connectivity profile (J(xi --
yj)). Second-layer neurons summate all their presynaptic inputs and generate an output
according to a threshold-linear function. This model does not include any crosstalk
between neurons in the same network. Equations below each schematic represen-
tation give a mathematical description of the models. N is the number of cells in each
network; R(xi) is the steady-state firing rate of the neuron in location xi in the network
that represents area V4; R(yj) is the steady-state firing rate of the neuron in location yj
in the first-layer network (area V1, only in panel B); T is the firing threshold of the
neurons; and [�]þ is the thresholding operator.
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these small peak shifts are within the range of experimental

values (Connor et al., 1997; see Fig. A1). However, it remains

necessary in all cases to have very strong attentional modu-

lations ( >50%) in first-layer neurons.

Receptive Field Shift in a Recurrent ‘Spotlight’
Network Model

We have shown that to produce a toward-attention RF shift in

the original feedforward network (with the attentional foot-

print commensurate with first-layer neurons’ RF), attention

needs to be focused well within the radius of a downstream

neuron’s RF (in contrast with the results of Connor et al. (1996,

1997)). This feedforward mechanism can only replicate the

observations in area V4 by Connor et al. (1996, 1997) if one

assumes that attentional modulation in the upstream area (V1)

is strong and has a very broad footprint, of the size of RFs in the

downstream area (V4). Although there is no conclusive evi-

dence ruling out a broad attentional beam in V1, attentional

modulations in V1 are reportedly very weak at the neuronal

level. Therefore, we now turn to analyzing whether mecha-

nisms intrinsic to a local network can generate RF shifts on their

own. Our candidate mechanism is reverberatory interactions

within the local circuit.

What recurrent circuitry mechanisms can implement the

attentional shift effect in the local network? To address this

question we considered a model of a cortical module of neurons

in area V4 which have different receptive fields but the same

stimulus selectivity (orientation, spatial frequency, etc.). The

network model consists of recurrently connected firing rate

neurons ordered along a line according to the center of their

receptive fields. Recurrent connections are strongest between

neighboring neurons and the network receives two types of

external input: a topographic stimulus signal, and a topographic

‘spotlight’ attentional bias input which is spatially more focused

than the stimulus input (see Fig. 2A and Materials and Methods

for details). Interestingly, if recurrent connections are purely

inhibitory (light gray and squares in Fig. 5C, left panel), the

receptive fields shift away from the attentional focus (Fig. 5A,

bottom panel). By contrast, if recurrent excitation is strong

(black and circles in Fig. 5C, left panel), the RFs shift towards the

attentional focus (Fig. 5B, bottom panel). Under these two

different operational regimes, the recurrent connections within

the network determine different ways in which the attention

signal modulates the population activity profile. Thus, in one

case attention induces an important shift towards attention in

the population activity profile (Fig. 5A, upper panel), while in

the other case it mostly results in a multiplicative scaling of the

network activity without significant spatial shift (Fig. 5B, upper

panel). Strong recurrent excitatory connections favor the

multiplicative effect, hence a receptive field shift towards

attention (see Fig. 1). As shown in Figure 5C, a gradual increase

in the overall excitatory coupling of the network leads to a

transition from away-from-attention shift (data in light gray and

squares) to towards-attention-shift (data in black and circles).

Therefore, local recurrent circuitry can account by itself for

the shift effect observed by Connors et al. (1996, 1997)

provided the internal circuitry of extrastriate cortex operates

in the regime with sufficiently strong recurrent excitatory con-

nections illustrated in Figure 5B rather than that of Figure 5A.

In Figure 6 we simulate the Connor’s experiment using the

same parameters as Figure 5B, except with the attentional

focus well outside of the neuron’s RF. In close similarity with

the single unit recording data of Connor et al. (1997) (compare

with their fig. 2), in response to five stimuli presented in the

receptive field, the neural activity is shifted towards the

attentional signal, and the maximum response is slightly

enhanced compared to the unattended case. These results

suggest that the observed receptive field shift in V4 neurons can

be accounted for if the underlying local circuit is endowed with

sufficient recurrent connections to operate in the multiplicative

regime of Figure 5B.
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Figure 3. Population activity and receptive field modulations by attention in
a feedforward two-layered network. Two situations are illustrated: receptive field
shift in the second-layer neuron when attention is focused onto the flank of the
neuronal preferred stimulus (A panels); and receptive field shrinkage in a neuron of the
second layer when attention is allocated right on the neuronal preferred stimulus
(B panels). In all panels, location of attention is indicated by upward pointing gray
triangles. Population profiles are drawn for stimuli presented at location x 5 0, and
tuning curves correspond to neurons with RF centered at x 5 0. Dashed lines depict
activity in the absence of attentional modulation, while solid lines contain the effects of
attention. Attentive multiplicative scaling is built into first-layer neurons (lower panels),
and it is transmitted through feedforward connections to second-layer neurons (upper
panels). Second-layer neuron tuning curves show a variety of attentional modulations
such as towards-attention shift (panel A) and receptive field shrinkage (panel B, dotted
line is a rescaling of the unattended curve to show the reduction in width at half height
induced by attention). The attentional signal modulates the gain of first-layer neurons
(elongated tilted arrows) and it includes an inhibitory surround with A0 5 �0.48 and
A1 5 1.5.
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Shift and Shrinking Effects through Attentional
Surround Inhibition

Figure 5 shows that a recurrent network in an appropriate

operational regime can generate the receptive field shift

towards attention in a ‘spotlight’ single recurrent network

model. However, the receptive field shifts thus obtained are

relatively small (see Fig. 5B). So, we asked under what

conditions the receptive field shift is maximal. We found that

the maximal shift occurs if the attentional signal contains

a surround inhibitory component, i.e. when the attentional

input excites neurons with receptive field near the attentional

locus but it inhibits neurons with receptive fields peripheral to

the attentional focus (Fig. 7). Not only does the receptive field

shift become larger with an attentional inhibitory surround, but

the receptive field also appears to shrink around the position

that now elicits the maximal response in the neuron, which is

shifted towards the attentional locus (Fig. 7). This shrinking is

seen to progressively increase as the attentional inhibitory

surround becomes stronger (Fig. 7B). However, the RF shrink-

ing occurs only when attention has an offset with respect to the

neuronal preferred location. For attention focused right on top

of the neuron’s RF, one would see RF enlargement rather than
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Figure 4. In the feedforward model, the footprint of attentional modulations in the first network determines whether attention focused outside the receptive field of second-layer
neurons is able to induce significant RF shifts. (A) When the attention focus has a size comparable to first-layer neurons’ RFs, no RF shifts are observed in the second-layer neurons if
attention is focused beyond RF boundaries (parameters as in Materials and Methods). (B) when the attention focus is broad (rA tripled with respect to A) and impinges on many
more neurons than encompassed in a typical first-layer neuron’s RF, the feedforward model produces shifts for attention focused beyond the boundaries of second-layer neurons’
RFs. Left panels: RF shifts in absolute units versus the distance between the attention focus and RF center, normalized to the RF half width at half height. Right panels: RF of
a second-layer neuron in the unattended case (thin dashed line), and with attention located at two different positions within the RF (in gray and black, respectively). Area in gray
indicates the extent of the receptive field (unattended RF width at half height). In (A), shifts disappear when the attention focus is on the border of the RF and beyond, while in (B)
shifts persist even when attention is half a RF radius away from the RF boundary. (C) The limitation of the feedforward model to produce RF shifts when attention is focused beyond
the neuron’s RF is not dependent on the neuronal nonlinear responses, nor on the method used to assess the degree of shift in the RF. Left: magnitude of RF shifts induced for three
different values of the threshold of the input-output relationship in the first-layer neurons (Thr5 0 corresponds to the curve in panel A, left). Right: same as left, but RF shift is now
quantified not in terms of the location of the RF peak (as in all other panels here), but the center of the Gaussian fit to the response in the second-layer neuron (see Materials and
Methods). In both cases, the range of locations where an attentional focus is able to generate RF shifts remains constant, although the neuronal firing threshold increases the
amount of RF shift. In all cases second-layer neurons had a firing threshold set at one half of the maximal unattended response.
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shrinking (see Fig. 9). Notice that this effect does not require

attentional inhibitory surround, but is a common feature of

a strongly recurrent network, which we argue can be used to

distinguish a recurrent from a feedforward architecture (see

below).

In the regime of Fig. 5A where the receptive field shifts away

from attention, we observed that the addition of an attentional

surround inhibition increases the magnitude of the receptive

field shift away from attention. On the other hand, the shrinking

of the receptive field under inhibitory surround attentional

input occurs also in this network regime (data not shown, but

see Fig. 9).

RF Shifts Induced by an Adapting Stimulus

So far, we have focused on explaining the RF shift caused by

attention (Connor et al., 1996, 1997) by using two alternative

computational architectures. Recently, however, there have

been reports on shifts of neuronal tuning curves following

protocols of visual adaptation in V1 (Dragoi et al., 2000; Yao and

Dan, 2001; Fu et al., 2002; Felsen et al., 2002) and in MT (Kohn

and Movshon, 2004). A link between attention and adaptation is

suggested by the fact that adaptation is known to reduce the

sensitivity to contrast, and attention has recently been shown to

act as an effective increase in contrast (Reynolds et al., 2000;

Martinez-Trujillo and Treue, 2002). Because of the potential

interaction that such a relationship implies, we considered in

our model how adaptation might shift the receptive fields of V4

neurons. The effect of a prior, long-lasting presentation of an

adapting stimulus to our model neurons can be modeled as

a reduction of excitability in a subset of neurons in our network

during the course of our receptive field mapping procedure.

The underlying, plausible assumption is that the time course of

adaptation is much slower than the dynamics of receptive field

changes that we are studying. Therefore, if an adapting stimulus

is presented at location xA for a long time and it induces visual

adaptation, subsequent presentation of a test stimulus at location

x will result in a network response to the test stimulus as if the

network was receiving a constant hyperpolarizing bias current

peaked at location xA. We implement this by injecting a biasing

hyperpolarizing input to the network (Carandini and Ferster,

1997; Sanchez-Vives and McCormick, 2000; Wang et al., 2003).

Our level of modeling is not explicit enough so as to iden-

tify a synaptic or intrinsic neuronal mechanism for this
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Figure 5. A recurrent network model with non-interacting attentional and sensory inputs can be in two different regimes regarding the receptive field shift induced by attention:
shift away from attention (A) and shift towards attention (B). Upper panels show population activity profiles for stimuli at xS 5 0 in the unattended case (dashed line) and in
the attended case (solid line and gray arrow, xA 5 1). Case A shows prominent attentional shift of the population activity profile whereas the dominant attentional modulation of
the activity profile in case B is multiplicative scaling. In the lower panels of (A) and (B), the spatial tuning curve of the neuron at x 5 0 is plotted versus stimulus positions in the
unattended case (dashed line) and when attention is directed to the right side of the receptive field (solid line and gray arrow at xA5 1). The two different regimes become clear as
the maximum of the spatial tuning curve (inverted triangles) moves away from (A) or towards (B) the attentional focus. Responses and positions are in arbitrary units. (C) A
recurrent network can be brought from away-from-attention shift to towards-attention shift by increasing the overall excitatory coupling. Results from a given simulation are plotted
using the same shade of gray and symbol in each of the three panels. Attentional signal is always at xA 5 1. Spatial tuning curve (center panel) of the neuron in x 5 0 for three
simulations with identical parameters except for different strengths of recurrent connections (shown in left panel). The shift of the receptive field is quantified from the receptive
field maximum as described in Materials and Methods for each simulation and plotted against the corresponding average connection strength (right panel). A positive shift indicates
shift towards attention while a negative shift is a shift away from attention. Parameters for (A) and (B) are given in the Materials and Methods section. In (C) the same parameters
as in (B) were used except for J0, which is incrementally varied from �3 to 3.
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adaptation: both mechanisms effectively reduce the excitability

of neurons and would be modeled in the same way here. A

scenario where adaptation occurs upstream from the modeled

cortical circuit is also consistent with this implementation.

Specifically, in our recurrent network model we use the same

mathematical framework presented in Figure 2A but taking rA =
0.71, A0 = 0 and A1 < 0. The broader extent of adapting, relative

to attentional, additive input footprints (rA) is justified by the

fact that the adaptation bias current is triggered by neuronal

activity and therefore is comparable to the receptive field size,

whereas the attentional beam can be more focused. For the

simulation of adaptation-induced modulations in the feedfor-

ward scenario (Fig. 2B), we modeled the adaptation effect at the

level of neural responses in the first layer, consistent with the

finding of Kohn and Movshon (2004): we modify the equation

for the first network to read: R (yj) = [IS (xi) + IA(yj) – T]+, and

we use A0 = 0, A1 = –0.2.

The simulations show that in the two cortical networks that

we consider here (Fig. 2), adaptation induces RF shifts in the

opposite direction than attention (Fig. 9). We illustrate this

explicitly for the recurrent network model (Fig. 2A) in Figure 8:

adaptation gives rise to shifts of receptive fields towards or away

from the adapted location, depending on whether recurrent

connections are predominantly inhibitory or strongly excit-

atory, respectively (Fig. 8C).

Distinguishing the Models by their RF Modulations

We compared the different models quantitatively by examining

how the receptive field of a neuron changes shape as an

attentional spotlight is progressively moved away from the

center of the RF (Fig. 9). We observe that neither of the three

models (strong recurrent inhibition, strong recurrent excitation

or feedforward) can be distinguished by means of the change in

the neuron’s maximal rate under attention (or adaptation). As

is clear in Figure 9A, in all three cases, the presence of an

inhibitory surround around the central focus of attention

(dashed lines) is manifested by a firing rate reduction when

attention comes to the flanks of the receptive field, and a firing

rate increase for attention near the preferred location (as

illustrated in Fig. 7B, left panel, when increasing the inhibitory

surround, the focal excitation is compensatorily increased as

well). Figure 9B shows the RF shifts for the three models. In

contrast to the other two models, in a strongly inhibitory

recurrent network attention induces away-from-attention shifts

and adaptation induces towards-adaptation shifts, albeit small

(compare shaded areas). In all three models, inhibitory atten-

tional surround also manifests itself through a reversal of the

sense of the receptive field shift when the location of attention

focus is larger than a critical value. Note, again, that when the

attention focus is beyond the RF boundary, RF shift is significant

only in a recurrent network but not in a feedforward network.

Figure 9C displays the width of the receptive field (defined at

half height). Interestingly, when attention is directed to the

center of the RF (x = 0), both recurrent network models yield

a larger RF width with attention than without it (left and middle

panels, shaded areas). By contrast, the feedforward model

predicts a narrower receptive field in the attended than in the

unattended case (right panel, shaded area, see also Fig. 3B). The

effect is also evident with adaptation: it narrows RF in recurrent

models, whereas the opposite occurs in the feedforward model.

Intuitively, one can understand this difference in the light of the

different ways in which the attention/adaptation signals in-

teract with the stimulus. In recurrent models, the modulatory

signal is added together with the stronger sensory signal. When

stimuli are varied in order to compute the tuning curve of

a neuron, the modulatory signal received by this neuron is fixed.

Because of this extra excitatory input, it is not surprising that

the neuron’s response to each stimulus is larger, hence the

tuning curve (measured at half-height) is wider. The situation is

different in the feedforward model. The output of a neuron yi
(in the first-layer) subject to an attentional bias input centered

on yA in the first layer is R(yj) = fA(xA – yj)[IS (yj) – T ]+, where

fA(xA – yj) is a Gaussian function of the distance between

the attention focus xA and yj. A neuron xi in the second

layer receives the weighted input J(xi – yj)R(yj). When the

attention focus is near the center of its RF, xA � xi. Therefore,

we can rewrite J(xi – yj)R(yj) as Jeff (xi – yj)[IS(yi) – T ]+, with

Jeff (yj – xi) = J(xi – yj)fA(xi – yj). Because the product of two

Gaussian functions is still a Gaussian with a narrower width reff,

given by 1=r2
eff = 1=r

2
J
+ 1=r2

A; attention modulation increases

and sharpens the feedforward connectivity and results in

a narrower receptive field of the neuron (notice that we define

the width of a tuning curve or connectivity profile at half height,

see Fig. 3B).

This result suggests that accurate measurements of the

receptive field width with and without attention at the RF

center may provide a test to differentiate between the recurrent

Figure 6. A recurrent network can reproduce the results of Connor et al. (1997).
Same simulation as in Figure 5B, except for attention being directed well outside the
receptive field (xA 5 �2,þ 2). The dotted circle in the center of the figure represents
schematically the measured receptive field size. Five equally separated stimuli are
symmetrically positioned on the receptive field (central black bars numbered 1--5).
Each of the three peripheral histograms shows the activity of the neuron to each of
these five positions when attention is being directed to the smaller solid circle
indicated by the arrow (upper histogram obtained for no attentional signal). (A) All five
test stimuli are contained within the neuron’s receptive field. A shift towards attention
is observed. (B) The lateral test stimuli fall outside the receptive field. Responses are in
arbitrary units. Compare with figure 2 of Connor et al. (1997).
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and the feedforward scenarios. Note that there are two separate

issues: whether attentional effects observed in the recorded

area are primarily due to attentional input coming into this area

or upstream from it, and whether recurrent circuitry in the

recorded area has a substantial role in determining the

attentional modulation of the shape of the RF. The test that

we propose would rather address the latter issue, since

a situation where attentional input targets upstream neurons

and strong recurrent connectivity shapes RFs in the recorded

area would yield similar results to our strong recurrent scenario.

Discussion

In recent years, electrophysiological studies of behaving pri-

mates have revealed the cellular correlate of selective visual

attention at the single neuron level. In response to a single

stimulus, multiplicative enhancement and receptive field shift

towards attention were reported and interpreted as evidence

for an attentional ‘spotlight’. In addition, several lines of

evidence have linked attentional effects to an increase in

effective stimulus contrast. Since adaptation is known to induce

a decrease of contrast sensitivity, this finding suggests an

interaction betwen attention and adaptation. In this paper, we

have studied how receptive field modulations can be induced

through the feedforward propagation of activity across visual

areas or else through the interplay between an attentional

‘spotlight’ additive input and intrinsic local interactions within

the cortical network (for example V4 or MT). Our main findings

are: (i) the receptive field shift towards attention is not a direct

consequence of a bias ‘spotlight’ model of attention; to un-

derstand this a clear distinction must be made between the

activity of the neuronal network in response to a fixed stimulus

and the single neuron’s spatial tuning curve which defines its

receptive field. (ii) Multiplicative enhancement by attention,

either locally or upstream from the observed area, can give rise

to receptive field shifts. In the local circuit model, both gain

modulation and RF shifts may have a common underlying

mechanism in intrinsic recurrent network connections. (iii) In

the two-layer feedforward model without recurrent interac-

tions, the range of RF shift induced in the second layer is limited

by the strength and spatial extent of the attentional focus in the

first layer, thus it does not seem to provide a plausible

explanation for the shift effect of Connor et al. (1996, 1997).

(iv) Receptive field shift can be accentuated by an attentional
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Figure 7. Receptive field shift can be large and its width can shrink significantly if the attentional signal mediates inhibition. (A) Simulation with surround inhibition shows significant
receptive field shrinkage as a result of attentional input (lower panel, shrinking factor 0.9). The upper panel shows population activity profiles for stimuli at xS5 0, while in the lower
panel the spatial tuning curves of the neuron at x5 0 are plotted versus stimulus positions. Dashed lines correspond to the unattended case and for solid lines attention is directed
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except for varying attentional inputs (left panel). Right panel: shrinking factor (ratio of attended versus unattended RF sizes; see Materials and Methods) versus surround attentional
input (value of attentional input at the location marked by the vertical arrow in the left panel). A shrinking factor below 1 indicates that attention induces the shrinking of the
receptive field with respect to the unattended spatial tuning curve (black dashed line). Results from each simulation are plotted using the same shade of gray and symbol in all three
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while A1 always follows A1 5 0.085 � 1.82 A0. The example in (A) corresponds to A0 5 �0.23, and A1 5 0.5.
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‘spotlight’ signal which includes surround inhibition to neurons

in the periphery of the attentional focus. (v) Adapting stimuli on

the flank of a neuron’s receptive field also induce receptive field

shifts, opposing those effected by attention.

Our results suggest that a detailed analysis of RF modulation

by attention and adaptation will help to distinguish the

prevalence of a recurrent versus a feedforward mechanism for

the observed RF shifts. Specific predictions are: (i) adaptation

protocols and attention tasks should produce opposite di-

rection shifts when studied in the same cortical area and along

the same stimulus dimension; (ii) towards-attention and away-

from-adaptation shifts favor two alternative ‘spotlight’ scenarios:

feedforward multi-layered, or strong excitatory recurrent net-

works. They differ in the RF size modulation when attention is

directed right on the neuron’s RF center: the feedforward

architecture predicts a narrowing of the RF, whereas the

recurrent network is associated with a broadening of the RF.

This difference can be experimentally exploited to distinguish

a recurrent from a feedforward scenario for RF shifts; and (iii)

away-from-attention and towards-adaptation RF shifts can be

accounted for, among the models considered here, by a strongly

inhibitory coupled recurrent network. This regimemay account

for the experimental observations from MT neurons during

visual adaptation (Kohn and Movshon, 2004).

Alternative Mechanisms for RF Shifts

So far, the mechanisms for receptive field attentional shifts

proposed in the literature included dynamic modulations of
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Figure 8. In the recurrent network model, adaptation to a long-lasting stimulus induces differential shifts in the receptive field depending on the regime of the intracortical
connectivity. Tuning curve shifts (albeit small) towards the adapting stimulus when there is strong intracortical inhibition (A) and tuning curve shift away from adaptation when local
excitatory feedback dominates the recurrence (B). (A) and (B) are analogous to their correspondents in Figure 5, but now the modulatory bias input is inhibitory rather than
excitatory, thus simulating the effect of a previous adapting stimulus. (C) A recurrent network can be brought from weak towards-adaptation shift to away-from-adaptation shift by
increasing the overall excitatory coupling. Results from a given simulation are plotted using the same shade of gray and symbol in each of the three panels. Adaptation focus always
at xA5 1. Spatial tuning curve (center panel) of the neuron in x5 0 for three simulations with identical parameters except for different recurrent connectivities (shown in left panel).
Right panel: RF shift versus average connection strength. A positive shift indicates shift towards adaptation while a negative shift is a shift away from adaptation. (D) Spatial tuning
curves (center panel) of the neuron in x5 0 for three simulations with identical parameters except for varying adaptation inputs (left panel). Right panel: shift of the receptive field
versus strength of adaptation input. Results from each simulation are plotted using the same shade of gray and symbol in all three panels. (Parameters in A, B and C are as in the
corresponding panels of Fig. 5 except for rA5 1 and A1, which takes values�0.29,�0.07 and�0.07, respectively. In D the parameters are the same as in B except for A1, which
is incrementally varied from �0.035 to �0.11.)
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synaptic strengths of intracortical connections (Olshausen

et al., 1993), and propagation of response gain changes in

neurons of early visual areas to downstream networks

(McAdams and Maunsell, 1999; Maunsell and McAdams, 2001).

In this paper we present a third mechanism: strong recurrent

connections among neurons in the local network.

Olshausen et al. (1993) propose that a network of control

neurons exists, that operates on feedforward intracortical

connectivity by changing synaptic weights in such a way that

only information from a subregion of the scene is selectively

routed to higher processing areas. In this scenario, the shift in

the receptive field is an essential attentional modulation that

creates position-invariant representations of stimuli. The partial

shifts in area V4 would then be one step in the progressive

shifting of receptive fields that would contribute to object-

centered representations in higher-order brain areas. This

scenario requires independent signals sent to each synapse of

the visual processing feedforward network. However, a bio-

physically plausible mechanism for delivering such signals in

real neural circuits remains elusive.

According to the feedforward model (McAdams andMaunsell,

1999; Maunsell and McAdams, 2001), attentional multiplication

of responses would occur at a stage in the visual processing

stream where receptive field size is congruent with the spatial

attentional focus. The simple feedforward propagation of these

attentional effects to a subsequent stage in visual processing

induces shifts in the receptive fields of neurons in these

downstream networks. Receptive field shifts in this framework

are simply the reflection of upstream attentional gain modula-

tion. We have shown here that this feedforward model cannot

account quantitatively for the data of Connor et al. (1996, 1997)

unless the attentional signal affects many neurons whose RFs do

not overlap with the attentional focus. In addition, a prediction

from this model is that strong attentional response gain control

( >50% increase) should occur earlier in the visual pathway than

response shifts induced by attention. Experimental evidence

consistent with this idea comes from imaging experiments on

humans, that show attentional modulation as far down as the

thalamus (O’Connor et al., 2002; Kastner et al., 2003) and

primary visual cortex (Tootell et al., 1998; Ito and Gilbert, 1999;

Gandhi et al., 1999; Somers et al., 1999; Brefczynski and DeYoe,

1999). In contrast, electrophysiological experiments in the

monkey have usually found little attentional gain field modula-

tion in the primary visual cortex, and weak to moderate effect in

V2 (Motter, 1993; Luck et al., 1997; McAdams and Maunsell,

1999; Marcus and Van Essen, 2002; but see Roelfsema et al.,

1998; Vidyasagar, 1998). On the other hand, the idea that the

attentional ‘spotlight’ input is directed onto a brain area whose

Figure 9. Comparison between three scenarios for the receptive field modulation induced by attention and adaptation. Results for recurrent network models are shown in the left
and middle columns, corresponding to the strong inhibitory versus strong excitatory connections of Figure 5, respectively. The right column exhibits results from the two-layer
feedforward model, where both adaptation and attention effects are applied in the first layer and propagated to the second layer via feedforward connections. The graphs show how
receptive fields/tuning curves change their shape as a function of the distance between the modulatory input and the neuron’s RF center (x 5 0) in units of the unattended RF
radius. (A) Peak firing rate relative to the non-attended/non-adapted case, (B) RF shift (positive values indicate shift in the direction of the focus of the modulatory input) and (C) RF
width (defined at half-height) relative to the non-attended/non-adapted case. In each panel, solid curve: excitatory attentional bias input (attention), dashed curve: focal excitation
with inhibitory surround attentional input (att þ surround), dotted curve: inhibitory modulatory input (adaptation). Shaded areas indicate aspects that can help discriminate the
various models, in (C) they cover the RF while in (B) they cover the area right beyond the RF boundary. For the recurrent networks, parameters are as in Figures 5 and 8 for attention
and adaptation, respectively, whereas in the attention þ surround case, the modulatory input parameters were A0 5 �0.29 and A1 5 0.81 in the strongly inhibitory recurrent
case, and A0 5 �0.093 and A1 5 0.25 in the network with strongly excitatory connectivity (same as Fig. 7B, middle case). For the feedforward architecture, parameters are as in
Figure 3.
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typical RF size is commensurate with the attentional focus is

challenged by recent fMRI evidence (Müller et al., 2003). Also,

the grain of visual spatial attention has been estimated to be ~3
times coarser at the fovea than visual resolution and significantly

coarser than the spatial resolution of cells in V1, at least for

certain tasks (He et al., 1996; Intriligator and Cavanagh, 2001).

This is in line with the idea that the attention signal is much

wider than RF size in V1.

In this paper we have presented an alternative mechanism,

where each module in the processing hierarchy generates its

attentional effects (multiplication and shift) through recurrent

interactions between neurons in the local circuit (Salinas and

Abbott, 1996). Here, attentional modulation does not need to

target only the brain area whose receptive field size matches the

required extent of the spatial spotlight, but both multiplicative

and shift effects will be induced locally by the internal circuitry

of each brain area. We emphasize that these scenarios are not

mutually exclusive, they could interact in some areas, or they

could differentially control the attentional effects in different

brain areas or for different stimuli feature dimensions.

The fact that our argument favors the recurrent network

versus the feedforward network scenario on the basis of the

phenomenology when attention is focused outside the neuron’s

RF, might raise some concerns regarding how well defined the

RF borders can be in the experiment. Indeed, RF borders might

have been underestimated in Connor et al. (1996, 1997) so that

attention was actually being focused within the neuron’s RF and

then our feedforward model could still be in agreement with

the data. However, this is unlikely to be the case because our

measure of receptive field size --width at half height-- is much

more conservative than that in (Connor et al., 1997).

Network Activity Profile versus Single Neuron
Tuning Curve

We have shown that single unit electrophysiological measure-

ments of receptive fields during spatial attention tasks may have

qualitatively very different properties than the single-trial

network population activity. We have shown this heuristically

in Figure 1 and in a recurrent network model. In Figure 5, even

though population activities always shifted toward the atten-

tional focus, the spatial tuning curve in one case shifted away

(Fig. 5A) and in the other case towards attention (Fig. 5B).

Without attentional signal, a single cell’s RF and a population

activity profile have the same shape. This stems from the fact

that it is symmetrical to either look at one cell while varying the

stimulus (RF), or consider different cells across the entire

population for a given stimulus (network activity). Such

a symmetry no longer holds in the presence of a fixed attention

bias, because the distance between the stimulus and the focus

of attention is fixed when different cells are considered to

compute a population activity pattern, whereas this distance is

obviously not constant when the stimulus is varied to compute

a single cell’s tuning curve. A way to circumvent this and have

access to the population activity profile in single-neuron

experiments is to change the attentional location together

with the stimulus when plotting a neuronal response curve, so

that the relative distance between their locations remains

constant (see Martinez-Trujillo and Treue, 2004). This situation

implies that caution must be exercised in interpreting the data,

since it cannot be assumed in general that receptive fields are

experimental probes of population activity profiles. Also, the

perception and behavioral choices of the animal are based on

the single-trial network activity, rather than the single-neuron

responses to a variety of different stimulation conditions.

Therefore, theories of attention based on these electrophysio-

logical experiments need to carefully assess what single-neuron

responses say about the network function.

Receptive Field Shifts

We showed that, if attentional modulation acts on a strongly

recurrent network, the receptive field shift towards attention

(Connor et al., 1996, 1997) can occur as an automatic

consequence of attentional multiplicative scaling of responses,

rather than a result of a simple enhancement of firing around

the attentional focus (directly by a ‘spotlight’ bias input). To

obtain the observed receptive field shift, we claim that attention

needs to induce a multiplicative scaling of the population

activity profile (Fig. 1C). One way for this to happen in

a recurrent model network, is to have it operate in the regime

described by Salinas and Abbott (1996). Briefly, cortical ampli-

fication through localized recurrent excitatory feedback has

a greater effect on active neurons (peak of the bump) than

inactive neurons (tails of the bump). This translates in an

approximate multiplicative scaling of responses upon the

addition of a fixed constant current to all neurons in the

network. Thus, toward-attention RF shifts can be accomplished

in recurrent networks for sufficiently strong local excitatory

recurrent interactions, as illustrated in Figure 5C.

Interestingly, our model shows that, even if the spatial range

of attention is much smaller than the typical receptive field size

in that area, recurrent interactions within a local network can

by themselves produce the observed receptive field shifts. Thus,

the attentional signal might not need to be exclusively gated to

the area matching the size of the attentional ‘spotlight’ and that

of the receptive field. It remains to be explored what is the

combined effect of attentional signals in several (possibly

reciprocally connected) layers of recurrent neural networks

of the kind that we explored in this paper.

Partial receptive field shifts have also been observed in the

context of multimodal integration, and are usually attributed to

the convergence of inputs in distinct frames of reference

(Deneve et al., 2001; Pouget et al., 2002; Xing and Andersen,

2000). Thus, over a wide spectrum of behavioral contexts RF

shifts may represent fundamental computational operations in

the cortex, and they might operate through distinct physiolog-

ical mechanisms.

Attention-gated Surround Inhibition

In our recurrent single network model, the largest shift in the

receptive field is obtained when the attentional signal contains

an inhibitory component around the attentional locus. The

action of attention through focal excitation and surround

inhibition has been put forward before (Treisman, 1988; Crick

and Koch, 1990; Tsotsos, 1990; Tsotsos et al., 1995; Cutzu and

Tsotsos, 2003). Here we report another functional implication

of such an attentional signal, in the context of receptive field

shifts.

Such a scheme is consistent with some recent anatomical and

physiological data showing the involvement of disynaptic

inhibition in feedback ‘top-down’ projections to early visual

cortex. In anesthetized animals, there is functional evidence of

inhibitory interareal feedback interactions (Alonso et al., 1993;

Martı́nez-Conde et al., 1999), which in many cases is only
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unmasked when stimuli span across the surround area of the

receptive field (Hupé et al., 1998; Bullier et al., 1996; Wang

et al., 2000). We emphasize that an attentional surround

inhibition is not likely to arise from direct ‘top-down’ projec-

tions; indeed long-distance interareal synaptic connections

could be exclusively excitatory. But attentional surround in-

hibition could be realized by ‘top-down’ excitatory inputs to

inhibitory neurons in the early sensory areas, which in turn send

lateral inhibition to pyramidal neurons. Anatomically, there is

evidence that inhibitory neurons are indeed targets of feedback

corticocortical axons in visual cortex (Gonchar and Burkhalter,

1999; Johnson and Burkhalter, 1996; Gonchar and Burkhalter,

2003; but see Shao and Burkhalter, 1996). Taken together with

the existence of spatially extended projections from interneur-

ons onto pyramidal cells (Crook et al., 1998), this provides

a possible anatomical substrate for surround inhibition medi-

ated by corticocortical feedback projections.

RF Shifts Induced by Adaptation and Attention

Partial shifts in the selectivity of neurons are not restricted to

area V4 and are not a unique attentional footprint: just prior to

a saccadic eye movement, LIP (Duhamel et al., 1992) and V4

(Tolias et al., 2001) neuronal receptive fields shift towards the

planned target. This has strengthened the idea that saccadic eye

movements and shifts of attention are closely linked. On the

other hand, orientation tuning curves of V1 neurons change

their preferred orientation as the result of adaptation to a pre-

vious oriented stimulus (Müller et al., 1999; Dragoi et al., 2000;

Felsen et al., 2002). In all these studies, the shift of the tuning

curves is away from the adapted orientation. In contrast, motion

direction tuning curves in area MT have been reported to shift

towards an adapting stimulus (Kohn and Movshon, 2004);

according to our model, this observation would be compatible

with a recurrent inhibitory architecture in MT. In addition,

when the adapting stimulus is more complex and includes the

repetition of a temporal sequence, Yao and Dan (2001) and Fu

et al. (2002) have shown that orientation tuning curves and

receptive fields shift in a direction which is dependent on the

relative ordering of the repeating sequence, suggesting the

involvement of a spike-timing-dependent plasticity mechanism.

A possible mechanistic scenario that has been explored in

a computational model is when adaptation induces short-term

plasticity in the recurrent intracortical connections engaged

by the adapting stimulus (Teich and Qian, 2003; Felsen et al.,

2002).

Thus, shifts in neuronal selectivity are widespread in the

visual system and could underlie perceptual effects related to

selective attention and adaptation. So far, there are no physio-

logical studies in which both attention and adaptation have been

examined for their effect on a single visual feature selectivity

(such as spatial position, orientation, velocity), and in the same

visual area. The prediction from our study is that if an area shows

both attentional and adaptation electrophysiological effects in

the selectivity of neurons, they should oppose each other and

a detailed analysis of their interrelationship (Fig. 9) could shed

light onto the relative importance of the feedforward versus

recurrent architecture for the generation of tuning curve

modulations induced by attention and adaptation.

Why Receptive Field Shifts?

We have focused here on the interpretation and mechanisms

for neuronal receptive field shifts induced by attention and

adaptation, as observed electrophysiologically. We have shown

that these shifts can be informative to reveal the underlying

architecture responsible for attentional modulations, and we

have also shown that they can be misleading. Indeed, shifts in

receptive fields (or for that matter, any tuning curve shift) do

not necessarily reflect an underlying population activity shift in

the same direction. However, the real purpose of attentional

mechanisms in the brain is to implement behaviorally advanta-

geous modulations in the brain activity in a single trial, rather

than neuronal tuning curves that are meaningful only across

trials. Therefore, if selectivity shifts have any relevance for

attentional (or adaptation) control, it must be in the context of

what shifts are induced in population activity profiles. So far,

experiments have looked at single neurons, but a more direct

survey of population activity via multiple simultaneous record-

ings or optical imaging might be necessary in order to un-

derstand the dynamics of cortical activity induced by focal

selective attention.

One possibility is that selectivity shifts emerge as a by-

product of response gain changes. Note however that it has

been argued that intrinsic recurrence involved in gain changes

cannot increase the information content of the signal (Pouget

et al., 2000), although they do modify the sensory repre-

sentation and thus their processing in downstream areas.

Alternatively, population activity shifts, other than being an

epiphenomenon of response gain modulations, may be a funda-

mental mechanism for selective information processing. For

instance, shifts in the network population activity by covert

attention could enhance spatial resolution (Yeshurun and

Carrasco, 1998), and attentional control over visual resolution

could serve the cognitive process of object recognition (Deco

and Schürmann, 2000). As far as we know, no one has assessed

in detail how an attentional biasing signal resulting both in gain

modulation and activity shift changes the input-output infor-

mation transfer in a sensory area, or the functional impact of the

sensory representation in downstream information processing.

These are interesting issues worth analyzing in future research.
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Appendix

We present here analytical calculations for the feedforward model. A

neuron in the second network whose preferred selectivity is at x fires at

rate R(x,xS,xA) when a stimulus is presented at location xS and the

attention signal is focused on xA:

Rðx ; xS ; xAÞ =
Z

dx9ð1 +A1e
–0:5ðx9 –xA Þ2=rA

2

Þ

S1e
– 0:5ðx9 –xS Þ2=rS

2

J1e
–0:5ðx9 –xÞ2=rJ

2

ð1Þ
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Simple algebraic manipulations allow one to derive the tuning curve

width (half-width at half height) of neurons in the second network in

the absence of attentional signal (A1 = 0):

D0 = rS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2 1 +

rJ
2

rS
2

� �s
ð2Þ

We focus on one arbitrary neuron in the second network without

loss of generality (x = 0). Without attention the firing response is

maximum when xS = 0. In order to study the tuning curve shift induced

by the attentional signal fixed at xA, we look for the stimulus location xS

at which the firing rate R(0,xS,xA) is maximum. By setting to zero the

derivative of expression (1) with respect to xS, the shift in the tuning
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Figure A1. Tuning curve shift in the feedforward model is limited when attention is allocated beyond the receptive field boundaries of second-layer neurons. It is necessary to have
both very strong attentional modulation in the first network and not very dissimilar tuning curve widths in both layers (C). Alternatively, attentional modulation of first-layer neurons
must have a very broad footprint, approaching the size of second-layer neurons’ RFs (D). (A) Absolute tuning curve shift xS versus location of attention in units of the second-layer RF
size D0: xA/D0. Analytical calculations (solid line, see Appendix) replicate simulations (shaded area). Same parameters as Figure 9B right, solid line: rS5 rA5 0.21, rA/rJ5 0.3,
A1 5 0.5. (B) relative shift x 5 xS/xA versus relative location of attention in the RF (xA/D0) from the data in panel A (solid line). This curve is characterized by the maximal relative
shift x0, and by the spatial dynamic range of attention in units of the second-layer RF size v5 DA/D0, beyond which focused attention is unable to induce tuning curve shifts. In the
example shown in this panel v5 0.81. (C) v plotted against the strength A1 of firing rate modulation by attention. This is shown for two ratios of unattended RF sizes in first- and
second-layer neurons. Here attention has the same footprint as first-layer neurons’ RFs. Notice that the dynamic range v can only be beyond receptive field boundaries (v[ 1) if
attentional modulation is unreasonably strong (A1 ~ 1 in solid line) or if the receptive fields of second- and first-layer neurons are very similar (dashed line). Filled circle indicates the
point corresponding to (A) and (B). (D) v (Left panel) and x0 (Right panel) versus relative size of attentional focus to second-layer neurons’ RFs. If the footprint of the attentional
focus is larger than the first-layer neurons’ RFs, it is possible to obtain v[1 albeit for smaller yet biologically plausible, relative shifts x0. Filled circles indicate points corresponding
to (A) and (B). Crosses correspond to the data of Figure 4B. Fixed parameters are rS5 0.21, rJ5 0.7 and A15 0.5. (E) Same as (D) but for the strong excitatory recurrent model
simulation, as in Figure 5B. In this case, receptive field shifts have a very large dynamical range (v ~ 2, notice the different y-scale in D and E for black curves) for all sizes of the
attentional focus’ footprint, and relative shifts are 0.1--0.3 (compare with x0 in D, plotted in the same scale), matching the range observed experimentally by Connor et al. (1996,
1997). Circles correspond to Figures 5B and 9B, center panel, solid line (i.e. rA 5 0.5).
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curve relative to the position of attention, x = xS/xA, is obtained as the

solution of the implicit equation: x = f (x), where

f ðxÞ = A1

y
2 + z 2

1 + y2 + z 2

� �
3=2 1 – ð1 + z 2Þx

z
2

exp –
1

2

xA
2

rA
2 1 –

ð1 + y2
xÞ2

1 + y2 + z 2
+

y
4
x

2

y
2 + z 2

� �� 	 ð3Þ

with y = rA/rS and z = rA/rJ. Solving this implicit equation numerically

for different values of xA, and using the parameters of Figure 9 produces

a curve that overlaps the continuous trace in panel B of Figure 9, for the

feedforward model. This is explicitly shown in Figure A1A, where

the shaded area is as in the simulation and the overlapping curve is the

solution of the equations.

It is easy to obtain from the equations the initial slope of this curve

(we name it x0) by setting xA = 0 in equation (3) and then solving

x = f (x) (see Fig. A1B). The value of x0 indicates the magnitude of

the fractional shift when xA approaches 0: for x0 = 1 the RF shifts all the

way from the preferred value to the attention location, whereas for

x0 = 0 the RF does not shift at all. The mathematical expression for x0 is:

x0 =
1

1 + z 2 + 1

A1
z

2 1 + y2 + z2

y
2 + z2


 �
3=2 ð4Þ

We can now define the dynamic range of the attentional shift DA as the

value of xA along the network at which the relative RF shift x decays to

one-half of x0 (see Fig. A1B). This gives a measure of the distance from

the receptive field center beyond which tuning curve partial shifts

(of whatever magnitude) cease to happen. One obtains:

DA = rA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1 –
ð1 + y2x0=2Þ2

1 + y2 + z2
+ y

4ðx0=2Þ2
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ln 2 +A1

1 + z 2

z
2
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� �
3=2

� �vuut ð5Þ

To get an idea of how far the attention focus can be from the RF

center, still inducing RF shifts in the second-layer neurons, we plot in

Figure A1C v = DA/D0 versus the attentional modulation strength A1 for

two different situations: first-layer RF size smaller than second-layer RF

size (solid line) and approximately same RF sizes in both layers (dashed

line). Note that the ratio of first- to second-layer RF sizes is given by

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + ðy=z Þ2

q
. To plot these curves we make use of equations (2) and

(5). Thus, v = 1 implies that receptive field shifts can be obtained up

until attention is focused right on the very edge of the receptive field;

instead v < 1 means that no attentional shift can be induced when

attention is on or beyond the receptive field boundary. The assumption

in the feedforward model proposed in the literature (McAdams and

Maunsell, 1999; Maunsell and McAdams, 2001) is rA = rS (i.e. y = 1): the

attentional focus targets a cortical area where the receptive field size is

congruent with the attentional focus. Note that in this situation v de-

pends only on the ratio of first-layer to second-layer footprints z = rA/rJ

and on the strength of the multiplicative attentional modulation in the

first layer A1. The constraints of this model are illustrated in Figure A1C,

showing that, if attention is being directed outside of the neuron’s

receptive field, receptive field shifts can only be induced for unreason-

ably strong attentional modulation (so that, for example, the firing rate is

doubled when A1 = 1. Experiments typically see modest rate increases

electrophysiologically, ~10%), or for networks with very similar RF sizes

(also in contradiction with the hierarchical properties of visual areas). A

more flexible feedforward structure, however, can reproduce the

experimental phenomenology if attentional modulation on the first-

layer network is allowed to affect a larger subpopulation of neurons

(rA > rS; see Fig. A1D). Even in this situation, reaching the magnitude of

RF-shift range of the recurrent model (Fig. A1E) requires very strong

attentional modulations in the feedforward model (A1 >2, i.e. >200%
increase).
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