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Abstract

Value-guided decisions are at the core of reinforcement learning and neuroeco-
nomics, yet the basic computations they require remain poorly understood at the
mechanistic level. For instance, how does the brain implement the multiplication
of reward magnitude by probability to yield an expected value? Where within a
neural circuit is the indifference point for comparing reward types encoded? How
do learned values generalize to novel options? Here, we introduce a biologically
plausible model that adheres to Dale’s law and is trained on five choice tasks,
offering potential answers to these questions. The model captures key neurophys-
iological observations from the orbitofrontal cortex of monkeys and generalizes to
novel offer values. Using a single network model to solve diverse tasks, we identified
compositional neural representations—quantified via task variance analysis and
corroborated by curriculum learning. This work provides testable predictions that
probe the neural basis of decision making and its disruption in neuropsychiatric
disorders.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2025. ; https://doi.org/10.1101/2025.03.13.643098doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.13.643098
http://creativecommons.org/licenses/by-nc-nd/4.0/


055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108

Introduction

Economic choice—the process by which individuals make decisions based on subjective
preferences—is fundamental to both human and animal behavior [1, 2]. These decisions
range from everyday choices to complex considerations involving multiple attributes
like reward types (e.g. water versus grapefruit juice), quantity, probability, and delay.
Neuro-scientific studies of economic choice at the single-cell level took off around the
turn of this century [3–6]. Understanding economic decisions relies on the concept of
subjective value, a measure that facilitates the comparison of different choices [6]. By
assigning values to available options and making choices based on these values, the
brain reduces complex, multidimensional decisions to a single dimension, facilitating
efficient decision making [7].

The orbitofrontal cortex (OFC) has been identified as a key region supporting good-
based decisions. Studies in non-human primates have revealed three groups of neurons
in OFC essential for economic choice: offer value neurons, encoding the value of indi-
vidual options; chosen value neurons, representing the value of the selected option;
and chosen good neurons, indicating the identity of the chosen good [6]. These neu-
rons exhibit menu invariance, maintaining consistent encoding regardless of alternative
options—a property supporting choice transitivity [8]. Electrical stimulation studies
have established a causal link between OFC neuronal activity and choice behavior in
support of OFC’s integral role in the decision circuit [9, 10].

However, the circuit mechanisms underlying value computation and value compar-
ison remain largely unknown [10, 11]. Although the OFC has been closely associated
with good-based decisions, it is still an open question whether value computations
occur locally within the OFC or are computed in upstream regions and subsequently
relayed to the OFC. Specifically, it is unclear how the brain derives the values of indi-
vidual goods from multiple features and then compares these values to drive decision
making. Moreover, existing studies often focus on single-neuron analyses and binary
choice tasks, which do not fully capture neural population dynamics as well as the
complexity of real-world decisions involving multiple options and attributes [7].

One way to gain insights into the decision mechanisms is to build a credible compu-
tational model that solves the task [12–16]. Previous computational models addressed
aspects of economic decisions with some limitations. Built on a biologically based
neural circuit model of decision-making [17, 18], Rustichini and Padoa-Schioppa [13]
proposed a network that demonstrates the sufficiency of three distinct OFC neuron
types in reproducing economic choice behavior. However, their model relies on strong
circuit assumptions that may not fully reflect the neural heterogeneity observed exper-
imentally. Specifically, it assumes that offer value neurons and chosen good neurons
are exclusively excitatory, while chosen value neurons are exclusively inhibitory, and
that all neuronal populations exhibit solely positive encoding—that is, their firing
rates increase monotonically with the decision variable. In contrast, empirical studies
reveal that OFC neurons can display both positive and negative tuning. Our model
shows that the key decision variables can be robustly encoded by both excitatory and
inhibitory neurons, each exhibiting diverse tuning properties. This suggests that the
strict segregation of neuronal roles assumed by the previous model might not be nec-
essary to account for the full spectrum of neural responses observed during economic
decision-making [6].

On the other hand, Song, Yang, and Wang [15] used trained recurrent neural
networks (RNNs) to assess whether OFC-like units emerge through learning, testing
the necessity of these neurons in economic choice. Although this approach allows for
complex task training, it employs Gated Recurrent Units (GRUs), which incorporate
dynamic gating mechanisms and adjustable time constants that lack clear biological
counterparts. Moreover, the network is divided into separate actor and critic modules,
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further limiting its biological plausibility [9]. The lack of clear biological counterparts
hinders the model’s applicability to real neural circuits.

To bridge these gaps, we developed a biologically plausible computational model
combining the strengths of the previous approaches while overcoming their limitations.
Our model consists of a continuous-time recurrent neural network of the “vanilla”
type (with no GRUs) that adheres to Dale’s law with 80% excitatory (E) and 20%
inhibitory (I) neurons and long-range excitatory projections [19, 20]. Neurons have
biologically realistic single-unit time constants. We trained the network using the Prox-
imal Policy Optimization (PPO) reinforcement learning algorithm [21, 22], balancing
computational efficiency with the capacity to solve complex tasks.

We found that, after training, the network successfully performed a diverse array of
economic choice tasks. Our model replicates key behavioral patterns observed exper-
imentally, including choice consistency, risk attitudes, and order biases [7, 23]. This
suggests that the model can serve as a platform for investigating the circuit mechanisms
underlying choice biases [24], with implications for understanding neuropsychiatric
disorders characterized by impaired decision making [1, 2].

Analysis of single-neuron activity within our model reveals cell groups mirroring
those found in OFC: offer value neurons, chosen value neurons, and chosen good neu-
rons. Notably, both excitatory and inhibitory neurons in our network are selective to
decision variables, exhibiting heterogeneous tuning that aligns with experimental obser-
vations [6]. At the neural population level, we uncovered low-dimensional dynamics
where specific directions in neural activity space correspond to decision variables [25].

We show how a multiplication of reward magnitude and probability is approximately
computed for expected values in a neural network where synaptic input currents are
additive for excitation and subtractive for inhibition. Furthermore, we found that the
relative values—the essence of economic choice—are encoded in the input weights to the
decision network where value computation occurs. Notably, this feedforward mechanism
enhances the model’s ability to generalize to unseen offers, addressing the critical
generalization problem in real-world decision making [26]. This novel finding offers a
compelling experimental prediction that synaptic efficacies play a crucial role in value
computation.

Furthermore, our results suggest a novel mechanism for value computation occur-
ring upstream of the decision circuit, while for value comparison, our model demon-
strates that decisions are implemented via winner-takes-all (WTA) dynamics within the
recurrent network [17, 18, 27]. This mechanism provides a computational framework
for both binary and more complex choices, supporting the sufficiency of the identi-
fied neuron types in reproducing economic choice behavior without restrictive circuit
assumptions [2].

Importantly, our findings highlight the compositionality of neural representations
within the model. We show that a single neural circuit, with minimal variations, can
solve multiple economic choice tasks. This is quantified by task variance analysis [28,
29], rule subspace analysis, and the use of curriculum learning protocols that accelerate
training [30, 31].

In summary, our model generates several testable predictions for future experi-
mental studies. It provides a biologically plausible model that bridges single-neuron
observations and population-level dynamics and offers valuable insights into the
functioning of OFC in economic decisions.
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Results

Training neural networks for multiple economic choice tasks

To investigate the neural mechanisms underlying economic decisions, we developed
biologically plausible excitatory-inhibitory recurrent neural networks (RNNs) capa-
ble of performing a range of complex economic choice tasks (Fig. 1a). These tasks
were designed to capture key aspects of decision making, requiring the networks to
compute and compare values in diverse contexts involving different goods, quantities,
probabilities, and temporal structures.

Each task began with a fixation period, followed by a rule cue indicating the current
task, the presentation of offers, and finally, a response phase. Choice tasks included
the standard task, where two goods were offered in varying quantities; the risky task,
similar to the standard task but with probabilistic outcomes; the bundles task, where
offers consisted of bundles of two goods; the ternary task, involving choices among
three goods; and the sequential task, where two goods were presented sequentially in
random order, and choices relied on the network’s working memory [7].

The networks were designed to be biologically plausible, consisting of continuous-
time vanilla RNNs with excitatory and inhibitory neurons, obeying Dale’s law (Fig. 1b)
[19, 20, 32]. Inputs included fixation signals, quantities, probabilities of the offered
goods, and task-specific rule cues. The network produced two distinct outputs: one
readout provided the policy for action selection (analogous to the “actor”), and the
other computed a value function (analogous to the “critic”) that predicts the expected
discounted future reward (or return). Specifically, the policy output determined the
probabilities over available actions at each time during the trial, while the value function
output estimated the expected return. This dual-readout architecture not only guided
correct action selection but also demonstrated that the network could compute and
evaluate the value of the presented options.

We trained the networks using Proximal Policy Optimization (PPO) [21], a rein-
forcement learning algorithm suitable for optimizing performance in complex tasks,
which simultaneously optimizes both action selection and value estimation. This
approach mirrors how animals are typically trained in laboratory tasks (i.e., through
trials and errors, with reward feedback [22]) and is thus more biologically plausible
than supervised learning. The training involved an agent-environment interaction loop,
where the network received inputs and selected actions leading to new stimuli and
action outcomes. Networks were trained separately on multitasking and curriculum
learning protocols to study compositionality and learning-to-learn across different tasks
[28, 30] (see Methods for details).

The networks achieved high performance across all tasks, satisfying the criteria that
were set to reproduce the behavioral patterns observed in animals performing similar
tasks: at least 99% of trials completed without fixation breaks and at least 90% correct
choices among those trials (Fig. S1). Correct choices were defined as selecting the offer
with the highest value among those presented. While it is possible to train networks
to perform the tasks perfectly, our goal was to develop biologically plausible models
to generate neurophysiological predictions, and thus, we aimed for performance levels
comparable to those of animals in experimental settings [7].

To illustrate the network’s behavior, we present sample trials for each choice task
from a network trained simultaneously on all tasks (Fig. S2). In each trial, the net-
work selects the highest-value offer among those presented. The value function output
predicts the expected return shortly after the offers are presented, demonstrating the
network’s ability to compute the options’ value. The policy outputs show the correct
action selection during the response phase and indicate that the network maintains
fixation during the required periods. Interestingly, the forthcoming choice can often be
inferred during the offer presentation phase, even before the response period begins.

4

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2025. ; https://doi.org/10.1101/2025.03.13.643098doi: bioRxiv preprint 

https://doi.org/10.1101/2025.03.13.643098
http://creativecommons.org/licenses/by-nc-nd/4.0/


217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

This observation suggests that the network undertakes two decision processes – an
“economic” decision between two goods followed by a “motor” decision about when to
reveal the choice outcome.

In the sequential task, we analyzed the example trial shown in Figure S2e. In this
trial, the network receives the first offer and maintains in memory this information
during the subsequent delay period. Upon presentation of the second offer, the network
compares it with the first offer. During the response phase, the network selects the
higher-value offer, indicating effective integration of sequential information. This per-
formance suggests that the network has developed working memory capabilities, as it
must retain information about the first offer over the delay period to make the correct
choice in the sequential task. Without such working memory processes, the network
would be unable to compare the offers and select the higher value.

These results demonstrate that our RNNs can effectively perform multiple and
complex choice tasks. Indeed, the networks achieved high accuracy across all tasks and
were able to process different types of information, such as quantities, probabilities,
and temporal sequences, required for these tasks. Hence,the networks have developed
the necessary computational mechanisms to perform value-based decisions in diverse
contexts.

Behavioral patterns consistent with a value-based decision
process

To assess whether 20 networks trained in a multitasking setting replicate decision
processes observed in primates, we analyzed their choice behavior across all tasks. It is
worth noticing that, like monkeys, the networks consistently select the offer with the
highest computed value in each task.

Choice data were analyzed using logistic regression [7]. For example, in the risky
task, each trial involves choices between goods C and E, each varying in quantity
and probability. Initially, plotting the networks’ choices in the space of quantities and
probabilities does not reveal a clear decision boundary (Fig. 2a, left and center panels).
However, when we transform the data into an offer value space—calculating the offer
values as the product of the intrinsic value (ρX), quantity (qX), and probability (pX)
raised to a power (γ)—a linear separation emerges (Fig. 2a, right panel and b). Here,
γ quantifies the network’s risk attitude, and ρX represents the inferred relative value
between goods (see Methods).

Extending this analysis to the other tasks reveals a consistent strategy across the
networks. Indeed, in the standard task, networks compare the computed values of two
goods based on their quantities and intrinsic values, reliably selecting the good with the
higher value. Similarly, in the bundles task, networks compute the total value of each
bundle by summing the values of individual goods and choosing the bundle with the
higher total value. In the ternary task, despite the increased complexity of comparing
three options, networks reliably select the good with the highest computed value. In
the sequential task, networks effectively maintain the value of the first offer in working
memory and compare it with the second offer to make the optimal choice (Fig. S3).

Using a logistic regression model, we subsequently identified key behavioral param-
eters from the networks’ choices across all tasks. Notably, the inferred relative values
(ρX) match the intrinsic values assigned during training across all tasks (Fig. 2c). This
consistency indicates that networks have learned the relative values of different goods
and applied them in various contexts.

We also examined behavioral biases such as risk attitude and order bias. For tasks
involving probabilistic outcomes, such as the risky, bundles, ternary, and sequential
tasks, we estimated the risk attitude parameter (γ) for each network (Fig. 2d). A γ > 1
indicates risk aversion, while γ < 1 signifies risk-seeking behavior. On average, networks
do not exhibit significant risk biases, aligning with the unbiased training objective.
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Fig. 1 Task structures and network architecture. a, Schematic representation of the economic
choice tasks. Each task begins with a fixation period, followed by a rule cue indicating the current trial’s
task. Offers are then presented, followed by a response phase. Tasks include the standard task, risky
task, bundles task, ternary task, and sequential task. Circles represent goods with varying intrinsic
values (goods A–E), quantities (circle radius), and probabilities (filled area). Colors correspond to the
intrinsic values of the goods. b, Structure of the biologically plausible recurrent neural network trained
with reinforcement learning. The network consists of excitatory (E) and inhibitory (I) neurons adhering
to Dale’s law. Inputs include fixation signals, quantities, probabilities, and rule cues. Outputs include
policy readouts for action selection and a value function predicting expected return. The network is
trained using Proximal Policy Optimization in an agent-environment interaction loop.

However, individual networks display variability, with some showing mild risk-seeking
or risk-averse tendencies. In the sequential task, we assessed order bias (ϵ′), which
quantifies a preference for either the first or second offer regardless of their values.
Again, while the average order bias across networks is negligible, individual networks
may exhibit slight preferences, reflecting stochastic fluctuations during learning.

Finally, we assessed the relationship between task complexity and choice accuracy.
The logistic regression provides a measure of choice consistency (η) proportional to the
slope of the psychometric function. We found that networks perform better on simpler
tasks like the standard task and exhibit lower accuracy on more complex tasks such
as the sequential task (Fig. 2e). This pattern aligns with empirical observations in
non-human primates, suggesting that task difficulty impacts decision performance [7].
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Fig. 2 Logistic behavioral analysis of 20 networks trained on all economic choice tasks.
a, Logistic regression analysis for the risky task in a representative network. Left and center panels:
Each point represents a trial, plotted in the space of quantities and probabilities for goods C and E,
colored by the network’s choice (red for C, blue for E). No clear decision boundary is apparent in
this space. Right panel: The same trials plotted in offer value space, with offer values computed
as OVX = ρX × qX × pγX . In this space, choices are linearly separable, indicating that the network
bases decisions on computed offer values. b, Psychometric function obtained from logistic regression,
showing the probability of choosing good E as a function of the logarithm of the ratio of offer features
(quantities and probabilities). The sigmoid curve indicates consistent decision making based on offer
values. c, Inferred relative values (ρX) for each good across different tasks, estimated from logistic
regression on 20 networks (each network represented by a different color). The inferred values closely
match the intrinsic values assigned during training, and the relative ranking of goods is preserved (ρA >
ρB > ρC > ρD > ρE). d, Behavioral biases estimated from logistic regression. Left: Risk attitude
parameter (γ) for tasks involving probabilistic outcomes. Values of γ > 1 indicate risk aversion, while
γ < 1 indicate risk-seeking behavior. Right: Order bias (ϵ′) in the sequential task, with positive values
indicating a preference for the second offer. While biases are minimal on average, individual networks
exhibit variability. e, Choice consistency (η) and choice accuracy across tasks for all networks. Choice
consistency is proportional to the slope of the psychometric function from logistic regression, and
choice accuracy reflects the network’s ability to select the highest-value offer. Networks perform better
on simpler tasks and show reduced performance on more complex tasks, such as the sequential task.

Single-neuron signatures of value computation and comparison

We assessed whether individual neurons in our networks represented decision variables
similar to those observed in the orbitofrontal cortex (OFC) of non-human primates
engaged in similar choice tasks [6, 33]. First, we focused on tasks involving binary
choices between juices C and E (standard, risky, and sequential tasks). As in neuro-
physiology studies, we defined a series of candidate variables that could potentially
explain the activity of individual cells, including individual offer values (OVC, OVE),
the chosen value (CV), the other (non-chosen) value (OV), the chosen good (CG), the
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value sum (OVC + OVE), the value difference (CV - OV). We also defined two good-
specific chosen values (chosen value C, chosen value E), which represent the value of a
good (C or E) when that good is chosen and zero otherwise.

The correlation matrix shown in Fig. 3a revealed significant patterns due to the task
design. In particular, the chosen value correlates positively with the maximum of the
offer values and with the value sum, as it represents the higher of the two offer values.
Similarly, the choice variable is strongly correlated with the value difference between
the offers since larger differences make the choice more deterministic. The conjunctive
variables chosen value C and chosen value E are also correlated with their respective
offer values and choices, reflecting their composite nature.

Analyzing the tuning properties of individual neurons, we found that many neu-
rons displayed significant linear relationships with specific decision variables. Figure 3b
illustrates examples of neurons tuned to different variables in the risky task. One neu-
ron showed activity that increased linearly with the offer value of good E, another
neuron’s firing rate correlated with the chosen value, and a third neuron was selec-
tive for the binary choice of good E. These neurons exhibited significant coefficients of
determination (R2 > 0.3, p < 0.05), indicating robust tuning (see Methods).

To investigate the dynamics of the neuronal selectivity during a trial, we calculated
the fraction of neurons selective for each decision variable at each time point (Fig. 3c;
see Methods). During the offer presentation phase, we observed a peak in the fraction
of neurons encoding offer values, reflecting the initial computation of individual offer
values. As the trial progressed, the proportion of neurons encoding the chosen value
increased, followed by an increase in the fraction of neurons encoding the choice. This
temporal sequence mirrors the decision process where offer values are first computed
and then compared to elaborate the final choice.

For the sequential task, by stimulus onset, we indicate the onset of the second
stimulus. At this point, the network holds information about the first stimulus in
working memory and processes the second stimulus, enabling it to compare both offers
to make a decision (see Methods). This approach ensures that our analysis captures
the period when the network has access to all relevant information for the decision.

Interestingly, both excitatory and inhibitory neurons exhibited similar dynamics,
indicating that inhibitory neurons actively participate in encoding the decision variables
[27], contrary to models that assign inhibitory neurons a non-selective role [13].

To assess the temporal stability of the neuronal tuning, we computed a Temporal
Stability Index (TSI) for each neuron (Fig. 3d; see Methods). The majority of neurons
showed high TSI values, indicating consistent encoding of a single decision variable
throughout the trial. However, some neurons displayed lower TSI scores, suggesting
dynamic coding where neurons might switch from encoding offer value to encoding
choice as the decision process unfolds. This dynamic tuning aligns with observations
in OFC, where neurons can change their selectivity over the course of a decision [33].

We further investigated whether neurons encode decision variables categorically or
conjunctively by analyzing the distribution of differences in R2 values between pairs
of decision variables, focusing on neurons that were selective (i.e., had R2 ≥ 0.3 for at
least one of the variables) (Fig. 3e; see Methods) [34]. Bimodal distributions for the
pairs of offer value versus chosen value and chosen value versus choice suggest that
neurons tend to encode one variable over the other, supporting categorical encoding.
This specialization allows for a more distinct representation of decision variables within
the network.

Examining the sign of encoding, we found that both excitatory and inhibitory
neurons displayed a mix of positive and negative correlations (encodings) with their
respective decision variables (Fig. 3f ; see Methods). This suggests that neurons can
either increase or decrease their firing rates with increasing values of the decision vari-
able—a phenomenon consistent with empirical findings in OFC [6]. This heterogeneity
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in tuning enhances the network’s capacity to represent information and indicates that
inhibitory neurons play an active role in processing decision-related signals [27].

In conclusion, the single-neuron analyses reproduce key features of neuronal encod-
ing observed in OFC of non-human primates during economic choice tasks [6]. The
sequential activation of neurons encoding offer value, chosen value, and choice reflects
the computational stages of decision making. The active participation of inhibitory
neurons and the presence of both positive and negative tuning expand our understand-
ing of the neural mechanisms underlying value computation and comparison. These
findings support the notion that economic decisions emerge from distributed compu-
tations within recurrent neural circuits, with neurons dynamically encoding relevant
variables to guide behavior.

Population-level signatures of value computation and
comparison

To further understand how value computation and comparison are implemented in the
trained networks, we analyzed the population dynamics of recurrent neurons during
economic choice tasks. While single-neuron analyses revealed specific neurons encod-
ing decision variables, population-level analyses can uncover how these variables are
represented collectively and how dimensionality reduction techniques can capture the
main components of the decision process.

We first examined the dimensionality of the recurrent neural activity across different
tasks during the stimulus presentation. Using principal component analysis (PCA), we
quantified the number of dimensions required to explain approximately 85% of the vari-
ance in the population activity, using the participation ratio as a measure of embedding
dimensionality (Fig. 4a; see Methods) [35]. Interestingly, we found that for all tasks
except the ternary task, the neural activity was low dimensional (two-dimensional),
suggesting that the population dynamics are constrained to low-dimensional manifolds,
likely reflecting the encoding of key decision variables such as offer value, chosen value,
and choice. In the ternary task, which involves choices among three goods, a third
dimension was necessary to capture the additional complexity of the decision space.
Moreover, when excitatory and inhibitory neurons were separated, we observed that
both populations exhibited similar dimensionality patterns, indicating that inhibitory
neurons contribute actively to the encoding of decision variables at the population
level. The slightly higher participation ratio for inhibitory neurons may be partially
attributed to their smaller population size (only 20% of the network).

To illustrate the population dynamics during a specific task, we first focused on
the risky task in a representative network. Projecting the neural activity onto the
first two principal components, we found that the first principal component (PC1)
encoded the chosen value, while the second principal component (PC2) encoded the
choice (Fig. 4b). Each point in the plot represents a trial, and the separation along
these components reflects how the network differentiates between decision variables at
the population level. This pattern was consistent across both excitatory and inhibitory
neurons. To visualize how these dynamics evolve over time, we projected the popula-
tion activity onto the first two principal components throughout time (Supplementary
Video 1). It reveals that as time progresses, the neural trajectories corresponding to
different choices and offer values diverge along the principal components, highlighting
the temporal unfolding of value computation and comparison in the network. We sub-
sequently extended this analysis across all tasks and networks. By performing a linear
regression of the projections onto the principal components against various decision
variables, we quantified how much variance each component explained for each variable
(Fig. 4c; see Methods). The results showed that, except for the ternary task, the first
principal component consistently encoded the chosen value, while the second compo-
nent encoded the choice. In the ternary task, the additional dimension captured by the

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2025. ; https://doi.org/10.1101/2025.03.13.643098doi: bioRxiv preprint 

https://drive.google.com/file/d/1ecBndWtnS0nehPmS0lT_oEgdCYEDZ7at/view?usp=share_link
https://drive.google.com/file/d/1ecBndWtnS0nehPmS0lT_oEgdCYEDZ7at/view?usp=share_link
https://doi.org/10.1101/2025.03.13.643098
http://creativecommons.org/licenses/by-nc-nd/4.0/


487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540

Fig. 3 Single-neuron analysis in networks trained on all economic choice tasks. a, Corre-
lation matrix between behavioral variables for tasks involving choices between two goods (standard,
risky, and sequential tasks). The matrix shows intrinsic correlations among variables such as offer val-
ues (OVC, OVE), chosen value (CV), conjunctive variables (chosen value C, chosen value E), value
sum, value difference, and choice (CH), averaged across twenty networks. Notably, chosen value cor-
relates with value sum, and choice correlates with value difference. b, Examples of tuning curves from
individual neurons in a trained network for the risky task. Left: Neuron encoding the offer value of
good E (OVE). Middle: Neuron encoding chosen value (CV). Right: Neuron encoding choice of good
E (CH). Each point represents a trial, plotting the mean firing rate against the respective decision
variable. Red lines indicate linear regression fits with corresponding R2 values. c, Fraction of neurons
selective for each decision variable over time during the stimulus presentation phase, averaged across
tasks and networks. For the sequential task, time zero corresponds to the onset of the second stim-
ulus. Left: Excitatory neurons. Right: Inhibitory neurons. Shaded areas represent the standard error
of the mean. d, Temporal Stability Index (TSI) distributions for excitatory and inhibitory neurons.
TSI measures the consistency of a neuron’s selectivity for the selected variable (the variable encoded
for the majority of time steps) over time. e, Categorical encoding analysis. Histograms of differences
in R2 values between pairs of decision variables for selective neurons (with R2 ≥ 0.3 for at least one
variable), separately for excitatory and inhibitory neurons. Bimodal distributions suggest categorical
encoding. f, Distribution of regression slopes for neurons selective to each decision variable, showing
both positive and negative encoding among excitatory and inhibitory neurons.

third principal component was necessary to encode the choices among the three goods.
At the population level, excitatory and inhibitory neurons showed similar encoding pat-
terns, reinforcing the notion that inhibitory neurons play an active role in processing
decision-related signals.

To better investigate the role of recurrent connectivity in shaping population
dynamics, we performed a lesion analysis by removing all recurrent connections from
the trained networks (see Methods). This manipulation effectively eliminated the recur-
rent dynamics while preserving the feedforward inputs to the network. After lesioning,
we observed significant changes in the distribution of firing rates during the stimulus
presentation phase. Specifically, the mean firing rates of both excitatory and inhibitory
neurons increased compared to the original networks (Supplementary Fig. S4). This
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increase is likely due to the loss of inhibitory feedback and recurrent competition that
typically regulates neuronal activity levels. We repeated the dimensionality analysis
on the lesioned networks (as done on the original networks). Interestingly, the dimen-
sionality increased for most tasks, suggesting that the recurrent connections contribute
to constraining the neural activity into lower-dimensional manifolds (Supplementary
Fig. S5a). In the sequential task, however, the dimensionality decreased, reflecting the
network’s inability to maintain information of the first offer in working memory without
recurrent connections. In the lesioned networks, PCA analysis revealed that the first
principal component primarily encoded the value sum, while the second component
encoded the value difference (Supplementary Fig. S5b), that is a linear combination
of the offer values. In particular, chosen value and choice variables were not encoded;
without recurrent dynamics, the networks could no longer perform the decision process.

This orientation of the principal component axes—where PC1 reflects the sum of
the offer values rather than the individual offer values—suggests that in the absence of
recurrent dynamics, the network’s feedforward processing organizes the representation
to emphasize the combined (or total) value. This structure likely emerges as an adap-
tation to facilitate a downstream readout process, whereby the chosen value (which is
strongly correlated with the value sum) can be more readily extracted, even though
the raw inputs still contain the individual offer values.

Moreover, we observed that the neural trajectories in the lesioned network during
the risky task remain clustered according to offer values but do not exhibit the separa-
tion seen in the intact networks (Supplementary Video 2). This suggests that while the
offer values are computed upstream from the inputs, the recurrent network dynamics
are crucial for comparing these values and generating a decision.

In summary, these population-level analyses highlight the critical role of upstream
computations in value computation and recurrent connectivity in implementing value
comparison through WTA dynamics.

Dissecting the circuit mechanisms of value computation

To uncover how the networks compute offer values, we first examined the input weights
and their contributions to the multiplicative computations required for choices between
probabilistic outcomes (e.g., in the risky task). By analyzing the input weight matri-
ces after training, we observed a distinct structure indicating that value computation
occurs upstream of the recurrent decision circuit. In particular, the correlation matrix
of input weight vectors for quantities and probabilities revealed a block structure in
which input weights associated with the same offer were strongly positively correlated,
while those corresponding to different offers were uncorrelated (Fig. 5a). This suggests
that the recurrent neurons are organized into subpopulations specialized for process-
ing each offer, integrating quantity and probability features to compute offer values.
The segregation of input weights points to a mechanism wherein the networks learn to
approximate the multiplication of quantity and probability for each offer, be it a single
good or a bundle of goods.

Next, to determine whether these networks are indeed computing the offer values
through multiplication rather than addition, we consider the case of lesioned recurrent
connections again and focus on feedforward computations. We projected population
activity onto the first two principal components and performed linear regressions
against both the product and the sum of quantities and probabilities (Fig. 5b). The
resulting coefficients of determination (R2) were significantly higher for the product
than for the sum, confirming that the networks approximate multiplicative computa-
tions. Both excitatory and inhibitory neurons contributed to this process, with the
principal components reflecting the offer values of different goods.

To further understand how weighted sums and nonlinear activations might approx-
imate multiplication, we built a simplified feedforward network model. Input weights
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Fig. 4 Population analysis of networks trained on all economic choice tasks. a, Neural
dimensionality across different networks and tasks, measured by the participation ratio, which esti-
mates the number of dimensions required to explain approximately 85% of the variance in population
activity [35] during the stimulus presentation phase. Analyses were conducted separately for excitatory
(blue) and inhibitory (orange) neurons. All tasks are predominantly two-dimensional except for the
ternary task, which requires a third dimension, suggesting low-dimensional dynamics associated with
key decision variables. b, Principal component analysis (PCA) of neural activity during the risky task
in a representative network. Scatter plots of the projections onto the first two principal components
(PC1 and PC2) are shown separately for excitatory and inhibitory neurons. Each point represents a
trial. Linear regression indicates that PC1 primarily encodes the chosen value, while PC2 encodes the
choice. For a dynamic visualization, see Supplementary Video 1. c, Summary of population analyses
across all networks and tasks. Heatmaps display the average coefficients of determination (R2) from
linear regression of the principal components onto various decision variables. Rows represent different
tasks, columns represent decision variables, and the color intensity reflects the R2 value. The analy-
ses confirm that PC1 and PC2 encode chosen value and choice-related variables, respectively, across
tasks, with similar patterns observed for excitatory and inhibitory neurons. PC3 is mainly involved in
the ternary and sequential tasks that require additional computations (e.g., value computation of the
third good and working memory, respectively).

scale linearly with neuron indices, and neurons are divided into two groups process-
ing features of different goods. In this toy model, neurons receive weighted inputs of
quantity and probability, pass them through a rectified linear unit (ReLU) activation
function, and produce outputs that approximate the product of the inputs at the popu-
lation level (Supplementary Fig.S6; see Methods). Principal component analysis of the
hidden units’ activity showed that the first two principal components corresponded to
the offer values of the two goods (Fig.5c). However, this model alone did not explain
the rotation of the offer value axes observed in the trained networks. In the intact net-
works, the feedforward computations initially align the principal component axes with
the individual offer values. Yet, when recurrent dynamics are removed—as in our lesion
analysis—the representation rotates so that PC1 predominantly captures the sum of
the offer values and PC2 reflects their difference. This rotated coordinate system sug-
gests that the network is reconfiguring its representation to better extract a single,
unified decision variable (the chosen value), which is highly correlated with the value
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sum. In essence, the rotation is not an inherent property of the multiplicative compu-
tation itself but rather an emergent consequence of the network’s need to read out the
chosen value from combined offer information. We, therefore, extended the toy model
by introducing a population of linearly mixed-selective neurons that receive inputs from
both goods and compute linear combinations of their features, ultimately encoding the
value sum (which is correlated with the chosen value). The introduction of this mixed-
selectivity population rotates the offer value axes relative to the principal components
and aligns the model more closely with our empirical observations (Fig. 5d). This
rotation facilitates the computation of the chosen value through subsequent recurrent
dynamics.

These results, revealing that offer values are computed upstream of the recurrent
circuit, support the conceptualization of economic choice as a two-stage process of value
computation and value comparison.

Next, we examined how the networks implement the relative value between goods,
which captures the quintessence of economic choice behavior. We hypothesized that
the relative values learned during training are embedded within the input weights that
connect specific goods’ features to the recurrent neurons. To test this, we trained 50
networks exclusively on the risky task, systematically varying the intrinsic value of one
good. After training, we used logistic regression to infer the relative values from choice
behavior and then correlated these with the average non-zero input weights for the
quantity inputs of the high-value good (Fig. 5e). We observed a strong linear corre-
lation, confirming that these relative values are indeed encoded in the input weights.
This finding suggests that by adjusting only the input weights, the network could read-
ily generalize to new goods with different intrinsic values without necessitating any
alteration to the recurrent circuitry responsible for value comparison.

These analyses indicate that value computation occurs upstream of the recurrent
decision circuit, with offer values being computed through multiplicative integration of
features in the input layer. The recurrent network then implements value comparison
via WTA dynamics. This modular organization implies that the decision circuit is
robust to changes in goods and their values, requiring only adjustments in input weights
to accommodate choices between novel goods. Such a mechanism supports flexible
decision making and may reflect how biological neural circuits generalize across different
contexts and experiences.

Dissecting the circuit mechanisms of value comparison

Having established that value computation occurs upstream of the recurrent decision
circuit, we next investigated how the network compares these computed values to make
decisions. We focused on the dynamics of the network’s outputs and the underlying
recurrent connectivity patterns that facilitate value comparison through winner-take-all
(WTA) dynamics.

We first analyzed the activity of the network’s output units during the risky task,
averaging across all trials (splitting by choice) and networks. The outputs corresponding
to choices of goods C and E exhibited WTA dynamics (Fig. 6a). When good C was
chosen, the output unit associated with C showed increased activity during the stimulus
presentation phase, while the output for E remained suppressed, and vice versa. This
mutual inhibition between choice outputs indicates a competitive process where the
representation of the higher-valued option dominates, leading to a decision.

Interestingly, the fixation output maintained the highest activity during the stim-
ulus presentation, reflecting the network’s requirement to sustain fixation until the
response phase. In particular, linear regression analysis revealed that the fixation out-
put also encoded the chosen value (Fig.6b; see Methods). This suggests that the
network integrates information about the expected reward into the fixation output to
modulate decision timing, preventing early choices before the fixation cue turns off. The
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Fig. 5 Dissecting the circuit mechanisms of value computation. a, Correlation matrix of input
weight vectors for quantities and probabilities associated with different goods in a trained network.
Strong positive correlations are observed between input weights corresponding to the same offer,
indicating a block structure where recurrent neurons are organized into subpopulations processing
specific offer features. b, Comparison of multiplicative (OV C and OV E) and additive (OV Cs and
OV Es) models in the risky task. Regression analyses show higher coefficients of determination (R2)
when projecting population activity onto the first two principal components and regressing against
the product (multiplication) of quantity and probability compared to the sum. Both excitatory (blue)
and inhibitory (orange) neurons contribute to this computation. c, Toy feedforward network model
approximating multiplication through weighted sums and nonlinear activation functions. Input weights
scale linearly with neuron indices, and neurons are divided into two groups processing features of
different goods. PCA of the hidden units’ activity reveals axes corresponding to the offer values of the
two goods. d, Extension of the toy model including a third population of mixed-selectivity neurons
receiving inputs from both goods. This results in a rotation of the offer value axes relative to the
principal components, consistent with observations in the trained networks. e, Correlation between
the relative values inferred from logistic regression of choice behavior and the average non-zero input
weights for the quantity input of the high-value good across networks trained with varying intrinsic
values. The strong linear relationship indicates that relative values are encoded in the input weights.

dynamics of the outputs show two distinct aspects of the decision process: determining
which option to choose and deciding when to choose it. The fact that the forthcoming
choice can be inferred from the output activity before the response phase implies that
reaction times (RTs), measured as the difference between the time of the choice and the
onset of the response phase, are not significantly influenced by task difficulty or value
differences between options. This was confirmed by analyzing RT distributions across
tasks, which showed similar RTs regardless of the absolute value difference, indicating
that the decision is made before the action is executed (Supplementary Fig.S7a).
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To understand the neural mechanisms underlying these WTA dynamics, we exam-
ined the recurrent connectivity matrices of the trained networks. Singular value
decomposition (SVD) revealed that the recurrent weight matrices were low-rank, with
only a few singular values needed to explain most of the variance (Supplementary
Fig. S7b). This low-rank structure suggests that the network’s dynamics are governed
by a limited number of connectivity patterns or motifs, which in turn constrain the
neural activity to low-dimensional subspaces that efficiently encode the critical deci-
sion variables. This low-dimensional organization reduces noise and focuses variability
along task-relevant dimensions, thereby enhancing the efficiency of decision readout.

We further dissected the network by categorizing neurons based on their selectiv-
ity for decision variables—offer value, chosen value, and choice—and their excitatory
or inhibitory nature. By averaging the recurrent weights between these neuron groups
and across different trained networks, we constructed a reduced connectivity matrix
(Fig. 6c; see Methods). This matrix revealed specific motifs consistent with compet-
itive dynamics. For instance, excitatory neurons selective for a particular choice had
strong positive connections to inhibitory neurons selective for the same choice. The
inhibitory neurons, in turn, provided negative feedback to excitatory neurons encoding
the opposing choice, thereby reinforcing the selection of the higher-valued option.

Visualizing these connectivity patterns in a simplified circuit diagram (Fig. 6d), we
observed that excitatory choice-selective neurons not only promote their own activity
via self-excitation but also inhibit competing choices through inhibitory interneurons.
This reciprocal inhibition mediates the WTA dynamics necessary for value comparison.
Additionally, inhibitory neurons selective for the chosen value interact with excitatory
choice neurons, further shaping the decision process. In our network, the feedfor-
ward inputs and activation functions generally produce uniformly positive responses.
However, the selective inhibitory interactions can effectively invert these responses.
Specifically, when an inhibitory neuron tuned to a particular decision variable sup-
presses an excitatory neuron with similar tuning, the net output of that excitatory
neuron may exhibit a negative relationship with the decision variable—its firing rate
decreases as the variable increases. This targeted inhibitory feedback, by inverting the
response slope, generates a heterogeneous tuning profile wherein some neurons encode
decision variables with a positive slope while others encode them with a negative slope.
Such an arrangement is critical because it sharpens the contrast between competing
options, ensuring that one option distinctly “wins” (attaining high activity) while the
other is actively suppressed (attaining low activity).

We term this connectivity-mediated process the Competitive Recurrent Inhibition
(CRI) mechanism. Unlike a mere phenomenon of WTA—where one option simply wins,
and the other loses—the CRI mechanism specifies how structured recurrent interactions
(including both excitatory and inhibitory connections) actively mediate this outcome.
Notably, our results reveal that the CRI mechanism, while reminiscent of the recurrent
competition described in Wang (2002) [17], exhibits distinct connectivity motifs that
are responsible for both the amplification of the chosen option and the inversion of
neuronal tuning, thereby enabling robust value comparison across diverse tasks.

We extended this analysis to other tasks and found similar connectivity motifs in
the reduced connectivity matrices (Supplementary Fig. S7c). This consistency across
tasks supports the idea that the CRI mechanism is a general strategy employed by the
network to implement value comparison, ensuring that in every decision context one
option emerges with high activity and the alternatives are suppressed to low activ-
ity levels. Future lesion experiments targeting these specific connectivity motifs (e.g.,
selectively removing inhibitory feedback from choice-selective neurons) would further
clarify which connections are necessary and sufficient for proper decision-making.

In summary, our findings demonstrate that the recurrent network performs value
comparison through the CRI mechanism—structured recurrent connectivity that not
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only implements winner-take-all dynamics but also generates heterogeneous neuronal
tuning (both positive and negative encodings) to maximize contrast between competing
offers. The low-rank nature of the recurrent connectivity supports low-dimensional
dynamics that efficiently encode task-relevant information, providing insight into how
neural circuits integrate value information and make decisions in line with processes
observed in biological systems.

a

b

c d

Fig. 6 Dissecting the neural circuit mechanisms of value comparison. a, Average activ-
ity of the network’s output units during the risky task, separated by trials where good C (red) or
good E (blue) was chosen. Data are averaged across all trained networks, with error bars represent-
ing the standard error of the mean. The outputs corresponding to choices of goods C and E exhibit
winner-take-all dynamics, with the chosen good’s output dominating during the stimulus presentation
phase. The fixation output remains high throughout, reflecting the need to maintain fixation until
the response phase. b, Linear regression analysis of the output units’ activity during the last 200 ms
before the response phase against decision variables. The fixation output encodes both fixation and
the chosen value, while the expected return output encodes the chosen value by design. Choice out-
puts primarily encode the value of the corresponding good when that good is chosen, reflecting the
winner-take-all dynamics. c, Reduced recurrent connectivity matrix for the risky task, showing the
average weights between neuron populations categorized by selectivity for decision variables and neu-
ronal type (excitatory or inhibitory). The matrix reveals motifs consistent with competitive recurrent
inhibition (CRI), highlighted by green rectangles. d, Simplified circuit diagram focusing on the choice
and chosen value populations. The diagram illustrates the competitive interactions between excita-
tory and inhibitory neurons encoding different choices, facilitating the selection of the higher-valued
option through recurrent dynamics.

Compositionality in economic decisions

To understand how the networks handle multiple economic choice tasks, we investigated
the extent to which neural representations are shared across tasks versus specialized
for specific tasks, focusing on schema formation and compositionality. By analyzing
networks trained on all tasks, we aimed to discern how neural circuits flexibly adapt
to different task demands while reusing common computational mechanisms.
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We began by examining the rule input weight vectors—i.e., the synaptic weights
connecting the scalar rule cue (which signals to the network the specific task to be
solved on a given trial) to each of the N recurrent neurons. Correlation analysis of these
N -dimensional vectors across the five tasks revealed that the rule input weight vectors
for all tasks except the sequential task were highly aligned, indicating a shared rule
representation. In contrast, the sequential task exhibited a distinct rule input weight
vector, reflecting its unique working memory demands (Fig. 7a). This suggests that
the network utilizes a shared input structure for most tasks, making the explicit rule
cue irrelevant. In contrast, the sequential task exhibited distinct input weights for its
rule cue, reflecting its unique requirement for working memory to maintain information
about sequentially presented offers.

Further analysis of the neural representations underlying each task showed that
the population dynamics during the rule-cue period occupied similar subspaces for all
tasks except the sequential task. By calculating the participation ratio to estimate the
dimensionality of the neural activity and computing the angles between the subspaces
spanned by different tasks, we found that the neural subspaces for the standard, risky,
bundles, and ternary tasks were highly overlapping (Fig. 7b; see Methods). The sequen-
tial task, however, occupied a distinct subspace, consistent with its reliance on working
memory processes not required by the other tasks. These findings indicate that the
network engages similar neural dynamics for most tasks, utilizing a shared circuit for
task resolution, while the sequential task recruits additional neural resources due to its
unique computational demands.

We subsequently analyzed the variance of neuronal firing rates during the stimulus
presentation phase across tasks to delve deeper into how individual neurons contribute
to different tasks. By clustering neurons based on their normalized variance profiles, we
identified distinct groups (Fig. 7c). One cluster consisted of neurons active across all
tasks, representing shared computational components such as value computation and
fixation maintenance. Another cluster was specific to the ternary task, likely involved
in processing the additional good unique to that task. A third cluster was specific to
the sequential task, reflecting neurons engaged in working memory processes.

We quantified the relationships between tasks by examining the distributions of
task variance differences for each neuron across task pairs (Fig. 7d; see Methods).
The histograms revealed patterns of inclusive relationships, where one task’s neural
representation is a subset of another’s, and disjoint relationships, where tasks engage
distinct neuronal populations. These results support the idea of a flexible network
architecture that balances common processing with task-specific adaptations, enabling
efficient and compositional decision making.

To visualize the compositionality across tasks, we projected the mean firing rates
of all neurons during stimulus presentation into the space of the first three principal
components. Plotting these projections for all networks showed that the points cor-
responding to different tasks clustered together, with the exception of the sequential
task, which formed a separate cluster (Fig. 7e). This separation underscores the unique
neural dynamics required by the sequential task due to its working memory demands,
highlighting the network’s ability to form specialized representations when necessary.

Finally, we investigated how prior learning influences the acquisition of new tasks
using curriculum learning protocols. Networks trained sequentially on simpler tasks
before progressing to more complex ones exhibited accelerated learning compared to
networks trained from scratch (Fig. 7f). This suggests that the networks formed a
schema—a shared set of computational strategies—that facilitated knowledge trans-
fer across tasks. The reuse of learned components, such as temporal processing and
multiplicative value computations, enabled the networks to efficiently adapt to new
task demands, reflecting the brain’s ability to leverage prior experience for improved
learning and performance in novel situations.
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In summary, our analyses demonstrate that networks trained on multiple economic
choice tasks develop compositional architectures that combine shared circuitry with
task-specific adaptations. The formation of common schemas and the ability to reuse
computational modules support flexible and efficient decision making across diverse
contexts.

Fig. 7 Compositionality and curriculum learning in networks trained on all economic
choice tasks. a, Correlation matrix of input weight vectors for rule cues across tasks, averaged over
all networks. High correlations are observed among all tasks except the sequential task, indicating
shared input structures. The sequential task has distinct input weights due to its unique working
memory requirements. b, Subspace analysis of population activity during the rule cue period. The
participation ratio estimates the dimensionality, and the angles between subspaces of different tasks
reveal that all tasks except the sequential task occupy overlapping subspaces, suggesting shared neural
representations. c, Clustering of neurons based on task variance of firing rates during stimulus pre-
sentation. Heatmaps show normalized variance for each neuron (columns) across tasks (rows), with
neurons grouped by k-means clustering. Clusters include neurons active across all tasks (shared com-
ponents), neurons specific to the ternary task, and neurons specific to the sequential task (specialized
components). d, Histograms of neurons task variance differences for task pairs, illustrating inclusive
and disjoint relationships between tasks. e, Visualization of task representations by projecting mean
firing rates onto the first three rotated principal components (aligned between different networks).
Points corresponding to different tasks cluster together, except for the sequential task, which forms
a separate cluster, highlighting its distinct neural dynamics. f, Curriculum learning analysis show-
ing accelerated learning in networks trained sequentially on tasks. Learning curves compare networks
trained from scratch to those using curriculum learning, demonstrating the benefits of schema forma-
tion and reuse of computational components across tasks.
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Circuit mechanisms for generalization in value computation

Understanding how neural circuits generalize learned value computations to novel sit-
uations is crucial for explaining flexible decision making in dynamic environments.
Recent studies have highlighted the brain’s capacity for generalization in value-based
choices, where subjects apply learned valuation strategies to stimuli outside their prior
experience [26]. To explore the neural mechanisms underlying such generalization, we
examined how our networks trained on the risky task handle offers that were never
encountered during training.

We trained ten networks only on the risky task using a constrained set of offers. In
one condition, probabilities were fixed at half of their maximum possible value while
quantities varied across the full available range; in the other condition, quantities were
fixed at half the maximum while probabilities varied fully (Fig. 8a; see Methods). This
training regime ensured that the networks learned to compute offer values based on
either varying quantities or probabilities, but not both simultaneously.

After training, the networks successfully chose the higher-valued offer within the
constrained training set, indicating effective learning of value computation under
limited conditions. To assess generalization, we then tested the networks on an uncon-
strained set where both quantities and probabilities varied across their full ranges,
presenting offers that the networks had not seen during training (Fig. 8b). The net-
works demonstrated robust generalization, accurately selecting the higher-valued offer
despite the novel combinations of quantities and probabilities.

Behavioral analysis using logistic regression confirmed that the inferred relative
values and risk attitudes remained consistent between the constrained training set
and the unconstrained test set (Fig. 8c; see Methods). While choice consistency and
accuracy were slightly lower in the test set, the overall performance remained high,
suggesting that the networks effectively generalized their value computations.

This generalization arises from the networks’ computation of the multiplication
between quantity and probability when computing the offer values. Even though the
networks were trained on limited combinations of these variables, their approximation
of multiplication allowed them to interpolate and extrapolate to novel offer values.
The network’s ability to generalize is thus rooted in their computation of offer value
as the product of quantity and probability, enabling them to apply learned valuation
strategies to new situations.

Our findings align with observations in non-human primate studies, where sub-
jects generalize valuation processes to novel stimuli [26]. The networks’ generalization
demonstrates how neural circuits can leverage fundamental computational princi-
ples, such as approximate multiplication, to extend learned behaviors beyond specific
training experiences.

Discussion

In this work, we developed a biologically plausible computational model of recurrent
neural networks (RNNs) with excitatory-inhibitory neurons for economic decisions. The
salient findings are fivefold. First, the model reproduces salient single-neuron and pop-
ulation activity patterns observed in the OFC of monkeys performing economic choice
tasks. In particular, inhibitory cells are as selective as excitatory cells, in consonance
with observations of single-neuron activity and synaptic connectivity [36, 37]. Second,
we identified a circuit mechanism for computing the expected values approximately as
a product of reward probability and quantity. This multiplication computation explains
the network’s ability to generalize to values of unseen novel choice options, as observed
experimentally [26]. Third, the relative value of different goods, which imposes spe-
cific indifference points, is encoded in the input weights. Fourth, our network analyses
provide direct insight into the circuit mechanisms underlying winner-take-all (WTA)
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Fig. 8 Generalization in 10 networks trained on a constrained risky task. a, Training regime
where networks were trained on a constrained set of offers in the risky task. In one condition, probability
was fixed at half of its maximum value while quantity varied across the full range. In the other
condition, quantity was fixed at half maximum while probability varied fully. b, Testing the networks
on an unconstrained set where both quantity and probability varied across their full ranges. Networks
demonstrated good generalization, accurately selecting the higher-valued offer in novel situations. c,
Summary of behavioral analysis for the ten trained networks. Points represent individual networks,
showing that inferred relative values and risk attitudes remained consistent between the constrained
training set (Train) and the unconstrained test set (Test). Choice consistency and accuracy were
slightly lower in the test set but remained high overall, indicating effective generalization.

dynamics: distinct patterns of recurrent connectivity between excitatory and inhibitory
neurons orchestrate competitive interactions that selectively amplify the representation
of the higher-valued option while suppressing lower-value signals, thereby implement-
ing value comparison. Fifth, neural representations display compositionality, which
accelerates learning when training to perform multiple tasks is temporally organized
according to an appropriate curriculum. These findings offer novel insights into how
economic choices are represented and processed in the brain, which are useful for future
investigations.

Although direct anatomical evidence for fixation signals, explicit task-rule cues,
and probability inputs to the OFC is still debated, our model uses these signals as
abstract representations of the sensory and contextual information that the decision
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circuitry receives. This assumption not only provides a plausible framework for inte-
grating external cues but also generates testable predictions regarding the role of these
inputs in value computation.

A significant achievement of our model is its ability to replicate key behavioral pat-
terns observed in empirical studies, including choice consistency, risk attitudes, and
order biases [7, 23]. These consistencies demonstrate the model’s robustness and its util-
ity as a tool for exploring the neural substrates of choice biases [24], with implications
for understanding neuropsychiatric disorders characterized by impaired decision mak-
ing, such as frontotemporal dementia, schizophrenia, and drug addiction. The observed
variability in risk attitude and order bias across networks is likely due to stochastic
fluctuations during training—such as random initializations and input noise—that can
break symmetry and predispose a network toward risk-seeking or risk-averse behavior.
Future work will focus on systematically varying these noise sources to elucidate their
specific contributions to bias formation.

At the behavioral level, human and animal choices are typically “as if” based on
the computation of subjective values [38]. Supporting this construct, neurons in OFC
and other brain regions explicitly represent the values of offered and chosen goods.
However, it is, in principle, possible to make effective choices without computing values
[39–43]. Thus a critical aspect of our results is that our networks did indeed compute
and compare values. More specifically, our analysis revealed that neurons in the model
exhibit tuning properties similar to those observed in OFC, with different cells repre-
senting variables offer value, chosen value, and chosen good [1, 6]. At the neuronal level,
our analysis revealed that neurons in the model exhibit tuning properties that closely
mirror those observed in the OFC. In particular, distinct neurons encode key decision
variables—offer value, chosen value, and chosen good. Importantly, both excitatory and
inhibitory neurons display heterogeneous tuning, meaning that not only do all these
neurons encode the relevant task variables, but they also do so with diverse response
profiles. Specifically, some neurons show a positive monotonic relationship with the
encoded variable (i.e., their firing rate increases as the variable increases), while oth-
ers exhibit a negative monotonic relationship (i.e., their firing rate decreases as the
variable increases). This diversity in tuning, spanning both cell types and both direc-
tionalities of response, aligns with experimental observations and challenges previous
models that assumed a more uniform, exclusively positive encoding scheme. While neg-
ative encoding emerges naturally from the structured inhibitory feedback in our model,
we propose that these negative responses are not merely epiphenomenal. Instead, they
may actively contribute to enhancing the contrast between competing offers, thereby
improving the efficiency of value comparison. This prediction remains to be tested in
future experimental studies. The sequential dynamics of these neurons—first comput-
ing value and then comparing values—further reflect the temporal structure of decision
making observed in OFC [13]. The dynamics of these neurons follow the sequential
process of value computation followed by value comparison, reflecting the temporal
structure of decision making [2, 6].

At the population level, our model demonstrates low-dimensional dynamics where
specific neural activity patterns correspond to decision variables [25]. This low-
dimensional structure suggests that economic decisions are driven by a set of variables
capturing most of the variance in neural activity, with chosen values potentially encoded
as line attractors [44]. The discovery that relative values are encoded in the input
synaptic weights offers a compelling experimental prediction, suggesting that synaptic
efficacies play a crucial role in value computation.

Our model proposes a novel mechanism for value computation occurring upstream
of the decision circuit, approximating the multiplication of goods’ features such as
probability and quantity [11, 45, 46]. This mechanism enhances the model’s ability
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to generalize to unseen offers, addressing a critical aspect of real-world decision mak-
ing [26]. The capacity for generalization suggests that the brain may employ similar
computational strategies to navigate complex environments efficiently. It is impor-
tant to note that our model defines expected reward as a multiplicative function
of quantity and probability. However, alternative formulations—such as an additive
combination—might capture behavior under different conditions, particularly under
varying levels of uncertainty. Recent work [47] suggests that the optimal strategy may
depend on context. Future work should explore how these alternative computations
influence decision performance.

For value comparison, our model demonstrates that decisions are implemented via
WTA dynamics within the recurrent network [17, 18, 27]. This mechanism provides
a computational framework for both binary and complex choices, supporting the suf-
ficiency of the identified neuron types in reproducing economic choice behavior. The
connectivity structure observed in our networks provides testable predictions for future
experiments in vivo.

Moreover, the identification of both specialized and shared neural clusters across
different economic choice tasks suggests that the brain efficiently reuses neural cir-
cuits for multiple tasks while maintaining the ability to specialize for specific decision
contexts when necessary. The emergence of dedicated neural mechanisms for work-
ing memory functions in sequential tasks highlights the flexibility and adaptability of
neural circuits in supporting complex cognitive functions [32, 48, 49].

Our study also highlights the significance of compositionality and multitasking in
neural circuits. The model’s ability to perform multiple tasks by recombining simpler,
previously learned components reflects the inherent flexibility of neural representations
in the brain [28, 29]. This compositionality, coupled with curriculum learning protocols
[30, 31], accelerates the learning process and allows adaptation to diverse economic con-
texts. These findings suggest that the brain may employ similar strategies to optimize
learning and decision making, balancing specialization and generalization [50, 51].

Future work is needed to test the proposed neural circuit model, with neural data
recorded from non-human primates and rodents [6, 52, 53]. Such efforts will validate
the model’s predictions and refine our understanding of the neural circuits involved
in economic choice. Testing our predictions—such as the role of inhibitory neurons
in encoding decision variables and the emergence of negatively encoding cells due to
selective inhibition (for example, in our model, inhibitory neurons that are selectively
tuned for a specific decision variable can target and suppress other neurons with similar
tuning. This selective inhibition can invert the effective tuning slope—from a positive,
feedforward-driven response to a negative one—since, without inhibitory interactions,
all encoding would be exclusively positive by construction. Such an emergent inver-
sion, driven by the winner-take-all dynamics in the recurrent network, constitutes a key
prediction of our framework that can be empirically tested)—using advanced neuro-
physiological techniques will further confirm the biological plausibility of our framework
[9, 10].

The model’s ability to generalize across various decision contexts prompts further
investigation into the neural mechanisms supporting this flexibility. Understanding how
neural circuits navigate the trade-off between specialization and generalization could
provide deeper insights into the principles governing economic decisions [51, 54].

Our model can be extended and improved in multiple ways. First, a model can be
modified to receive and process the actual input images the animals see on laboratory
screens instead of simplified scalar input representations where the different features are
disentangled for simplicity [55]. Second, such modeling could be used for comparison
between the OFC and other brain regions involved in decision making, such as the
ventromedial prefrontal cortex and the amygdala [56–59]. Third, a frontier topic is to
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investigate valuation [60] and decision-making [61] widely distributed in a large-scale
brain system underlying economic choices.
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Methods

Network structure

We employed excitatory-inhibitory (E/I) continuous-time vanilla recurrent neural net-
works (RNNs) [19, 28], adhering to key biological constraints to model the neural
mechanisms underlying economic decision making (Fig. 1b). The networks consisted of
N = 256 neurons, with 80% excitatory and 20% inhibitory neurons, reflecting cortical
neuron ratios [62]. Neurons had a time constant τ = 100 ms, consistent with cortical
neurons with NMDA receptor-mediated synaptic dynamics [17]. The dynamics of the
network were governed by:

τ
dr(t)

dt
= −r(t) +

[
W rec r(t) +W in u(t) + b+

√
2τ σrec ξrec(t)

]
+
, (1)

where r(t) is the vector of neuronal activities, W rec is the recurrent weight matrix,
W in is the input weight matrix, u(t) is the input vector, b is a bias term, ξrec(t) rep-
resents Gaussian white noise with zero mean and unit variance affecting the recurrent
units, σrec = 0.15 is the standard deviation of the recurrent noise, and [·]+ denotes
the rectified linear unit (ReLU) activation function. The network was simulated with
a temporal discretization of δt = 20 ms.

The input vector u(t) included scalar representations of fixation, quantities and
probabilities of the offered goods, and task-specific rule cues. All scalar inputs were
normalized between 0 and 1, with an added baseline of u0 = 0.2 and additive input
noise:

u(t) = usignal(t) + u0 +
√
2τ σin ξin(t), (2)

where usignal(t) represents the normalized input signals, ξin(t) is Gaussian white
noise with zero mean and unit variance affecting the inputs, and σin = 0.01 is the
standard deviation of the input noise.

In our model, the fixation signal is provided as an input that mimics the experi-
mental requirement for subjects to maintain gaze. It serves as a gating mechanism that
holds the network in a non-committal state until the response phase, ensuring that
value computations are performed while fixation is maintained.
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The network architecture adhered to Dale’s law by constraining excitatory neurons
to have positive outgoing weights and inhibitory neurons to have negative outgoing
weights, enforced by fixed masks during training [19]. Similarly, long-range projections
(inputs and outputs) were enforced to be excitatory through masks applied during
training, reflecting the excitatory nature of projections between brain areas [63].

Initialization of parameters. All weight matrices and biases were initialized as
follows:

- Recurrent weight matrix W rec was initialized by sampling each element from
a Gamma distribution. Specifically, for each pair of neurons (i, j), the weight W rec

ij

was sampled from a Gamma distribution with shape and scale parameters equal to
4. After initialization, the weight matrix was rescaled to have a spectral radius (the
largest absolute eigenvalue) of 1.5. A fixed mask was then applied to enforce Dale’s
law: weights corresponding to excitatory neurons (rows) were set to positive if negative,
and weights corresponding to inhibitory neurons were set to negative if positive.

- Input weight matrix W in was initialized by sampling each element from a
uniform distribution over [0, 1/

√
Nin], where Nin = 16 is the number of scalar inputs

to the recurrent units. The inputs have excitatory projections to the recurrent units,
and a mask was applied to enforce this constraint.

- Bias terms b were initialized to zero.
- Output weights W out

actor and W out
critic were initialized by sampling each element

from a uniform distribution over [0, 0.4/
√
N ]. The weights were kept non-negative,

consistent with the excitatory nature of long-range projections. Masks were applied
during training to maintain this constraint.

- Output biases bactor and bcritic were initialized to zero.
The actor and critic shared the same recurrent network weights but had separate

readouts. This design choice aligns with experimental observations that stimulation of
value-related units can bias decisions [9]. Having separate networks for actor and critic,
as in some architectures [15], would not be biologically plausible in this context.

Noise parameters. The standard deviation of the recurrent noise was set to σrec =
0.15, and the standard deviation of the input noise was set to σin = 0.01. These values
were chosen to introduce variability in the neuronal activities and inputs, simulating
the stochastic nature of neural processing in biological systems.

Activation function. The ReLU activation function was used to model the non-
linear response of neurons, ensuring that neuronal activities remain non-negative, while
unit-specific biases were introduced to model different activation thresholds for different
units.

We ensured that the networks started from a plausible physiological state by spec-
ifying the initialization of all parameters, including weights and biases, and enforcing
biological constraints through masking and proper scaling. The use of Gamma distri-
bution for initializing the recurrent weights, followed by rescaling to a spectral radius of
1.5, promotes the emergence of dynamic activity patterns while maintaining stability
[64].

Choice tasks and performance

We trained networks on a diverse set of economic choice tasks designed to simulate var-
ious aspects of decision making observed in primate studies [7]. These tasks required
the networks to evaluate and compare offers involving different goods, quantities, prob-
abilities, and temporal sequences. Each task presented unique challenges while sharing
a common structure, necessitating different computational strategies.

We trained networks in three modes: (a) a multitask setting where a single
network is trained concurrently on all five economic choice tasks; (b) single-task train-
ing, where separate networks are trained on individual tasks; and (c) a curriculum
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learning approach in which the same network is sequentially trained on individ-
ual tasks—starting with simpler tasks and progressively introducing more complex
ones. In the multitask networks, the same recurrent circuitry is used for all tasks,
with task-specific differences arising primarily from the rule cue and associated input
weights.

Common Task Structure. Each trial began with a fixation period of variable
duration (500–1500 ms), during which the networks had to maintain fixation to proceed.
This was followed by the presentation of a rule cue (500–1500 ms), indicating the
specific task to be performed. The offer presentation phase varied depending on the
task, and finally, a response period of up to 1000 ms was provided for the networks
to make a choice. The duration of each phase was randomized to prevent reliance on
temporal cues and favor the networks to learn fixed points (Fig. 1a).

Visual Representation and Network Inputs. In the task schematics, offers
were visually represented by colored circles corresponding to different goods (A through
E), each with a predefined intrinsic value: ρA = 3, ρB = 2.5, ρC = 2, ρD = 1.5,
and ρE = 1. The circle’s radius was proportional to the quantity offered, and in tasks
involving probability, the filled area represented probability. This mimicked how such
information might be presented to animals in experimental settings [7].

However, the networks did not process visual images. Instead, they received scalar
inputs as proxies for these visual features. The networks received dedicated input chan-
nels for each good presented in a trial, encoding the quantity and probability (when
applicable). Each good had its own input units for quantity and probability, allowing
the networks to distinguish between different goods based on these inputs. The fixa-
tion cue and task rule cue were also provided as distinct scalar inputs. All inputs were
normalized between 0 and 1, with an added baseline of u0 = 0.2 and additive noise
to simulate sensory variability. This setup allowed the networks to process essential
quantitative information required for decision making without visual processing.

Offer Value Calculation. The value of each offer was calculated as:

Offer Value = ρ×Quantity× Probability, (3)

where ρ is the intrinsic value of the good, Quantity is sampled uniformly from 0 to
10/ρ (ensuring comparable value ranges across goods and non-trivial decisions), and
Probability is sampled uniformly from 0 to 1 (set to 1 in tasks without probability).
Offers were selected to have values greater than one.

Trial Outcomes and Rewards. In all tasks, the networks were required to main-
tain fixation during the fixation, rule cue, and offer presentation periods. Breaking
fixation prematurely resulted in trial abortion and a negative reward of −1. During
the response period, the networks could select an action corresponding to one of the
offered goods or continue to maintain fixation. Selecting an action ended the trial, and
the networks received a reward based on the intrinsic value and quantity of the cho-
sen offer. In tasks involving probabilities, the reward was delivered probabilistically
according to the offered probability; otherwise, the reward was deterministic.

Task Cues and Inputs. Each task was indicated to the networks via a unique
rule cue presented during the rule cue period. The rule cues were distinct scalar inputs,
allowing the networks to identify the current task and adjust their computations accord-
ingly. This required the networks to develop task-dependent processing strategies akin
to cognitive flexibility observed in animals performing multiple tasks [65].

Network Initialization. The hidden states of the recurrent networks were set to
zero for each unit at the beginning of each trial for simplicity, ensuring that the network
dynamics had no memory trace of the previous trials.

Below, we describe each task in detail, highlighting their specific features.
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Standard Task

In the standard task, the networks were presented with two offers simultaneously, each
consisting of a single good (either good C or good E) varying in quantity. Probabilities
were not involved in this task (set to 1). The networks received scalar inputs for goods
C and E quantities through dedicated input channels. The value of each offer was
computed as:

Offer Value = ρ×Quantity. (4)

The networks had to select the offer with the higher value by comparing these values
based on the inputs.

Risky Task

The risky task introduced probabilistic outcomes. Each offer, consisting of either good
C or good E, varied in both quantity and probability. The networks received scalar
inputs for each good’s quantity and probability through dedicated input channels. The
expected value of each offer was computed as:

Offer Value = ρ×Quantity× Probability. (5)

The networks had to integrate the inputs to assess the expected values and choose
the higher offer.

Bundles Task

In the bundles task, the networks chose between two bundles, each containing two dif-
ferent goods presented simultaneously. One bundle consisted of goods B and C and the
other of goods D and E. Each good varied in quantity and probability. The networks
received scalar inputs for the quantities and probabilities of each good through dedi-
cated input channels. The total value of each bundle was calculated by summing the
values of the individual goods:

Bundle Value = ρ1 ×Quantity1 × Probability1 + ρ2 ×Quantity2 × Probability2. (6)

The networks had to process multiple input channels corresponding to different
goods and perform additive computations to determine the overall bundle values.

Ternary Task

The ternary task involved choosing among three different goods (goods A, C, and E),
each varying in both quantity and probability. The networks received separate scalar
inputs for the quantity and probability of each good through dedicated input channels.
The expected value of each offer was computed as:

Offer Value = ρ×Quantity× Probability. (7)

The networks had to evaluate and compare the expected values based on the inputs
and select the offer with the highest expected value.

Sequential Task

Two offers were presented sequentially in the sequential task, with variable delays
between presentations. Each offer consisted of a single good (either good C or good
E) varying in quantity and probability. The sequence of presentation was randomized.
During each offer presentation, the networks received scalar inputs for the quantity
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and probability of the presented good through dedicated input channels. The networks
needed to maintain the value of the first offer during the delay period. Upon presenta-
tion of the second offer, the networks had to compare it with the stored representation
to decide which one had the higher value:

Offer Value = ρ×Quantity× Probability. (8)

This task tested the networks’ working memory capabilities, requiring retention and
comparison of information over delays based on the scalar inputs.

By designing and training the networks on these detailed and varied tasks, we aimed to
simulate the complexity of decision processes observed in biological systems. The care-
ful mapping of visual representations to scalar inputs allowed the networks to process
essential quantitative information required for decision making, focusing on quantities,
probabilities, and goods identity through dedicated input channels. This approach facil-
itated the investigation of how neural networks can develop mechanisms to perform
value-based decisions involving multiple variables and to explore the potential neural
correlates of such processes.

Training procedure

We trained the networks using Proximal Policy Optimization (PPO) [21, 66], a state-
of-the-art deep reinforcement learning algorithm. PPO belongs to the family of policy
gradient algorithms, which optimize the policy directly through gradient ascent, focus-
ing on maximizing the expected cumulative reward. Other algorithms in this family
include REINFORCE and Advantage Actor-Critic (A2C), which have been successfully
applied to study neuroscience problems before [15, 49].

We defined the loss function L(θ) to be maximized on every training batch of trials
as a weighted sum of the PPO policy loss LPPO

t (θ), the value function loss LVF
t (θ), and

an entropy regularization term S[πθ](st):

L(θ) = E
[
LPPO
t (θ)− c1LVF

t (θ) + c2S[πθ](st)
]
, (9)

where c1 = 0.5 and c2 = 0.01 are hyperparameters determining the weights of the value
function loss and the entropy regularization term, respectively. E represents the mean
over a batch of training trials composed by unrolling 20 environments, simulated in
parallel with the same agent, for T = 128 steps. This batch was then split into 4 mini-
batches used for optimization. θ refers to the collection of all trainable parameters, and
πθ is the policy used to sample the actions of the network given an input.

The policy loss LPPO
t is defined as:

LPPO
t (θ) = −min (ρt(θ)At, clip (ρt(θ), 1− ϵ, 1 + ϵ)At) , (10)

where ρt(θ) =
πθ(at|st)
πold
θ (at|st)

is the probability ratio between the current and old policies,

ϵ = 0.1 is the clipping parameter, and At is the advantage function estimating the
relative value of action at at state st.

The advantage function At (analogous to the reward prediction error in neuro-
science) is defined as:

At = −Vθ(st) + rt + γrt+1 + γ2rt+2 + . . .+ γT−trT−1 + γT−tVθ(sT ), (11)

where rt is the actual reward at time step t, γ = 0.99 is the temporal discount factor,
Vθ(st) is the value function computed at state st, and T is the time horizon. The state
st = ut is the input to the network at time t. This advantage function represents the
difference between the cumulative future rewards (including the bootstrap from the
value function at time T ) and the value estimate at time t.

The value function loss was:
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LVF
t (θ) =

1

2
(Vθ(st)−Rt)

2
, (12)

where Rt is the bootstrapped return computed as:

Rt = rt + γrt+1 + γ2rt+2 + . . .+ γT−trT−1 + γT−tVθ(sT ). (13)

Alternatively, we can express the bootstrapped return as:

Rt = At + Vθ(st). (14)

The entropy bonus was:

S[πθ](st) = −
∑
a

πθ(a|st) log πθ(a|st), (15)

encouraging exploration by promoting a wider distribution of actions.
In this context, the advantage function At serves a role analogous to the reward

prediction error (RPE) in neuroscience [67, 68]. The RPE represents the discrepancy
between the expected reward and the actual obtained reward, driving learning and
adaptation in biological neural systems. Similarly, the advantage function measures
the difference between the estimated value of the current state Vθ(st) and the actual
cumulative future rewards, guiding the adjustment of the policy to maximize expected
returns.

All parameters were updated via gradient ascent and backpropagation through time
using the Adam optimizer with a learning rate of 2.5 × 10−4 [69]. We clipped the
gradient norm to be less than or equal to 1 to prevent exploding gradients.

Networks were trained under both multitasking and curriculum learning protocols
[28, 30]. In multitasking, networks were trained concurrently on all tasks, facilitating
generalization across tasks. In curriculum learning, networks were first trained on sim-
plified versions of tasks and gradually introduced to more complex variants, aiding
convergence and performance. For example, when training on the sequential task, net-
works were initially trained without delays, and delays were gradually introduced once
the networks could solve the simplified task.

Training continued until the networks met stringent performance criteria evalu-
ated on test trials: achieving at least 99% of decision trials (trials completed without
fixation breaks) (Fig. S1a) and at least 90% correct choices among those decision tri-
als (Fig. S1b). The learning curves reveal distinct phases: an initial phase where the
networks learn to maintain fixation and choose randomly between goods, followed by
a phase where they learn to choose the good with the highest value. The average
reward on the test set increased correspondingly (Fig. S1c), reflecting improved decision
making performance.

All simulations were implemented using PyTorch [70] and custom Python scripts.
Performance metrics and network dynamics were analyzed post-training.

Logistic Regression Analysis of Behavior

To quantitatively characterize the networks’ decision making and extract behavioral
parameters, we performed logistic regression analyses on the choice data from each
task, following methodologies applied in studies with non-human primates [7].

Data Collection

For each network, we collected approximately 25,000 trials (about 5,000 trials per task)
where the network made choices among different offers. Each offer was defined by its
quantity (qX), probability (pX) when applicable, and intrinsic value (ρX). The intrinsic
values were set during training, with ρA > ρB > ρC > ρD > ρE .
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Models for Binary Choices

In tasks involving choices between two options—the standard, risky, bundles, and
sequential tasks—we modeled the probability of choosing one option over another using
logistic regression. The models estimate the relative values ρX of goods relative to a
reference good, which we designate as good E. By convention, we set ρE = 1, and ρX
represents the relative value of good X compared to good E.

Standard Task

In the standard task, choices are based on quantities and intrinsic values of goods C and
E, without probabilities. The probability of choosing good C over good E is modeled as:

Pchoose C =
1

1 + exp
(
−η
(
ln
(

ρCqC
qE

))) , (16)

where:

• Pchoose C is the probability of choosing good C.
• ρC is the relative value of good C relative to good E (ρE = 1).
• qC and qE are the quantities offered.
• η is the choice consistency parameter, reflecting sensitivity to value differences.

Risky Task

In the risky task, choices involve quantities, probabilities, and intrinsic values. We
included the risk attitude parameter γ to capture potential non-linear weighting of
probabilities:

Pchoose C =
1

1 + exp
(
−η
(
ln
(

ρCqCpγ
C

qEpγ
E

))) , (17)

where:

• pC and pE are the probabilities associated with goods C and E.
• γ quantifies the network’s risk attitude (γ = 1 denotes risk neutrality).
• Other parameters are as previously defined.

Bundles Task

In the bundles task, each option is a bundle consisting of two goods. We calculated
the total value of each bundle by summing the values of the individual goods. The
probability of choosing Bundle 1 over Bundle 2 is modeled as:

Pchoose Bundle 1 =
1

1 + exp
(
−η
(
ln
(

V1

V2

))) , (18)

where:

• V1 = ρBqBp
γ
B + ρCqCp

γ
C is the total value of Bundle 1 (goods B and C).

• V2 = ρDqDpγD + qEp
γ
E is the total value of Bundle 2 (goods D and E, with ρE = 1).

• γ is the risk attitude parameter.
• ρX , qX , and pX are the intrinsic values, quantities, and probabilities of the goods in
the bundles.

• η is the choice consistency parameter.

Sequential Task

In the sequential task, choices involve quantities, probabilities, intrinsic values, and
potential order bias. The probability of choosing good C over good E is modeled as:
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Pchoose C =
1

1 + exp
(
−η
(
ln
(

ρCqCpγ
C

qEpγ
E

)
+ ϵ′ ·Order

)) , (19)

where:

• ϵ′ is the order bias parameter, capturing preference for the first or second offer.
• Order = +1 if good C was presented second, −1 if good C was presented first.
• Other parameters are as previously defined.

The risk attitude parameter γ is included due to the involvement of probabilities.

Model for Multinomial Choices

In the ternary task, involving choices among three goods (A, C, and E), we used
multinomial logistic regression to model the probability of choosing each good based
on its offer value:

Pchoose X =
(ρXqXpγX)

η∑
Y (ρY qY p

γ
Y )

η , (20)

where:

• X and Y index the goods offered (A, C, E).
• ρX is the relative value of good X relative to good E (ρE = 1).
• qX and pX are the quantity and probability of good X.
• γ is the risk attitude parameter.
• η is the choice consistency parameter.

Parameter Estimation

We estimated the parameters (ρX , γ, η, ϵ′) using maximum likelihood estimation for
each task and network individually. The relative values (ρX) are relative measures,
with ρE = 1 serving as the reference point, allowing for comparison across tasks and
networks. The choice consistency parameter (η) indicates the steepness of the psycho-
metric function; higher values correspond to more consistent choices based on offer
value differences.

Single-neuron analyses

Data Collection and Trial Structure

For the neural analyses, we collected test trials with fixed durations, set to the maxi-
mum durations for each epoch used during training. Specifically, we fixed the durations
for fixation, rule cue, offer presentation, and response periods to their maximum values
used during training. This standardization facilitated the alignment of neural activity
across trials and simplified the temporal analysis of neuronal selectivity.

In the sequential task, when analyzing neural activity aligned to stimulus onset,
we refer specifically to the onset of the second stimulus. At this point in the trial,
the network has information about the first offer maintained in working memory and
receives the second offer, enabling it to compare both offers to make a decision. By
focusing on the period following the second stimulus onset, we capture the neural
processes involved in integrating sequential information to guide choice behavior.

Single-neuron selectivity analysis

To analyze neuronal selectivity for decision variables, we performed linear regression of
each neuron’s firing rate against each behavioral variable independently at each time
point during the trial. The considered variables included:
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• Offer value of good C (OVC)
• Offer value of good E (OVE)
• Chosen value (CV)
• Choice (CH), coded as +1 for choosing good C and -1 for choosing good E
• Value sum (sum of the offer values)
• Value difference (difference between the offer values)

For each neuron and time point, we fitted the following model separately for each
variable:

r(t) = β0 + βX + ϵ, (21)

where r(t) is the firing rate of the neuron at time t, X is the behavioral variable, β is
the regression coefficient, and ϵ is the error term.

We evaluated the statistical significance of each regression by examining the p-
value associated with the regression coefficient β. If the p-value was less than 0.05, we
considered the regression significant; otherwise, the R2 value was set to zero. At each
time point, a neuron was assigned to the variable with the highest R2 among those
with significant regressions. If none of the regressions were significant (p ≥ 0.05), the
neuron was considered non-selective at that time point.

Temporal Stability Index (TSI)

The TSI for each neuron was calculated as:

TSI =
Number of times the neuron encodes its primary variable

Total number of times the neuron is selective
, (22)

where the primary variable is the one most frequently associated with the neuron over
time. A TSI of 1 indicates that the neuron consistently encodes the same variable
whenever it is selective, while lower values suggest that the neuron’s selectivity changes
over time.

Note that a TSI value below 0.5 indicates that a neuron frequently shifts its pri-
mary encoded variable during a trial. This suggests that such neurons exhibit dynamic
selectivity, rather than consistently encoding a single decision variable.

Categorical encoding analysis

To assess whether neurons encode variables categorically or conjunctively, we focused
on neurons that were selective for at least one of the variables at a given time (i.e., had
R2 ≥ 0.3 for at least one variable). For each neuron and time point, we computed the
difference in R2 values between pairs of decision variables. Specifically, we calculated:

∆R2 = R2
Var1 −R2

Var2, (23)

where R2
Var1 and R2

Var2 are the coefficients of determination from the independent
regressions against variables Var1 and Var2, respectively. If a regression was not sig-
nificant (p ≥ 0.05), we set R2 to zero. Histograms of these differences were plotted to
examine the distribution across the neuronal population. Bimodal distributions suggest
categorical encoding, where neurons preferentially encode one variable over another,
whereas unimodal distributions indicate conjunctive encoding. We opted for pairwise
comparisons of R2 values between candidate variables as this method provides a sim-
ple and interpretable metric for determining which variable dominates the neuronal
response.
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Neural Population Analyses

Population Dynamics Analysis

To investigate the population-level encoding of decision variables, we performed prin-
cipal component analysis (PCA) on the neural activity of the recurrent neurons during
the stimulus presentation phase. PCA reduces the high-dimensional neural activity to
a set of orthogonal components that capture the maximum variance in the data.

For each task and network, we collected neural activity from the last 200 ms of
the stimulus presentation phase across all trials. We separately analyzed the excitatory
and inhibitory populations to examine potential differences in their contributions to
the population dynamics.

Dimensionality Estimation

We estimated the dimensionality of the neural activity using the participation ratio
[35], defined as:

DPR =

(∑
i

λi

)2/∑
i

λ2
i , (24)

where λi are the eigenvalues (variance explained) of the covariance matrix of the neu-
ral activity. The participation ratio provides a measure of the effective number of
dimensions contributing to the variance in the data.

Principal Component Regression

We projected the neural activity onto the first three principal components and
performed linear regression of these projections against various decision variables,
including offer values, chosen value, choice, value sum, and value difference. The coef-
ficients of determination (R2) from these regressions indicate how much variance in
each principal component is explained by the decision variables.

Lesion Analysis

To assess the role of recurrent connectivity in shaping population dynamics, we per-
formed lesion experiments by removing all recurrent connections from the trained
networks. Specifically, we set the recurrent weight matrix W rec to zero, effectively elim-
inating all recurrent influences while preserving the feedforward inputs and output
weights.

We then re-evaluated the networks’ neural activity during the stimulus presentation
phase using the same input protocols as in the intact networks. Since the networks could
no longer perform the tasks without recurrent dynamics, we focused on the encoding
of offer values and other input-related variables.

Firing Rate Distribution

We compared the distribution of firing rates between the intact and lesioned networks
to assess the impact of recurrent connectivity on neuronal activity levels. Mean firing
rates and standard deviations were computed for excitatory and inhibitory neurons
across all tasks (Supplementary Fig. S4).

Population Dynamics in Lesioned Networks

We repeated the PCA and dimensionality analyses on the lesioned networks to examine
how the absence of recurrent connections affected the population encoding of decision
variables. Linear regression of the principal components against offer values and other
variables was performed to determine the nature of the encoding in the feedforward
regime (Supplementary Fig. S5).
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Visualization of Population Dynamics

To visualize the temporal evolution of the population activity, we created animations
showing the trajectories of neural activity projected onto the first two principal compo-
nents throughout the trial. Trials were colored according to different decision variables
to illustrate how neural trajectories corresponding to different choices or offer values
diverged over time.

Supplementary Video 1 shows the population dynamics in the intact network during
the risky task, highlighting the separation of trajectories based on chosen value and
choice.

Supplementary Video 2 shows the population dynamics in the lesioned network dur-
ing the risky task, illustrating the lack of separation based on choice-related variables
and the clustering of trajectories according to offer values.

Input Weights Analyses

Analysis of Input Weights

We examined the input weight matrices W in connecting the input units for quantities
and probabilities to the recurrent neurons. For each network, we extracted the input
weight vectors corresponding to each feature (quantity and probability) of each good.
We then computed the Pearson correlation coefficients between all pairs of these input
weight vectors to assess the similarity in how recurrent neurons receive inputs from
different features and goods. The resulting correlation matrix allowed us to identify
patterns indicating the specialized processing of goods by subpopulations of neurons.

Multiplicative vs. Additive Computation

We analyzed networks with lesioned recurrent connections to focus on feedforward
computations to determine whether the networks are computing the offer values via
multiplication or addition of quantities and probabilities. We collected neural activ-
ity from the last 200 ms of the stimulus presentation phase in the risky task across
approximately 5,000 trials. We projected the population activity of excitatory and
inhibitory neurons onto the first two principal components using principal component
analysis (PCA). We then performed linear regression of these projections against both
the product (multiplication) and the sum of quantities and probabilities for each good.
The coefficients of determination (R2) were compared to assess which model better
explained the neural activity.

Toy Feedforward Network Model

We constructed a simplified feedforward network model to illustrate how multiplication
can be approximated using linear weights and nonlinear activation functions (ReLU).
In our first step, we optimized the scaling parameters α (for the input weights) and β
(for the biases) in a single-product scenario—i.e., for one good—by generating a test
set of input pairs (quantity and probability) and evaluating the ability of the network
to approximate the product (multiplicative integration) versus the sum. The model
consisted of input units for the quantity and probability of a single good, connected
to hidden units with weights that scaled linearly with neuron indices. Bias terms were
included to adjust the activation thresholds. The hidden units’ activities were passed
through ReLU functions, and principal component analysis (PCA) was performed on
the hidden layer to analyze the population coding.

After optimizing α and β for this single-product case (see Supplementary Fig.S6),
we generalized the model to the case of two goods. Initially, the model featured two
independent populations of hidden units, each processing inputs from one of the goods.
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Subsequently, we introduced a third population of mixed-selectivity neurons that inte-
grated inputs from both goods. This extension allowed the model to approximate the
multiplication operation for two goods, while also accounting for the observed rotation
of the offer value axes in the full recurrent network (see Fig.5c and d).

Correlation of relative values and Input Weights

We trained 50 networks exclusively on the risky task, varying the intrinsic value ρhigh
of the higher-value good across networks (ρhigh = 1, 2, 3, 4, 5). After training, we per-
formed logistic regression to infer the relative values ρhigh for each network. We then
calculated the average non-zero input weights connecting the quantity input of the
high-value good to the recurrent neurons.

A linear regression was performed between the inferred relative values and the
average non-zero input weights connecting the quantity input of the high-value good
to the recurrent neurons to assess their relationship. A strong positive correlation
would indicate that the relative values are encoded in the input weights, supporting
the hypothesis that value computation occurs at the input level.

Recurrent Circuit Analyses

Analysis of Output Dynamics

We analyzed the activity of the network’s output units during the stimulus presenta-
tion phase across all tasks and networks. The outputs included units corresponding to
choices of goods A, C, E, fixation (FIX), and the expected return (value function). For
each task, we averaged the output activity across trials where different choices were
made, focusing on the dynamics leading up to the response phase. Error bars represent
the standard error of the mean across networks.

Reaction Time Analysis

Reaction times (RTs) were measured from the onset of the response phase (when the
fixation cue turned off) to the time the network executed a choice action. We col-
lected RTs across all trials and tasks and analyzed their distributions (Supplementary
Fig. S7a). Linear regression was performed between RTs and the absolute value differ-
ence between offers to assess the relationship between decision difficulty and response
latency. Low coefficients of determination (R2) indicated that RTs were not significantly
influenced by the value difference.

Recurrent Connectivity Analysis

We examined the recurrent weight matrices W rec of the trained networks. Singular
value decomposition (SVD) was used to assess the rank and identify dominant con-
nectivity patterns (Supplementary Fig. S7b). The number of singular values needed
to explain 80% of the variance provided a measure of the low-rank structure of the
connectivity.

Reduced Connectivity Matrix

Neurons were categorized based on their selectivity for decision variables (offer value,
chosen value, choice) determined from the single-neuron selectivity analysis and their
excitatory or inhibitory type. We constructed a reduced connectivity matrix by averag-
ing the recurrent weights between these neuron groups across all networks. The matrix
entries represent the mean synaptic strength from neurons in one category to another,
highlighting key connectivity motifs underlying the network’s dynamics (Fig. 6c). The
analysis was performed separately for each task.
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Circuit Diagram Visualization

Using the reduced connectivity matrix, we created simplified circuit diagrams to visual-
ize the interactions between neuron populations. We focused on the choice and chosen
value populations to illustrate the excitatory and inhibitory connections that facil-
itate winner-take-all dynamics and value comparison (Fig. 6d). The diagrams help
conceptualize how the network’s architecture supports the decision process.

Multitask and Curriculum Analyses

Rule Cue Input Weight Analysis

We analyzed the input weight matrices W in associated with the rule cues for each task.
For each network, we extracted the input weight vectors corresponding to the rule cue
inputs and computed the Pearson correlation coefficients between all pairs of these
vectors across tasks. Averaging these correlations over all networks provided insights
into the similarity of rule cue representations and the extent of shared input structures
among tasks.

Subspace Analysis of Population Activity

We performed principal component analysis (PCA) on the population activity during
the rule cue period to examine the neural representations underlying each task. The
participation ratio was calculated to estimate the dimensionality of the neural activ-
ity for each task. We then computed the angles between the subspaces spanned by
the principal components of different tasks to assess the overlap in neural represen-
tations. Smaller angles indicate more overlapping subspaces, suggesting shared neural
dynamics.

Task Variance and Neuronal Clustering

We calculated the variance of each neuron’s firing rate during the stimulus presentation
phase across all trial types. The variance for each task was normalized by the maximum
variance observed for that neuron across tasks. Neurons were then clustered based on
their normalized task variances using k-means clustering, with the optimal number
of clusters determined by the silhouette score. This allowed us to identify groups of
neurons contributing to shared or task-specific computations.

Fractional Task Variance Analysis

For each pair of tasks, we computed the difference in normalized firing rate variances
divided by the sum for each neuron. We plotted histograms of these differences to
visualize the relationships between tasks. Histograms with peaks at zero and one of
the extremes indicate inclusive relationships, where one task’s neural representation is
a subset of another’s. Histograms with multiple peaks suggest disjoint relationships,
reflecting task-specific neuronal populations.

Visualization of Task Representations

We computed the mean firing rates of all neurons during the stimulus presentation
phase for each task and projected these high-dimensional vectors onto the first three
principal components. Aligning the principal components across networks, we visual-
ized the clustering of task representations, highlighting the compositional structure of
the network’s neural activity.
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Curriculum Learning Protocols

We implemented curriculum learning protocols in which networks were trained sequen-
tially on tasks, starting with simpler tasks and progressing to more complex ones.
To assess the benefits of prior learning and schema formation, we compared networks
trained from scratch to those using curriculum learning.

Generalization Analyses

Training with Constrained Offer Sets

We trained ten networks exclusively on the risky task using a constrained set of offers.
In the first training condition, the probability p was fixed at 0.5 (half of its maximum
value), while the quantity q varied uniformly across its full range for both goods C and
E. In the second condition, the quantity was fixed at half of its maximum value, and the
probability varied uniformly between 0 and 1. This design ensured that during training,
the networks encountered offers where only one variable (either q or p) changed, limiting
their experience to a subset of possible offer combinations.

The networks were trained using the same reinforcement learning protocols
described above. Training continued until the networks achieved high performance in
selecting the higher-valued offer within the constrained offer set.

Testing Generalization with Unconstrained Offers

After training, we assessed the networks’ ability to generalize by testing them on an
unconstrained set of offers where both quantity and probability varied independently
across their full ranges. This test set included offer combinations that the networks
had not encountered during training, requiring them to compute offer values involving
novel quantity-probability pairs.

We evaluated the networks’ performance by measuring the percentage of correct
choices—selecting the offer with the higher expected value—across a large number of
test trials. We also analyzed choice patterns to assess whether the networks exhibited
similar choice behavior in the test set compared to the training set.

Behavioral Analysis

We performed logistic regression analyses on the choice data from both the constrained
training set and the unconstrained test set for each network. The logistic model was
defined as:

Pchoose C =
1

1 + exp
(
−η
(
ln
(

ρCqCpγ
C

qEpγ
E

))) , (25)

where ρC is the relative value of good C relative to good E (with ρE = 1), γ is the
risk attitude parameter, η is the choice consistency parameter, and qX , pX are the
quantities and probabilities of goods C and E, respectively.

By fitting the model to the choice data, we extracted the inferred relative values,
risk attitudes, choice consistency, and accuracy for each network in both the training
and test conditions. Comparisons of these parameters allowed us to assess the consis-
tency of value computation and decision strategies between familiar and novel offer
combinations.

Code availability

All training and analysis codes will be available on GitHub upon publication.
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Data availability

Upon publication, we will provide data files in Python-readable formats for all trained
models for further analysis on GitHub.
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Supplementary Figures

Fig. S1 Learning curves for networks trained across all tasks. a, Percentage of decision trials
(i.e., trials completed without fixation breaks) on the test set as a function of training trials. The black
dashed line indicates the learning criterion of 99% decision trials. b, Percentage of correct choices
among decision trials on the test set as a function of training trials. The black dashed line indicates
the learning criterion of 90% correct decisions. c, Average reward on the test set as a function of
training trials. In all panels, percentages and average rewards are computed on test trials. Colored lines
represent different networks with random initializations; solid lines are smoothed versions. The learning
curves show an initial phase where the networks learn to maintain fixation and choose randomly
between goods, followed by a phase where they learn to select the highest-value offer. Training stops
once both criteria are met.
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Fig. S2 Example trials from a trained network on the five economic choice tasks. Each
panel shows the temporal dynamics of inputs and outputs for a single trial. The first column dis-
plays fixation and rule cue inputs over time. The second and third columns represent quantities and
probabilities of the offered goods, respectively. The fourth column shows the value function output
and temporally discounted potential rewards. The fifth and sixth columns illustrate policy outputs
and softmax probabilities for different actions. a, Standard task. b, Risky task. c, Bundles task. d,
Ternary task. e, Sequential task. In each trial, the network selects the highest-value offer. The value
function predicts the expected return shortly after accessing the offers. Policy outputs are dominated
by fixation during the fixation period, preventing premature selection of one of the offers, but the
forthcoming choice can be inferred during the offer presentation phase. The trials have varying tem-
poral durations, reflecting the variability in the task design.
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Fig. S3 Choice patterns of a network trained on all economic choice tasks. Each panel
displays the network’s choices in offer value space for a different task. Each point represents a trial,
with axes corresponding to the offer values of the goods and colors indicating the network’s choice.
a, Standard task : The network consistently chooses the offer with the higher computed value based
on quantity and intrinsic value. b, Risky task : As in Figure 2a, the network’s choices are linearly
separable in offer value space. c, Bundles task : The network computes the total value of each bundle
by summing the values of the constituent goods and selects the bundle with the higher total value.
d, Ternary task : Trials are plotted using a simplex (equilateral triangle) where each vertex represents
the scenario where one of the three goods (A, C, or E) has the highest offer value while the other
two have zero or lower values. The center of the triangle corresponds to trials where all three goods
have equal offer values. Positions within the simplex reflect the relative offer values of the goods in
each trial; points closer to a vertex indicate a higher offer value for that specific good. We present
two simplex plots for the ternary task: Left plot: Points are colored based on the offer values of the
goods using an RGB color scheme, where each color channel corresponds to one good (green for good
A, red for good C, blue for good E). The intensity of each color channel reflects the magnitude of the
offer value for that good in the trial. Thus, the color of each point visually represents the combination
of offer values, with the dominant color indicating the good with the highest offer value. Right plot:
The same trials are plotted, but points are colored according to the network’s choice (green if the
network chose good A, red for good C, blue for good E). This allows for a direct comparison between
the offer values and the network’s decisions. By comparing the two plots, it is evident that the network
reliably chooses the good with the highest offer value across trials. Points that are colored similarly
in both plots confirm that the network’s choice aligns with the good that has the highest computed
offer value in that trial. e, Sequential task : Separate plots for trials where good E is presented first or
second. The network maintains information about the first offer and compares it with the second to
choose the higher-value offer.
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Fig. S4 Effect of lesioning recurrent connections on the distribution of firing rates in
recurrent neurons across networks trained on all economic choice tasks. Bar plots show the
mean firing rates of excitatory (blue) and inhibitory (orange) neurons during the stimulus presentation
phase, comparing the intact networks (striped bars) to the lesioned networks without recurrent con-
nections (dotted bars) across different tasks. Error bars represent the standard deviation. The removal
of recurrent connections leads to an overall increase in firing rates due to the loss of inhibitory feed-
back and recurrent regulation of activity levels.
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Fig. S5 Population analysis of networks trained on all economic choice tasks after lesion-
ing all recurrent connections. a, Neural dimensionality in lesioned networks across different tasks,
measured by the participation ratio. The dimensionality increases in most tasks compared to the intact
networks, indicating that recurrent connectivity constrains neural activity into lower-dimensional
manifolds. In the sequential task, dimensionality decreases due to the inability to maintain work-
ing memory without recurrence. b, PCA of neural activity during the risky task in a representative
lesioned network. The first principal component (PC1) primarily encodes the value sum, while the
second component (PC2) encodes the value difference. Each point represents a trial, colored according
to the encoded variable. c, Summary of population analyses across all lesioned networks and tasks.
Heatmaps display the average R2 values from linear regression of the principal components onto offer
values and related variables. The analyses indicate that without recurrent dynamics, the networks
encode input-related variables but cannot represent chosen value or choice, underscoring the impor-
tance of recurrence for value comparison and decision making.

Fig. S6 Parameter search for the toy multiplication model. Heatmaps showing the coefficients
of determination (R2) from linear regressions of the first principal component of the hidden units
against the product (left panel) and sum (middle panel) of inputs for different scaling parameters
α (input weight scaling) and β (bias scaling). The right panel shows the difference between the R2

values for the product and sum regressions, highlighting the parameter regions where the model
better approximates multiplication over addition. Optimal parameters are those with higher R2 for
the product and a positive difference between the product and sum R2.
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Fig. S7 Additional analyses of choice mechanisms and connectivity across economic
choice tasks. a, Left: Distributions of reaction times (RTs) across all trained networks, separated by
task. The RT distributions are similar across tasks, indicating consistent decision execution timing.
Right: Linear regression of RTs against the absolute value difference between offers shows low coeffi-
cients of determination (R2), suggesting no significant relationship between RT and decision difficulty.
b, Left: Example of a full recurrent connectivity matrix from a trained network, illustrating its spar-
sity. Right: Singular value decomposition (SVD) analysis across all recurrent weight matrices, showing
the number of singular values needed to explain 80% of the variance. The low number of significant
singular values indicates a low-rank structure in the connectivity. c, Reduced connectivity matrices
for other tasks, constructed similarly to Fig. 6c. Consistent winner-take-all motifs are observed across
tasks, suggesting a common mechanism for value comparison implemented by the recurrent network.
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