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Opposing effects of selectivity and invariance in
peripheral vision
Corey M. Ziemba 1,2✉ & Eero P. Simoncelli2,3

Sensory processing necessitates discarding some information in service of preserving and

reformatting more behaviorally relevant information. Sensory neurons seem to achieve this

by responding selectively to particular combinations of features in their inputs, while aver-

aging over or ignoring irrelevant combinations. Here, we expose the perceptual implications

of this tradeoff between selectivity and invariance, using stimuli and tasks that explicitly

reveal their opposing effects on discrimination performance. We generate texture stimuli

with statistics derived from natural photographs, and ask observers to perform two different

tasks: Discrimination between images drawn from families with different statistics, and

discrimination between image samples with identical statistics. For both tasks, the perfor-

mance of an ideal observer improves with stimulus size. In contrast, humans become better

at family discrimination but worse at sample discrimination. We demonstrate through

simulations that these behaviors arise naturally in an observer model that relies on a common

set of physiologically plausible local statistical measurements for both tasks.
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Sensory signals are typically transduced and represented in
great detail. The human eye, for example, measures light
intensities using ~5 million cones (and 100 million rods),

each responding at millisecond timescales. The visual system
must evaluate and process this enormous flow of data, either
acting on it, storing it, or discarding it. Given the limitations of
resources for both computation and storage, growing evidence
supports the notion that much of the information is discarded,
preserving only the small portion that is relevant (or potentially
relevant) for current or future behavior.

Theories of coding efficiency provide a partial explanation of
this process by positing that these systems are optimized to
maximize the extracted and transmitted information about the
environment while conserving resources (e.g., metabolic costs,
wiring length, number of cells). Such principles have succeeded in
accounting for various observations in early sensory systems. For
example, the need for efficiency can predict aspects of visual
encoding in the retina, whose ~1 million axonal fibers form the
optic nerve through which all visual information is transmitted to
the brain1–6.

Once this information reaches cortex, the representation
appears to expand (in terms of number of cells). Nevertheless,
there is evidence for continued loss of information. This is par-
ticularly evident in the perceptual deficits in the peripheral por-
tions of the visual field. The most well known of these is
decreased acuity: With increasing eccentricity (distance from the
fovea), there is a gradual reduction in the ability to detect high
spatial frequencies7,8. But there are additional perceptual
deficits9,10, many of which are characterized as visual crowding11,
in which recognition of features, objects or letters becomes more
difficult in the visual periphery when surrounded by unin-
formative clutter. Like the falloff of acuity, the spacing at which
these effects occur grows with eccentricity12–14.

Recent work suggests that these deficits may be explained
through a process of statistical summary. Specifically, a number of
authors have posited that the visual system extracts a set of local
summary statistics from visual images, and discards the details
from which these summaries are computed11,15–18. Physiologi-
cally, such statistical summarization can be loosely associated
with the pooling behaviors seen in neurons at different stages of
the hierarchy (e.g., the integration over bipolar afferents seen in

retinal ganglion cells19; the combination over simple cells of
differing phase or spatial location seen in V1 complex cells20, the
combination over direction-selective complex cells with different
direction preferences seen in MT pattern cells21). Nevertheless, it
is not obvious why the visual system should discard this infor-
mation, and coding efficiency (at least, in its simplest form) does
not seem to provide an answer.

Here, we show that these peripheral losses are accompanied by
a gain: As details are lost through summarization, tasks that rely
on summary information can improve, allowing the observer to
see the forest for the trees. Inspired by analogous studies of the
effect of duration on auditory perception of synthetic sound
textures22, we expose this tradeoff by generating stimuli that are
matched according to a model of peripheral summary statistics,
but that differ in their details. The ability of human observers to
discriminate these stimuli worsens as the size of the presentation
window increases—a paradox given that the larger windows
provide more information for performing the task. In contrast,
discrimination of stimuli with different statistics improves with
increased window size. This result is distinct from known
crowding phenomena, in which task-irrelevant surrounding sti-
muli degrade discriminability. However, as with acuity and
crowding, we show that these effects scale with eccentricity.
Finally, we demonstrate through simulations of a physiologically
plausible observer model based on the same summary statistics,
that the apparent paradox of opposing effects arises naturally and
directly from the computation of statistics over spatially localized
regions.

Results
As a substrate for both our model of peripheral vision and for
generating experimental stimuli, we utilized a set of summary
statistics previously developed for the representation of visual
texture23. These are physiologically inspired, and are computed
from the rectified and pooled output of oriented bandpass filters,
emulating simple and complex cells in V1 (Fig. 1a). Spatially
averaged covariances are computed between the outputs of pairs
of filters that differ in preferred spatial frequency, position, or
orientation (Fig. 1a). These statistics capture image features that
are sufficient to account for the appearance of many visual
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Fig. 1 Generation of synthetic texture stimuli. a Original photographs (first column) are decomposed into V1-like responses (rectified oriented linear filter
outputs) differing in orientation and spatial frequency (second column). Response statistics are computed by spatially averaging the products of responses
at different orientations, spatial frequencies, and local positions (third column)23. b Images of Gaussian white noise (top) are iteratively adjusted until their
statistics match those of the original images. Initializing with different random seeds yields different samples with identical statistics but differing in detail
(columns), and different statistics yield samples from different texture families (rows). c Statistics converge with increasing measurement region width.
Median coefficient of variation (standard deviation across samples divided by mean across samples) of example groups of higher-order statistics, as a
function of the width of the region over which the statistics are measured. Products of simple cell responses (linear responses; left) and complex cell
responses (magnitude responses; right) were measured from regions cropped from images synthesized to be statistically matched across their full extent
(512 × 512 pixels). Shaded regions indicate interquartile range across different individual statistics computed from 15 texture families. Source data are
provided as a Source Data file.
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textures23–25. In addition, they have been used as a basis for
explaining visual crowding in the periphery17,18,26, and are par-
ticularly effective in selectively driving responses of V2 and V4
neurons27–32.

To generate stimuli for testing the effects of summary statistics on
peripheral representations, we used the analysis–synthesis procedure
developed by Portilla and Simoncelli23. First, statistics are measured
from a grayscale photograph of a natural texture. A synthetic texture
image is generated by iteratively adjusting the pixels of an initially
random image until it has the same statistics as the original pho-
tograph (Fig. 1a, b). We refer to a set of images generated with
identical statistics as a texture "family” (Fig. 1b, different rows).
Within a family, initializing the synthesis from different random
seeds (Fig. 1b, top) produces images differing in detail, and we refer
to all such images as "samples” from that family (Fig. 1b, different
columns). By construction, these samples are identical in their model
statistics (when measured over the full extent of the image), but
differ in the precise location and arrangement of their local features.

Previous work23–25,33 showed that samples from a given family
are similar in appearance to each other, and to the original
photograph from which their statistics are drawn, whereas dif-
ferent families are easily differentiated (as can be seen from visual
inspection of Fig. 1b). This suggests that the human visual system
computes these (or closely related) statistics, and uses them to
differentiate texture families34. A natural consequence of this
hypothesis is that the ability to distinguish different texture
families should degrade if the stimuli are spatially cropped, since
estimated values of the underlying statistics are less accurate
when averaged over a smaller region (Fig. 1c).

An even stronger hypothesis—that the visual system computes
these statistics, and then discards the details from which they are
computed—leads to an additional and more counterintuitive
prediction. The increased variability of texture statistics that arises
from spatial cropping implies that our ability to distinguish dif-
ferent samples from the same family should improve for smaller
images (and conversely, worsen for larger images). Thus, this
hypothesis predicts opposing effects of stimulus size on the dis-
crimination of texture families and texture samples. We designed
and performed a set of perceptual experiments to directly test
these predictions in the visual periphery.

Effects of stimulus size on discriminability. We asked observers
to discriminate peripherally presented texture patches of varying
size. On each trial, the subject fixated on a point on one edge of
the screen while three circular texture patches were briefly pre-
sented (for 100 ms) sequentially at the same location in the
periphery (Fig. 2d). We asked subjects to indicate with a button
press whether the first or last texture was different from the other
two. In the family discrimination task, subjects had to differ-
entiate samples from two families with different statistics
(Fig. 2a). In the sample discrimination task, subjects had to dif-
ferentiate two different samples from the same family (and thus,
by construction, with identical statistics—Fig. 2b). The size of the
texture patches was varied across trials, but all patches were
placed so as to maintain a distance of four degrees from the
fixation point to the nearest edge (Fig. 2c).

Family discrimination improves with stimulus size (Fig. 2f, red
line), as can be confirmed by visual inspection of the example
stimuli in Fig. 2a. This effect is consistent across stimuli and
observers (Supplementary Fig. 1a,b), and is expected, since the
larger stimuli provide more information for the task. Specifically,
the statistics on which the discrimination is based can be more
accurately estimated from larger stimuli (Fig. 1c).

In contrast, performance in the sample discrimination task was
good for small stimuli but became progressively worse as stimulus

size increased (Fig. 2f, black line). This is counterintuitive
(although not unprecedented35), given that the larger patches
contain more information for performing the task. At a
minimum, one might expect that subjects could maintain
performance by basing their judgments on only a small spatial
portion of the larger stimuli. Instead, it seems that subjects not
only fail to make use of the additional information provided in
the larger patches, but that its presence prevents them from
accessing the portion they use to discriminate the smaller patches.
This effect is thus related to crowding, in which irrelevant
contextual information interferes with processing of relevant
sensory information11–17, but reveals a more profound impair-
ment in which even relevant sensory information appears to
interfere with processing.

In this sequential version of the task (Fig. 2d), subjects had to
remember the earlier stimuli in order to perform the comparison.
Limitations of memory might necessitate the use of a summary
statistic representation, and this would offer an explanation
consistent with analogous observations of opposing effects in
auditory texture discrimination22,36. We wondered whether
allowing subjects to make visual comparisons across space rather
than time might diminish or eliminate their reliance on summary
statistics. To test this, we repeated the experiment with
simultaneous spatially displaced stimuli. The subject fixated the
center of the screen while three texture patches were presented
equidistant from fixation for 300 ms (Fig. 2e). They indicated
with a button press which of the three stimuli was the target
(again, the image from a unique family in the family discrimina-
tion task, or the unique image in the sample discrimination task).
The pattern of performance was quite similar to that for the
sequential task: family discrimination performance increased
(Fig. 2g, red line) and sample discrimination performance
decreased (Fig. 2g, black line) with stimulus size (Supplementary
Fig. 1c, d). In fact, performance on the sample discrimination task
was even closer to chance levels for large stimuli than it was for
the sequential task, potentially due to the spatial uncertainty in
making comparisons across portions of the visual field37. These
results indicate that the pattern of opposing effects is a general
feature of family and sample discrimination, and is not due to the
process of making comparisons across time, as is inherent to
auditory texture discrimination22,36.

A local summary statistic observer model predicts opposing
effects. How can we explain this pattern of performance? An ideal
observer with full access to stimulus details will improve in both
tasks as stimulus size (and thus stimulus information) increases.
In contrast, as described previously, an observer with access only
to the statistical summaries of each stimulus might be expected to
exhibit opposing effects in the tasks because of the gradual con-
vergence of the statistics (Fig. 1c). But visual spatial statistics are
presumably computed locally, using neurons with receptive fields
of limited spatial extent, which may be smaller than that of the
stimulus. We wondered whether, and under what conditions,
such a representation would lead to the observed perceptual
effects.

To this end, we developed an observer model that computes
summary statistics within localized pooling regions that grow in
size with eccentricity, analogous to the observed receptive field
sizes of neurons in early and mid-level stages of the visual
hierarchy18,38,39. The front end of the model is identical to the
analysis model used to generate full-field visual metamers in
Freeman and Simoncelli (2011)18 (Fig. 3a). As in the model we
used for stimulus generation, images are first filtered with a set of
V1-like, oriented bandpass filters. Statistics, including covariances
between responses differing in spatial position, orientation, and
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frequency tuning23, are computed as weighted averages over
localized (but smoothly overlapping) pooling regions. We
adapted this model output by including normalization and noise
to render an observer model for our task. Specifically, each local
statistic is divided by the summed activity across all other
statistics and pooling regions (Fig. 3a), mimicking physiological
gain control effects40,41. This induces a form of surround
suppression, reducing responses to larger stimuli, and has been
recently hypothesized to play a critical role in limiting peripheral
discrimination42. To quantify discrimination performance, we
added independent Gaussian noise to the set of normalized
summary statistics, and simulated observer decisions by selecting
the image pair with the larger Euclidean distance between these
noisy responses.

The architecture and most of the parameters of our model (e.g.,
oriented filters, choice of statistics) are fixed for all simulations.
We examine the effects of varying two free parameters: the rate, s,
at which the pooling region diameters grow with eccentricity, and
the signal-to-noise ratio (SNR) that results from the added noise.
Both of these parameters can be related to physiology. Receptive
field scaling rates have been previously estimated as approxi-
mately s= 0.21 for area V1, s= 0.46 for V2, and s= 0.84 for

V418,38,39. To compute SNR for each s and summary statistic, we
take the variance in response across all experimental stimuli and
divide by the variance of the added Gaussian noise. The
analogous computation applied to single units responding to
texture stimuli recorded from anesthetized macaques yields
average SNR values of 0.64 in V1 and 0.45 in V229. We therefore
assume an SNR of 0.5 to be roughly matched to physiology and
simulate model responses with noise levels chosen to yield this
average value and a factor of four above and below it.

We generated perceptual predictions by simulating model
responses for all experimental stimuli, and compared these to the
behavior of the subjects (Fig. 3). In general, we found that family
discriminability increased and sample discriminability decreased
as stimulus diameter grew, except in the highest SNR cases, for
which sample discriminability remained at ceiling (Fig. 3b). At an
eccentricity scaling corresponding to V1-sized receptive fields, no
value of SNR yielded a good qualitative match with percep-
tual data (Fig. 3b, top row). Specifically, relative performance
between the two tasks did not flip as stimulus size increased. This
is presumably because the V1-sized pooling regions of the model
are significantly smaller than the receptive fields limiting the
performance of human observers. Pooling over small portions of
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the image yields strongly variable responses across samples,
providing strong information for sample discrimination, but poor
information for family discrimination. However, increasing the
scaling value to that of V2 receptive fields, and assuming
physiological SNR levels yielded a pattern of opposing effects
resembling the perceptual performance (Fig. 3b, center panel,
middle row; compare to Fig. 2f)). Increasing the scaling
parameter to that of receptive fields in area V4 further improved
the similarity to perceptual performance (Fig. 3b, center panel,
bottom row).

We thus conclude that populations of neurons in areas V2 and
V4 are likely candidates for the locus of neural selectivity and
invariance giving rise to the opposing effects of stimulus size.
More generally, these results suggest that the particular summary

statistics used here (correlations across the responses of
differently tuned V1 neurons) are represented by populations of
V2 and V4 neurons—an idea that is consistent with their
computation from V1 afferents and supported by previous
psychophysical18 and physiological27–32,43 studies.

Opposing effects scale with eccentricity. How do these effects
change when stimuli are presented at different eccentricities?
Because the pooling regions in our observer model scale linearly
with distance from the fovea, discrimination performance should
be invariant to rescaling of stimuli. That is, a stimulus of a given
eccentricity and diameter should have identical discriminability
to one at a greater eccentricity if the stimulus diameter is
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increased by the same factor44,45. We verified this property by
computing model performance at eccentricities two and four
times those of our original simulations (Fig. 4a, lighter shaded
lines). As expected, the curves representing family and sample
discrimination performance maintain their shape and relation-
ship to one another, but are shifted rigidly along a logarithmically
scaled axis of stimulus diameter (Fig. 4a).

We tested this prediction experimentally by gathering data
from human subjects on both tasks at three different eccentricities
(4, 8, and 16 degrees). For the two larger eccentricities, we dilated
the stimuli by factors of 2 and 4, respectively. This manipulation
rescales the spatial frequency content for presentation at different
eccentricities, ensuring that stimulus visibility is equated and
differing performance across eccentricities is not due to
differences in acuity45. We found that the pattern of opposing
performance across the two tasks shifted, as predicted by our
observer model (Fig. 4b)46, albeit by a slightly lesser amount than
expected. This may be due to the difficulty of the sample
discrimination task at large eccentricities, particularly for naive
subjects (Supplementary Fig. 1e). Despite this, we see for both the
model and the human subjects that the stimulus patch size at
which sample and family discrimination performance is equal
grows approximately in proportion to eccentricity. This is
analogous to the behavior of visual crowding, for which the
minimum distance at which targets can be recognized among
distractors grows in proportion to eccentricity13,14.

Multiple factors underlie opposing effects. Conceptually, the
opposing effects of stimulus size on family and sample dis-
crimination can be understood as arising from the degree of
convergence of summary statistics. But their emergence from the
specific computations of our model, which uses populations of
localized overlapping receptive fields, is more nuanced, and worth
dissecting. As an indication of this, note that no combination of
pooling region size or physiologically plausible SNR yields
chance-level sample discrimination performance for the largest
stimuli (Fig. 3). This would seem contradictory to the con-
ceptualization of these stimuli as visual metamers (physically
different but perceptually indistinguishable)18. In particular, since
the stimuli are synthesized so as to match the same statistics that

are measured by the observer model, and those statistics are
exactly matched for the largest-diameter stimuli, why does sample
discriminability not fall to chance at the largest stimulus sizes?

As in the human visual system, the observer model measures
sensory information over localized regions. Information useful for
sample discrimination is available when statistics have not
converged within these localized regions, and thus differ for each
sample. In the simulations, this occurs under two different
conditions. First, if these regions are smaller than the image over
which statistics were matched during stimulus generation, their
responses will generally not be equal to those of the original
texture. This is evident both in Fig. 1c and in our model
simulations in Fig. 3b, where sample discrimination is always
higher than family discrimination when pooling regions are small
(e.g., when scaling is matched to V1 receptive field sizes). Second,
even if pooling regions are very large, the stimulus is windowed
by an aperture, and some pooling regions will necessarily overlap
the aperture boundary, which will affect their responses47,48.
Since these pooling regions summarize statistics only over the
portions of the stimulus they cover, the statistics will again not be
fully converged and their values will provide information useful
for sample discrimination. To elucidate this issue, we simulated
the discrimination performance of an observer model that utilizes
responses from a single pooling region. We then examined
performance as a function of the overlap between the pooling
region and stimulus. Family discrimination is poor when
ovlerap proportion is small, but improves with increasing overlap
(Fig. 5a, red line). In contrast, this same variability in statistics
leads to good sample discriminability when overlap is small,
worsening as the stimulus overlap increases (Fig. 5a, black line).

Given the two effects described above, why does the full model
exhibit opposing effects of stimulus size on sample and family
discrimination? In particular, since the pooling regions (analo-
gous to the receptive fields of the visual system) are of fixed size
and location, and noise is independent across pooling regions,
one might expect that as the stimulus increases in size and
encroaches on more of them, each would provide additional
information for both tasks. But two additional population-level
factors cause the sample discrimination performance to fall
relative to family discrimination performance: the decreasing
influence of the aperture boundary with stimulus size, and
response normalization.

The first factor is illustrated in cartoon form in Fig. 5. When
the stimulus is small, only a small set of pooling regions overlap
the stimulus and most only do so partially (Fig. 5b). Under these
conditions, the model predicts sample discrimination perfor-
mance should be much better than family discrimination
performance. As the size of the stimulus increases, a larger
proportion of receptive fields are fully covered by the stimulus
(Fig. 5c). More specifically, because the area of the stimulus
aperture grows faster than its circumference, the proportion of
receptive fields that fall within the center (as opposed to
straddling the border) increases (e.g., from 1/7 to 7/19 in the
schematics of Fig. 5b and c). The increased proportion of fully
overlapping receptive fields shifts the performance balance from
sample toward family discrimination. A similar logic holds for
receptive fields of the visual system, and provides an explanation
for the failure to obtain full visual appearance matching when
statistically matched stimuli are presented within small
apertures49. In contrast, metamers indistinguishable to human
observers can be achieved when samples are statistically matched
within each of the V2-sized pooling regions covering a large
stimulus, mitigating the effect of the stimulus aperture18,50,51.

A final crucial factor contributing to opposing effects is the
gain control (normalization) mechanism operating across pooling
regions. The resulting surround suppression reduces the signal
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strength, and thus the effective SNR, arising from each pooling
region. Simulations of the observer model with normalization
removed exhibit increasing performance for both family and
sample discrimination with stimulus size (Supplementary Fig. 2).
As the stimulus grows, it covers more pooling regions, each
adding to the information that can be used for discrimination.
For family discrimination, performance improvement is due both
to this increase in information, as well as the convergence of the
summary statistics within the larger proportion of pooling
regions substantially covered by the stimulus. For sample
discrimination, these two effects are opposed, although the
former is dominant, and net performance still grows with
stimulus size (albeit at a slower rate—see Supplementary Fig. 2b).
Normalization reduces response strength as the stimulus grows,
reducing performance in both tasks, to the extent that sample
discrimination performance now falls with stimulus size. This
result suggests that surround suppression induced by normal-
ization, which has not been included in previous models of
summary statistics18,26,51,52, may play an essential role in limiting
peripheral vision42.

Discussion
The nature, purpose, and capabilities of peripheral vision are
fundamental aspects of vision science, but still hold many mys-
teries. Limitations of peripheral vision have been extensively
documented26, and a number of authors have suggested that
these are complemented by benefits in coding efficiency53, or the
extraction of specific information that facilitates rapid assessment

of the whole visual field or scene54–56. The statistical summary
hypothesis offers a specific instantiation of these ideas, positing
that the visual system computes statistical summaries over spatial
regions that increase in diameter with distance from the fovea,
consistent with the approximately linear increase in receptive
field diameter with eccentricity9,11,15–18. In this article, we have
demonstrated a consequence of this hypothesis that directly
reveals the tradeoff between the benefits and limitations of sta-
tistical summarization. When discriminating different types of
texture, human observer performance increases with the size of
the stimulus, but when discriminating different samples of the
same type of texture, performance decreases. We have shown that
a computational observer model that mimics basic physiological
properties of neural populations in ventral stream areas V2 or V4
can predict both effects.

Our observer model is a generalization of one used previously
to describe wide field-of-view images that are metamers, in that
they are perceptually indistinguishable by human observers when
matched for local texture statistics18. In particular, the current
work augments that model to include gain control and noise,
allowing it to characterize more nuanced discrimination perfor-
mance (as opposed to only specifying perceptual equality of sti-
muli), and providing a consistent extension of the global model to
locally windowed stimuli. Model simulations indicate that loca-
lized patches of texture samples from the same family are gen-
erally not metameric (i.e., discrimination based on model
responses is above chance) regardless of window size (Fig. 3),
primarily because pooling regions (physiologically, receptive
fields) overlapping the boundary of the stimulus aperture provide
information supporting sample discrimination. This is consistent
with the perceptual data from our experiments (Figs. 2 and 4) as
well as data from previous experiments49. Thus, contrary to49, we
conclude that the discriminability of local texture stimuli is
consistent with the summary statistics hypothesis.

Our results are consistent with many of the well-documented
limitations of peripheral vision, and offer an experimental
method for their characterization. In particular, there is an
extensive literature on visual crowding, in which target objects
become difficult to recognize when surrounded by other dis-
tracting objects11. Recent studies have used a variety of methods
and stimuli to demonstrate that many aspects of crowding can be
explained by the compulsory pooling of features15, or statistical
summaries17, computed within spatial regions that grow with
eccentricity18,26. Our results generalize and strengthen the sup-
port for this hypothesis, using experimental stimuli and tasks that
are distinct from those conventionally used for crowding. In
particular, our stimuli are not defined in terms of explicit objects
or features arranged in specific configurations, but are synthesized
using a stochastic process that matches the responses of a neural
population model. As a result, the stimuli are homogeneous, with
their entire content providing information relevant for both tasks.
In addition, our experimental tasks test discriminability (as
opposed to recognition), allowing assessment of sensitivity to
continuous sensory attributes rather than discrete classes or types.
Finally, the use of two forms of discriminability exposes the
benefits, as well as the limitations, of statistical summary.

A fixed pooling mechanism, as implemented in our model
simulations, is arguably the most parsimonious explanation of the
experimental results presented here. Previous work demonstrates
that fixed pooling can also account for crowding and
metamerism17, even in the presence of attentional cueing18, or
other configural cues52. Nevertheless, recent work has suggested
that fixed pooling may be insufficient to explain other crowding-
related effects in peripheral vision51,57–60. Some authors have
suggested that top-down feedback related to global scene con-
figuration may be required to account for crowding and
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Fig. 5 Model discrimination performance, computed for a single pooling
region, varies depending on the portion covered by the stimulus.
a Average family (red) and sample (black) discrimination performance of
single pooling regions as a function of the proportion covered by the
stimulus. Simulations include pooling regions that are larger than the
stimulus aperture, as well as those that are offset so as to extend beyond
the stimulus border. Shaded region indicates mean ± SEM across
performance over all geometries. b Schematic depiction of pooling region
coverage for a small stimulus. c Schematic depiction of pooling region
coverage for a large stimulus (note: example pooling regions in b and c are
depicted in stylized form, as nonoverlapping circular discs—actual model
pooling regions are smoothly overlapping and polar-separable with
eccentricity-dependent sizes.) Source data are provided as a Source
Data file.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24880-5 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:4597 | https://doi.org/10.1038/s41467-021-24880-5 |www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


metamerism51,57–59, while others have suggested that nonlinear
neural response properties might suffice to account for some
results inconsistent with a fixed pooling model42,60. For example,
surround suppression (the reduction of response that occurs
when stimuli extend beyond the classical receptive field) has been
extensively documented in V161–63 and extrastriate areas such as
V231,64, and has been explicitly linked to performance degrada-
tion in population decoding of stimulus information42. Moreover,
previous results demonstrate that changes in the relative gain of
center and surround normalization mechanisms can mimic
receptive field size changes65, and that normalization strength can
be gated by surrounding image statistics66. In our observer model,
we found that the inclusion of surround suppression was critical
in matching human performance.

Our experiments, and model, are built on the backbone of a
particular statistical characterization for visual texture23. That
model has proven useful: it is reasonably compact (~700 statis-
tics), it is capable of capturing the appearance of a wide variety of
different naturally occurring textures23,24,49, and it preserves
image attributes that drive V2 and V4 neurons robustly and
selectively27–32. Nevertheless, it was developed by hand, using a
qualitative and somewhat ad hoc procedure for selecting the set of
features, which are surely are not perfectly aligned with the
information captured in any particular neuronal population. This
misalignment presumably underlies some of the quantitative
differences between the opposing effects exhibited by our model
and those of human subjects. Recent literature offers some hints
as to what might be missing, or included unnecessarily. Percep-
tual studies of global stimuli suggest that the model is missing
important features of natural images, especially those associated
with extended contours or boundaries50,51. Consistent with this,
physiological studies have found selectivity in V2 neurons to
extended contours and multi-point correlations associated with
corners and junctions67,68. Another study examined representa-
tion of periodic texture families using fMRI and EEG and found a
set of statistics related to rotation invariance in human cortical
area V369. Although these studies provide intriguing suggestions
for model enhancements, it is difficult to gather sufficient
experimental measurements (either perceptual25 or
physiological70) to uniquely constrain a full model, given the high
dimensionality of the space of visual images. An alternative is to
use optimization methods, now common in machine learning, to
train a model on large ensembles of photographic images71–74.
Deep neural networks may prove useful in this regard, as they
appear to learn complex features that bear some resemblance to
late-stage visual representations75,76 (some of which are texture-
like77) and thus offer a potential source of summary statistics of
relevance to human perception78,79.

The perception of complex sensory patterns emerges from
neuronal activity in a cascade of functional areas. The stimulus
response properties of each successive area are constructed from
those of the previous area, and these transformations appear to
follow a canonical form80–83, fusing specific combinations of
afferents to generate new feature selectivity, and pooling over
collections of these newly formed features to enable new
invariances29,43. Although these systems also contain substantial
feedback connections, the representation of immediate sensory
information in any given area must come from earlier stages. If
perception of a proximal stimulus is based only on information
that survives this sequence of transformations, we expect that the
loss of information that occurs in each area should engender
opposing effects in the perceptual discriminability of the corre-
sponding features. The current paper demonstrates this for visual
features associated with areas V227 and V428 constructed by
spatial averaging of particular combinations of V1 afferents23. It
should be possible to generate such effects for features

represented in other visual areas, such as V1 or the retina, or later
stages of the ventral or dorsal streams. Moreover, we would
expect to see analogous effects in other sensory modalities.
Indeed, previous studies have demonstrated opposing effects in
the perception of sound textures of varying duration22, and
shown that these can be explained with an observer model based
on temporal averaging of frequency-tuned peripheral afferents36.
It seems likely that portions of the visual system would also
exhibit temporal pooling, and perhaps pooling over other feature
attributes (e.g., orientation). The opposing behaviors of family
and sample discriminability provide a compelling signature of the
corresponding tradeoff in selectivity and invariance of the
underlying neural representation29,43.

Methods
Stimulus generation. We generated synthetic texture stimuli using the
analysis–synthesis procedure described by Portilla and Simoncelli (2000)23 (software
and examples are available at www.cns.nyu.edu/~lcv/texture/). We measured the sta-
tistics of 320 × 320 pixel grayscale texture photographs, each of which served as the
prototype for a texture "family.” Each image was decomposed using a steerable
pyramid84, consisting of a bank of filters with four orientations and four spatial scales
that tile the Fourier domain and constitute an invertible linear transform (technically, a
tight frame). For each filter, we computed the linear responses as well as the local
magnitude responses (square root of sum of squared responses of the filter and its
Hilbert transform), in rough correspondence with responses of V1 simple and complex
cells, respectively. We then computed pairwise products of responses at different
positions (for each orientation and scale, within a 7 × 7 spatial neighborhood) for both
sets of responses, and (for the magnitude responses only) across different orientations
and scales. We also included products of linear filter responses with phase-doubled
responses at the next coarsest scale. All of these pairwise products were averaged across
the spatial extent of the image, yielding covariances. The covariances of the linear
responses are second-order statistics, in that they represent averages of quadratic
functions of pixel values. The covariances of magnitudes (and phase-doubled
responses) are of higher order, due to the additional nonlinearities in the magnitude
and phase-doubling computations. We additionally computed the average magnitude
within each frequency band and the third- and fourth-order marginal pixel statistics
(equivalently, the skew and kurtosis).

We generated 512 × 512 pixel synthetic textures for each family by initializing
with an image of Gaussian white noise and adjusting it until it matched the model
summary statistics computed on the corresponding original image23. Note that the
global statistics of the original image are matched over the full synthetic image, in
contrast with the synthesis of metamers in Freeman and Simoncelli (2011)18 (in
which statistics are matched over overlapping local windows covering the image),
or the local stimulus patches in49 (in which statistics are matched anew for each
stimulus window size). For each texture family, we generated 15 different samples
by initializing with different noise seeds. We chose four texture families from the
set of 15 used in Freeman, Ziemba et al. (2013)27, selecting those that were most
difficult to discriminate so as to avoid ceiling effects in the current experiments. We
used all four texture families for the simultaneously presented task, but restricted
this to three families for the sequentially presented task, which has substantially
longer trials (Supplementary Fig. 1a, c). To vary the stimulus size, we cropped
square regions with widths 64, 128, 192, 320, 512 from the center of each
synthesized texture (corresponding to 0.8, 1.6, 2.4, 4, 6.4 degrees of visual angle for
our standard configuration). For presentation, we vignetted each square image with
a circular aperture consisting of a raised cosine edge and a flat top which covered 7/
8 of the width of the image.

To quantify the convergence of statistics with stimulus aperture size (Fig. 1c),
we measured the statistics from subimages cropped from the full synthetic textures
(that were generated so as to match all statistics over their full 512 × 512 pixel
extent). We measured statistics from 15 samples across 15 different texture families
(those used in Freeman, Ziemba et al. (2013)27). We cropped square regions from
the center of these images with widths ranging from 64 pixels to 448 pixels in steps
of 64 pixels. We computed the standard deviation of each individual statistic across
15 samples for each crop size and texture, and divided this value by the mean
across samples to obtain the coefficient of variation. The median and interquartile
range for each class of statistics are plotted in Fig. 1c.

Psychophysics
Observers and stimulus presentation. Eleven human observers performed sample and
family discrimination tasks. All observers had normal or corrected-to-normal vision.
Four observers naive to the purpose of the studies performed experiment 1 (Fig. 2f;
Supplementary Fig. 1b), Three naive observers and the first author performed
experiment 2 (Fig. 2g; Supplementary Fig. 1d), and three naive observers and the first
author performed experiment 3 (Fig. 4b; Supplementary Fig. 1e). Experimental pro-
cedures for human subjects were approved by the Institutional Review Board at New
York University. All subjects provided written informed consent. Subjects sat in a
darkened room 46 cm from a 41 × 30 cm flat CRT monitor. Their heads were
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stabilized via a chin and forehead support. We presented stimuli using MATLAB
(MathWorks) and MGL (available at http://justingardner.net/mgl/) on an Apple
Macintosh computer. For all experiments, we presented images at a resolution of 80
pixels/degree when presented at 4 degrees eccentricity (as in Freeman, Ziemba et al.
(2013)27). Stimuli presented at 8 and 16 degrees eccentricity were shown at 40 and 20
image pixels/degree, upsampling the original images by a factor of 2 and 4 in each
direction. A 0.25 degree fixation square was shown throughout each trial, and subjects
were instructed to fixate whenever it was on the screen.

Tasks. Subjects performed sample and family discrimination in two separate ses-
sions on different days, with the order randomized across subjects. Each subject
performed several dozen training trials with feedback on each task before starting
the main experiment. Within each session, stimulus conditions were grouped into
blocks of trials to facilitate performance. In addition, subjects completed a small
number of practice trials with feedback at the beginning of each block to familiarize
themselves with the block condition (4 practice trials in experiments 1 and 3, 6
practice trials in experiment 2). We excluded these practice trials from analysis, and
no feedback was provided on analyzed trials. Grouped conditions were defined by
size and eccentricity, as well as a particular texture family in the sample dis-
crimination session and a particular texture family pair in the family discrimina-
tion session. In experiment 1, a condition block of 32 trials was shown once
(Fig. 2f). In experiment 2, condition blocks were 18 trials and each block was
shown to a subject two times for a total of 36 trials per condition (Fig. 2g). In
experiment 3, a condition block of 40 trials was shown once (Fig. 4b). Trials within
a block differed based on counterbalanced trial order, and the particular samples
shown (randomly drawn from a set of 15 for each family). In all experiments,
stimuli of different sizes were presented such that their inner edges (closest to the
fixation point) were aligned. Such an organization ensures that larger images do
not contain stimulus content closer to the center of gaze.

In the sample discrimination task, each trial made use of two synthetic texture
samples drawn from the same family (one of them presented twice). In the family
discrimination task, each trial made use of three synthetic texture samples, one
drawn from one family and two drawn from another. In both discrimination tasks,
subjects were instructed to identify the sample that was different (either in its
detail, for the sample task, or in its category, for the family task). The sequential
task used an AXB design. Subjects viewed three images presented for 100 ms in the
same location separated by 900 ms. Subjects had unlimited time after each trial to
respond with a button press, indicating whether the first or last image presented
was different from the other two. The spatial task used an oddity design. On each
trial, all three stimuli were presented simultaneously for 300 ms, at locations
equidistant from fixation (one above, one to the lower left and one to the lower
right). Subjects had unlimited time after each trial to indicate the location of the
image that was different with a button press.

Observer model predictions. We constructed an observer model based on the
analysis portion of the Freeman and Simoncelli model for full-field visual metamers18

(software available at https://github.com/freeman-lab/metamers). The model computes
summary statistics of an image within pooling regions whose size and number are fully
determined by a positive real-valued scaling parameter (s). Specifically, all statistics are
computed as spatially weighted averages within a set of P localized but partially
overlapping windowing functions, which are designed to tile the image (i.e., their sum
is 1). These functions are smooth, and separable with respect to polar angle and log
eccentricity so that both their radial and angular extent grow in proportion to
eccentricity. The aspect ratio of radial to circumferential width was ~2. For our ana-
lysis, we used an image region measuring 640 × 640 pixels, simulated to cover 8 × 8
degrees of visual angle. The fixation point of the model was placed outside the image
region, at pixel coordinates (320.5, −256), so as not to simulate responses from many
pooling regions that never covered the stimulus. We used all of the default parameters
in specifying the model. Details of pooling region construction can be found in
Freeman and Simoncelli (2011)18.

Within each pooling region, the model extracts N= 668 spatially averaged
summary statistics. These statistics include most of those used for stimulus
generation: covariances across position for linear and magnitude responses (100
and 400 values, respectively), covariances across scale and orientation for
magnitude responses (48 and 24 values), and covariances across scale for linear and
phase-doubled linear responses (96 values), resulting in a total of 668 statistics per
pooling region. These particular statistics have been shown to be most important
for predicting perceptual27 and neuronal28,30 sensitivity to naturalistic image
structure. We omitted marginal pixel statistics and the magnitude means of the
original texture model23.

Different groups of statistics span very different numerical ranges. To equalize
the responses, we rescaled each statistic by its standard deviation over a large set of
natural images. Specifically we measured model responses across 3967 grayscale
images from the Van Hateren database85 using pooling scale factor s= 0.5. We
computed the standard deviation of each statistic measured across the 777,532
different pooling regions in these data, then divided the value of each statistic in
response to our experimental images by this standard deviation. We found that
responses of this normalized model to our experimental stimuli also had an average
standard deviation roughly equal to one. Observer model results are qualitatively
similar when z-scoring across experimental stimuli.

After measuring these rescaled statistics from each experimental image, the
statistics are then adaptively normalized by their Euclidean norm,h
∑P

i¼1 ∑
N
j¼1 r

2
ij

i1=2
, where the sum is over all N statistics in all P pooling regions,

and then corrupted with additive Gaussian noise with standard deviation σ. The
normalized statistic responses make up the response vector R for a particular
image, which has the dimensions P ×N (number of pooling regions by number of
statistics). For a given trial, a vector of responses (overall statistics and pooling
regions) are computed for each stimulus, RA, RX, and RB (corresponding to the
AXB task design). For the family discrimination task, images A and B are samples
from two different families, and image X is a different sample from one of these
families. Thus, RX will differ from one of RA or RB due to sample variability, as well
as the additive response noise. For the sample discrimination task, images A and B
are two different samples from the same family, and image X is exactly the same as
one of these. In this case, RX will be identical to RA or RB, except for the variations
caused by the additive response noise.

To render the model’s decision on each trial, we compute the Euclidean
distance between responses to image X and those of each of the other two images:

DA ¼ RA � RX

�� ��
2

DB ¼ RB � RX

�� ��
2

ð1Þ

The model’s decision corresponds to the maximum of these two values. Note that
this simple distance comparison is not the statistically optimal strategy for an AXB-
type decision task86. However, the optimal decision rule differs only slightly in
performance. As such, we opted to use this simple read-out strategy of sensory
differences for both tasks.

To estimate the proportion of correct model responses, we simulated 10,000
trials for each different size condition. Each trial was randomly drawn from four
experimental conditions (Supplemenbtary Fig. 1c), and each image within a trial
was randomly drawn from 15 samples of 4 families, mirroring the perceptual
experiments. Model performance was qualitatively similar across the different
sample and family discrimination tasks, as for human observers. Model
performance is computed for three different scaling values, approximating
receptive field scaling in visual areas V1 (s= 0.21), V2 (s= 0.46), and V4 (s=
0.84)18. To find a physiological plausible value for the noise level, σ, we first derived
the signal-to-noise ratios from a previously collected dataset of single unit
recordings from V1 and V2 of anesthetized macaque monkeys27,29. For each
recorded neuron, we computed the variance in average firing rate elicited by
225 synthetic texture images (15 samples from 15 families) as a measure of signal
strength. We computed the noise strength by measuring variance in response
across 20 repeats of each image and averaged across all 225 images. We computed
the SNR (ratio of the two values) for 102 V1 neurons (mean SNR= 0.64 ± 0.81)
and 103 V2 neurons (mean SNR= 0.45 ± 0.39). We determined an analogous
quantity for the model by computing the variance of each statistic across all
experimental stimuli and pooling regions that covered the stimulus, and dividing
by σ2. Signal variance was somewhat different for each scaling, so we chose a σ for
each s that yielded an average SNR of 0.5, approximately matching the
physiological value (when s= 0.21, σ= 0.007 yields mean SNR= 0.5 ± 0.35; when
s= 0.46, σ= 0.011 yields mean SNR= 0.5 ± 0.37; when s= 0.84, σ= 0.013 yields
mean SNR= 0.5 ± 0.34). All model parameters were chosen and held fixed for all
experimental conditions except for the scaling factor (s), and the noise level (σ).

We performed model simulations with the normalization removed to illustrate
its importance in matching human performance (Supplementary Fig. 2). All other
procedures were the same as in the full model, except for the need to adjust σ to
achieve the same SNR values as in Fig. 3b. (when s= 0.21, σ= 3.1 yields mean
SNR= 0.5 ± 0.34; when s= 0.46, σ= 2.4 yields mean SNR= 0.5 ± 0.35; when s=
0.84, σ= 2.0 yields mean SNR= 0.5 ± 0.29).

Model performance for single pooling regions was computed in the same way as
for the full model. For this analysis, we used pooling regions drawn from a model
with s= 0.6, so as to be intermediate between V2 and V4 scaling values. We also
simulated the same stimuli presented at 3 different eccentricities (4, 8, and 16
degrees) to increase the variation in pooling region size and stimulus overlap. We
determined the proportion overlap by taking the inner product between the
pooling window and stimulus aperture and dividing by the integral of the pooling
region. We then averaged performance across pooling regions and stimuli at all
sizes within 10 logarithmically spaced bins of overlap proportion.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available in a public repository (OSF:
https://doi.org/10.17605/OSF.IO/GFEPH)87. Source data are provided with this paper.

Code availability
All code used for data analyses and computational simulations are available in a public
repository (OSF: https://doi.org/10.17605/OSF.IO/GFEPH)87.
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