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The perception of sensory attributes is often quantified through measurements of
sensitivity (the ability to detect small stimulus changes), as well as through direct
judgments of appearance or intensity. Despite their ubiquity, the relationship between
these two measurements remains controversial and unresolved. Here, we propose a
framework in which they arise from different aspects of a common representation.
Specifically, we assume that judgments of stimulus intensity (e.g., as measured through
rating scales) reflect the mean value of an internal representation, and sensitivity reflects
a combination of mean value and noise properties, as quantified by the statistical
measure of Fisher information. Unique identification of these internal representation
properties can be achieved by combining measurements of sensitivity and judgments of
intensity. As a central example, we show that Weber’s law of perceptual sensitivity can
coexist with Stevens’ power-law scaling of intensity ratings (for all exponents), when
the noise amplitude increases in proportion to the representational mean. We then
extend this result beyond the Weber’s law range by incorporating a more general and
physiology-inspired form of noise and show that the combination of noise properties
and sensitivity measurements accurately predicts intensity ratings across a variety of
sensory modalities and attributes. Our framework unifies two primary perceptual
measurements—thresholds for sensitivity and rating scales for intensity—and provides
a neural interpretation for the underlying representation.

Fisher information | Weber’s law | Stevens’ power law | Fechner’s law | stochastic representation

On a blistering summer’s day, we sense the heat. And just as readily, we sense the
cooling relief from the onset of a soft breeze. Our ability to gauge the absolute strength
of sensations, as well as our sensitivity to changes in their strength, are ubiquitous and
automatic. These two judgments have also shaped the foundations of our knowledge of
sensory perception.

Perceptual capabilities arise from our internal representations of sensory inputs.
Measurements of sensitivity to changes in these inputs have sculpted our understanding of
sensory representations across different domains. For example, in the late 1800s, Fechner
proposed that sensitivity to a small change in a stimulus is proportional to the resulting
change in the internal representation of that stimulus (1). By the 1950s, signal detection
theory was formulated to describe this in terms of stochastic internal representations
(e.g., refs. 2 and 3), generalizing beyond Fechner’s implicit assumption that stimuli are
represented deterministically. In addition to sensitivity to stimulus changes, humans
and animals can also make absolute judgments of stimulus intensities (4–8). But the
experimental methods by which this can be quantified are more controversial (9, 10),
and the measurements have proven difficult to relate to sensitivity measurements (11–14).

Consider the well-known example of Weber’s law, which states that perceptual
thresholds for reliable stimulus discrimination scale proportionally with stimulus intensity
(equivalently, sensitivity scales inversely with intensity). Weber’s law holds for an
impressive variety of stimulus attributes. Fechner’s broadly accepted explanation is that
sensitivity reflects the change in an internal representation that arises from a small
change in the stimulus (specifically, it reflects the derivative of the function that maps
stimulus intensity to representation). For Weber’s law, this implies a logarithmic internal
representation. The search for physiological evidence supporting Fechner’s proposal has
been ongoing for more than a century, but remains inconclusive (e.g., refs. 4 and 15). In
the 1950s, Stevens and others found that human ratings of perceived intensity of a variety
of sensory attributes (proposed as an alternative measure of internal representation) follow
a power law, with exponents ranging from strongly compressive to strongly expansive
(16, 17). Stevens presented this as a direct refutation of Fechner’s logarithmic hypothesis
(11), but offered no means of reconciling the two. Subsequent explanations have generally
proposed either that intensity and sensitivity judgments arise from different perceptual

Significance

Measurements of sensitivity to
stimulus changes and stimulus
appearance (intensity) are
ubiquitous in the study of
perception. However, the
relationship between these
two seemingly disparate
measurements remains unclear.
Proposals for unification have
been made for over 60 y, but they
generally lack support from
perceptual or physiological
measurements. Here, we provide
a framework that offers a unified
interpretation of perceptual
sensitivity and intensity
measurements, and we
demonstrate its consistency with
experimental measurements
across multiple perceptual
domains.

Author affiliations: aCenter for Computational
Neuroscience, Flatiron Institute, Simons Foundation,
New York, NY 10010; bCenter for Neural Science, New
York University, New York, NY 10003; and cCourant
Institute of Mathematical Sciences, New York University,
New York, NY 10003

Author contributions: J.Z., L.R.D., and E.P.S. designed
research; J.Z. and E.P.S. performed research; J.Z. and
E.P.S. contributed new reagents/analytic tools; J.Z.
analyzed data; and J.Z., L.R.D., and E.P.S. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

Copyright © 2024 the Author(s). Published by PNAS.
This open access article is distributed under Creative
Commons Attribution-NonCommercial-NoDerivatives
License 4.0 (CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
jyzhou@flatironinstitute.org or eero.simoncelli@nyu.
edu.

This article contains supporting information online
at https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.
2312293121/-/DCSupplemental.

Published June 10, 2024.

PNAS 2024 Vol. 121 No. 25 e2312293121 https://doi.org/10.1073/pnas.2312293121 1 of 10

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 E
er

o 
Si

m
on

ce
lli

 o
n 

Ju
ne

 1
0,

 2
02

4 
fr

om
 I

P 
ad

dr
es

s 
74

.1
08

.5
0.

24
7.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2312293121&domain=pdf&date_stamp=2024-06-10
https://orcid.org/0000-0003-1933-8143
https://orcid.org/0000-0003-0575-1033
https://orcid.org/0000-0002-1206-527X
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jyzhou@flatironinstitute.org
mailto:eero.simoncelli@nyu.edu
mailto:eero.simoncelli@nyu.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2312293121/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2312293121/-/DCSupplemental


representations (18–21) or that the two perceptual tasks involve
different nonlinear cognitive transformations (22, 23).

Here, we generalize Fechner’s solution, developing a frame-
work to interpret and unify perceptual sensitivity and intensity
judgments of continuous sensory attributes. Specifically, we
use a simplified form of Fisher information (FI) to generalize
classical signal detection theory, and use this to quantify the
relationship between perceptual sensitivity and the noisy internal
representation. We show that a family of internal representations
with markedly different noise properties are all consistent with
Weber’s law, but only one form is also consistent with power law
intensity percepts. Finally, by incorporating a noise model that is
compatible with physiology, we demonstrate that the framework
can unify sensitivity and intensity measurements beyond the
regime over which Weber’s law and Stevens’ power law hold,
and for a diverse set of sensory attributes.

Results

What is the relationship between perceptual sensitivity, and the
internal representations from which it arises? Intuitively, a change
in stimulus value (e.g., contrast of an image) leads to a change in
internal response. When the change in internal response is larger
than the noise variability in that response, we are able to detect
the stimulus change. This conceptualization, based on Fechner’s
original proposals (1) and formalized in the development of
signal detection theory in the middle of the 20th century, has
provided a successful quantitative framework to analyze and
interpret perceptual data (2, 3, 24). Despite this success, signal
detection theory formulations are usually not explicit about the
transformation of stimuli to internal representations, and most
examples in the literature assume that internal responses are
corrupted by noise that is additive, independent, and Gaussian.

A more explicit relationship between sensitivity and internal
representation may be expressed using a statistical tool known
as FI. Specifically, the noisy internal responses (r) to a stimulus
(s) are described by a conditional probability p(r|s), and FI is
defined in terms of a second-order expansion of this probabil-
ity: F (s) = E

[
(∂ log p(r|s)/∂ s)2

]
. This quantity specifies the

precision with which the stimulus can be recovered from the
noisy responses, and

√
F (s) provides a measure of sensitivity to

stimulus changes (Materials and Methods). FI is quite general:
It can be used with any continuous stimulus attribute, and any
type of response distribution (including multimodal, discrete,
and multidimensional responses), although only a subset of cases
yield an analytic closed-form expression. In engineering, it is
used to compute the minimum achievable error in recovering
signals from noisy measurements (known as the “Cramér–Rao
bound”). In perceptual neuroscience, it has been used to describe
the precision of sensory attributes represented by noisy neural
responses (25–28), as a bound on discrimination thresholds
(29–31) and to synthesize optimally discriminable stimuli (32).

Interpreting Weber’s Law using FI. Typically, FI is used to
characterize decoding errors based on the specification of an
encoder. Here, we are interested in the reverse: we want to
constrain properties of an internal representation (an encoder)
based on external measurements of perceptual sensitivity (decoder
errors). Consider Weber’s law, in which perceptual sensitivity
of a stimulus attribute is inversely proportional to the value
of the attribute. If we assume observers achieve the bound
expressed by the FI, this implies that

√
F (s) ∝ 1/s. What

internal representation, p(r|s), underlies this observation? The

answer is not unique. Although the complete family of solutions
is not readily expressed, we can deduce and verify a set of three
illustrative examples (Fig. 1).

First, Weber’s law can arise from a nonlinear internal represen-
tational mean �(s) (often referred to as a “transducer function”).
If we assume that �(s) is contaminated by additive Gaussian
noise with variance �2 (3, 33, 34): p(r|s) ∼ N [�(s), �], then√
F (s) = |�′(s)|/� (Materials and Methods). Thus, sensitivity

to small stimulus perturbations is proportional to the derivative
of the representational mean. Notice that this is a differential
version of the standard measure of “d-prime” in signal detection
theory, which is used to quantify discriminability of two discrete
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Fig. 1. Three different internal representations, each consistent with
Weber’s law. Each panel on the Left shows a stimulus-conditional response
distribution, p(r|s) (grayscale image, brightness proportional to conditional
probability), the mean response �(s) (red line), and response distributions for
two example stimuli (blue, plotted vertically) . (A) Mean response proportional
to log(s), contaminated with additive Gaussian noise, with constant SD,
�(s) = �. (B) Mean response proportional to s, with “multiplicative” Gaussian
noise (SD �(s) is also proportional to s). (C) Mean response proportional
to [log(s) + c]2 with Poisson (integer) response distribution, for which
�(s) =

√
�(s). The panel on the Right indicates the perceptual discrimination

threshold (Top) and the sensitivity (Bottom) that arise from the calculation of
FI, which are identical for all three representations.
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stimuli (SI Appendix). Under these conditions, sensitivity follows
Weber’s law if the transducer is �(s) ∝ log(s) + c, with c an
arbitrary constant (Fig. 1A illustrates a case when c = 0, also
see Materials and Methods). This logarithmic model of internal
representation, due to Fechner (1, 5), is the most well-known
explanation of Weber’s law.

Alternatively, a number of authors proposed that Weber’s law
arises from representations in which noise amplitude grows in
proportion to stimulus strength (sometimes called “multiplicative
noise”) (3, 35–40). Suppose representational mean �(s) is
proportional to stimulus strength (s), and is contaminated by
Gaussian noise with standard deviation (SD) also proportional to
s: p(r|s) ∼ N [s, s2]. The square root of FI for this representation
again yields

√
F (s) ∝ 1/s, consistent with Weber’s law (Materials

and Methods). Note that unlike the previous case (in which
Weber’s law arose from the nonlinear transducer), sensitivity
in this case arises entirely from the stimulus dependence of the
noise variance (Fig. 1B).

Now consider a third case, inspired by neurobiology. Assume
the stimulus is internally represented through neural spike counts
that are Poisson-distributed with rate �(s) (e.g., refs. 41–43).
Despite the discrete nature of the spike count responses, FI may
still be computed, and provides a bound on sensitivity. In this
case, noise variance is equal to the mean response, and sensitivity
is
√
F (s) = |�′(s)|/

√
�(s), which gives rise to Weber’s law for a

transducer function�(s) ∝ [log(s)+c]2, where c is an integration
constant (Fig. 1C ; Materials and Methods). Here, sensitivity
reflects the combined signal dependence of transducer and noise.

These three different examples demonstrate that an obser-
vation of Weber’s law sensitivity does not uniquely constrain
an internal representation (see also refs. 44–47). In fact, these
are three members of an infinite family of representations
p(r|s) whose FI is consistent with Weber’s law. To make this
nonidentifiability problem more explicit, we introduce a simpler
quantity which we dub “Fisher sensitivity”, defined as

D(s) =
|�′(s)|
�(s)

. [1]

In general, Fisher sensitivity provides a lower bound on the
square root of FI (48) (Materials and Methods), and is easier
to compute, since it relies only on the first two moments of
the response distribution. Its expression as a ratio of the change
in response mean to SD also provides an explicit connection
to the d-prime measure used to quantify discriminability in
signal detection theory (Materials and Methods). For all three
of the examples in the preceding paragraphs, this lower bound
is exact (i.e., Fisher sensitivity is identical to the square root of
FI). But Fisher sensitivity offers a direct and intuitive extension
of the nonidentifiability problem beyond these examples: To
explain any measured pattern of sensitivity D(s), one can
choose an arbitrary mean internal response �(s) that increases
monotonically and continuously, and pair it with an internal
noise with variability �(s) = |�′(s)|/D(s). How can we resolve
this ambiguity?

Unified Interpretation of Power-Law Intensity Percepts and
Weber’s Law Sensitivity. The ambiguity described in the previ-
ous section can be resolved through additional measurements (or
assumptions) of the mean or variance of internal representations,
or the relationship between the two. In this section, we interpret
perceptual magnitude ratings as a direct measurement of the
representational mean, �(s) (44, 49). In a rating experiment,

observers are asked to report perceived stimulus intensities by
selecting a number from a rating scale (e.g., refs. 7, 16, and 17).
Suppose that these ratings reflect the observers’ internal response
r (up to an arbitrary scale factor that depends on the numerical
scale), and that averaging over many trials of r (drawn from
p(r|s)) provides an estimate of the mean response, �(s).

Using magnitude ratings, Stevens and others (e.g., refs. 16,
50, and 51) showed that perceived intensity of many stimulus
attributes can be well approximated by a power law, �(s) ∝ s� .
The exponent � was found to vary widely across stimulus
attributes ranging from strongly compressive (e.g., � = 0.33
for brightness of a small visual target) to strongly expansive
(e.g., � = 3.5 for electric shock to fingertips). For stimulus
attributes obeying Weber’s law, Stevens’ power law observations
were interpreted as direct evidence against Fechner’s hypothesis
of logarithmic transducers (11). But the relationship of power
law ratings to Weber’s law sensitivity was left unresolved. Over
the intervening decades, magnitude rating measurements have
generally been interpreted as arising from aspects of internal
representation that are different from those underlying sensitivity
(e.g., refs. 18, 12, 21, and 52), or sometimes, measurements of
magnitude ratings were dismissed altogether (9, 13).

Fisher sensitivity offers a potential unification of power-law
intensity percepts and Weber’s law sensitivity. First, we assume
the observer whose discrimination behavior matches Weber’s law
does so by optimally decoding an internal representation, achiev-
ing the Fisher sensitivity: D(s) = |�′(s)|

�(s) ∝ 1/s. Substituting a
power function, �(s) = s� , and solving for �(s) yields (Fig. 2A;
Materials and Methods):

�(s) ∝ s�. [2]

Thus, the SD of the internal representation is proportional to its
mean. This result holds for all values of �, and does not assume
Gaussian internal noise, thus providing a generalization of the
multiplicative noise example from the previous section (Fig. 1).
Under these conditions, Weber’s law sensitivity can coexist with
a power-law intensity percept for any exponent (Fig. 2B).

Connecting Perceived Intensity and Discrimination of General-
ized Intensity Variables. The previous section provided a unifi-
cation of three idealized relationships: Weber’s law for sensitivity,
a power-law behavior for intensity ratings, and proportionality
of mean and SD of the internal representation. In this section,
we consider generalizations beyond these relationships and show
that these can remain consistent under our framework.

Consider first the internal noise. Poisson neural noise implies a
variance proportional to the mean spike count, a relationship that
holds empirically for relatively low response levels (53). At modest
to high firing rates, spike count variance in individual neurons is
generally super-Poisson, growing approximately as the square of
mean response (53–55), consistent with the proportional noise
assumption of the previous section. A modulated Poisson model
has variance with both linear and quadratic terms and can capture
the relationship of spike count variance to mean response over
the extended range (53, 54):

�2(s) = �(s) + g2�2(s), [3]

where the constant g represents the SD of the modulation, and
governs the transition from the Poisson range (smaller �(s)) to
the super-Poisson range (larger �(s)) (Fig. 3A).

Perceptually, both Weber’s law for sensitivity and the power
law for perceptual magnitudes are known to fail, especially at low
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Fig. 2. Unification of power-law intensity and Weber’s law sensitivity mea-
surements. (A) Using Fisher sensitivity, perceptual sensitivity and intensity
measurements can be combined to constrain the noise properties of an
internal representation. In the particular case of Weber’s law, and power-
law intensity ratings, this yields an internal representation with noise SD
proportional to mean response. (B) This pattern of proportional internal noise
serves to unify Weber’s law and power-law magnitudes for any exponent �,
allowing for transducer functions that are expansive (� > 1, Upper panel),
linear (� = 1,Middle), or compressive (� < 1, Lower). Blue dashed lines indicate
an example pair of stimuli that are equally discriminable in all three cases,
as can be deduced qualitatively from the overlap of their corresponding
response distributions (shown along the left vertical edge of each plot, in
shaded blue).

intensities (e.g., refs. 7 and 56). A generalized form of Weber’s
law (e.g., ref. 57) has been proposed to capture sensitivity data
over a broader range of intensity:

D(s) = w/(s + d)� , [4]

where d is a constant that governs sensitivity at low intensities,
the exponent � determines deviation from Weber’s law at high
intensities, and w is a nonnegative scaling factor. Weber’s law
corresponds to the special case of d = 0 and � = 1.

To test the generalization of our unified framework, we used
Fisher sensitivity to combine the modulated Poisson noise model
(Eq. 3) with fitted versions of this generalized form of Weber’s
law (Eq. 4), and to generate predictions of �(s) (Fig. 3B).
We then compared these predictions to averaged perceptual
intensity ratings. The predictions rely on the choice of three
parameters: g that determines the transition from Poisson to
super-Poisson noise, an integration constant c, and a scale factor
that accounts for the range of the rating scale used in the
experiment (Materials and Methods). We examined predictions
for five different stimulus attributes, for which both sensitivity
and rating scale data (averaged across trials) are available over

A

B
sensitivity intensity

noise variability

10-1 100 101 102
10-1

100

101

102

10-1 100 101 10210-1

100

101

102

g=0.6
g=0.2
g=0.0

Fig. 3. Generalization beyond the Weber range. (A) Quadratic mean–
variance relationship for a modulated Poisson model of sensory neu-
rons (53, 55). Behavior is Poisson-like at low intensities [i.e., when �(s) is much
less than 1/g2, then �2(s) ∼ �(s)], and super-Poisson at higher intensities
[when �(s) is much greater than 1/g2, then �2(s) ∼ �2(s)]. (B) Using Fisher
sensitivity, a generalized form of Weber sensitivity can be combined with the
mean–variance relationship in panel A to generate numerical predictions of
perceived stimulus intensity �(s) (see examples in Fig. 4).
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Fig. 4. Predictions of perceived intensity from sensitivity, for five different sensory attributes. Top row: For each attribute, we fit a three-parameter generalized
form of Weber’s law (Eq. 4, blue curves) to measured discrimination thresholds (hollow points). Optimal parameter values for each attribute are indicated. Bottom
four rows: Fitted sensitivity functions are equated to the Fisher sensitivity relationship (Eq. 1), assuming one of four different mean–variance relationships
(equations, left side), to generate predictions of perceived intensity �(s) (red curves). The modulated Poisson and multiplicative noise predictions depend
on parameter g, and the additive noise prediction depends on parameter �. In addition, all predictions depend on an integration constant c and an overall
multiplicative scale factor (Materials and Methods). All parameters are adjusted to best fit average perceptual rating scale measurements (hollow points).
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a large range of stimulus intensities. Fig. 4 shows results for: 1)
concentration of sucrose [“sweetness” (58, 59)]; 2) concentration
of sodium chloride [“saltiness” (58, 59)]; 3) amplitude of white
noise [auditory loudness, (60, 61)]; 4) amplitude of 1,000 Hz
pure tone [auditory loudness, (61, 62)]; and 5) amplitude of a
sinusoidal grating [visual contrast, (51, 57)].

The sensitivity curves vary substantially across these stimulus
attributes, but all are well fit by the generalized Weber functional
form (blue curves, first row of Fig. 4). In all cases, the rating
scale data are well predicted by combining the sensitivity fit with
the modulated Poisson noise model of Eq. 3 (red curves, second
row, Fig. 4). Moreover, we find that reduction to simpler noise
models (multiplicative, or Poisson) that are special cases of the
full model provide worse predictions for many cases (rows 4 and
5, Fig. 4). Specifically, when g is small (as in the case of visual
contrast), the modulated Poisson model behaves similarly to a
standard Poisson model, but the multiplicative model fit is poor.
When g is large (as in the case of tasting sodium chloride), the
noise model behaves similarly to the multiplicative noise model,
but the Poisson model fit is poor. Note that the standard Poisson
model has one less parameter than the other models.

The additive noise model is also worse than the modulated
Poisson model, but generally outperforms the other two (Fig.
4, row 3). In the five stimulus domains examined, we did
not observe any systematic pattern of model parameters across
stimulus categories (for either the sensitivity fit or the rating scale
predictions). But examination of additional stimulus domains
using this type of concurrent measurement may reveal such
patterns.

Discussion

Stimulus magnitude and sensitivity are among the most widely
assessed perceptual characteristics (63, 64), but the relationship
between the two has proven elusive. In this article, we’ve proposed
a framework that relates these characteristics to two fundamental
properties of internal representation—a nonlinear “transducer”
that expresses the mapping of stimulus magnitude to the mean
internal representation, and the stimulus-dependent amplitude
of internal noise. Our proposal relies on two assumptions that

link perceptual measurements to these properties: 1) sensitivity
(the inverse of the discrimination threshold) reflects a combi-
nation of the transducer and the noise amplitude, as expressed
by Fisher sensitivity; and 2) absolute judgments (specifically,
those obtained through average ratings of stimulus intensity)
reflect the value of the transducer. This combination allows a
unified interpretation in which intensity and sensitivity reflect
a single underlying representation, providing a potential link to
physiology.

Our framework relies on several assumptions. First, we restrict
ourselves to a continuous scalar stimulus domain and an internal
representation that is differentiable with respect to the stimulus
(so that FI is well defined). Throughout, we rely on Fisher
sensitivity, an intuitive and tractable lower bound on the square
root of FI. The two are equivalent for the Weber’s law examples
shown in Figs. 1 and 2, but not for the data fitting examples of Fig.
4 (in SI Appendix, we provide an additional example in which the
two quantities differ). We assume human perceptual sensitivity
achieves (or is at least proportional to) the Fisher sensitivity
bound. More specifically, we assume that human responses in
a perceptual discrimination task reflect optimal extraction of
information from a noisy internal representation, as suggested by
a number of studies linking physiology to perception (e.g., refs.
65–69). Finally, we assume that absolute intensity judgments
reflect a transducer function that corresponds to the mean of the
internal representation.

To develop and test this framework, we have focused on
attributes that obey Weber’s law, and its modest generalizations.
Despite its ubiquity, the relationship between Weber’s law and
the underlying representation has been contentious. In the
late 19th century, Fechner proposed that perceptual intensities
correspond to integrated sensitivity (1), and, in particular, pre-
dicted that Weber’s law sensitivity implied a logarithmic internal
representation. Using rating scales as a form of measurement,
Stevens instead reported that many sensory variables appeared
to obey a power law, with exponents differing substantially for
different attributes (11). Stevens interpreted this as a refutation
of Fechner’s logarithmic transducer. In order to explain the
discrepancy between Fechner and Stevens’ proposals, a number of
authors suggest that perceptual intensities and sensitivity reflect
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Fig. 5. Extension of the Fisher sensitivity framework to suprathreshold perceptual distances. Weber’s law is consistent with Stevens’ power law (for any
exponent, �) as long as the SD of the noise scales with the same exponent (Left and Middle panels; see also Fig. 2B). In addition, under the assumption that
perceived suprathreshold distances correspond to integrated sensitivity, these will correspond to differences in logarithmically mapped stimuli, providing a
modified interpretation of Fechner’s law. Under these conditions, all three “laws” coexist in a consistent framework, each describing measurements that access
different aspects of a common underlying representation.
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different stages of processing, bridged by an additional nonlinear
transform. Specifically, Michels and Helson (18) proposes a type
of sensory adaptation, Mackay (19) reflects additional sensory
processing, and Krueger (22) incorporates an additional cognitive
process. Our framework offers a parsimonious resolution of
these discrepancies, by postulating that perceptual intensity and
sensitivity arise from different combinations of the mean and
variance of a common internal representation.

It is worth noting that while Fechner’s integration hypothesis is
inconsistent with Stevens’ power law measurements, it appears to
be consistent with many suprathreshold intensity measurements.
Specifically, experimental procedures involving suprathreshold
comparative judgments [e.g., maximum likelihood difference
scaling methods, categorical scales, and bisection procedures
(17, 40, 58, 70)] seem to reflect integration of sensitivity, whereas
experimental procedures that require absolute judgments [e.g.,
rating scales (17, 51, 71)] yield different functions that we’ve
interpreted as reflecting the mean of internal representation.
In the case of Weber’s law, the integrated sensitivity is log-
arithmic, consistent with Fechner’s interpretations, regardless
of the underlying transducer-noise combination (e.g., Fig. 1)!
Under this interpretation, our framework can provide a natural
unification of Stevens’ power law magnitude ratings, Weber’s law
sensitivity, and Fechner’s logarithmic suprathreshold distances
(Fig. 5). Further empirical studies will be needed to verify or
refute these relationships.

This subtle distinction between comparative and absolute
judgment is at the heart of multiple debates in perceptual
literature. For example, it arises in discussions of whether
perceptual noise is additive or multiplicative in visual contrast
(e.g., refs. 40, 44, and 72). We have proposed that mean and
variance of internal representations can be identified through
the combination of absolute and discriminative judgments,
because the two measurements reflect different aspects of the
representation. On the other hand, if suprathreshold compar-
ative judgments reflect integrated local sensitivity, they will
not provide additional constraints on internal representation
beyond threshold sensitivity measurements, and combining
these two measurements cannot resolve the identifiability issue.
This provides, for example, a consistent interpretation of the
analysis in ref. 40, which shares the logic of our approach in
seeking an additional measurement to resolve nonidentifiability
of sensitivity measurements, but reaches a different conclusion
regarding consistency of additive noise. Several other theoretical
or experimental constraints have been proposed to resolve the
identifiability issue, including imposing a common criterion
between two discrimination tasks (72), connecting the response
accuracy for the first and the second response in a four-
alternative choice (31), and connecting discrimination to an
identification task (47). An open question is whether our
framework can be extended to account for these more diverse
perceptual scenarios.

Our examination of the particular combination of Weber’s law
sensitivity with power-law intensity percepts led to the conclusion
that the SD of internal noise in these cases should vary in
proportion to the mean response. While such “multiplicative
noise” has been previously proposed as an explanation for Weber’s
law (3, 35–37), it has generally been described in the context of
a linear transducer (as in Fig. 1). In our framework, we find that
this form of noise (SD proportional to the mean) is sufficient to
unify Weber’s and Stevens’ observations for the complete family
of power-law transducers, regardless of exponent. An additional
prediction of this model is that the SD of perceptual magnitude

ratings should grow proportionally to the mean rating (consistent
with Fig. 2B). This is consistent with the findings of a number of
previous studies (e.g., refs. 10, 73, and 74). For example, Green
and Luce showed that when observers were asked to rate 1,000
Hz tone loudness, their coefficient of variations (SD divided by
the mean) in the ratings are near-constant for a wide range of
intensities (73).

The proportionality of the mean and SD of a stimulus
representation offers a potential interpretation in terms of
underlying physiology of neural responses. We considered, in
particular, recently proposed “modulated Poisson” models for
neural response which yields noise whose variance grows as a
second-order polynomial of the mean response (53, 54, 75). At
high levels of response, this allows a unification of Weber’s law
and Stevens’ power law. At lower levels, it produces systematic
deviations that lead to consistent predictions of ratings for a
number of examples (Fig. 4). Recent generalizations of the
modulated Poisson model may allow further refinement of the
perceptual predictions (76). For example, at very low levels of
response, sensory neurons exhibit spontaneous levels of activity
that are independent of stimulus drive (34), suggesting that
inclusion of an additive constant in Eq. 3 could improve
predictions of perceptual detection thresholds (77).

We’ve restricted our examples to perceptual intensity at-
tributes that obey Weber’s law, but the proposed framework
is more general. In particular, the FI bound holds for any
noisy representation, and has, for example, been applied to the
representation of sensory variables in neural population responses
(e.g., 25, 28, 29). In some cases, these attributes exhibit Weber’s
law behavior, which may be ascribed to the combination of
heterogeneous arrangements of neural tuning curves along with
noise properties of individual neurons (78–80). For example,
neurons in visual area MT selective for different speeds have
tuning curves that are (approximately) shifted on a logarithmic
speed axis (81). Under these conditions, an independent response
noise model yields FI consistent with Weber’s law (82, 83). More
generally, changes in a stimulus attribute may cause changes
in both the amplitude and the pattern of neuronal responses,
which, when coupled with properties of internal noise, yield
predictions of sensitivity through FI. Specifically, the abstract
internal representation that we have assumed for each perceptual
attribute corresponds to the projection of high-dimensional
noisy neuronal responses onto a decision axis for perceptual
judgments (e.g., refs. 54, 84, and 85). Although discrimination
judgments for a stimulus attribute are generally insufficient
to uniquely constrain underlying high-dimensional neuronal
responses, the one-dimensional projection of these responses
provides an abstract but useful form for unifying the perceptual
measurements.

Our framework enables the unification of two fundamental
forms of perceptual measurement—magnitude judgment and
sensitivity—with respect to a common internal representation.
However, the study of perception is diverse and mature,
with numerous additional perceptual measurements (86) whose
connection to this framework could be explored. The descriptive
framework outlined here also raises fundamental questions about
the relationship between internal representation mean and noise.
The forms of both noise and transducer may well be constrained
by their construction from biological elements, but may also be
coadapted to satisfy normative goals of efficient transmission of
environmental information under constraints of finite coding
resources (87–89). Exploration of these relationships provides an
enticing direction for future investigation.
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Materials and Methods

Fisher Information. For a stimulus attribute s, the FI is derived from the
conditional distribution of responses given the stimulus, p(r|s), and expresses
the relative change in response distribution when the stimulus s is perturbed:

F(s) = E
[
(∂ log p(r|s)/∂s)2

]
, [5]

where the expectation is taken over the distribution p(r|s) (90). Intuitively, FI
converts a description of the internal noisy representation,p(r|s), into a measure
of the precision (inverse variance) with which the stimulus is represented (91).
The definition relies only on the differentiability of the response distribution
with respect to s and some modest regularity conditions (91), but does not
make assumptions regarding the form of the noisy response distribution. Either
s or r can be vector-valued, but for our purposes in this article, we assume a
one-dimensional stimulus attribute, and thus the internal representation r that
is relevant to the discrimination experiment is also effectively one-dimensional.

In statistics and engineering communities, FI is often used in the context
of the Cramér–Rao bound, an upper bound on the precision (inverse variance)
attainable by an unbiased estimator (91). It was first proposed as a means of
quantifying perceptual discrimination by Paradiso (29), and further elaborated
for neural populations by Seung and Sompolinsky (25). In this context, the
square root of FI provides a bound on perceptual precision (sensitivity) (30),
and may be viewed as a generalization of d-prime (27), the traditional metric of
signal detection used in psychophysical studies (3) (SI Appendix).

Three Example Representations Yielding Weber’s Law Sensitivity. The
three example representations shown in Fig. 1 are each consistent with Weber’s
law, but differ markedly in their response distributions. Below, we derive each
of these.
Additive Gaussian noise. Assume the internal representation has mean
response �(s), and is contaminated with additive Gaussian noise with SD
�:

p(r|s) = (
√

2� �)−1 exp[−(r − �(s))2/(2�2)].

Substituting into Eq.5 and simplifying yields
√
F(s) = |�′(s)|/�. Weber’s law

corresponds to sensitivity proportional to 1/s, and thus we require a transducer
such that |�′(s)| ∝ 1/s. If we assume monotonicity, the transducer is uniquely
determined (up to an integration constant and a proportionality factor) via
integration: �(s) ∝ log(s) + c.
“Multiplicative” Gaussian noise. Assume a representation with identity trans-
ducer �(s) = s and Gaussian noise such that the amplitude scales with the
mean, �(s) =

√
as:

p(r|s) = (
√

2�a s)−1 exp[−(r − �(s))2/(2as2)].

Substituting into Eq. 5 and simplifying again yields Weber’s law:
√
F(s) =

(
√

2 + 1/a)/s.
Poisson noise. Assume the internal response r is an (integer) spike count, drawn
from an inhomogeneous Poisson process with rate�(s), a widely used statistical
description of neuronal spiking variability. Then

p(r|s) =
�(s)r exp[−�(s)]

r!
.

In this case,
√
F(s) = |�′(s)/|

√
�(s). Assuming Weber’s law, we can again

derive the form of the transducer: �(s) ∝ [log(s) + c]2 for some constant c.

Fisher Sensitivity. In general, FI can be difficult to compute and often cannot
be expressed in closed form. A lower bound for the square root of FI, which
we term “Fisher sensitivity”, is more easily computed and interpreted, because
it depends only on the mean and variance of the distribution. Specifically, we
define Fisher sensitivity as

D(s) ≡ |�′(s)|/�(s).

Its role as a lower bound can be derived using the Cauchy–Schwartz inequality
for continuous density p(x)dx:∫

f(x)2p(x) dx ≥

[∫
g(x)f(x)p(x) dx

]2∫
g(x)2p(x) dx

. [6]

Making the following substitutions:

f(x)→
∂ log p(r|s)

∂s
, g(x)→ r − �(s), p(x)dx→ p(r|s)dr,

[7]

the left side of Eq. 6 is equal to the FI (defined in Eq. 5), and the right side is
equal to the squared Fisher sensitivity:

F(s) ≥

{∫
[r − �(s)] ∂ log p(r|s)

∂s p(r|s)dr
}2

∫
[r − �(s)]2 p(r|s)dr

=

{∫
[r − �(s)] ∂p(r|s)

∂s dr
}2

�(s)2

=

{
∂
∂s
∫
rp(r|s)dr − �(s) ∂

∂s
∫
p(r|s)dr

}2

�(s)2

=
�′(s)2

�(s)2

= D2(s). [8]

Fishersensitivitygeneralizes tomultidimensional responsevectors (e.g.,aneural
population), by replacing the inverse variance with the FI matrix, and projecting
this onto the gradient of the mean response (92, 93). The derivation of the full
bound for the multidimensional case (both stimuli and responses) may be found
in ref. (48).

In the examples of Figs. 1 and 2, the lower bound is exact: Fisher sensitivity
is equal to the square root of FI. An equivalent expression for Fisher sensitivity
has also been derived by assuming a minimal-variance unbiased linear decoder
(94). Compared to our interpretation as a lower bound, this interpretation has
the advantage of being an exact expression of FI, but the disadvantage of relying
on restrictive decoding assumptions.

Relationship of Fisher Sensitivity to Signal Detection Theory. In signal
detection theory, discriminability between two stimulus levels s1 and s2 is
typically summarized using the measure known as d-prime. To relate this to
Fisher sensitivity, we assume a simple form sometimes used in the perception
literature:

d′(s1, s2) =
�(s2)− �(s1)

�(s)
, with s =

s1 + s2
2

. [9]

Assuming s1 and s2 are two values on a continuum, and that �(s) is
differentiable, we can express the two internal responses using a first-order
(linear) Taylor approximation:

�(s1) ≈ �(s) + (s1 − s)�′(s), �(s2) ≈ �(s) + (s2 − s)�′(s).

Substituting these into Eq. 9 gives

d′(s1, s2) ≈
Δs �′(s)
�(s)

, with Δs = s2 − s1,

= Δs D(s). [10]

That is, Fisher sensitivity expresses the slope at which d-prime increases with
stimulus separation [see also (27)]. Setting d-prime equal to a criterion level d∗

and solving for the stimulus discrimination threshold gives

Δs ≈ d∗/D(s).

That is, discrimination thresholds are inversely proportional to Fisher sensitivity.
This relationship was used to fit the data for Fig. 4.
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Internal Representations Consistent with Weber’s Law and Stevens’
Power Law. Using Fisher sensitivity and assuming monotonicity of �(s),

Weber’s law can be expressed as �′(s)
�(s) ∝

1
s . To identify �(s) and �(s),

we combine this with magnitude ratings, which we assume provide a direct
measurement of �(s). Assume the magnitude ratings follow a power law (16).
Then �(s) ∝ s� , with derivative �′(s) = �s�−1. Substituting into the
equation for Weber’s law and solving gives �(s) ∝ s� . That is, Weber’s law can
arise when both �(s) and �(s) follow a power law with the same exponent, �.
Note that this result holds for all exponents.

Data Fitting. To examine the validity of our framework beyond Weber’s range,
we analyzed five different sensory attributes (Fig. 4). For each, we first fit a
generalized form of Weber’s law (20) to perceptual sensitivity data:

D(s) =
w

(s− d)�
, [11]

in which d is an unrestricted additive constant, � is a nonnegative exponent,
and w is a nonnegative scaling factor. These three parameters were optimized
to minimize squared error of the measured thresholds (inverse sensitivity).

Next, we combined the fitted sensitivity model with a model of internal noise
to generate a prediction for the mean percept, �(s), which was then compared
with rating measurements. This was carried out for four different noise models:
modulated Poisson, additive, multiplicative, and Poisson (corresponding to
the bottom four rows of Fig. 4, respectively). We derive the corresponding
expressions for �(s) below.
Modulated Poisson noise. Our primary predictions assume a modulated
Poisson noise model (53) with mean–variance relationship:

�(s)2 = �(s) + g2�(s)2. [12]

The transducer �(s) is obtained by solving the differential equation that arises
by substituting this variance expression into the Fisher sensitivity of Eq. 1, and
equating this with the generalized form of Weber’s law (Eq. 11):

�′(s)√
�(s) + g2�(s)2

=
w

(s− d)�
. [13]

The solution may be expressed in closed form:

�(s) = sinh2

(
g(s− d)−� [w(d − s) + c(s− d)� ]

2(� − 1)

)/
g2. [14]

The parameters {d, � , w} are constrained to values obtained when fitting the
sensitivity data, and three remaining parameters are adjusted to minimize
squared error with the log-transformed rating data. The first is g, which governs
the transition from Poisson to super-Poisson noise behavior (large g indicates an
early transition). The second is c, an integration constant that arises from solving
the differential equation for �(s). The last parameter is an overall scale factor

(not indicated), which rescales the predicted intensity values to the numerical
range used in the associated rating experiment.
Additive Gaussian noise. As for the full modulated Poisson model, we first fit
the generalized Weber’s law to discrimination data, and locked the parameters
{d, � , w}. Then we solve a differential equation arising from equating Fisher
sensitivity with the generalized Weber’s law:

�′(s)
�

=
w

(s− d)�
. [15]

The solution for �(s) in this case may also be expressed in closed form:

�(s) =
w�(s− d)1−�

1− �
+ c. [16]

The integration constant c, the constant �, and an overall scaling factor are
adjusted to fit �(s) to the rating data (minimizing the squared error between
logarithmically transformed rating data and the function).
Poisson noise. Following a similar procedure for the case of additive Gaussian
noise, we find a closed-form solution for �(s) using Poisson noise and Fisher
sensitivity:

�(s) =
(s− d)−2� [w(d − s) + (� − 1)c(s− d)� ]2

4(� − 1)2
. [17]

Again, the integration constant c and overall scaling factor are optimized to fit
the rating data.
Generalized multiplicative noise. Here, we assume a noise mean–variance
relationship�(s)2 = g2�(s)2, which is the choice that enables the coexistence
of the classic form of Weber’s law and Stevens’ power law. As in previous cases,
we substitute this into the expression for Fisher sensitivity to obtain a prediction
for �(s):

�(s) = exp

[
gw(s− d)(1−�)

1− �

]
c. [18]

Note that, as for the full noise model of Eq. 12, comparison to the rating data
involves estimation of three parameters: the noise parameter g, an integration
constant c, and a scaling factor.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix. Simulations and code for fitting the data can be
found at https://github.com/jingyang-zhou/WeberStevens_2024 (95).
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