

We developed an algorithm for Bayesian image

1 reconstruction from cone exictations, based on the

image prior implicit in a denoising neural network.

Our framework allows visualization of information

We can also analyze the changes in the features

3 of visual encoding as an optimal design problem

with regard to the reconstruction performance.

the effect of visual eccentricity and dichromacy.

2 loss due to the initial visual encoding, such as

2. Visualization

Information loss due to the initial encoding

Visual Eccentricity

Image Reconstruction from Cone Excitations using the Implicit Prior in a Denoiser Ling-Qi Zhang¹, Zahra Kadkhodaie², Eero P. Simoncelli^{2,3}, David H. Brainard¹

1. Department of Psychology, University of Pennsylvania 2. Center for Data Science, New York University 3. Center for Computational Neuroscience, Flatiron Institute

Comparison: Sparse Image Prior

FLATIRON INSTITUTE

I.I.D Gaussian Noise Removal

Bayesian Least Square Solution

 $\hat{x}(y) = |xp(x|y)dx|$

 $= y + \sigma^2 \nabla_y \log p(y)$

(Miyasawa, 1961)

Implicit Prior (log prior gradient)

 $= |x \cdot 1/Z \cdot p(y|x)p(x)dx|$

 $y = x + z, z \sim \mathcal{N}(0, \sigma^2 I)$

Implicit Natural Image Prior

Denoised \hat{x} $\sigma^2 \nabla \log p(\mathbf{y})$

Reconstruction Algorithm

Coarse-to-fine stochastic ascent for sampling from the implicit image prior, condition on the cone measurements.

- Linear Measurement Model $m = M^T x$
- Gradient Conditioned on Measurement

 $\sigma^2 \nabla \log p(y \mid m) =$

 $(I - MM^T)\sigma^2 \nabla \log p(y) + M(m - M^T y)$

Projection onto Null Space of M

Deviation from the Measurement

Iterative Sampling Procedure

$$y_{t+1} \leftarrow y_t + \alpha_t \cdot \sigma^2 \nabla \log p(y_t | m)$$

