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Abstract—We propose the concept of quality-aware image, in
which certain extracted features of the original (high-quality)
image are embedded into the image data as invisible hidden
messages. When a distorted version of such an image is received,
users can decode the hidden messages and use them to provide an
objective measure of the quality of the distorted image. To demon-
strate the idea, we build a practical quality-aware image encoding,
decoding and quality analysis system,1 which employs: 1) a novel
reduced-reference image quality assessment algorithm based on a
statistical model of natural images and 2) a previously developed
quantization watermarking-based data hiding technique in the
wavelet transform domain.

Index Terms—Generalized Gaussian density (GGD), image com-
munication, image quality assessment, image watermarking, infor-
mation hiding, natural image statistics, quality-aware image, re-
duced-reference image quality assessment.

I. INTRODUCTION

D IGITAL images are subject to a variety of distortions
during compression, transmission, processing, and re-

production. In order to maintain, control and possibly enhance
the quality of the image and video data being delivered, it is
important for data management systems (e.g., network video
servers) to be able to identify and quantify quality degradations
on the fly. Since most of the image data will eventually be con-
sumed by humans, the most reliable means of assessing image
quality is subjective evaluation. However, subjective testing
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is expensive and time-consuming. On the other hand, most
objective image/video quality assessment methods proposed in
the literature [1]–[3] are not applicable in this scenario because
they are full-reference (FR) methods that require access to the
original images as references. Therefore, it is highly desirable
to develop quality assessment algorithms that do not require
full access to the reference images.

Unfortunately, no-reference (NR) or “blind” image quality
assessment is an extremely difficult task. Most proposed NR
quality metrics are designed for one or a set of predefined
specific distortion types [4]–[10] that may not be generalized
for evaluating images degraded with other types of distortions.
Moreover, knowledge of the distortions that arise between
the original and corrupted images is in general not available
to image quality assessment systems. Thus, it is desirable to
have a more general image quality assessment system that is
applicable to a wide variety of distortions. However, to the
best of our knowledge, no such method has been proposed and
extensively tested.

One interesting recent development in image/video quality
assessment research is to design reduced-reference (RR)
methods for quality assessment [2], [3]. These methods do not
require full access to reference images, but only needs partial
information, in the form of a set of extracted features. Con-
ceptually, RR methods make the quality assessment task easier
than NR methods by paying the additional cost of transmitting
side information to the users. The standard deployment of an
RR method requires the side information to be sent through an
ancillary data channel [3]. However, this restricts the applica-
tion scope of the method because an additional data channel
may be inconvenient or expensive to provide. An alternative
solution would be to send the side information in the same
channel as the images being transmitted. For example, the
side information can be included as a component of the image
data structure (e.g., as part of the header of the image format).
However, this strategy would be difficult to implement in ex-
isting large-scale, heterogeneous networks such as the Internet,
because it requires all the users in the communication network
to adopt a new image format, or amend all the existing image
formats to allow the side information to be included. Besides,
lossy data transmission and typical image format conversion
may cause loss of the original image headers.

In this paper, we propose the concept of quality-aware image,
in which extracted features of the reference image are embedded
as hidden messages. When a distorted version of such an image
is received, the users can decode the hidden messages and use
them to help evaluate the quality of the distorted image using an
RR quality assessment method. There are several advantages of
this approach.
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• It uses an RR method that makes the image quality assess-
ment task feasible (as compared to FR and NR methods).

• It does not affect the conventional usage of the image
data because the data hiding process causes only invisible
changes to the image.

• It does not require a separate data channel to transmit the
side information.

• It allows the image data to be stored, converted and
distributed using any existing or user-defined formats
without losing the functionality of “quality-awareness,”
provided the hidden messages are not corrupted during
lossy format conversion.

• It provides the users with a chance to partially “repair” the
received distorted images by making use of the embedded
features.

This study is largely inspired by [11]–[13], where a pseudo-
random bit sequence or a watermark image is hidden inside the
image being transmitted. The bit-error rate or the degradation of
the watermark image measured at the receiver side is then used
as an indication of the quality degradation of the host image
signal. These methods are perhaps the first attempts to use infor-
mation hiding technologies for the estimation of image quality
degradation. Nevertheless, strictly speaking, these methods are
not image quality assessment methods because no extracted fea-
tures about either the reference or the distorted images are actu-
ally used in the quality evaluation process. Instead, the distortion
processes that occur in the distortion channel are gauged, in the
hope that such estimated channel distortion would correlate well
with perceptual image degradation incurred during transmission
through the channel. However, such a connection is obscured by
the nature (e.g., complexity) of the image signals and the types
of image distortions, which have variable effects on perceived
image quality. In addition, these methods provide no clue about
how the received distorted images can be repaired.

Information hiding or digital watermarking has been an ac-
tive research area in the last decade. Traditionally, these tech-
niques have been designed for security-related applications such
as copyright protection and data authentication. Recently, re-
searchers have attempted to broaden their application scope to
nonsecurity oriented applications [14], [15]. Quality-aware im-
ages mainly belong to the second category (see Section V for
discussions), and they bring about new challenges in the selec-
tion and design of information hiding techniques.

II. QUALITY-AWARE IMAGE

A. Framework

A system diagram of quality-aware image encoding, de-
coding and quality analysis system is shown in Fig. 1. A feature
extraction process is first applied to the original image, which
is assumed to have perfect quality. The quality-aware image
is obtained by embedding these features as invisible messages
into the original image. The quality-aware image may then pass
through a “distortion process” before it reaches the receiver
side. Here the “distortion process” is general in concept. It can
be a distortion channel in an image communication system,
with possibly lossy compression, noise contamination and/or

Fig. 1. Quality-aware image encoding, decoding, and quality analysis system.

postprocessing involved. It can also be any other processes that
may alter the image.

At the receiver side, the hidden messages are first decoded
from the distorted quality-aware image. In order for correct de-
coding of the messages, the key for information embedding and
decoding is shared between the sender and the receiver. De-
pending on the application environment, there may be different
ways to distribute the embedding key. One simple solution is
to attach the key to the decoder software and/or publish the
key, so that it can be easily obtained by all potential users of
quality-aware images. Note that the key is independent of the
image and can be the same for all quality-aware images, so it
does not need to be transmitted with the image data. The de-
coded messages are translated back to the features about the ref-
erence image. Next, another feature extraction procedure corre-
sponding to the one at the sender side is applied to the distorted
image. The resulting features are then compared with those of
the reference image to yield a quality score for the distorted
quality-aware image.

In order to improve robustness, error detection/correction
coding techniques may be applied before the information
embedding process. Nevertheless, the hidden messages may
still be decoded incorrectly when the distortions are extremely
severe. At the receiver side, the system must be able to detect
such situations (based on the error detection and correction
code) and report a failure message, instead of a quality score.

B. Design Considerations

Designing an effective quality-aware image system is a chal-
lenging task. On the one hand, in order to provide effective
quality prediction, the RR quality assessment system desires
to know as much information as possible about the reference
image. Therefore, the information hiding system would need to
embed a fairly large amount of information. On the other hand,
in order for the hidden messages to be invisible and for these
messages to survive a wide variety and degree of distortions,
the amount of information that can be embedded is limited. The



1682 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 15, NO. 6, JUNE 2006

Fig. 2. Comparisons of wavelet coefficient histograms (solid curves) calculated from the same horizontal subband in the steerable pyramid decomposition [22].
(a) Original (reference) “buildings” image (cropped for visibility). (b) JPEG2000 compressed image. (c) White Gaussian noise contaminated image. (d) Gaussian
blurred image. The histogram of the original image coefficients is well fitted by a generalized Gaussian density model (dashed curves).

RR quality assessment system must observe this limit and care-
fully select a set of features that can be encoded within the limit.
These features must be highly relevant to image quality degra-
dations. They must also provide an efficient summary about the
reference image.

Another issue that may need to be considered is that many
data hiding techniques tend to change certain statistical features
of the original image (e.g. [16] and [17]). This could potentially
conflict with quality assessment systems because these systems
may rely on the way that these statistical features change as an
indication of quality degradation.

To summarize, a successful quality-aware image system must
provide a good trade-off between data hiding load, embedding
distortion, robustness, and the accuracy of image quality predic-
tion.

C. Simple Example

Perhaps the simplest way to implement a quality-aware
image system is to embed a certain number of (perhaps ran-
domly selected) reference image pixels as hidden messages.
For synchronization purpose, the positions of theses pixels
also need to be embedded. At the receiver side, the decoded
reference image pixels are compared with the corresponding
distorted image pixels, and certain distortion/quality metric,
such as mean-squared error (MSE) and peak signal-to-noise
ratio (PSNR), are estimated.

Such a system, although simple, is quite weak in several as-
pects. First, it requires a high data hiding rate. For example, for
a 512 512, 8 bits/pixel gray scale image, to embed 1% of
the image pixels (together with 2 9 bits for encoding each
pixel position) requires a total of 68 146 bits, a heavy load for
most robust information hiding systems. Second, such a small
number of pixels is unlikely to allow accurate estimation of

the distortion metrics, unless the distortion between the refer-
ence and distorted images is independently and identically dis-
tributed noise. The obvious drawbacks of this simple example
lead us to consider image features that are more efficient in sum-
marizing image information and more effective in evaluating
image quality.

III. IMPLEMENTATION

A. RR Quality Assessment

Here, we propose a new RR quality assessment method based
on statistics computed for natural images in the wavelet trans-
form domain. Wavelet transforms provide a convenient frame-
work for localized representation of signals simultaneously in
space and frequency. They have been widely used to model
the processing in the early stages of biological visual systems
and have also become the preferred form of representations for
many image processing and computer vision algorithms. In re-
cent years, natural image statistics have played an important role
in the understanding of sensory neural behaviors of the human
visual system [18]. In the image processing literature, statistical
prior models of natural images have been employed as funda-
mental ingredients in a large number of image coding and esti-
mation algorithms (e.g., [19]–[21]). They have also been used
for image quality assessment purposes (e.g., [8]).

Fig. 2 shows the histograms of the coefficients computed from
one of the wavelet subbands in a steerable pyramid decompo-
sition [22] (a type of redundant wavelet transform that avoids
aliasing in subbands). It has been pointed out that the marginal
distributions of such oriented bandpass filter responses of nat-
ural images are highly kurtotic [with sharp peaks at zero and
much longer tails than Gaussian density, as demonstrated in
Fig. 2(a)] and have a number of important implications to sen-
sory neural coding of natural visual scene [23]. In [24] and [25],
it was demonstrated that many natural looking texture images
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can be synthesized by matching the histograms of the filter re-
sponses of a set of well-selected bandpass filters. Psychophys-
ical visual sensitivity to histogram changes of wavelet-textures
had also been studied (e.g., [26], [27]). In Fig. 2, it can be seen
that the marginal distribution of the wavelet coefficients changes
in different ways for different types of image distortions. Such
histogram changes in images contaminated with white Gaussian
noise have been observed previously and used for image de-
noising [19], [20].

Let and denote the probability density functions of
the wavelet coefficients (assumed to be independently and iden-
tically distributed) in the same subband of two images, respec-
tively. Let be a set of randomly and inde-
pendently selected coefficients. The log-likelihoods of being
drawn from and are

and (1)

respectively. Now, assume that is the true probability den-
sity distribution of the coefficients. Based on the law of large
numbers, when is large, the difference of the log-likelihoods
(or, equivalently, the log-likelihood-ratio) between and

asymptotically approaches the Kullback–Leibler distance
[28] (KLD) between and

(2)

In previous work, a number of authors have pointed out the re-
lationship between KLD and log-likelihood function and used
KLD to compare images, mainly for classification and retrieval
purposes [29]–[32]. KLD has also been used to quantify the
distributions of image pixel intensity values for the evaluation
of compressed image quality [33], [34]. Here, we use KLD to
quantify the difference between wavelet coefficient distributions
of a perfect quality reference image and a distorted image [de-
noted later on as and , respectively)]. To make an ef-
fective estimation, the coefficient histograms for both images
must be available. The latter can be easily computed from the
received distorted image. The difficulty is in obtaining the co-
efficient histogram of the reference image at the receiver side.
Transmitting all the histogram bins as hidden messages would
result in either a heavy data load (when the bin step size is fine)
or weaker statistical characterization (when the bin step size is
coarse).

One important discovery in the literature of natural image sta-
tistics is that the marginal distribution of the coefficients in indi-
vidual wavelet subbands can be well-fitted with a two-parameter
generalized Gaussian density (GGD) model [35]

(3)

where (for ) is the Gamma func-
tion. One fitting example is shown in Fig. 2(a) as the dashed
line. This model provides a very efficient means to summarize
the coefficient histogram of the reference image, so that only

two model parameters need to be transmitted to the re-
ceiver as hidden messages. This model has been explicitly used
in previous work for image compression [21] and texture image
retrieval [32]. In addition to the fitting parameters and , we
also embed the prediction error as a third parameter, which is
defined as the KLD between and

(4)

In practice, this quantity has to be evaluated numerically using
histograms

(5)

where and are the normalized heights of the th
histogram bins, and is the number of bins in the histograms.

At the receiver side, we wish to compute an approximation to
(2), the KLD between the probability distribution of the original
image and that of the distorted image . Since we do
not have the probability distribution of the original image, we
replace the expectation over with an expectation over the
model density

(6)

(7)

The second term is simply the KLD between the original prob-
ability distribution and the model (4), which is embedded in the
image by the encoder. The first term is the KLD between
and

(8)

This is computed at the receiver side from the histogram bins
of the distorted wavelet coefficients [analogous to (5)]. Note
that, unlike the encoding side, we avoid fitting with a GGD
model, which may not be appropriate for the distorted data. Fi-
nally, the overall distortion between the distorted and reference
images is defined as

(9)

where is the number of subbands, and are the proba-
bility density functions of the th subbands in the reference and
distorted images, respectively, is the estimation of the KLD
between and , and is a constant used to control the scale
of the distortion measure (but has no impact on the performance
of the algorithm).

B. Feature Extraction

Fig. 3 illustrates our implementation of the feature extrac-
tion system at the encoder side. We first apply a three-scale
four-orientation steerable pyramid transform [22] to decompose
the image into 12 oriented subbands (four for each scale) and the
highpass and lowpass residuals, as demonstrated in Fig. 4. For
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Fig. 3. Feature extraction system at the encoder side.

Fig. 4. Steerable pyramid decomposition [22] of image (highpass residual
band not shown). A set of selected subbands (marked with dashed boxes) are
used for GGD feature extraction.

each subband, the histogram of the coefficients is computed and
then its feature parameters are estimated using
a gradient descent algorithm to minimize the KLD between
and . Six of the 12 oriented subbands (as shown in Fig. 4)
are selected for feature extraction. The major criterion for se-
lecting these subbands is to reduce the data rate of RR features
while at the same time, maintain the quality prediction perfor-
mance. Specifically, in the Fourier domain, the adjacent steer-
able pyramid subbands (in both scale and orientation) have sig-
nificant overlaps, but there is essentially no overlap between
nonadjacent subbands. Therefore, the six subbands marked in
Fig. 4 are selected to reduce the use of redundant information.
Furthermore, in our tests, selecting the other six oriented sub-
bands or all the 12 oriented subbands gives similar overall per-
formance of image quality prediction.

The extracted scalar features are quantized to finite precision.
Both and are quantized into 8-bit precision, and is
represented using 11-bit floating point, with 8 bits for mantissa
and 3 bits for exponent. These quantization precision parameters
were hand picked to represent the features in a limited number
of bits while maintaining a reasonable approximation of the fea-
tures. The final result is a total of
bits that are embedded into the image.

C. Information Embedding

To embed the extracted features into the image, we choose
to use an existing dithered uniform scalar quantization wa-
termarking method in the wavelet transform domain. This
method is a simple case of the class of quantization-index-mod-
ulation information embedding techniques [36], which allow
for “blind” decoding (decoding does not require the access
to the reference image) and achieve a good tradeoff between
data-hiding rate and robustness. The information embedding
system is illustrated in Fig. 5.

We first use a five-scale separable wavelet transform (specif-
ically, a quadrature mirror filter transform [37]) to decompose
the reference image into 16 subbands, including the horizontal,
vertical and diagonal subbands at each scale, and a low fre-
quency residual band. In order to embed one bit of information

into a wavelet coefficient , the coefficient is altered
according to the following rule:

(10)

where is the altered coefficient, is a base quantization
operator with quantization step size , and is a dithering
operator defined as

if
if

(11)

At the receiver side, a distorted coefficient is obtained and
used to estimate the embedded bit based on the minimum dis-
tance criterion

(12)

We embed the hidden messages into the horizontal, vertical
and diagonal subbands at the fifth scale (counted from fine
to coarse) of the wavelet decomposition. We choose to use
these low-frequency components because they usually have
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Fig. 5. Information embedding system.

high signal energy and are less likely to be significantly al-
tered during typical image processing operations. Moreover,
such a selection avoids conflict with the proposed RR quality
assessment method, which is based on detecting the statistical
changes of the wavelet coefficients at the finer scales. To further
improve robustness, two error detection/correction techniques
are employed. First, a 16-bit cyclic redundancy check (CRC)
code [38] is computed and attached to the 162 information
bits. Second, the resulting 178 bits are further encoded using a
binary (15,5,7) BCH code [38], which can correct up to 3 bits
of errors out of every 15 bits. As a result, a total of 540 bits
are generated. The same number of wavelet coefficients are
randomly selected from the fifth scale of the wavelet transform,
and every bit is encoded into one coefficient using (10). The
positions of the coefficients are shared between the sender and
receiver as the embedding key.

At the receiver side, we first apply the same wavelet trans-
form to the received image. The embedded 540 bits are then ex-
tracted from the corresponding wavelet coefficients using (12),
and decoded with the BCH system. The decoded 178 bits are
split into the corresponding 162 information bits and 16 CRC
bits. We then calculate a new set of CRC bits using the decoded
information bits and compare them with the decoded CRC bits.
If any of the CRC bit is incorrect, the system reports a failure
message. Otherwise, the extracted 162 information bits are con-
verted back into scalar features about the reference image and
relayed to the quality assessment system. Finally, a quality score
of the distorted image is reported.

In several cases, a failure message may be reported. It could
be that the received image is not a quality-aware image (no side
information has been embedded) or the embedded information
is desynchronized (e.g., by image editing). It could also be
that the image quality degradation is very severe, such that

the embedded information cannot be completely recovered. It
is often useful to distinguish between the two cases, because
in the latter case, a failure message can serve as an indication
of low image quality. One way to make such a distinction
is to look at the percentage of correct CRC bits because
statistically only in the latter case, may be significantly
higher than 50%. Following the general idea of [11]–[13], one
can take an even further step to use as an important factor
for the prediction of image quality at very low quality range,
although the accuracy may be complicated by the nature (e.g.
complexity) of the images being evaluated.

IV. TEST

A. Performance of Quality Assessment

In order to evaluate and compare the performance of image
quality assessment algorithms, we built a large image database
(the LIVE image database, available online [39]) and conducted
an extensive subjective experiment to assess the quality of the
images in the database. The database contains 29 high-reso-
lution (typically 768 512) original images altered with five
types of distortions at different distortion levels. The distorted
images were divided into seven datasets. Datasets 1 (87 images)
and 2 (82 images) are JPEG2000 compressed images; Datasets
3 (87 images) and 4 (88 images) are JPEG compressed images;
and Datasets 5–7 (each containing 145 images) are distorted
with white Gaussian noise, Gaussian blur, and transmission er-
rors in the JPEG2000 bitstream using a fast-fading Rayleigh
channel model, respectively. Subjects were asked to provide
their perception of quality on a continuous linear scale and each
image was rated by 20–25 subjects. The raw scores for each
subject were converted into Z-scores and rescaled within each
dataset to fill the range from 1 to 100. Mean opinion score
and the standard deviation between subjective scores were then
computed for each image.

Three measures are computed to quantify the performance
of the proposed quality assessment method. First, following the
procedure given in the Video Quality Experts Group (VQEG)
Phase I FR-TV test [42], we use a logistic function to provide a
nonlinear mapping between the objective and subjective scores

(13)

where is the objective score and , , , and are the
model parameters, which are found numerically using a non-
linear regression process with MATLAB optimization toolbox.
After the nonlinear mapping, the correlation coefficient between
the predicted and true subjective scores is calculated to evaluate
prediction accuracy. Second, the Spearman rank-order correla-
tion coefficient is employed to evaluate prediction monotonicity.
Finally, to evaluate prediction consistency, the outlier ratio is
used, which is defined as the percentage of predictions outside
the range of 2 standard deviations between subjective scores.

To the best of our knowledge, no other RR method has been
proposed that: 1) aims for general-purpose image quality as-
sessment (as opposed to distortion- or application-specific) and
2) uses such small amount of information about the reference
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TABLE I
PERFORMANCE EVALUATION OF IMAGE QUALITY MEASURES USING THE LIVE DATABASE [39]. JP2: JPEG2000 DATASET; JPG: JPEG

DATASET; NOISE: WHITE GAUSSIAN NOISE DATASET; BLUR: GAUSSIAN BLUR DATASET; ERROR: TRANSMISSION ERROR DATASET

image as compared to the proposed method. Therefore, we
compare the proposed method with a set of general-purpose
FR models as well as application-specific NR models. These
models include PSNR (FR), Lubin’s Sarnoff model (FR) [40],
[43], [44], the mean structural similarity index (MSSIM, FR)
[41], the JPEG quality index by Wang et al. (NR) [7], and the
JPEG2000 quality assessment method by Sheikh et al. (NR) [8].
Although such comparison is unfair to one method or another
in different aspects, it provides a useful indication about the
relative performance of the proposed method. The performance
evaluation results of all methods are summarized in Table I. It
can be seen that the proposed method performs quite well for a
wide range of distortion types. Specifically, for five of the seven
datasets, it gives better prediction accuracy (higher correlation
coefficients), better prediction monotonicity (higher Spearman
rank-order correlation coefficients) and better prediction con-
sistency (lower outlier ratios) than PSNR, which is the most
widely used FR image quality metric in the image processing
literature. In comparison with the NR models, the proposed
method is inferior to Wang et al.’s method for the JPEG datasets
(JPEG compressed images have distinct blocking effect, which
is readily detected by an application-specific NR method), and
performs better than Sheikh et al.’s method for the JPEG2000
datasets. Note that these application-specific NR methods are
not applicable to other types of image distortions. A more
complete test may include other distortion types (including
mixed distortions) as well as validations across different dis-
tortion types, but the current testing results lead us to believe
that the proposed method is a reasonable and useful choice
for quality-aware image systems. It needs to be emphasized
that none of the other methods being compared, or any other
method we are aware of, can be used in this scenario.

B. Robustness of Information Embedding

The information embedding system is tested with four
distortion types: JPEG2000 compression, JPEG compression,

white Gaussian noise contamination, and Gaussian blur. For
convenience, we define the distortion levels as compression
bit rate (bits/pixel) for JPEG2000 compression, quality factor
(which controls the quantization step of discrete cosine trans-
form coefficients) for JPEG compression, noise standard
deviation for white noise contamination, and standard deviation
of blurring filter for Gaussian blur, respectively. The same 29
original images in the LIVE database [39] are used for the
test. We first generate ten quality-aware images (each uses a
different randomly generated embedding key) for each of the
test images. For any given distortion type and level, we distort
the 290 quality-aware images accordingly and check if the
hidden messages can be correctly decoded (by comparing the
CRC bits, see Section III-B).

Since the RR quality assessment system can provide useful
quality prediction only when the hidden messages are fully re-
covered, we use correct decoding rate (defined as the percentage
of the images whose embedded messages are completely recov-
ered) as the criterion for evaluating the robustness of the system.
The test results are shown in Fig. 6, which covers the transition
range (from %0 to 100% correct decoding rate) of distortion
levels for each distortion type.

V. CONCLUSION

The major contributions of the paper include the following.

1) introduction of the concept of quality-aware image, and
discussion of its design considerations;

2) implementation of a practical quality-aware image en-
coding, decoding and quality analysis system;

3) development of a simple and effective RR image quality
assessment algorithm based on a wavelet-domain statis-
tical model of natural images;

4) expansion of the application scope of information hiding
technologies.
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Fig. 6. Robustness test of the information embedding system. The quality/distortion level is defined as (a) bit rate (bits/pixel) for JPEG2000 compressed images;
(b) quality factor for JPEG compressed images; (c) noise standard deviation for white noise contaminated images; and (d) standard deviation (pixels) of blurring
filter for Gaussian blurred images.

Like other FR and RR approaches, the proposed quality assess-
ment method assumes the existence of a perfect-quality refer-
ence image. In the case that this assumption does not hold, only
an NR method can provide useful quality evaluation of the im-
ages.

In the future, the research initiated in this paper can be
extended in several directions: The algorithm presented in
Section III is only a specific implementation of the general
framework of quality-aware image system (Fig. 1). The current
method can be improved in many ways. For example, different
RR image quality assessment algorithms could be employed.
The improved algorithms may include more statistical image
features (e.g., joint statistics of wavelet coefficients), which
may lead to better quality prediction accuracy. For another
example, different information hiding techniques could be used
to enhance the robustness to a broader range of distortion types.
The current method is sensitive to geometric transformations,
gain attack and perhaps some other types of malicious attacks.
The general concept of quality-aware images does not exclude
itself from being employed in security-related applications.
For example, in a pay-per-view scenario, an image could be
paid according to its quality degradation. However, given the
limited capability of the existing robust image watermarking
techniques (including the one we are currently using), we pro-
pose to use it mainly for nonsecurity oriented applications, in
which nobody will benefit from “removing” or “destroying” the
embedded information, and therefore, the images are less likely
to encounter malicious attacks (though the precise definition of
malicious attacks could vary for different application environ-
ment). This is different from security-related applications such
as copyright protection, where robustness to malicious attacks
[45] is an essential issue.

The general approach may also be used beyond the scope
of image quality assessment. For example, suppose an image
is subject to a number of distortion stages. One can embed
the quality scores measured at the intermediate stages into the
image as additional hidden messages. The end receiver can
then trace back to find the critical processing stages that have
caused significant quality degradations. Inspired by the work
of using data hiding techniques for error concealment (e.g.,
[46] and [47]), we can have another interesting application of
the embedded features, which we refer to as “self-repairing
images.” The idea is to “repair” a distorted image by forcing

some of its statistical properties to match those of the original
image. Similar idea has been successfully used for texture
synthesis (e.g., [24], [25], and [48]). Finally, the principle idea
may be applied to other types of signals to create quality-aware
(and possibly self-repairing) video, audio, and multimedia, etc.
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