
600 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004
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Abstract—Objective methods for assessing perceptual image
quality traditionally attempted to quantify the visibility of errors
(differences) between a distorted image and a reference image
using a variety of known properties of the human visual system.
Under the assumption that human visual perception is highly
adapted for extracting structural information from a scene, we
introduce an alternative complementary framework for quality
assessment based on the degradation of structural information.
As a specific example of this concept, we develop a Structural
Similarity Index and demonstrate its promise through a set of
intuitive examples, as well as comparison to both subjective
ratings and state-of-the-art objective methods on a database of
images compressed with JPEG and JPEG2000.1

Index Terms—Error sensitivity, human visual system (HVS),
image coding, image quality assessment, JPEG, JPEG2000,
perceptual quality, structural information, structural similarity
(SSIM).

I. INTRODUCTION

D IGITAL images are subject to a wide variety of distortions
during acquisition, processing, compression, storage,

transmission and reproduction, any of which may result in a
degradation of visual quality. For applications in which images
are ultimately to be viewed by human beings, the only “correct”
method of quantifying visual image quality is through subjec-
tive evaluation. In practice, however, subjective evaluation is
usually too inconvenient, time-consuming and expensive. The
goal of research in objective image quality assessment is to
develop quantitative measures that can automatically predict
perceived image quality.

An objective image quality metric can play a variety of roles
in image processing applications. First, it can be used to dy-
namically monitor and adjust image quality. For example, a net-
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work digital video server can examine the quality of video being
transmitted in order to control and allocate streaming resources.
Second, it can be used to optimize algorithms and parameter
settings of image processing systems. For instance, in a visual
communication system, a quality metric can assist in the op-
timal design of prefiltering and bit assignment algorithms at the
encoder and of optimal reconstruction, error concealment, and
postfiltering algorithms at the decoder. Third, it can be used to
benchmark image processing systems and algorithms.

Objective image quality metrics can be classified according
to the availability of an original (distortion-free) image, with
which the distorted image is to be compared. Most existing
approaches are known as full-reference, meaning that a com-
plete reference image is assumed to be known. In many practical
applications, however, the reference image is not available, and
a no-reference or "blind" quality assessment approach is desir-
able. In a third type of method, the reference image is only par-
tially available, in the form of a set of extracted features made
available as side information to help evaluate the quality of the
distorted image. This is referred to as reduced-reference quality
assessment. This paper focuses on full-reference image quality
assessment.

The simplest and most widely used full-reference quality
metric is the mean squared error (MSE), computed by av-
eraging the squared intensity differences of distorted and
reference image pixels, along with the related quantity of peak
signal-to-noise ratio (PSNR). These are appealing because they
are simple to calculate, have clear physical meanings, and are
mathematically convenient in the context of optimization. But
they are not very well matched to perceived visual quality (e.g.,
[1]–[9]). In the last three decades, a great deal of effort has
gone into the development of quality assessment methods that
take advantage of known characteristics of the human visual
system (HVS). The majority of the proposed perceptual quality
assessment models have followed a strategy of modifying the
MSE measure so that errors are penalized in accordance with
their visibility. Section II summarizes this type of error-sensi-
tivity approach and discusses its difficulties and limitations. In
Section III, we describe a new paradigm for quality assessment,
based on the hypothesis that the HVS is highly adapted for
extracting structural information. As a specific example, we de-
velop a measure of structural similarity (SSIM) that compares
local patterns of pixel intensities that have been normalized
for luminance and contrast. In Section IV, we compare the test
results of different quality assessment models against a large
set of subjective ratings gathered for a database of 344 images
compressed with JPEG and JPEG2000.
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Fig. 1. A prototypical quality assessment system based on error sensitivity. Note that the CSF feature can be implemented either as a separate stage (as shown)
or within “Error Normalization.”

II. IMAGE QUALITY ASSESSMENT BASED ON

ERROR SENSITIVITY

An image signal whose quality is being evaluated can be
thought of as a sum of an undistorted reference signal and an
error signal. A widely adopted assumption is that the loss of
perceptual quality is directly related to the visibility of the error
signal. The simplest implementation of this concept is the MSE,
which objectively quantifies the strength of the error signal. But
two distorted images with the same MSE may have very dif-
ferent types of errors, some of which are much more visible than
others. Most perceptual image quality assessment approaches
proposed in the literature attempt to weight different aspects of
the error signal according to their visibility, as determined by
psychophysical measurements in humans or physiological mea-
surements in animals. This approach was pioneered by Mannos
and Sakrison [10], and has been extended by many other re-
searchers over the years. Reviews on image and video quality
assessment algorithms can be found in [4] and [11]–[13].

A. Framework

Fig. 1 illustrates a generic image quality assessment frame-
work based on error sensitivity. Most perceptual quality assess-
ment models can be described with a similar diagram, although
they differ in detail. The stages of the diagram are as follows.

• Pre-processing: This stage typically performs a variety of
basic operations to eliminate known distortions from the
images being compared. First, the distorted and reference
signals are properly scaled and aligned. Second, the signal
might be transformed into a color space (e.g., [14]) that
is more appropriate for the HVS. Third, quality assess-
ment metrics may need to convert the digital pixel values
stored in the computer memory into luminance values of
pixels on the display device through pointwise nonlinear
transformations. Fourth, a low-pass filter simulating the
point spread function of the eye optics may be applied.
Finally, the reference and the distorted images may be
modified using a nonlinear point operation to simulate
light adaptation.

• CSF Filtering: The contrast sensitivity function (CSF)
describes the sensitivity of the HVS to different spatial
and temporal frequencies that are present in the visual
stimulus. Some image quality metrics include a stage that
weights the signal according to this function (typically
implemented using a linear filter that approximates the
frequency response of the CSF). However, many recent
metrics choose to implement CSF as a base-sensitivity
normalization factor after channel decomposition.

• Channel Decomposition: The images are typically sepa-
rated into subbands (commonly called "channels" in the
psychophysics literature) that are selective for spatial and
temporal frequency as well as orientation. While some
quality assessment methods implement sophisticated
channel decompositions that are believed to be closely
related to the neural responses in the primary visual cortex
[2], [15]–[19], many metrics use simpler transforms such
as the discrete cosine transform (DCT) [20], [21] or
separable wavelet transforms [22]–[24]. Channel decom-
positions tuned to various temporal frequencies have also
been reported for video quality assessment [5], [25].

• Error Normalization: The error (difference) between
the decomposed reference and distorted signals in each
channel is calculated and normalized according to a
certain masking model, which takes into account the fact
that the presence of one image component will decrease
the visibility of another image component that is prox-
imate in spatial or temporal location, spatial frequency,
or orientation. The normalization mechanism weights the
error signal in a channel by a space-varying visibility
threshold [26]. The visibility threshold at each point is
calculated based on the energy of the reference and/or
distorted coefficients in a neighborhood (which may
include coefficients from within a spatial neighborhood
of the same channel as well as other channels) and the
base-sensitivity for that channel. The normalization
process is intended to convert the error into units of just
noticeable difference (JND). Some methods also consider
the effect of contrast response saturation (e.g., [2]).

• Error Pooling: The final stage of all quality metrics must
combine the normalized error signals over the spatial
extent of the image, and across the different channels,
into a single value. For most quality assessment methods,
pooling takes the form of a Minkowski norm as follows:

(1)

where is the normalized error of the -th coefficient
in the th channel, and is a constant exponent typically
chosen to lie between 1 and 4. Minkowski pooling may be
performed over space (index ) and then over frequency
(index ), or vice versa, with some nonlinearity between
them, or possibly with different exponents . A spatial
map indicating the relative importance of different regions
may also be used to provide spatially variant weighting
[25], [27], [28].
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B. Limitations

The underlying principle of the error-sensitivity approach
is that perceptual quality is best estimated by quantifying the
visibility of errors. This is essentially accomplished by simu-
lating the functional properties of early stages of the HVS, as
characterized by both psychophysical and physiological exper-
iments. Although this bottom-up approach to the problem has
found nearly universal acceptance, it is important to recognize
its limitations. In particular, the HVS is a complex and highly
nonlinear system, but most models of early vision are based
on linear or quasilinear operators that have been characterized
using restricted and simplistic stimuli. Thus, error-sensitivity
approaches must rely on a number of strong assumptions and
generalizations. These have been noted by many previous
authors, and we provide only a brief summary here.

• The Quality Definition Problem: The most fundamental
problem with the traditional approach is the definition of
image quality. In particular, it is not clear that error visi-
bility should be equated with loss of quality, as some dis-
tortions may be clearly visible but not so objectionable.
An obvious example would be multiplication of the image
intensities by a global scale factor. The study in [29] also
suggested that the correlation between image fidelity and
image quality is only moderate.

• The Suprathreshold Problem. The psychophysical exper-
iments that underlie many error sensitivity models are
specifically designed to estimate the threshold at which a
stimulus is just barely visible. These measured threshold
values are then used to define visual error sensitivity
measures, such as the CSF and various masking effects.
However, very few psychophysical studies indicate
whether such near-threshold models can be generalized
to characterize perceptual distortions significantly larger
than threshold levels, as is the case in a majority of image
processing situations. In the suprathreshold range, can
the relative visual distortions between different channels
be normalized using the visibility thresholds? Recent
efforts have been made to incorporate suprathreshold
psychophysics for analyzing image distortions (e.g.,
[30]–[34]).

• The Natural Image Complexity Problem. Most psy-
chophysical experiments are conducted using relatively
simple patterns, such as spots, bars, or sinusoidal gratings.
For example, the CSF is typically obtained from threshold
experiments using global sinusoidal images. The masking
phenomena are usually characterized using a superposi-
tion of two (or perhaps a few) different patterns. But all
such patterns are much simpler than real world images,
which can be thought of as a superposition of a much
larger number of simple patterns. Can the models for
the interactions between a few simple patterns gener-
alize to evaluate interactions between tens or hundreds
of patterns? Is this limited number of simple-stimulus
experiments sufficient to build a model that can predict
the visual quality of complex-structured natural images?
Although the answers to these questions are currently not
known, the recently established Modelfest dataset [35]
includes both simple and complex patterns, and should
facilitate future studies.

• The Decorrelation Problem. When one chooses to use a
Minkowski metric for spatially pooling errors, one is im-
plicitly assuming that errors at different locations are sta-
tistically independent. This would be true if the processing
prior to the pooling eliminated dependencies in the input
signals. Empirically, however, this is not the case for linear
channel decomposition methods such as the wavelet trans-
form. It has been shown that a strong dependency exists
between intra- and inter-channel wavelet coefficients of
natural images [36], [37]. In fact, state-of-the-art wavelet
image compression techniques achieve their success by
exploiting this strong dependency [38]–[41]. Psychophys-
ically, various visual masking models have been used to
account for the interactions between coefficients [2], [42].
Statistically, it has been shown that a well-designed non-
linear gain control model, in which parameters are opti-
mized to reduce dependencies rather than for fitting data
from masking experiments, can greatly reduce the depen-
dencies of the transform coefficients [43], [44]. In [45],
[46], it is shown that optimal design of transformation and
masking models can reduce both statistical and percep-
tual dependencies. It remains to be seen how much these
models can improve the performance of the current quality
assessment algorithms.

• The Cognitive Interaction Problem. It is widely known
that cognitive understanding and interactive visual pro-
cessing (e.g., eye movements) influence the perceived
quality of images. For example, a human observer will
give different quality scores to the same image if s/he
is provided with different instructions [4], [30]. Prior
information regarding the image content, or attention
and fixation, may also affect the evaluation of the image
quality [4], [47]. But most image quality metrics do not
consider these effects, as they are difficult to quantify and
not well understood.

III. STRUCTURAL-SIMILARITY-BASED

IMAGE QUALITY ASSESSMENT

Natural image signals are highly structured: their pixels
exhibit strong dependencies, especially when they are spatially
proximate, and these dependencies carry important information
about the structure of the objects in the visual scene. The
Minkowski error metric is based on pointwise signal differ-
ences, which are independent of the underlying signal structure.
Although most quality measures based on error sensitivity
decompose image signals using linear transformations, these
do not remove the strong dependencies, as discussed in the
previous section. The motivation of our new approach is to find
a more direct way to compare the structures of the reference
and the distorted signals.

A. New Philosophy

In [6] and [9], a new framework for the design of image
quality measures was proposed, based on the assumption that
the human visual system is highly adapted to extract structural
information from the viewing field. It follows that a measure of
structural information change can provide a good approxima-
tion to perceived image distortion.
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Fig. 2. Comparison of “Boat” images with different types of distortions, all with MSE = 210. (a) Original image (8 bits/pixel; cropped from 512� 512 to 256
� 256 for visibility). (b) Contrast-stretched image, MSSIM = 0:9168. (c) Mean-shifted image, MSSIM = 0:9900. (d) JPEG compressed image, MSSIM =

0:6949. (e) Blurred image, MSSIM = 0:7052. (f) Salt-pepper impulsive noise contaminated image, MSSIM = 0:7748.

This new philosophy can be best understood through com-
parison with the error sensitivity philosophy. First, the error
sensitivity approach estimates perceived errors to quantify
image degradations, while the new philosophy considers image
degradations as perceived changes in structural information
variation. A motivating example is shown in Fig. 2, where the
original “Boat” image is altered with different distortions, each
adjusted to yield nearly identical MSE relative to the original
image. Despite this, the images can be seen to have dras-
tically different perceptual quality. With the error sensitivity
philosophy, it is difficult to explain why the contrast-stretched
image has very high quality in consideration of the fact that its
visual difference from the reference image is easily discerned.
But it is easily understood with the new philosophy since
nearly all the structural information of the reference image is
preserved, in the sense that the original information can be
nearly fully recovered via a simple pointwise inverse linear
luminance transform (except perhaps for the very bright and
dark regions where saturation occurs). On the other hand, some
structural information from the original image is permanently
lost in the JPEG compressed and the blurred images, and
therefore they should be given lower quality scores than the
contrast-stretched and mean-shifted images.

Second, the error-sensitivity paradigm is a bottom-up
approach, simulating the function of relevant early-stage com-
ponents in the HVS. The new paradigm is a top-down approach,
mimicking the hypothesized functionality of the overall HVS.
This, on the one hand, avoids the suprathreshold problem
mentioned in the previous section because it does not rely on

threshold psychophysics to quantify the perceived distortions.
On the other hand, the cognitive interaction problem is also
reduced to a certain extent because probing the structures of
the objects being observed is thought of as the purpose of the
entire process of visual observation, including high level and
interactive processes.

Third, the problems of natural image complexity and decor-
relation are also avoided to some extent because the new
philosophy does not attempt to predict image quality by accu-
mulating the errors associated with psychophysically understood
simple patterns. Instead, the new philosophy proposes to eval-
uate the structural changes between two complex-structured
signals directly.

B. The SSIM Index

We construct a specific example of a SSIM quality measure
from the perspective of image formation. A previous instantia-
tion of this approach was made in [6]–[8] and promising results
on simple tests were achieved. In this paper, we generalize this
algorithm, and provide a more extensive set of validation results.

The luminance of the surface of an object being observed is
the product of the illumination and the reflectance, but the struc-
tures of the objects in the scene are independent of the illumi-
nation. Consequently, to explore the structural information in
an image, we wish to separate the influence of the illumination.
We define the structural information in an image as those at-
tributes that represent the structure of objects in the scene, inde-
pendent of the average luminance and contrast. Since luminance
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Fig. 3. Diagram of the structural similarity (SSIM) measurement system.

and contrast can vary across a scene, we use the local luminance
and contrast for our definition.

The system diagram of the proposed quality assessment
system is shown in Fig. 3. Suppose and are two nonnegative
image signals, which have been aligned with each other (e.g.,
spatial patches extracted from each image). If we consider
one of the signals to have perfect quality, then the similarity
measure can serve as a quantitative measurement of the quality
of the second signal. The system separates the task of similarity
measurement into three comparisons: luminance, contrast and
structure. First, the luminance of each signal is compared. As-
suming discrete signals, this is estimated as the mean intensity

(2)

The luminance comparison function is then a function
of and .

Second, we remove the mean intensity from the signal. In
discrete form, the resulting signal corresponds to the
projection of vector onto the hyperplane defined by

(3)

We use the standard deviation (the square root of variance) as an
estimate of the signal contrast. An unbiased estimate in discrete
form is given by

(4)

The contrast comparison is then the comparison of
and .

Third, the signal is normalized (divided) by its own standard
deviation, so that the two signals being compared have unit stan-
dard deviation. The structure comparison is conducted
on these normalized signals and .

Finally, the three components are combined to yield an
overall similarity measure

(5)

An important point is that the three components are relatively
independent. For example, the change of luminance and/or con-
trast will not affect the structures of images.

In order to complete the definition of the similarity measure
in (5), we need to define the three functions , , and

, as well as the combination function . We also would
like the similarity measure to satisfy the following conditions.

1) Symmetry: .
2) Boundedness: .
3) Unique maximum: if and only if (in

discrete representations, for all ).
For luminance comparison, we define

(6)

where the constant is included to avoid instability when
is very close to zero. Specifically, we choose

(7)

where is the dynamic range of the pixel values (255 for 8-bit
grayscale images), and is a small constant. Similar
considerations also apply to contrast comparison and structure
comparison described later. Equation (6) is easily seen to obey
the three properties listed above.

Equation (6) is also qualitatively consistent with Weber’s law,
which has been widely used to model light adaptation (also
called luminance masking) in the HVS. According to Weber’s
law, the magnitude of a just-noticeable luminance change is
approximately proportional to the background luminance for
a wide range of luminance values. In other words, the HVS is
sensitive to the relative luminance change, and not the absolute
luminance change. Letting represent the size of luminance
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change relative to background luminance, we rewrite the lumi-
nance of the distorted signal as . Substituting
this into (6) gives

(8)

If we assume is small enough (relative to ) to be ignored,
then is a function only of , qualitatively consistent with
Weber’s law.

The contrast comparison function takes a similar form

(9)

where , and . This definition again sat-
isfies the three properties listed above. An important feature of
this function is that with the same amount of contrast change

, this measure is less sensitive to the case of high
base contrast than low base contrast. This is consistent with
the contrast-masking feature of the HVS.

Structure comparison is conducted after luminance subtrac-
tion and variance normalization. Specifically, we associate the
two unit vectors and , each lying in
the hyperplane defined by (3), with the structure of the two im-
ages. The correlation (inner product) between these is a simple
and effective measure to quantify the structural similarity. No-
tice that the correlation between and is
equivalent to the correlation coefficient between and . Thus,
we define the structure comparison function as follows:

(10)

As in the luminance and contrast measures, we have introduced
a small constant in both denominator and numerator. In discrete
form, can be estimated as

(11)

Geometrically, the correlation coefficient corresponds to the co-
sine of the angle between the vectors and . Note
also that can take on negative ’s.

Finally, we combine the three comparisons of (6), (9) and
(10) and name the resulting similarity measure the SSIM index
between signals and

(12)

where , and are parameters used to adjust the
relative importance of the three components. It is easy to verify
that this definition satisfies the three conditions given above. In
order to simplify the expression, we set and

in this paper. This results in a specific form of the
SSIM index

(13)

The “universal quality index” (UQI) defined in [6] and [7] cor-
responds to the special case that , which produces
unstable results when either or is very close
to zero.

The relationship between the SSIM index and more tradi-
tional quality metrics may be illustrated geometrically in a
vector space of image components. These image components
can be either pixel intensities or other extracted features such as
transformed linear coefficients. Fig. 4 shows equal-distortion
contours drawn around three different example reference
vectors, each of which represents the local content of one
reference image. For the purpose of illustration, we show only
a two-dimensional space, but in general the dimensionality
should match the number of image components being com-
pared. Each contour represents a set of images with equal
distortions relative to the enclosed reference image. Fig. 4(a)
shows the result for a simple Minkowski metric. Each contour
has the same size and shape (a circle here, as we are assuming
an exponent of 2). That is, perceptual distance corresponds to
Euclidean distance. Fig. 4(b) shows a Minkowski metric in
which different image components are weighted differently.
This could be, for example, weighting according to the CSF,
as is common in many models. Here the contours are ellipses,
but still are all the same size. These are shown aligned with the
axes, but in general could be tilted to any fixed orientation.

Many recent models incorporate contrast masking behaviors,
which has the effect of rescaling the equal-distortion contours
according to the signal magnitude, as shown in Fig. 4(c). This
may be viewed as a type of adaptive distortion metric: it de-
pends not just on the difference between the signals, but also
on the signals themselves. Fig. 4(d) shows a combination of
contrast masking (magnitude weighting) followed by compo-
nent weighting. Our proposed method, on the other hand, sep-
arately computes a comparison of two independent quantities:
the vector lengths, and their angles. Thus, the contours will be
aligned with the axes of a polar coordinate system. Figs. 4(e)
and 4(f) show two examples of this, computed with different
exponents. Again, this may be viewed as an adaptive distortion
metric, but unlike previous models, both the size and the shape
of the contours are adapted to the underlying signal. Some re-
cent models that use divisive normalization to describe masking
effects also exhibit signal-dependent contour orientations (e.g.,
[45], [46], [48]), although precise alignment with the axes of a
polar coordinate system as in Fig. 4(e) and (f) is not observed in
these methods.

C. Image Quality Assessment Using SSIM Index

For image quality assessment, it is useful to apply the SSIM
index locally rather than globally. First, image statistical fea-
tures are usually highly spatially nonstationary. Second, image
distortions, which may or may not depend on the local image
statistics, may also be space-variant. Third, at typical viewing
distances, only a local area in the image can be perceived with
high resolution by the human observer at one time instance
(because of the foveation feature of the HVS [49], [50]). And
finally, localized quality measurement can provide a spatially
varying quality map of the image, which delivers more infor-
mation about the quality degradation of the image and may be
useful in some applications.

In [6] and [7], the local statistics , and are computed
within a local 8 8 square window, which moves pixel-by-pixel
over the entire image. At each step, the local statistics and SSIM
index are calculated within the local window. One problem with
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Fig. 4. Three example equal-distance contours for different quality metrics. (a) Minkowski error measurement systems. (b) Component weighted Minkowski error
measurement systems. (c) Magnitude-weighted Minkowski error measurement systems. (d) Magnitude and component-weighted Minkowski error measurement
systems. (e) The proposed system (a combination of (9) and (10)) with more emphasis on s(x;y). (f) The proposed system [a combination of (9) and (10)] with
more emphasis on c(x;y). Each image is represented as a vector, whose entries are image components. Note: this is an illustration in 2-D space. In practice, the
number of dimensions should be equal to the number of image components used for comparison (e.g, the number of pixels or transform coefficients).

this method is that the resulting SSIM index map often ex-
hibits undesirable “blocking” artifacts. In this paper, we use
an 11 11 circular-symmetric Gaussian weighting function

, with standard deviation of 1.5 sam-
ples, normalized to unit sum . The estimates of
local statistics , and are then modified accordingly as

(14)

(15)

(16)

With such a windowing approach, the quality maps exhibit a lo-
cally isotropic property. Throughout this paper, the SSIM mea-
sure uses the following parameter settings: ;

. These values are somewhat arbitrary, but we find that in
our current experiments, the performance of the SSIM index al-
gorithm is fairly insensitive to variations of these values.

In practice, one usually requires a single overall quality mea-
sure of the entire image. We use a mean SSIM (MSSIM) index
to evaluate the overall image quality

(17)

where and are the reference and the distorted images, re-
spectively; and are the image contents at the th local
window; and is the number of local windows of the image.
Depending on the application, it is also possible to compute a
weighted average of the different samples in the SSIM index
map. For example, region-of-interest image processing systems
may give different weights to different segmented regions in
the image. As another example, it has been observed that dif-
ferent image textures attract human fixations with varying de-
grees (e.g., [51], [52]). A smoothly varying foveated weighting
model (e.g., [50]) can be employed to define the weights. In this
paper, however, we use uniform weighting. A MATLAB imple-
mentation of the SSIM index algorithm is available online at
[53].

IV. EXPERIMENTAL RESULTS

Many image quality assessment algorithms have been shown
to behave consistently when applied to distorted images created
from the same original image, using the same type of distortions
(e.g., JPEG compression). However, the effectiveness of these
models degrades significantly when applied to a set of images
originating from different reference images, and/or including a
variety of different types of distortions. Thus, cross-image and
cross-distortion tests are critical in evaluating the effectiveness
of an image quality metric. It is impossible to show a thorough
set of such examples, but the images in Fig. 2 provide an encour-
aging starting point for testing the cross-distortion capability of
the quality assessment algorithms. The MSE and MSSIM mea-
surement results are given in the figure caption. Obviously, MSE
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performs very poorly in this case. The MSSIM values exhibit
much better consistency with the qualitative visual appearance.

A. Best-Case/Worst-Case Validation

We also have developed a more efficient methodology for
examining the relationship between our objective measure
and perceived quality. Starting from a distorted image, we
ascend/descend the gradient of MSSIM while constraining
the MSE to remain equal to that of the initial distorted image.
Specifically, we iterate the following two linear-algebraic steps:

where is the square root of the constrained MSE, controls
the step size, and is a unit vector defined by

and is a projection operator

with the identity operator. MSSIM is differentiable and this
procedure converges to a local maximum/minimum of the ob-
jective measure. Visual inspection of these best- and worst-case
images, along with the initial distorted image, provides a vi-
sual indication of the types of distortion deemed least/most im-
portant by the objective measure. Therefore, it is an expedient
and direct method for revealing perceptual implications of the
quality measure. An example is shown in Fig. 5, where the ini-
tial image is contaminated with Gaussian white noise. It can be
seen that the local structures of the original image are very well
preserved in the maximal MSSIM image. On the other hand,
the image structures are changed dramatically in the worst-case
MSSIM image, in some cases reversing contrast.

B. Test on JPEG and JPEG2000 Image Database

We compare the cross-distortion and cross-image perfor-
mances of different quality assessment models on an image
database composed of JPEG and JPEG2000 compressed
images. Twenty-nine high-resolution 24 bits/pixel RGB color
images (typically 768 512 or similar size) were compressed
at a range of quality levels using either JPEG or JPEG2000,
producing a total of 175 JPEG images and 169 JPEG2000
images. The bit rates were in the range of 0.150 to 3.336
and 0.028 to 3.150 bits/pixel, respectively, and were chosen
nonuniformly such that the resulting distribution of subjective
quality scores was approximately uniform over the entire range.
Subjects viewed the images from comfortable seating distances
(this distance was only moderately controlled, to allow the
data to reflect natural viewing conditions), and were asked to
provide their perception of quality on a continuous linear scale
that was divided into five equal regions marked with adjectives
“Bad,” “Poor,” “Fair,” “Good,” and “Excellent.” Each JPEG
and JPEG2000 compressed image was viewed by 13 20
subjects and 25 subjects, respectively. The subjects were mostly
male college students.

Raw scores for each subject were normalized by the mean
and variance of scores for that subject (i.e., raw values were

(a) (b)

(c)

(d)

gradient
ascent

add
noise

original image

gradient
descent

Fig. 5. Best- and worst-case SSIM images, with identical MSE. These are
computed by gradient ascent/descent iterative search on MSSIM measure,
under the constraint of fixed MSE = 2500. (a) Original image (100 � 100,
8 bits/pixel, cropped from the “Boat” image). (b) Initial image, contaminated
with Gaussian white noise (MSSIM = 0:3021). (c) Maximum MSSIM image
(MSSIM = 0:9337). (d) Minimum MSSIM image (MSSIM = �0:5411).

converted to Z-scores [54]) and then the entire data set was
rescaled to fill the range from 1 to 100. Mean opinion scores
(MOSs) were then computed for each image, after removing
outliers (most subjects had no outliers). The average standard
deviations (for each image) of the subjective scores for JPEG,
JPEG2000, and all images were 6.00, 7.33, and 6.65, respec-
tively. The image database, together with the subjective score
and standard deviation for each image, has been made available
on the Internet at [55].

The luminance component of each JPEG and JPEG2000
compressed image is averaged over local 2 2 window and
downsampled by a factor of 2 before the MSSIM value is
calculated. Our experiments with the current dataset show that
the use of the other color components does not significantly
change the performance of the model, though this should not
be considered generally true for color image quality assess-
ment. Unlike many other perceptual image quality assessment
approaches, no specific training procedure is employed before
applying the proposed algorithm to the database, because the
proposed method is intended for general-purpose image quality
assessment (as opposed to image compression alone).

Figs. 6 and 7 show some example images from the database
at different quality levels, together with their SSIM index maps



608 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004

(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

(j) (l)(k)

Fig. 6. Sample JPEG images compressed to different quality levels (original size: 768 � 512; cropped to 256 � 192 for visibility). The original (a) “Buildings,
” (b) “Ocean,” and (c) “Monarch” images. (d) Compressed to 0.2673 bits/pixel, PSNR = 21:98 dB, MSSIM = 0:7118. (e) Compressed to 0.2980 bits/pixel,
PSNR = 30:87 dB, MSSIM = 0:8886. (f) Compressed to 0.7755 bits/pixel, PSNR = 36:78 dB, MSSIM = 0:9898. (g), (h) and (i) show SSIM maps of
the compressed images, where brightness indicates the magnitude of the local SSIM index (squared for visibility). (j), (k) and (l) show absolute error maps of the
compressed images (contrast-inverted for easier comparison to the SSIM maps).

and absolute error maps. Note that at low bit rate, the coarse
quantization in JPEG and JPEG2000 algorithms often results
in smooth representations of fine-detail regions in the image
[e.g., the tiles in Fig. 6(d) and the trees in Fig. 7(d)]. Compared
with other types of regions, these regions may not be worse
in terms of pointwise difference measures such as the absolute
error. However, since the structural information of the image
details are nearly completely lost, they exhibit poorer visual
quality. Comparing Fig. 6(g) with Fig. 6(j), and Fig. 7(g) with
6(j), we observe that the SSIM index is better in capturing such

poor quality regions. Also notice that for images with intensive
strong edge structures such as Fig. 7(c), it is difficult to reduce
the pointwise errors in the compressed image, even at relatively
high bit rate, as exemplified by Fig. 7(l). However, the com-
pressed image supplies acceptable perceived quality as shown
in Fig. 7(f). In fact, although the visual quality of Fig. 7(f) is
better than Fig. 7(e), its absolute error map Fig. 7(l) appears to
be worse than Fig. 7(k), as is confirmed by their PSNR values.
The SSIM index maps Figs. 7(h) and 7(i) deliver better consis-
tency with perceived quality measurement.
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

(j) (l)(k)

Fig. 7. Sample JPEG2000 images compressed to different quality levels (original size: 768 � 512; cropped to 256 � 192 for visibility). The original
(a) “Stream,” (b) “Caps,” and (c) “Bikes” images, respectively. (d) Compressed to 0.1896 bits/pixel, PSNR = 23:46 dB, MSSIM = 0:7339. (e) Compressed
to 0.1982 bits/pixel, PSNR = 34:56 dB, MSSIM = 0:9409. (f) Compressed to 1.1454 bits/pixel, PSNR = 33:47 dB, MSSIM = 0:9747. (g), (h) and (i)
show SSIM maps of the compressed images, where brightness indicates the magnitude of the local SSIM index (squared for visibility). (j), (k) and (l) show
absolute error maps of the compressed images (contrast-inverted for easier comparison to the SSIM maps).

The quality assessment models used for comparison include
PSNR, the well-known Sarnoff model,2 UQI [7] and MSSIM.
The scatter plot of MOS versus model prediction for each
model is shown in Fig. 8. If PSNR is considered as a benchmark
method to evaluate the effectiveness of the other image quality
metrics, the Sarnoff model performs quite well in this test. This
is in contrast with previous published test results (e.g., [57],
[58]), where the performance of most models (including the

2Available at http://www.sarnoff.com/products_services/video_viseon/jnd-
metrix/.

Sarnoff model) were reported to be statistically equivalent to
root mean squared error [57] and PSNR [58]. The UQI method
performs much better than MSE for the simple cross-distortion
test in [7], [8], but does not deliver satisfactory results in
Fig. 8. We think the major reason is that at nearly flat regions,
the denominator of the contrast comparison formula is close
to zero, which makes the algorithm unstable. By inserting
the small constants and , MSSIM completely avoids
this problem and the scatter slot demonstrates that it supplies
remarkably good prediction of the subjective scores.
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Fig. 8. Scatter plots of subjective mean opinion score (MOS) versus model prediction. Each sample point represents one test image. (a) PSNR. (b) Sarnoff model
(using Sarnoff JNDmetrix 8.0 [55]). (c) UQI [7] (equivalent to MSSIM with square window and K = K = 0). d) MSSIM (Gaussian window, K = 0:01;
K = 0:03).

In order to provide quantitative measures on the performance
of the objective quality assessment models, we follow the per-
formance evaluation procedures employed in the video quality
experts group (VQEG) Phase I FR-TV test [58], where four
evaluation metrics were used. First, logistic functions are used
in a fitting procedure to provide a nonlinear mapping between
the objective/subjective scores. The fitted curves are shown in
Fig. 8. In [58], Metric 1 is the correlation coefficient between
objective/subjective scores after variance-weighted regression
analysis. Metric 2 is the correlation coefficient between objec-
tive/subjective scores after nonlinear regression analysis. These
two metrics combined, provide an evaluation of prediction ac-
curacy. The third metric is the Spearman rank-order correlation
coefficient between the objective/subjective scores. It is consid-
ered as a measure of prediction monotonicity. Finally, metric 4 is
the outlier ratio (percentage of the number of predictions outside
the range of 2 times of the standard deviations) of the predic-
tions after the nonlinear mapping, which is a measure of predic-
tion consistency. More details on these metrics can be found in
[58]. In addition to these, we also calculated the mean absolute
prediction error (MAE), and root mean square prediction error
(rms) after nonlinear regression, and weighted mean absolute
prediction error (WMAE) and weighted root mean square pre-
diction error (WRMS) after variance-weighted regression. The

evaluation results for all the models being compared are given in
Table I. For every one of these criteria, MSSIM performs better
than all of the other models being compared.

V. DISCUSSION

In this paper, we have summarized the traditional approach
to image quality assessment based on error-sensitivity, and have
enumerated its limitations. We have proposed the use of struc-
tural similarity as an alternative motivating principle for the de-
sign of image quality measures. To demonstrate our structural
similarity concept, we developed an SSIM index and showed
that it compares favorably with other methods in accounting
for our experimental measurements of subjective quality of 344
JPEG and JPEG2000 compressed images.

Although the proposed SSIM index method is motivated
from substantially different design principles, we see it as
complementary to the traditional approach. Careful analysis
shows that both the SSIM index and several recently developed
divisive-normalization based masking models exhibit input-de-
pendent behavior in measuring signal distortions [45], [46],
[48]. It seems possible that the two approaches may eventually
converge to similar solutions.
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TABLE I
PERFORMANCE COMPARISON OF IMAGE QUALITY ASSESSMENT MODELS. CC: CORRELATION COEFFICIENT; MAE: MEAN ABSOLUTE ERROR; RMS: ROOT MEAN

SQUARED ERROR; OR: OUTLIER RATIO; WMAE: WEIGHTED MEAN ABSOLUTE ERROR; WRMS: WEIGHTED ROOT MEAN SQUARED

ERROR; SROCC: SPEARMAN RANK-ORDER CORRELATION COEFFICIENT

There are a number of issues that are worth investigation with
regard to the specific SSIM index of (12). First, the optimization
of the SSIM index for various image processing algorithms
needs to be studied. For example, it may be employed for
rate-distortion optimizations in the design of image compression
algorithms. This is not an easy task since (12) is mathematically
more cumbersome than MSE. Second, the application scope
of the SSIM index may not be restricted to image processing.
In fact, because it is a symmetric measure, it can be thought
of as a similarity measure for comparing any two signals. The
signals can be either discrete or continuous, and can live in
a space of arbitrary dimensionality.

We consider the proposed SSIM indexing approach as a par-
ticular implementation of the philosophy of structural similarity,
from an image formation point of view. Under the same phi-
losophy, other approaches may emerge that could be signifi-
cantly different from the proposed SSIM indexing algorithm.
Creative investigation of the concepts of structural information
and structural distortion are likely to drive the success of these
innovations.

ACKNOWLEDGMENT

The authors would like to thank Dr. J. Malo and Dr. Lu for
insightful comments, Dr. J. Lubin and Dr. D. Dixon for pro-
viding the Sarnoff JNDmetrix software, Dr. P. Corriveau and
Dr. J. Libert for supplying the routines used in VQEG Phase I
FR-TV test for the regression analysis of subjective/objective
data comparison, and Visual Delights, Inc. for allowing the au-
thors to use their images for subjective experiments.

REFERENCES

[1] B. Girod, “What’s wrong with mean-squared error,” in Digital Images
and Human Vision, A. B. Watson, Ed. Cambridge, MA: MIT Press,
1993, pp. 207–220.

[2] P. C. Teo and D. J. Heeger, “Perceptual image distortion,” in Proc. SPIE,
vol. 2179, 1994, pp. 127–141.

[3] A. M. Eskicioglu and P. S. Fisher, “Image quality measures and their per-
formance,” IEEE Trans. Commun., vol. 43, pp. 2959–2965, Dec. 1995.

[4] M. P. Eckert and A. P. Bradley, “Perceptual quality metrics applied to
still image compression,” Signal Processing, vol. 70, pp. 177–200, Nov.
1998.

[5] S. Winkler, “A perceptual distortion metric for digital color video,” in
Proc. SPIE, vol. 3644, 1999, pp. 175–184.

[6] Z. Wang, “Rate scalable Foveated image and video communications,”
Ph.D. dissertation, Dept. Elect. Comput. Eng., Univ. Texas at Austin,
Austin, TX, Dec. 2001.

[7] Z. Wang and A. C. Bovik, “A universal image quality index,” IEEE
Signal Processing Letters, vol. 9, pp. 81–84, Mar. 2002.

[8] Z. Wang. Demo Images and Free Software for ‘a Universal
Image Quality Index’. [Online] Available: http://anchovy.ece.
utexas.edu/~zwang/research/quality_index/demo.html

[9] Z. Wang, A. C. Bovik, and L. Lu, “Why is image quality assessment so
difficult,” in Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Pro-
cessing, vol. 4, Orlando, FL, May 2002, pp. 3313–3316.

[10] J. L. Mannos and D. J. Sakrison, “The effects of a visual fidelity criterion
on the encoding of images,” IEEE Trans. Inform. Theory, vol. IT-4, pp.
525–536, 1974.

[11] T. N. Pappas and R. J. Safranek, “Perceptual criteria for image
quality evaluation,” in Handbook of Image and Video Proc., A. Bovik,
Ed. New York: Academic, 2000.

[12] Z. Wang, H. R. Sheikh, and A. C. Bovik, “Objective video quality assess-
ment,” in The Handbook of Video Databases: Design and Applications,
B. Furht and O. Marques, Eds. Boca Raton, FL: CRC Press, 2003.

[13] S. Winkler, “Issues in vision modeling for perceptual video quality as-
sessment,” Signal Processing, vol. 78, pp. 231–252, 1999.

[14] A. B. Poirson and B. A. Wandell, “Appearance of colored patterns: pat-
tern-color separability,” J. Opt. Soc. Amer. A: Opt. Image Sci., vol. 10,
no. 12, pp. 2458–2470, 1993.

[15] A. B. Watson, “The cortex transform: rapid computation of simulated
neural images,” Comput. Vis., Graph., Image Process., vol. 39, pp.
311–327, 1987.

[16] S. Daly, “The visible difference predictor: an algorithm for the assess-
ment of image fidelity,” in Digital Images and Human Vision, A. B.
Watson, Ed. Cambridge, MA: MIT Press, 1993, pp. 179–206.

[17] J. Lubin, “The use of psychophysical data and models in the analysis of
display system performance,” in Digital Images and Human Vision, A.
B. Watson, Ed. Cambridge, MA: MIT Press, 1993, pp. 163–178.

[18] D. J. Heeger and P. C. Teo, “A model of perceptual image fidelity,” in
Proc. IEEE Int. Conf. Image Processing, 1995, pp. 343–345.

[19] E. P. Simoncelli, W. T. Freeman, E. H. Adelson, and D. J. Heeger,
“Shiftable multi-scale transforms,” IEEE Trans. Inform. Theory, vol.
38, pp. 587–607, 1992.

[20] A. B. Watson, “DCT quantization matrices visually optimized for indi-
vidual images,” in Proc. SPIE, vol. 1913, 1993.

[21] A. B. Watson, J. Hu, and J. F. McGowan III, “DVQ: a digital video
quality metric based on human vision,” J. Electron. Imaging, vol. 10,
no. 1, pp. 20–29, 2001.

[22] A. B. Watson, G. Y. Yang, J. A. Solomon, and J. Villasenor, “Visibility
of wavelet quantization noise,” IEEE Trans. Image Processing, vol. 6,
pp. 1164–1175, Aug. 1997.

[23] A. P. Bradley, “A wavelet visible difference predictor,” IEEE Trans.
Image Processing, vol. 5, pp. 717–730, May 1999.

[24] Y. K. Lai and C.-C. J. Kuo, “A Haar wavelet approach to compressed
image quality measurement,” J. Vis. Commun. Image Repres., vol. 11,
pp. 17–40, Mar. 2000.

[25] C. J. van den Branden Lambrecht and O. Verscheure, “Perceptual quality
measure using a spatio-temporal model of the human visual system,” in
Proc. SPIE, vol. 2668, 1996, pp. 450–461.

[26] A. B. Watson and J. A. Solomon, “Model of visual contrast gain control
and pattern masking,” J. Opt. Soc. Amer., vol. 14, no. 9, pp. 2379–2391,
1997.

[27] W. Xu and G. Hauske, “Picture quality evaluation based on error seg-
mentation,” in Proc. SPIE, vol. 2308, 1994, pp. 1454–1465.

[28] W. Osberger, N. Bergmann, and A. Maeder, “An automatic image
quality assessment technique incorporating high level perceptual
factors,” in Proc. IEEE Int. Conf. Image Processing, 1998, pp. 414–418.

[29] D. A. Silverstein and J. E. Farrell, “The relationship between image fi-
delity and image quality,” in Proc. IEEE Int. Conf. Image Processing,
1996, pp. 881–884.



612 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004

[30] D. R. Fuhrmann, J. A. Baro, and J. R. Cox Jr., “Experimental evalua-
tion of psychophysical distortion metrics for JPEG-encoded images,” J.
Electron. Imaging, vol. 4, pp. 397–406, Oct. 1995.

[31] A. B. Watson and L. Kreslake, “Measurement of visual impairment
scales for digital video,” in Proc. SPIE—Human Vision, Visual Pro-
cessing, and Digital Display, , vol. 4299, 2001.

[32] J. G. Ramos and S. S. Hemami, “Suprathreshold wavelet coefficient
quantization in complex stimuli: psychophysical evaluation and anal-
ysis,” J. Opt. Soc. Amer. A, vol. 18, pp. 2385–2397, 2001.

[33] D. M. Chandler and S. S. Hemami, “Additivity models for
suprathreshold distortion in quantized wavelet-coded images,” in
Proc. SPIE—Human Vision and Electronic Imaging VII, vol. 4662, Jan.
2002.

[34] J. Xing, “An image processing model of contrast perception and dis-
crimination of the human visual system,” in SID Conf., Boston, MA,
May 2002.

[35] A. B. Watson, “Visual detection of spatial contrast patterns: evaluation
of five simple models,” Opt. Exp., vol. 6, pp. 12–33, Jan. 2000.

[36] E. P. Simoncelli, “Statistical models for images: compression, restora-
tion and synthesis,” in Proc 31st Asilomar Conf. Signals, Systems and
Computers, Pacific Grove, CA, Nov. 1997, pp. 673–678.

[37] J. Liu and P. Moulin, “Information-theoretic analysis of interscale and
intrascale dependencies between image wavelet coefficients,” IEEE
Trans. Image Processing, vol. 10, pp. 1647–1658, Nov. 2001.

[38] J. M. Shapiro, “Embedded image coding using zerotrees of wavelets
coefficients,” IEEE Trans. Signal Processing, vol. 41, pp. 3445–3462,
Dec. 1993.

[39] A. Said and W. A. Pearlman, “A new, fast, and efficient image codec
based on set partitioning in hierarchical trees,” IEEE Trans. Circuits
Syst. Video Technol., vol. 6, pp. 243–250, June 1996.

[40] R. W. Buccigrossi and E. P. Simoncelli, “Image compression via joint
statistical characterization in the wavelet domain,” IEEE Trans. Image
Processing, vol. 8, pp. 1688–1701, Dec. 1999.

[41] D. S. Taubman and M. W. Marcellin, JPEG 2000: Image Compression
Fundamentals, Standards, and Practice. Norwell, MA: Kluwer, 2001.

[42] J. M. Foley and G. M. Boynton, “A new model of human luminance
pattern vision mechanisms: analysis of the effects of pattern orientation,
spatial phase, and temporal frequency,” in Proc. SPIE—Computational
Vision Based on Neurobiology, vol. 2054, T. A. Lawton, Ed., 1994.

[43] O. Schwartz and E. P. Simoncelli, “Natural signal statistics and sensory
gain control,” Nature: Neuroscience, vol. 4, pp. 819–825, Aug. 2001.

[44] M. J. Wainwright, O. Schwartz, and E. P. Simoncelli, “Natural image
statistics and divisive normalization: modeling nonlinearity and adap-
tation in cortical neurons,” in Probabilistic Models of the Brain: Per-
ception and Neural Function, R. Rao, B. Olshausen, and M. Lewicki,
Eds. Cambridge, MA: MIT Press, 2002.

[45] J. Malo, R. Navarro, I. Epifanio, F. Ferri, and J. M. Artigas, “Non-linear
invertible representation for joint statistical and perceptual feature decor-
relation,” Lecture Notes on Computer Science, vol. 1876, pp. 658–667,
2000.

[46] I. Epifanio, J. Gutiérrez, and J. Malo, “Linear transform for simultaneous
diagonalization of covariance and perceptual metric matrix in image
coding,” Pattern Recognit., vol. 36, pp. 1799–1811, Aug. 2003.

[47] W. F. Good, G. S. Maitz, and D. Gur, “Joint photographic experts
group (JPEG) compatible data compression of mammograms,” J. Dig.
Imaging, vol. 17, no. 3, pp. 123–132, 1994.

[48] A. Pons, J. Malo, J. M. Artigas, and P. Capilla, “Image quality metric
based on multidimensional contrast perception models,” Displays, vol.
20, pp. 93–110, 1999.

[49] W. S. Geisler and M. S. Banks, “Visual performance,” in Handbook of
Optics, M. Bass, Ed. New York: McGraw-Hill, 1995.

[50] Z. Wang and A. C. Bovik, “Embedded foveation image coding,” IEEE
Trans. Image Processing, vol. 10, pp. 1397–1410, Oct. 2001.

[51] C. M. Privitera and L. W. Stark, “Algorithms for defining visual re-
gions-of-interest: comparison with eye fixations,” IEEE Trans. Pattern
Anal. Machine Intell., vol. 22, pp. 970–982, Sept. 2000.

[52] U. Rajashekar, L. K. Cormack, and A. C. Bovik, “Image features that
draw fixations,” in Proc. IEEE Int. Conf. Image Processing, Barcelona,
Spain, Sept. 2003.

[53] Z. Wang. The SSIM Index for Image Quality Assessment. [Online]
Available: http://www.cns.nyu.edu/~lcv/ssim/

[54] A. M. van Dijk, J. B. Martens, and A. B. Watson, “Quality assessment
of coded images using numerical category scaling,” in Proc. SPIE, vol.
2451, 1995.

[55] H. R. Sheikh, Z. Wang, A. C. Bovik, and L. K. Cormack. Image and
Video Quality Assessment Research at LIVE. [Online] Available:
http://live.ece.utexas.edu/research/quality/

[56] J. Lubin, “A visual discrimination model for imaging system design and
evaluation,” in Visual Models for Target Detection and Recognition, E.
Peli, Ed. Singapore: World Scientific, 1995, pp. 245–283.

[57] J.-B. Martens and L. Meesters, “Image dissimilarity,” Signal Processing,
vol. 70, pp. 155–176, Nov. 1998.

[58] VQEG. (2000, Mar.) Final Report From the Video Quality Experts
Group on the Validation of Objective Models of Video Quality Assess-
ment. [Online] Available: http://www.vqeg.org/

Zhou Wang (S’97–A’01–M’02) received the B.S. degree from Huazhong Uni-
versity of Science and Technology, Wuhan, China, in 1993, the M.S. degree
from South China University of Technology, Guangzhou, China, in 1995, and
the Ph.D. degree from The University of Texas at Austin in 2001.

He is currently a Research Associate at Howard Hughes Medical Institute and
Laboratory for Computational Vision, New York University. Previously, he was
a Research Engineer at AutoQuant Imaging, Inc., Watervliet, NY. From 1998 to
2001, he was a Research Assistant at the Laboratory for Image and Video En-
gineering, University of Texas at Austin. In the summers of 2000 and 2001, he
was with Multimedia Technologies, IBM T. J. Watson Research Center, York-
town Heights, NY. He worked as a Research Assistant in periods during 1996 to
1998 at the Department of Computer Science, City University of Hong Kong,
China. His current research interests include digital image and video coding,
processing and quality assessment, and computational vision.

Alan Conrad Bovik (S’81–M’81–SM’89–F’96) is currently the Cullen Trust
for Higher Education Endowed Professor in the Department of Electrical and
Computer Engineering, University of Texas at Austin, where he is the Director
of the Laboratory for Image and Video Engineering (LIVE) in the Center for
Perceptual Systems. During the Spring of 1992, he held a visiting position in the
Division of Applied Sciences, Harvard University, Cambridge, MA. His current
research interests include digital video, image processing, and computational
aspects of biological visual perception. He has published nearly 400 technical
articles in these areas and holds two U.S. patents. He is also the editor/author
of the Handbook of Image and Video Processing (New York: Academic, 2000).
He is a registered Professional Engineer in the State of Texas and is a frequent
consultant to legal, industrial, and academic institutions.

Dr. Bovik was named Distinguished Lecturer of the IEEE Signal Processing
Society in 2000, received the IEEE Signal Processing Society Meritorious Ser-
vice Award in 1998, the IEEE Third Millennium Medal in 2000, the University
of Texas Engineering Foundation Halliburton Award in 1991, and is a two-time
Honorable Mention winner of the international Pattern Recognition Society
Award for Outstanding Contribution (1988 and 1993). He was named a Dean’s
Fellow in the College of Engineering in the Year 2001. He has been involved
in numerous professional society activities, including the Board of Governors
for the IEEE Signal Processing Society (1996–1998), Editor-in-Chief of
IEEE TRANSACTIONS ON IMAGE PROCESSING (1996–2002), member of the
Editorial Board for The PROCEEDINGS OF THE IEEE (1998-present), and
Founding General Chairman for the 1st IEEE International Conference on
Image Processing, held in Austin, TX, in 1994.

Hamid Rahim Sheikh (S’04) received the B.Sc. degree in electrical engi-
neering from the University of Engineering and Technology, Lahore, Pakistan,
and the M.S. degree in engineering from the University of Texas at Austin in
May 2001, where he is currently pursuing the Ph.D. degree.

His research interests include using natural scene statistical models and
human visual system models for image and video quality assessment.

Eero P. Simoncelli (S’92–M’93–SM’04) received the B.S. degree in physics in
1984 from Harvard University, Cambridge, MA, a certificate of advanced study
in mathematics in 1986 from Cambridge University, Cambridge, U.K., and the
M.S. and Ph.D. degrees in 1988 and 1993, both in electrical engineering, from
the Massachusetts Institute of Technology, Cambridge, MA.

He was an Assistant Professor in the Computer and Information Science
Eepartment at the University of Pennsylvania from 1993 to 1996. He moved
to New York University in September 1996, where he is currently an Associate
Professor in Neural Science and Mathematics. In August 2000, he became an
Associate Investigator at the Howard Hughes Medical Institute, under their new
program in computational biology. His research interests span a wide range of
topics in the representation and analysis of visual images, in both machine and
biological vision systems.


