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A fundamental goal of sensory systems neuroscience is the characterization of the functional
relationship between environmental stimuli and neural response. The purpose of such a char-
acterization is to elucidate the computation being performed by the system. Qualitatively, this
notion is exemplified by the concept of the “receptive field”, a quasi-linear description of a
neuron’s response properties that has dominated sensory neuroscience for the past 50 years.
Receptive field properties are typically determined by measuring responses to a highly re-
stricted set of stimuli, parameterized by one or a few parameters. These stimuli are typically
chosen both because they are known to produce strong responses, and because they are easy
to generate using available technology.

While such experiments are responsible for much of what we know about the tuning prop-
erties of sensory neurons, they typically do not provide a complete characterization of neural
response. In particular, the fact that a cell is tuned for a particular parameter, or selective
for a particular input feature, does not necessarily tell us how it will respond to an arbitrary
stimulus. Furthermore, we have no systematic method of knowing which particular stimulus
parameters are likely to govern the response of a given cell, and thus it is difficult to design
an experiment to probe neurons whose response properties are not at least partially known in
advance.

This chapter provides an overview of some recently developed characterization methods. In
general, the ingredients of the problem are: (a) the selection of a set of experimental stimuli;
(b) selection of a model of response; (c) a procedure for fitting (estimation) of the model. We
discuss solutions of this problem that combine stochastic stimuli with models based on an
initial linear filtering stage that serves to reduce the dimensionality of the stimulus space. We
begin by describing classical reverse correlation in this context, and then discuss several recent
generalizations that increase the power and flexibility of this basic method.

Thanks to Brian Lau, Dario Ringach, Nicole Rust, and Brian Wandell for helpful comments on the manuscript. This
work was funded by the Howard Hughes Medical Institute, and the Sloan-Swartz Center for Theoretical Visual
Neuroscience at New York University.



1 Reverse correlation

More than thirty years ago, a number of authors applied techniques generally known as white
noise analysis, to the characterization of neural systems (e.g., deBoer & Kuyper, 1968; Mar-
marelis & Naka, 1972). There has been a resurgence of interest in these techniques, partly due
to the development of computer hardware and software capable of both real-time random
stimulus generation and computationally intensive statistical analysis. In the most commonly
used form of this analysis, known as reverse correlation, one computes the spike-triggered av-
erage (STA) by averaging stimulus blocks preceding a spike:

ŝ =
1

N

N
∑

i=1

~si

where the vector ~si represents the stimulus block preceding the ith spike. The procedure is
illustrated for discretized stimuli in figure 1. The STA is generally interpreted as a representa-
tion of the receptive field, in that it represents the “preferred” stimulus of the cell. White noise
analysis has been widely used in studying auditory neurons (e.g., Eggermont et al., 1983). In
the visual system, spike-triggered averaging has been used to characterize retinal ganglion
cells (e.g., Sakai & Naka, 1987; Meister et al., 1994), lateral geniculate neurons (e.g., Reid
& Alonso, 1995), and simple cells in primary visual cortex (V1) (e.g., Jones & Palmer, 1987;
McLean & Palmer, 1989; DeAngelis et al., 1993).

1.1 Model characterization with spike-triggered averaging

In order to interpret the STA more precisely, we can ask what model it can be used to charac-
terize. The classical answer to this question comes from nonlinear systems analysis:1 the STA
provides an estimate of the first (linear) term in a polynomial series expansion of the system
response function. If the system is truly linear, then the STA provides a complete characteri-
zation. It is well known, however, that neural responses are not linear. Even if one describes
the neural response in terms of mean spike rate, this typically exhibits nonlinear behavior
with respect to the input signal, such as thresholding and saturation. Thus, the first term of a
Wiener/Volterra series, as estimated with the STA, will typically not provide a full description
of neural response. One can of course include higher-order terms in the series expansion. But
each successive term in the expansion requires a substantial increase in the amount of experi-
mental data. And limiting the analysis only to the first and second order terms, for example,
may still not be sufficient to characterize nonlinear behaviors common to neural responses.

Fortunately, it is possible to use the STA as a first step in fitting a model that can describe
neural response more parsimoniously than a series expansion. Specifically, suppose that the

1The formulation is due to Wiener (Wiener, 1958), based on earlier results by Volterra (Volterra, 1913). See (Rieke
et al., 1997) or (Dayan & Abbott, 2001) for reviews of application to neurons.
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Figure 1. Two alternative illustrations of the reverse correlation procedure. Left: Discretized
stimulus sequence and observed neural response (spike train). On each time step, the stimu-
lus consists of an array of randomly chosen values (eight, for this example), corresponding to
the intensities of a set of individual pixels, bars, or any other fixed spatial patterns. The neu-
ral response at any particular moment in time is assumed to be completely determined by the
stimulus segment that occurred during a pre-specified interval in the past. In this figure, the
segment covers six time steps, and lags three time steps behind the current time (to account
for response latency). The spike-triggered ensemble consists of the set of segments associated
with spikes. The spike-triggered average (STA) is constructed by averaging these stimulus seg-
ments (and subtracting off the average over the full set of stimulus segments). Right: Geometric
(vector space) interpretation of the STA. Each stimulus segment corresponds to a point in a d-
dimensional space (in this example, d = 48) whose axes correspond to stimulus values (e.g.,
pixel intensities) during the interval. For illustration purposes, the scatter plot shows only two
of the 48 axes. The spike-triggered stimulus segments (white points) constitute a subset of all
stimulus segments presented (black points). The STA, indicated by the line in the diagram, cor-
responds to the difference between the mean (center of mass) of the spike-triggered ensemble,
and the mean of the raw stimulus ensemble. Note that the interpretation of this representation
of the stimuli is only sensible under Poisson spike-generation - the scatter plot depiction implies
that the probability of spiking depends only on the position in the stimulus space.
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Figure 2. Block diagram of the linear-nonlinear-Poisson (LNP) model. On each time step, the
components of the stimulus vector are linearly combined using a weight vector, ~k. This response
of this linear filter is then passed through a nonlinear function f(), whose output determines
the instantaneous firing rate of a Poisson spike generator.

response is generated in a cascade of three stages: (1) a linear function of the stimulus over a
recent period of time, (2) an instantaneous (also known as static or memoryless) nonlinear trans-
formation, and (3) a Poisson spike generation process, whose instantaneous firing rate comes
from the output of the previous stage. That is, the probability of observing a spike during any
small time window is a nonlinear function of a linear-filtered version of the stimulus. This
model is illustrated in figure 2, and we’ll refer to it as a linear-nonlinear-Poisson (LNP) model.
The third stage, which essentially amounts to an assumption that the generation of spikes de-
pends only on the recent stimulus and not on the history of previous spike times, is often not
stated explicitly but is critical to the analysis.

Under suitable conditions on the stimulus distribution and the nonlinearity, the spike-triggered
average produces an estimate of the linear filter in the first stage of the LNP model (see
(Chichilnisky, 2001) for overview and additional references). The result is most easily un-
derstood geometrically, as depicted in figure 1. Assume the stimulus is discretized, and that
the response of the cell at any moment in time depends only on the values within a fixed-
length time interval preceding that time. A typical stimulus would be the intensities of a set
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of pixels covering some spatial region of a video display, for every temporal video frame over
the time interval (see left panel of figure 1). In this case, the stimulus segment presented over
the interval preceding a spike corresponds to a vector containing d components, one for the
intensity of each pixel in each frame. The vectors of all stimulus segments presented during
an experiment may be represented as a set of points in a d-dimensional stimulus space, as il-
lustrated in figure 1. We’ll refer to this as the raw stimulus ensemble. This ensemble is under the
control of the experimenter, and the samples are typically chosen randomly according to some
probability distribution. A statistically white ensemble corresponds to the situation where the
components of the stimulus vector are uncorrelated. If in addition the density of each compo-
nent is Gaussian, and all have the same variance, then the full d-dimensional distribution will
be spherically symmetric.

In a model with Poisson spike generation, the probability of a spike occurring after a given
stimulus block depends only on the content of that block, or equivalently, on the position of
the corresponding vector in the d-dimensional space. From an experimental perspective, this
means that the distribution of the spike-triggered stimulus ensemble indicates which regions
of the stimulus space are more likely (or less likely) to elicit spikes. More specifically, for
each region of the stimulus space, the ratio of the frequency of occurrence of spike-triggered
stimuli to that of raw stimuli gives the instantaneous firing rate. From this description, it
might seem that one could simply count the number of spikes and stimuli in each region (i.e.,
compute multi-dimensional histograms of the binned raw and spike-triggered stimuli), and
take the quotient to compute the firing rate. But this is impractical due to the so-called “curse
of dimensionality”: the amount of data needed to sufficiently fill the histogram bins in a d-
dimensional space grows exponentially with d. Thus, one cannot hope to compute such a
firing rate function for a space of more than a few dimensions.

The assumption of an LNP model allows us to avoid this severe data requirement. In partic-
ular, the linear stage of the model effectively collapses the entire d-dimensional space onto a
single axis, as illustrated in figure 3. The STA provides an estimate of this axis, under the as-
sumption that the raw stimulus distribution is spherically symmetric2 (e.g., Chichilnisky, 2001;
Theunissen et al., 2001). Once the linear filter has been estimated, we may compute its response
and then examine the relationship between the histograms of the raw and spike-triggered en-
sembles within this one-dimensional space. Specifically, for each value of the linear response,
the nonlinear function in the LNP model may be estimated as the quotient of the frequency of
spike occurrences to that of stimulus occurrences (see figure 3). Because this quotient is taken
between two one-dimensional histograms (as opposed to d-dimensional histograms), the data
requirements for accurate estimation are greatly reduced. Note also that the nonlinearity can
be arbitrarily complicated (even discontinuous). The only constraint is that it must produce a

2Technically, an elliptically symmetric distribution is also acceptable. The stimuli are first transformed to a
spherical distribution using a whitening operation, the STA is computed, and the result is transformed back to the
original stimulus space.

5



stimulus component 1

st
im

ul
us

 c
om

po
ne

nt
 2

hi
st

og
ra

m

# stimuli
# spikes 

fir
in

g 
ra

te
STA response

Figure 3. Simulated characterization of an LNP model using reverse correlation. The simulation
is based on a sequence of 20, 000 stimuli, with a response containing 950 spikes. Left: The
STA (black and white “target”) provides an estimate of the linear weighting vector, ~k (see also
figure 1). The linear response to any particular stimulus corresponds to the position of that
stimulus along the axis defined by ~k (line). Right, top: raw (black) and spike-triggered (white)
histograms of the linear (STA) responses. Right, bottom: The quotient of the spike-triggered
and raw histograms gives an estimate of the nonlinearity that generates the firing rate.

change in the mean of the spike-triggered ensemble, as compared with the original stimulus
ensemble. Thus, the interpretation of reverse correlation in the context of the LNP model is a
significant departure from the Wiener/Volterra series expansion, in which even a simple sig-
moidal nonlinearity would require the estimation of many terms for accurate characterization.

The reverse correlation approach relies less on prior knowledge of the neural response proper-
ties by covering a wide range of visual input stimuli in a relatively short amount of time, and
it can produce a complete characterization in the form of the LNP model (see (Chichilnisky,
2001) for further discussion). But clearly, the method can fail if the neural response does not fit
the assumptions of the model. For example, if the neural nonlinearity and the stimulus distri-
bution interact in such a way that the mean of the raw stimuli and mean of the spike-triggered
stimuli do not differ, the STA will be zero, thus failing to provide an estimate of the linear
stage of the model. Even if the reverse correlation procedure succeeds in estimating the model
parameters, the model might not provide a good characterization. Specifically, the true neural
response may not be restricted to a single direction in the stimulus space, or the spike gener-
ation may not be well-described as a Poisson process. In the following sections, we describe
some extensions of reverse correlation to handle these types of model failure.
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2 Extension to multiple dimensions with STC

The STA analysis relies on changes in the mean of the spike-triggered stimulus ensemble to es-
timate the linear stage of an LNP model. This linear stage corresponds to a single filter, which
responds to a single direction in the stimulus space. But many neurons exhibit behaviors that
are not well described by this model. For example, the “energy model” of complex cells in
primary visual cortex posits the existence of two linear filters (an even- and odd-symmetric
pair), whose rectified responses are then combined (Adelson & Bergen, 1985). Not only does
this model use two linear filters, but the symmetry of the rectifying nonlinearity means that
the STA will be zero, thus providing no information about the linear stage of the model. In this
particular case, a variety of second-order interaction analyses have been developed to recover
the two filters (e.g., Emerson et al., 1987; Szulborski & Palmer, 1990; Emerson et al., 1992).

We’d like to be able to characterize this type of multiple filter model. Specifically, one would
like to recover the filters, as well as the nonlinear function by which their responses are com-
bined. The classical nonlinear systems analysis approach to this problem (Marmarelis & Mar-
marelis, 1978; Korenberg et al., 1989) proceeds by estimating the second-order term in the
Wiener series expansion, which describes the response as a weighted sum over all pairwise
products of components in the stimulus vector. The weights of this sum (the second-order
Wiener kernel), may be estimated from the spike-triggered covariance (STC) matrix, computed
as a sum of outer products of the spike-triggered stimulus vectors with the STA subtracted:3

C =
1

N − 1

N
∑

i=1

(~si − ŝ) · (~si − ŝ)T .

This second-order Wiener series gives a quadratic model for neural responses, and thus re-
mains ill-equipped to accurately model sharply asymmetric or saturating nonlinearities. As in
the case of the STA, however, the STC may be used as a starting point for estimation of another
model that may be more relevant in describing some neural responses. In particular, one can
assume that the neural response is again determined by an LNP cascade model (figure 2 ), but
that the initial linear stage now is multi-dimensional. That is, the response comes from applying
a small set of linear filters, followed by Poisson spike generation, with firing rate determined
by some nonlinear combination of the filter outputs.

Under suitable conditions on the stimulus distribution and the nonlinear stage, the STC may
be used to estimate the linear stage (de Ruyter van Steveninck & Bialek, 1988; Brenner et al.,
2000; Paninski, 2003). Again, the idea is most directly explained geometrically: we seek those
directions in the stimulus space along which the variance of the spike-triggered ensemble dif-
fers from that of the raw ensemble. Loosely speaking, an increase in variance (with no change

3An alternative method is to project, rather than subtract, the STA from the stimulus set (Schwartz et al., 2002;
Rust et al., 2004).
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in the mean) indicates a stimulus dimension that is excitatory, and a decrease in variance in-
dicates suppression. The advantage of this description is that variance analysis in multiple
dimensions is very well-understood mathematically. The surface representing the variance
(standard deviation) of the spike-triggered stimulus ensemble consists to those vectors ~v satis-
fying ~vT C−1~v = 1. This surface is an ellipsoid, and the principal axes of this ellipsoid may be
recovered using standard eigenvector techniques (i.e., principal component analysis). Specifi-
cally, the eigenvectors of C represent the principal axes of the ellipsoid, and the corresponding
eigenvalues represent the variances along each of these axes.4

Thus, by determining which variances are significantly different from those of the underlying
raw stimulus ensemble, the STC may be used to estimate the set of axes (i.e., linear filters)
from which the neural response is derived. As with the STA, the second nonlinear stage of the
model may then be estimated by looking at the spiking response as a function of the responses
of these linear filters. The correctness of the STC-based estimator can be guaranteed if (but only
if) the stimuli are drawn from a Gaussian distribution (Paninski, 2003), a stronger condition
than the spherical symmetry required for the STA. Spike-triggered covariance analysis has
been used to determine both excitatory (de Ruyter van Steveninck & Bialek, 1988; Brenner
et al., 2000; Touryan et al., 2002; Rust et al., 2004) as well as suppressive (Schwartz et al., 2002;
Rust et al., 2004) response properties of visual neurons. Here, we’ll consider two simulation
examples to illustrate the concept, and to provide some idea of the type of nonlinear behaviors
that can be revealed using this analysis.

The first example, shown in figure 4, is a simulation of a standard V1 complex cell model
(see also simulations in (Sakai & Tanaka, 2000)). The model is constructed from two space-
time oriented linear receptive fields, one symmetric and the other antisymmetric (Adelson &
Bergen, 1985). The linear responses of these two filters are squared and summed, and the
resulting signal then determines the instantaneous firing rate:

g(~s) = r
[

(~k1 · ~s).
2 + (~k2 · ~s)

2
]

.

The recovered eigenvalues indicate that two directions within this space have substantially
higher variance than the others. The eigenvectors associated with these two eigenvalues cor-
respond to the two filters in the model.5 The raw- and spike-triggered stimulus ensembles
may then be filtered with these two eigenvectors, and the two-dimensional nonlinear function
that governs firing rate corresponds to the quotient of the two histograms, analogous to the
one-dimensional example shown in figure 1. Similar pairs of excitatory axes have been ob-

4More precisely, the relative variance between the spike-triggered and raw stimulus ensembles can be com-
puted either by performing the eigenvector decomposition on the difference of the two covariance matrices
(de Ruyter van Steveninck & Bialek, 1988; Brenner et al., 2000), or by applying an initial whitening transforma-
tion to the raw stimuli before computing the STC (Schwartz et al., 2002; Rust et al., 2004). The latter is equivalent to
solving for principal axes of an ellipse that represents the ratio of spike-triggered and raw variances.

5Technically, the recovered eigenvectors represent two orthogonal axes that span a subspace containing the two
filters.
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tained from STC analysis of V1 cells in cat (Touryan et al., 2002) as well as monkey (Rust et al.,
2004).

As a second example, we choose a simplified version of a divisive gain control model, as
have been used to describe nonlinear properties of neurons in primary visual cortex (Albrecht
& Geisler, 1991; Heeger, 1992). Specifically, our model neuron’s instantaneous firing rate is
governed by one excitatory filter and one divisively suppressive filter:

g(~s) = r
1 + (~k1 · ~s).

2

1 + (~k1 · ~s)2/2 + (~k2 · ~s)2
.

The simulation results are shown in figure 5. The recovered eigenvalue distribution reveals
one large-variance axis and one small-variance axis, corresponding to the two filters, ~k1 and
~k2 respectively. After projecting the stimuli onto these two axes, the two-dimensional nonlin-
earity is estimated, and reveals an approximately saddle-shaped function, indicating the inter-
action between the excitatory and suppressive signals. Similar suppressive filters have been
obtained from STC analysis of retinal ganglion cells (both salamander and monkey) (Schwartz
et al., 2002) and simple and complex cells in monkey V1 (Rust et al., 2004). In these cases, a
combined STA/STC analysis was used to recover multiple linear filters. The number of re-
covered filters was typically large enough that the direct estimation of the nonlinearity (i.e.,
dividing the spike-triggered histogram by the raw histogram) was not feasible. As such, the
nonlinear stage was estimated by fitting specific parametric models on top of the output of the
linear filters.

3 Experimental caveats

In addition to the limitations of the LNP model, it is important to understand the tradeoffs
and potential problems that may arise in using STA/STC characterization procedures. We
provide a brief overview of these issues, which can be quite complex. See (Rieke et al., 1997;
Chichilnisky, 2001; Paninski, 2003) for further description.

The accuracy of STA/STC filter estimates depends on three elements: (1) the dimensionality
of the stimulus space, (2) the number of spikes collected, and (3) the strength of the response
signal, relative to the standard deviation of the raw stimulus ensemble.6 The first two of these
interact in a simple way: the quality of estimates increases as a function of the ratio of the num-
ber spikes to the number of stimulus dimensions. Thus, the pursuit of more accurate estimates
leads to a simultaneous demand for more spikes and reduced stimulus dimensionality.

These demands must be balanced against several opposing constraints. The collection of a

6Technically, the response signal strength is defined as the STA magnitude, or in the case of STC to the square
root of the difference between the eigenvalue and σ

2, the variance of the raw stimuli (Paninski, 2003).
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Figure 4. Simulated characterization of a particular LNP model using spike-triggered covari-
ance (STC). In this model, the Poisson spike generator is driven by the sum of squares of two
oriented linear filter responses. As in figure 1, filters are 6× 8, and thus live in a 48-dimensional
space. The simulation is based on a sequence of 50, 000 raw stimuli, with a response containing
4, 500 spikes. Top, left: simulated raw and spike-triggered stimulus ensembles, viewed in a
two-dimensional subspace that illustrates the model behavior. The covariance of these ensem-
bles within this two-dimensional space is represented geometrically by an ellipse that is three
standard deviations from the origin in all directions. The raw stimulus ensemble has equal vari-
ance in all directions, as indicated by the black circle. The spike-triggered ensemble is elongated
in one direction, as represented by the white ellipse. Top, right: Eigenvalue analysis of the sim-
ulated data. The principle axes of the covariance ellipse correspond to the eigenvectors of the
spike-triggered covariance matrix, and the associated eigenvalues indicate the variance of the
spike-triggered stimulus ensemble along each of these axes. The plot shows the full set of 48
eigenvalues, sorted in descending order. Two of these are substantially larger than the others,
and indicate the presences of two axes in the stimulus space along which the model responds.
The others correspond to stimulus directions that the model ignores. Also shown are three ex-
ample eigenvectors (6 × 8 linear filters). Bottom, one-dimensional plots: Spike-triggered and
raw histograms of responses of the two high-variance linear filters, along with the nonlinear
firing rate functions estimated from their quotient (see figure 3). Bottom, two-dimensional
plot: the quotient of the two-dimensional spike-triggered and raw histograms provides an esti-
mate of the two-dimensional nonlinear firing rate function. This is shown as a circular-cropped
grayscale image, where intensity is proportional to firing rate. Superimposed contours indicate
four different response levels.
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Figure 5. Characterization of a simulated LNP model, constructed from the squared response of
one linear filter divided by the sum of squares of its own response and the response of another
filter. The simulation is based on a sequence of 200, 000 raw stimuli, with a response containing
8, 000 spikes. See text and caption of figure 4 for details.
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large number of spikes is limited by the realities of single-cell electrophysiology. Experimental
recordings are restricted in duration, especially since the response properties need to remain
stable and consistent throughout the recording. On the other hand, reducing the stimulus
dimensionality is also problematic. One of the most widely touted advantages of white noise
characterization over traditional experiments is that the stimuli can cover a broader range of
visual input stimuli, and that these randomly selected stimuli are less likely to induce artifacts
or experimental bias than a set that is hand-selected by the experimenter.

In practice, however, white noise characterization still requires the experimenter to place re-
strictions on the stimulus set. For visual neurons, even with stimuli composed in the typical
fashion from individual pixels, one must choose the spatial size and temporal duration of
these pixels. If the pixels are too small, then not only will the stimulus dimensionality be large
(in order to fully cover the spatial and temporal “receptive field”), but the effective stimulus
contrast that reaches the neuron will be quite low, resulting in a low spike rate. Both of these
effects will reduce the accuracy of the estimated filters. On the other hand, if the pixels are
too large, then the recovered linear filters will be quite coarse (since they are constructed from
blocks that are the size of the pixels). More generally, one can use stimuli that provide a better
basis for receptive field description, and that are more likely to elicit strong neural responses,
by defining them in terms of parameters that are more relevant than pixel intensities. Exam-
ples include stimuli restricted in spatial frequency (Ringach et al., 1997) and stimuli defined
in terms of velocity (de Ruyter van Steveninck & Bialek, 1988; Bair et al., 1997; Brenner et al.,
2000).

While the choice of stimuli plays a critical role in controlling the accuracy (variance) of the
filter estimates, the probability distribution from which the stimuli are drawn must be cho-
sen carefully to avoid bias in the estimates. For example, with the single-filter LNP model,
the stimulus distribution must be spherically symmetric in order to guarantee that the STA
gives an unbiased estimate of the linear filter (e.g., Chichilnisky, 2001). Figure 6 shows two
simulations of an LNP model with a simple sigmoidal nonlinearity, each demonstrating that
the use of non-spherical stimulus distributions can lead to poor estimates of the linear stage.
The first example shows a “sparse noise” experiment, in which the stimulus at each time step
lies along one of the axes. For example, many authors have characterized visual neurons us-
ing images with only a single white/black pixel amongst a background of gray pixels in each
frame (e.g., Jones & Palmer, 1987). As shown in the figure, even a simple nonlinearity (in this
case, a sigmoid) can result in an STA that is heavily biased.7 The second example uses stimuli
in which each component is drawn from a uniform distribution, which produces an estimate
biased toward the “corner” of the space. The use of non-Gaussian distributions (e.g., uniform
or binary) for white noise stimuli is quite common, as the samples are easy to generate and
the resulting stimuli can have higher contrast and thus produce higher average spike rates. In

7Note, however, that the estimate will be unbiased in the case of a purely linear neuron, or of a halfwave-
rectified linear neuron (Ringach et al., 1997).
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Figure 6. Simulations of an LNP model demonstrating bias in the STA for two different non-
spherical stimulus distributions. The linear stage of the model neuron corresponds to an oblique
axis (line in both panels), and the firing rate function is a sigmoidal nonlinearity (firing rate
corresponds to intensity of the underlying grayscale image in the left panel). In both panels,
the black and white “target” indicates the recovered STA. Left: Simulated response to sparse
noise. The plot shows a two-dimensional subspace of a 10-dimensional stimulus space. Each
stimulus vector contains a single element with a value of ±1, while all other elements are zero.
Numbers indicate the firing rate for each of the possible stimulus vectors. The STA is strongly
biased toward the horizontal axis. Right: Simulated response of the same model to uniformly
distributed noise. The STA is now biased toward the corner. Note that in both examples, the
estimate will not converge to the correct answer, regardless of the amount of data collected.

practice, their use has been justified by assuming that the linear filter is smooth relative to the
pixel size/duration (e.g., Chichilnisky, 2001).

While the generalization of the LNP model to the multidimensional case substantially in-
creases its power and flexibility, the STC method can fail in a manner analogous to that de-
scribed for the STA. Specifically, if the neural response varies in a particular direction within
the stimulus space, but the variance of the spike-triggered ensemble does not differ from the
raw ensemble in that direction, then the method will not be able to recover that direction. In
addition, the STC method is more susceptible to biases caused by statistical idiosyncrasies in
the stimulus distribution than is the STA. These concerns have motivated the development of
estimators that are guaranteed to converge to the correct linear axes under much more gen-
eral conditions (Sharpee et al., 2003; Paninski, 2003). The basic idea is quite simple: instead
of relying on a particular statistical moment (e.g., mean or variance) for comparison of the
spike-triggered and raw stimulus distributions, one can use a more general comparison func-
tion that can identify virtually any difference between the two distributions. A natural choice
for such a function is information-theoretic: one can compare the mutual information between
a set of filter responses and the probability of a spike occurring. The resulting estimator is
more computationally expensive, but has been shown to be more accurate in several different
simulation examples (Sharpee et al., 2003; Paninski, 2003).
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4 Non-Poisson spike generation

The LNP models described above provide an alternative to the classical Wiener series expan-
sion, but they still assume that the information a neuron carries about the stimulus is contained
in its instantaneous firing rate. These models thus ignore any history dependence in the spike
train that might result from the dynamics underlying spike generation, such as the refractory
period. A number of authors have demonstrated that these Poisson assumptions do not accu-
rately capture the statistics of neural spike trains (Berry & Meister, 1998; Reich et al., 1998; Keat
et al., 2001). It is therefore important to ask: (1) How do realistic spiking mechanisms affect the
LNP characterization of a neuron? and (2) Is it possible to extend the characterization methods
described above to incorporate more realistic spiking dynamics?

The first of these questions has been addressed using simulations and mathematical analy-
sis of neural models with both Hodgkin-Huxley and leaky integrate-and-fire spike genera-
tion (Agüera y Arcas et al., 2001; Pillow & Simoncelli, 2003; Paninski et al., 2003; Agüera y
Arcas & Fairhall, 2003). In these cases, spike generation nonlinearities can interfere with the
temporal properties of the linear filters estimated with STA or STC analysis. Figure 7 shows
an example, using a model in which a single linear filter drives a non-Poisson spike gener-
ator. In this case, the STA provides a biased estimate of the true linear filter. Moreover, the
history-dependent effects of spike generation are not confined to a single direction of the stim-
ulus space. Even though the model response is generated from the output of a single linear
filter, STC analysis reveals additional relevant directions in the stimulus space. Thus, describ-
ing non-Poisson responses with an LNP model results in a high-dimensional characterization,
when a low-dimensional model with a more appropriate spike generator would suffice.

A recently proposed approach to the problem of spike-history dependence is to perform STA/STC
analysis using only isolated spikes, or those that are widely separated in time from other
spikes (Agüera y Arcas et al., 2001; Agüera y Arcas & Fairhall, 2003). This has the advan-
tageous effect of eliminating refractory and other short-term effects from the responses being
analyzed, but as a consequence does not characterize the history-dependence of the spikes.
Furthermore, the discarded spikes, which may constitute a substantial proportion of the total,
correspond to periods of rapid firing and thus seem likely to carry potent information about a
neuron’s selectivity.

An alternative is to modify the LNP description to incorporate more realistic spike genera-
tion effects, and develop characterization procedures for this model. One proposed technique
incorporates a “recovery function” that modulates the spike probability following the occur-
rence of each spike (Miller, 1985; Berry & Meister, 1998; Kass & Ventura, 2001). Specifically,
the instantaneous Poisson firing rate is set by the product of the output of an LN stage and
this recovery function. The resulting model can produce both absolute and relative refractory
effects.
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Figure 7. Simulated spike-triggered analysis of a neuron with noisy, leaky integrate-and-fire
(NLIF) spike generation. Input is filtered with a single linear filter (K), followed by NLIF spik-
ing. A purely temporal filter was selected because the effects of non-Poisson spike generation
manifest themselves in the temporal domain.Upper left: Linear filter of the model (dashed line),
a 32-sample function chosen to resemble the temporal impulse response of a macaque retinal
ganglion cell. Also shown are the STA computed from a simulated spike train (solid), and the
linear filter estimated using maximum likelihood (Pillow et al., 2004). Lower left: Eigenvalues
computed from the spike-triggered covariance of the simulated spike train. Right: Linear filters
(eigenvectors) associated with the three smallest eigenvalues.

Another alternative is to use an explicit parametric model of spike generation and to develop
estimation techniques for front-end stimulus selectivity in conjunction with the parameters of
the spike generator (e.g., Keat et al., 2001; Pillow et al., 2004). As an example, consider the es-
timation of a two-stage model consisting of a linear filter followed by a noisy, leaky integrate-
and-fire (NLIF) spike generator. The stimulus dependence of this model is determined by the
linear filter, but the N and P stages of the LNP model are replaced by the NLIF mechanism.
Although direct STA analysis cannot recover the linear filter in this model, it is possible to
use a maximum likelihood estimator to recover both the linear filter and the parameters of the
spike generator (threshold voltage, reset voltage, leak conductance, and noise variance) (Pil-
low et al., 2004). The estimation procedure can start from the STA as an initial guess for the
true filter, and ascend the likelihood function to obtain optimal estimates of the filter and the
NLIF parameters. This procedure is computationally efficient and is guaranteed to converge
to the correct answer. A simulated example is shown in figure 7. The method provides a char-
acterization of both the spatio-temporal filter that drives neural response and the nonlinear
biophysical response properties that transform this drive into spike trains.

5 Discussion

We’ve described a set of techniques for characterizing the functional response properties of
neurons using stochastic stimuli. We’ve relied throughout on an assumption that the response
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of the neuron is governed by an initial linear stage that serves to reduce the dimensionality
of the stimulus space. While this assumption may seem overly restrictive, it is important to
realize that it is the fundamental ingredient that allows one to infer general response properties
from measured responses to a relatively small number of stimuli. The linear stage is followed
by a nonlinearity upon which we place fairly minimal constraints. We described two moment-
based methods of estimating the linear stage – STA and STC – which are both conceptually
elegant and efficient to calculate.

In addition to the assumption of an initial low-dimensional linear stage, there are two well-
known potential drawbacks of these approaches. First, the techniques place fairly strong con-
straints on the set of stimuli that must be used in an experiment. There has been an increased
interest in recent years in presenting naturalistic stimuli to neurons, so as to assess their behav-
ior under normal operating conditions (e.g., Dan et al., 1996; Baddeley et al., 1998; Theunissen
et al., 2001; Ringach et al., 2002; Smyth et al., 2003). Analysis of such data is tricky, since natural-
istic images are highly non-Gaussian (Field, 1987; Daugman, 1989), and (as described earlier)
the basic STA/STC technique relies on a Gaussian stimulus distribution. Estimators based on
information-theoretic measures, as described in section 3, seem promising in this context since
they place essentially no restriction on the stimulus ensemble.

A second drawback is that the assumption of Poisson spike generation provides a poor account
of the spiking behavior of many neurons (Berry & Meister, 1998; Reich et al., 1998; Keat et al.,
2001). As discussed in section 4, STA/STC analysis of an LN model driving a more realistic
spiking mechanism (e.g., integrate-and-fire or Hodgkin-Huxley) can lead to significant biases
in the estimate of the linear stage. A number of techniques currently under development are
attempting to address these issues.

Finally, we mention two interesting directions for future research. First, the techniques de-
scribed here can be adapted for the analysis of multi-neuronal interactions (e.g., Nykamp,
2003). Such methods have been applied, for example, in visual cortex (Tsodyks et al., 1999),
motor cortex (Paninski et al., 2004) and hippocampus(Harris et al., 2003). Second, it would be
desirable to develop techniques that can be applied to a cascaded series of LNP stages. This
will be essential for modeling responses in higher-order sensory areas, which are presumably
constructed from more peripheral responses.
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