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Abstract
Recent work has examined the estimation of models of stimulus-driven neural
activity in which some linear filtering process is followed by a nonlinear,
probabilistic spiking stage. We analyze the estimation of one such model for
which this nonlinear step is implemented by a known parametric function;
the assumption that this function is known speeds the estimation process
considerably. We investigate the shape of the likelihood function for this
type of model, give a simple condition on the nonlinearity ensuring that no
non-global local maxima exist in the likelihood—leading, in turn, to efficient
algorithms for the computation of the maximum likelihood estimator—and
discuss the implications for the form of the allowed nonlinearities. Finally, we
note some interesting connections between the likelihood-based estimators and
the classical spike-triggered average estimator, discuss some useful extensions
of the basic model structure, and provide two novel applications to physiological
data.

1. Introduction

A central issue in computational neuroscience is the experimental characterization of the
functional relationship between external variables—e.g., sensory stimuli or motor behavior—
and neural spike trains. Because the nervous system is probabilistic, any description we can
provide will be necessarily statistical: given some experimentally observable signal x (an
image or an auditory stimulus), we want to be able to provide the probability of a given spike
train y. More precisely, we want to estimate the conditional probabilities p(y|x), for as large a
set of observable signals x as possible. Of course, there are typically far too many possible x to
characterize these probabilities directly; thus our real goal is to find a model, some functional
form that allows us to predict p(y|x) even for x we have never observed directly. Ideally, such
a model will be both accurate and easy to estimate given a modest amount of data.
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A good deal of recent interest has focused on models of ‘cascade’ type; these models
consist of a linear filtering stage in which the observable signal x is projected onto a low-
dimensional subspace, followed by a nonlinear, probabilistic spike generation stage (see, e.g.,
Simoncelli et al (2004) for a review). The linear filtering stage is typically interpreted as
the neuron’s ‘spatiotemporal receptive field’, efficiently representing the relevant information
contained in the possibly high-dimensional input signal, while the spiking mechanism accounts
for simple nonlinearities like rectification and response saturation. Given a set of stimuli and
(extracellularly) recorded spike times, the characterization problem consists of estimating both
the linear filter and the parameters governing the spiking mechanism.

The most widely used model of this type is the linear–nonlinear Poisson (LNP) cascade
model (see Simoncelli et al (2004) for a partial list of references), in which spikes are generated
according to an inhomogeneous Poisson process, with rate determined by an instantaneous
(‘memoryless’) nonlinear function of the filtered input. This model has a number of desirable
features, including conceptual simplicity and computational tractability. Additionally, reverse
correlation analysis provides a simple unbiased estimator for the linear filter under certain
conditions (Chichilnisky 2001), and the properties of estimators (for both the linear filter and
static nonlinearity) have been thoroughly analyzed, even for the case of highly non-symmetric
or ‘naturalistic’ stimuli (Weisberg and Welsh 1994, Paninski 2003, Sharpee et al 2004).

More recent work has focused on extending this simple model to include spike-history
effects, such as refractoriness, burstiness or adaptation (Berry and Meister 1998, Keat et al
2001). In particular, we have recently described a flexible, biophysically plausible model that
can be fit more efficiently (Paninski et al 2004d). Nevertheless, the existing algorithms for
consistently fitting this type of generalized cascade model are still somewhat slow.

Here we examine a cascade model whose generality is comparable to that of these
recent methods, but for which much faster fitting procedures are available. The estimation
procedure is based on maximum likelihood (ML), and the models we consider will have the
special property that the likelihood surface for the model parameters has no non-global local
minima, ensuring that ascent algorithms will compute the ML estimator (MLE) in a stable,
efficient manner. We give examples of these no-local-minima models, describe the basic
properties of the corresponding ML estimators, point out some connections to other models
that have appeared in the literature, and provide two novel applications to physiological
data.

2. The model and likelihood function

We consider the following parametric form of the LNP model,

p(spike| �x) = fθ (K �x),

where �x is the input signal, θ is some finite-dimensional parameter that sets the properties
of the nonlinearity f ; K is a linear operator that projects the high-dimensional vector �x into
a manageable subspace of low (say m) dimensions, and hence the nonlinear properties of
the cell are defined just by the m-dimensional nonlinear behavior of fθ (where fθ is clearly
constrained to be positive for all θ ). This is known in the statistics literature as a generalized
linear model (GLM, McCullagh and Nelder (1989)); examples of similar models that have
appeared in the neuroscience literature are reviewed in Simoncelli et al (2004).

The input signal �x is typically assumed to be some externally observable signal: a visual
signal (Brenner et al 2001, Chichilnisky 2001), for example, or a time-varying, intracellularly
injected current (Paninski et al 2003) or the dynamic position of the hand in a motor behavioral
context (Paninski 2003). In these cases, the linear stage K could consist of a collection
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of spatiotemporal receptive fields, temporal current filters or preferred hand positions and
velocities, respectively, and the firing rate nonlinearity fθ would in each case model, e.g.,
rectification or other nonlinear combinations of the filtered input signal, with θ setting
parameters such as the rectification threshold or sharpness of the nonlinearity. Note that
in the above cases the input �x can be either deterministically or stochastically controlled by the
experimenter (in the case of sensory or intracellular current stimulation) or even not directly
controlled by the experimenter at all (the motor behavior case).

It is worth emphasizing that �x can also include ‘internal’ signals, such as the activity of a
population of simultaneously recorded neighbor cells (Tsodyks et al 1999, Harris et al 2003,
Paninski et al 2004b, Truccolo et al 2003, Nykamp 2003) or the time since the last spike of the
neuron under study (this last example allows us to include the Markov interval-type models
of, e.g., Brown et al (2002) in our discussion). In this case the linear pre-filter K could model,
e.g., the synaptic transfer function which converts the activity in pre-synaptic neighboring
cells into post-synaptic temporal patterns of excitation and inhibition.

Finally, �x does not have to be strictly linearly related to the input signal of interest;
fixed nonlinear transformations (Dodd and Harris 2002, Sahani 2000) are permissible as well;
this kind of fixed mapping amounts basically to a redefinition of the input signal. The gain
in this redefinition is that the new inputs �x can be of higher dimension than the original
inputs, possibly allowing for better classification of the excitatory and inhibitory parts of the
input signal (Cristianini and Shawe-Taylor 2000). For example, we could include not just
the original inputs �x, but also the outputs of a Wiener-like expansion of �x:

{
x2

i

}
, {xixj } and

so on.
We can define the likelihood function for this model in a straightforward manner. The

spiking process is a conditionally inhomogeneous Poisson process with rate fθ (K �x(t)) given
the inputs �x(t) and the parameters (K, θ); thus, according to general point-process theory
(Snyder and Miller 1991) the log-likelihood of observing spikes at times {ti} is

L(K, θ) ∼
∑

i

log fθ (K �x(ti)) −
∫

fθ (K �x(t)) dt, (1)

where the integral is over the length of the experiment (Dayan and Abbott 2001, Brown et al
2002). The first term penalizes low firing rates f at the times ti when spikes were observed,
while the second penalizes high firing rates at all other times (when no spike was observed).
Note that the gradient of the above likelihood can be computed easily given the gradient of
fθ , implying that algorithms to ascend the likelihood surface are efficient in finding (local)
maxima.

It might be helpful for the reader unfamiliar with the continuous-time formulation to
compare to the discrete-time version of this model, in which the log-probability of observing
a binary spike train {ti} in bins of width dt (where dt is assumed small enough that no more
than one spike is observed per bin, and that fluctuations in the model firing rate f (K �x(t)) on
a dt timescale can be neglected) is given by

Ldiscrete (K, θ) =
∑

i

log(fθ (K �x(ti)) dt) +
∑

i ′
log(1 − fθ (K �x(ti ′)) dt),

with i ′ indexing the times at which no spike was observed; it is not hard to see (after expanding
the logarithm) that the two formulae become similar as dt → 0 (Snyder and Miller 1991,
Dayan and Abbott 2001). We will deal exclusively with the continuous-time formulation
from now on, as the corresponding mathematics turn out to be simpler and somewhat more
elegant.
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3. The likelihood condition

Given the definition of the LNP model, the obvious question is: Does the likelihood surface
contain any local extrema that would prevent an ascent algorithm from efficiently locating
the true global maximum (the MLE)? Our main result is a simple condition guaranteeing that
no non-global local maxima exist in the parameters (θ,K), no matter what data �xi and ti are
observed. This condition is quite easy to derive, given the form of the likelihood expression (1):

Condition. fθ (�u) is jointly convex in θ and �u, and log fθ (�u) is jointly concave in θ and �u; the
parameter space of possible (K, θ) is convex.

The condition clearly implies the concavity of the likelihood (since concavity is preserved
under addition); the lack of non-global local maxima follows immediately, from standard
properties of concave functions. Similar conditions for other GLMs have been considered
elsewhere (Wedderburn 1976, Haberman 1977, McCullagh and Nelder 1989). Note also that
the condition on K is typically not a problem: K naturally takes values in a convex set, the
vector space of possible linear filters (although in certain situations it is useful to restrict
elements of K to be positive, for example; this does not affect the convexity).

We should note that this condition is sufficient but not necessary; it is possible, in
some cases, to rule out the existence of non-global local minima in the log-likelihood
without guaranteeing its concavity (as was basically our approach in deriving the condition).
Nevertheless, we expect this condition to be ‘nearly’ necessary in the sense that any less
restrictive assumption (i.e., any condition that does not imply concavity) will be a great deal
more complicated and difficult to apply in practice. Of course, one could also argue quite
plausibly that our condition is too strong from a physiological (if not necessarily a rigorous
mathematical) sense—what we really want is to rule out the existence of ‘bad’ local minima for
‘most’ reasonable data, not necessarily all possible non-global local minima for any possible
data set, as established here—but we restrict our attention in this work to statements which
may be proved mathematically, postponing the discussion of these more qualitative (though
in the end, more important) questions for future detailed investigations on real physiological
data.

In the remainder of this section, we pursue some of the implications of the above condition,
which turns out to be perhaps stronger than is at first apparent. We assume throughout that
f is non-constant (that is, the cell’s responses are in fact at least somewhat dependent on its
inputs �x). Also remember that f must be non-negative, by construction.

We consider scalar f (u) first, for simplicity; in particular, we ignore the θ -dependence
for now, for reasons that will become clear below. Then it is not hard to see that f (u) must

• be monotonic in u (we assume for simplicity that f (u) grows monotonically);
• grow at least linearly (and at most exponentially) as a function of u;
• decay at least exponentially as u → −∞;
• have a derivative, f ′(u), which must be not only monotonically increasing, but also

continuous everywhere except possibly at the point u0 = sup{u : f (u) = 0}, and strictly
positive for all u > u0;

• vanish either everywhere on the interval (−∞, u0) or nowhere (u0 = −∞).

Thus both symmetric and saturating (‘sigmoidal’) nonlinearities f are not allowed under
our condition (of course, the fact that a symmetric nonlinearity would induce at least two
local maxima in the likelihood is obvious in retrospect). Unfortunately, this rules out both
‘squashing’-type nonlinearities and the standard quadratic model for complex cells in primary
visual cortex (Simoncelli and Heeger 1998). Saturating nonlinearities can be recovered using
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a trick described below (section 7), but nonmonotonic nonlinearities must be modeled at an
earlier stage, by effectively changing the definition of �x to include nonmonotonic functions of
�x (e.g. x2

i ; cf section 2), possibly at the expense of a larger number of parameters in K.
The condition turns out to be even more restrictive in the general case of vectors �u and θ .

It turns out that all f (�u, θ) which satisfy the condition must have a basically one-dimensional
structure: since f (�u, θ) is convex, the sets

Az ≡ {(�u, θ) : fθ (�u) � z}
are convex (where �u abbreviates K �x). However, f is also log-concave (that is, log f is a
concave function), implying

Az ≡ {(�u, θ) : fθ (�u) � z}
are convex as well, and this forces the contours of f to be linear,

fθ (K �x) = f0(�k �x + b)

for some one-dimensional f0 satisfying the above description, a single vector �k, and a scalar
b. In other words, the parameter θ has been reduced to a simple scalar offset term b (in fact,
θ = b can be eliminated entirely, or at least absorbed into �k, by the standard trick of assuming
an additional constant input to the cell and setting the corresponding element of �k equal to b).
This effectively one-dimensional nature of f clearly rules out any energy-type models
(Simoncelli and Heeger 1998), or models with other nonlinear symmetries (invariances),
without modifications in the definition of �x before the LN stage of the model.

4. Examples

Despite these rather stringent constraints, it is not difficult to think of functions f for which
our no-local-extrema condition holds (remember that linear functions are both convex and
concave):

• f (u) = eu (Martignon et al 2000, Truccolo et al 2003, Paninski et al 2004b);

• f (u) =
{

eu u < 0
1 + u u � 0

(Harris et al 2003);

• f (u) =
{

0 u < 0
uα u � 0

with α � 1 (Anderson et al 2000, Chichilnisky 2001, Miller and

Troyer 2002, Hahnloser et al 2003).

In addition, all products of the above functions are acceptable, since concavity (log-concavity)
is closed under addition (multiplication) and the positive, increasing, convex functions are
closed under multiplication. Unfortunately, however, the acceptable space (of increasing,
convex and log-concave functions; call it F) is not closed with respect to addition; logF , on
the other hand, is closed with respect to addition, but not with respect to multiplication by
constants <1 (and is therefore not a vector space).

A more convenient, not overly restrictive subset of F may be constructed as follows. Let

f (u) =
∫ u

eh(v) dv

for some increasing, concave function h(u). Clearly, any f of this form is convex, since
f ′ = eh(u) is increasing; it is also log-concave by the Prekopa–Rinott theorem (Rinott 1976).
The set H of h satisfying the conditions forms a vector cone: H is closed under addition,
multiplication by non-negative scalars, and translation. Finally, the remainder set F ∩ Hc is
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fairly small: it takes some thought to produce a log-concave, convex, increasing function f

satisfying the constraint (log f ′(u))′′ > 0 for some u.1

5. Sampling properties of the MLE; connections to spike-triggered averaging

In the above, we have developed a class of models for which the ML estimator is especially
computationally tractable. However, we have not yet said much about how good an estimator
the MLE actually is—for example, does the MLE asymptotically provide the correct �k? If
not, how large is the asymptotic bias? Li and Duan (1989) studied conditions under which
the MLE for a GLM is consistent (that is, such that the MLE provides asymptotically accurate
estimates of the parameter �k, given enough data), even when the ‘link’ function f is chosen
incorrectly (that is, when we fit the responses with a model f that does not correspond exactly
to the true response properties of the cell under question). We adapt and extend their results
here.

Assume the observed spike train is generated by a GLM with rate function g, but that we
apply the MLE based on the incorrect rate function f . Our results will be stated in terms of an
input probability distribution, p( �x), from which in the simplest case the experimenter draws
independent and identically distributed inputs �x, but which in general is just the ‘empirical
distribution’ of �x, the observed distribution of all inputs �x presented to the cell during
the course of the experiment. Define the important concept of an ‘elliptically symmetric’
density (Li and Duan 1989, Chichilnisky 2001, Paninski 2003): p( �x) is elliptically symmetric
if p( �x) = q(‖A �x‖2) for some scalar function q(·), some matrix A, and the usual two-norm
‖ · ‖2; that is, p is constant on the ellipses defined by fixing ‖A �x‖2. (The canonical example of
an elliptically symmetric density is the Gaussian with mean zero and covariance C, for which
A may be chosen as C−1/2, a square root of the inverse covariance matrix; the case to keep in
mind is the radially, or spherically, symmetric case, in which A is proportional to the identity
and the elliptic symmetries above become spherical.) Then we have

Proposition 1. The MLE based on any convex and log-concave f is consistent almost surely
for any true underlying g, provided p( �x) is elliptically symmetric and the spike-triggered
mean, Ep( �x|spike) �x, is different from zero.

In other words, given a symmetry condition on the input distribution p( �x), an asymmetry
condition on g and enough data, the MLE based on f will always give us the true �k. In
particular, again, the assumption on p( �x) holds if �x is drawn from any Gaussian distribution
(e.g., in a Gaussian white-noise-type experiment). The condition on the spike-triggered mean
refers to the conditional distribution p( �x|spike) of �x given that a spike was observed: the
spike-triggered mean is easily computed in this case (Chichilnisky 2001, Paninski 2003)
as Ep( �x|spike) �x = Z

∫
p( �x) �xg(�k0 �x) d �x, where Z is a positive scalar and �k0 denotes the true

underlying linear projection �k. (Note that the original operator parameter K has been reduced
to the single vector �k0 here, according to our discussion in section 3.)

1 One simple example is f (u) = 0, u < 0, f (u) = u + g(u), u � 0, with

g′′ = R([0, 1]),

with R(·) the windowed linear rectifier R(u) = 0, u < 0;R(u) = u, u < 1;R(u) = 0, u � 1. Clearly, f is
increasing and convex. That f is log-concave but f ′ is not takes a little more effort, but is fairly straightforward,
using

(log f ′(u))′′ > 0 → (f ′′/f ′)′ > 0 → f ′f ′′′ − (f ′′)2

(f ′)2
> 0 → f ′′′ >

(f ′′)2

f ′ .
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We present the proof here in the body of the text to emphasize both its simplicity and its
similarity to the corresponding proof for the classical estimator for this type of cascade model,
the spike-triggered average (STA, Chichilnisky (2001), Paninski (2003)); note that the input
distribution p( �x) is assumed here and throughout this paper to be centered (have mean zero),
which may be enforced in general via a simple change of variables.

Proof. General likelihood theory (van der Vaart 1998) states that ML estimators
asymptotically maximize E(L(�k, b)), the expectation of the likelihood function (1) under
the true data distribution. We need to prove that this function has a unique maximum at α�k0,
for some α 	= 0. We have

E(L(�k, b)) =
∫

p( �x)[g(�k0 �x) log f (�k �x + b) − f (�k �x + b)] d �x.

(We have implicitly assumed that the integrals above exist; no further assumptions on g

are necessary.) The key fact about this function is that it is concave in (�k, b) and, after
suitable change of variables (multiplication by a whitening matrix), symmetric with respect to
reflection about the �k0 axis. This immediately implies that a maximizer lies on this axis (i.e.,
is of the form α�k0 for some scalar α); the strict convexity of f or − log f implies that any
such maximizer is unique.

It only remains to prove that α 	= 0. Assume otherwise. Then the gradient of E(L(�k, b))

must vanish at �k = �0,

f ′(b)

∫
p( �x) �x

[
g(�k0 �x)

f (b)
− 1

]
= �0,

this implies that either f ′(b) = 0 for the optimal offset scalar b or∫
p(x0)x0[g(x0) − f (b)] dx0 = 0,

where x0 ≡ �k0x. By symmetry of p(x0),∫
p(x0)x0f (b) = f (b)

∫
p(x0)x0 = 0,

hence,
∫

p(x0)x0g(x0) must vanish as well, contradicting our assumption on the spike-
triggered mean. Thus we only need to rule out f ′(b) = 0. Recall from our discussion
in the last section that f ′ is monotonically increasing (by convexity), and f ′(u) is strictly
greater than 0 whenever f (u) > 0. Thus we only need to show that f (b) 	= 0 for the optimal
setting of b (remembering that we have assumed temporarily that �k = �0); plugging in f = 0
above gives that the expected likelihood is negative infinity whenever g is not identically zero,
an obvious contradiction. �

Li and Duan (1989) gave a slightly weaker condition guaranteeing that a maximizer lies
on the �k0 axis; however, their condition is only met for all possible unknown directions �k if
p( �x) is elliptically symmetric (Eaton 1986, Paninski 2003). They did not examine conditions
preventing the null case α = 0. As in section 3, this result on the MLE holds quantitatively
(that is, for all g and all p( �x) satisfying the conditions); the conditions can presumably
be weakened, at the expense of some simplicity, while still allowing for more qualitative
statements (say, the MLE is at worst weakly biased for most ‘reasonable’ g and p( �x)). (In
addition, of course, one could argue that the bias induced by misspecification of g might be
small compared to the error resulting from the assumption that real data may be modeled in the
simple cascade form considered here; some steps toward remedying this latter, ‘large-scale’
model error will be considered in the following sections.)
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As noted above, proposition 1 bears a striking similarity to the main result for the STA
(Bussgang 1952, Chichilnisky 2001, Paninski 2003); the conditions ensuring their asymptotic
accuracy are exactly equivalent (and by much the same symmetry argument). This leads us to
study the similarities of these two methods more carefully.

We base our discussion on the solution to the equations obtained by setting the gradient
of the likelihood to zero. The MLE solves

1

T

∑
i

�xi

f ′

f
(�kMLE �xi + bMLE) =

∫
p( �x)f ′(�kMLE �x + bMLE) �x, (2)

with T the length of the experiment. In the case of elliptically symmetric stimuli, the right-hand
side converges to a vector proportional to σ 2(p)�kMLE (recall that f ′ is monotonically
increasing), where σ 2(p) denotes the covariance matrix of the input distribution p( �x). The
left-hand side, on the other hand, is itself a kind of weighted STA—an average of (weighted)
spike-triggered stimuli �x—with the weight f ′

f
(�k �xi + b) positive but monotonically decreasing

in �k �xi , by the log-concavity of f . (We interpret this weight as a ‘robustness’ term, decreasing
the strength of very large—possibly outlying— �x.)

Thus, denoting the left-hand side as �kWSTA, for weighted STA, we have that the MLE
asymptotically behaves like

�kMLE = σ 2(p)−1�kWSTA,

this is exactly analogous to the ‘rotated STA’, �kRSTA ≡ σ 2(p)−1�kSTA, the basic correlation-
corrected estimator for cascade models (Paninski 2003). Also note that, in the exponential
case (the maximally convex case, recall section 3), the weight f ′

f
(�k �xi + b) is constant for all

�x. Thus, in the case of elliptically symmetric p( �x), the RSTA and the exponential MLE are
exactly equivalent (this, in turn, gives an interesting alternate proof of the consistency of the
RSTA). More generally, the RSTA provides a useful starting point for iterative maximization
of the GLM likelihood.

We can pursue this robustness idea further: How does the bias of the MLE based on
f behave when p( �x) is asymmetric and the data are generated by a different rate function
g? (Of course, as usual, the MLE is well behaved—asymptotically normal and optimal in
several natural senses—when f is in fact the correct rate function. The asymptotic normality
is retained more generally when f is chosen incorrectly, but optimality is not (Li and Duan
1989).) Taking the expectation of the likelihood gradient equation (2), we can see that the
MLE asymptotically solves∫

p( �x) �xf ′(�kMLE �x + bMLE)

(
g(�k0 �x)

f (�kMLE �x + bMLE)
− 1

)
= 0.

It is difficult to solve this equation for general p( �x); however, we do know the solution for
elliptically symmetric p( �x) (i.e., �k0, up to a scale constant α), and can use a perturbative
approach around this known solution to develop insight about the more general case. In
particular, we want to know what happens to the solution when a symmetric p( �x) is perturbed
by a small but in general asymmetric measure εq( �x).

For simplicity, assume that b is fixed at zero, p( �x) is radially (not just elliptically)
symmetric, and normalize �k0 (these assumptions entail no loss of generality, since the first can
be met by a simple redefinition of f , and the latter two by a simple change of basis of �x).
Define α as the asymptotic length of �kMLE, given by the solution in α of∫

p(x0)x0f
′(αx0)

(
g(x0)

f (αx0)
− 1

)
= 0
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(recall x0 ≡ �k0x). Now one reasonable way of measuring the susceptibility of the MLE to
bias is to compute

α−1 ∂�k1(q, ε)

∂ε

∣∣∣∣
0

,

the ratio of the length α to the rate of change of �kMLE (q, ε) in a direction �k1 orthogonal to �k0;
recall from proposition 1 that �k1(q, 0) = 0 for any �k1 ⊥ �k0, so this ratio measures something
like the angular error induced in �kMLE by q for small ε. (As usual with LN cascade-type
models, angular measures of error are more appropriate than absolute error, since the model is
only defined up to a scale factor: changes in the scale of �k can be absorbed easily by changes
in the scale of f .) A straightforward Taylor expansion gives

∂�k1

∂ε

∣∣∣∣
0

= 1

2C

∫
q( �x)x1f

′(αx0)

(
g(x0)

f (αx0)
− 1

)
,

with the curvature

C ≡ −
∫

p( �x)x2
1

(
ff ′′(αx0) − f ′(αx0)

2

f (αx0)2
g(x0) − f ′′(αx0)

)
.

(The curvature C is exactly the component of the Fisher information matrix orthogonal to
�k0, and therefore sets the inverse scale of the asymptotic error in the bias-free case; see, e.g.,
Paninski (2003) for further details.) The simplest case here is when q is supported on a single
point, �y, in which case the above reduces to

∂�k1

∂ε

∣∣∣∣
0

= y1

2C
f ′(αy0)

(
g(y0)

f (αy0)
− 1

)
,

with y0 and y1 denoting the projection of �y onto �k0 and �k1, respectively. Again, it might help
to keep the exponential case in mind, for which the above simplifies to

∂�k1

∂ε

∣∣∣∣
0

= 1

2C

∫
q( �x)x1(g(x0) − eαx0),

with

C =
∫

p( �x)x2
1 eαx0 ,

and

∂�k1

∂ε

∣∣∣∣
0

= y1

2C
(g(y0) − eαy0)

in the point-support q case. (In any event, the complicated parenthetical term in the definition
of C is always nonpositive, by f convexity and log-concavity and g positivity.) The above
should be compared to∫

q( �x)x1g(x0)∫
p( �x)x0g(x0)

, (3)

or
y1g(y0)∫

p( �x)x0g(x0)
,

the bias susceptibility corresponding to the STA in the general and point-support q case,
respectively.
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Figure 1. The bias of the MLE depends on both the true and the hypothetical rate function f (u)

in simulations. The true filter �k is held fixed (bottom panels; black line). Left: the hypothetical f

is chosen to match the true f generating the data (top panel; x-axis denotes u, with y-axis denoting
f (u)), and the MLE recovers �k almost perfectly (in contrast to the STA, which is strongly biased
upward; note that p( �x)—uniformly distributed on the square here—is not elliptically symmetric,
although the covariance σ 2(p) is proportional to the identity matrix). Red dots indicate �xi for
which spikes were observed; blue dots all other �x ( �x taken to be two-dimensional in this example,
for illustrative purposes). The green and yellow lines indicate the corresponding STA and MLE,
respectively. Middle: the STA is always biased toward the northeast corner in this case (as can
easily be shown analytically via the STA bias formula (3) (Chichilnisky 2001, Simoncelli et al
2004)), but the MLE can be biased in the opposite direction if the hypothesized f (u) decays more
quickly than the true rate function as u → −∞. Right: the mixed exponential-linear function of
Harris et al (2003) is less prone to bias than the STA for superlinear true rate functions f .

We have three main conclusions. First, the MLE can be biased in the opposite direction
as the STA: restricting our attention to the point-mass case, the STA is always biased in the
direction of y1, while the MLE can be biased toward or away from y1, depending on the sign of
g(y0) − f (αy0). Second, the MLE based on rate functions f (u) with sub-exponential growth
as u grows is, roughly speaking, less bias-prone; the denominator term C in the above
expressions is of larger magnitude in general for non-exponential rates, while the numerator is
more tame (due to the decreasing nature of f ′/f ). This, in turn, implies that sub-exponential
rates should be less bias-prone than the RSTA, if we recall the similarities between the
exponential MLE and the RSTA. Finally, rate functions f (u) which decay more quickly
than exponentially as u → −∞ can lead to strongly biased ML estimators, particularly when
f ′g
f

(x0) � 1; see figure 1. (We should emphasize that the examples shown in figure 1 are meant
to be strictly qualitative; in physiological applications, the bias will depend quantitatively on
the specific cell’s preferences, the input distribution p( �x) and so on.)

These robustness considerations, taken together, recommend the mixed exponential-linear
function used in Harris et al (2003) (section 4) in case of highly asymmetric inputs p( �x),
where bias might be a concern; recall that this function grows linearly as u → ∞ (as slowly
as possible given our convexity constraint, leading to a well-controlled f ′/f weight term) and
decays exponentially as u → −∞ (as slowly as possible under log-concavity). However, it



Maximum likelihood estimation of cascade point-process neural encoding models 253

is important to note that there is no hypothetical rate f for which the MLE is unbiased for all
true rates g; as in the case of the STA, the bias is always dependent on the true g (figure 1), and
to obtain a bias-free estimator for �k in general we must consider the slower but more general
class of semiparametric estimators which adapt to different g as well (Weisberg and Welsh
1994, Paninski 2003, Sharpee et al 2004).

6. Multiplicative models of spike-history dependence

In the next two sections, we will point out some connections of the above likelihood-based
techniques to related models that have appeared in the literature. The first such model
we will consider was developed in order to correct the main deficiency of the basic LNP
model, namely its Poisson nature. A simple way to model the spike-history effects (e.g.,
refractoriness, burstiness) that such a Poisson model ignores is to introduce a multiplicative
term, dependent on the time since the last spike, to modulate the firing rate; this leads to a kind
of ‘linear–nonlinear recovery’ model (Berry and Meister 1998, Brown et al 2002, Paninski
2003). It turns out that this type of model may be solved using likelihood-based tools which
are mathematically quite similar to those developed above.

We begin with an arbitrary model (including, but not limited to, the LNP models
considered above; the following results can be stated quite generally). For a given input
�x, this model will produce a time-varying predicted firing rate f �x(t). Now we try to fix up this
model by including a multiplicative ‘recovery’ term modeling the effect of the cell’s recent
spike history, r(t − ti−1), with (t − ti−1) the time since the last spike; thus, our new model
predicts a firing rate

f1(t) = f �x(t)r(t − ti−1).

Now how to choose r? As before, a reasonable approach is maximum likelihood: the log-
likelihood for this process, given a spike train {ti}, is again of the form∑

i

log(f1(ti)) −
∫

f1(t) dt.

Rewrite this as∑
i

log(f �x(ti)r(ti − ti−1)) −
∑

i

∫ ti

ti−1

f �x(t)r(t − ti−1) dt

= Z +
∑

i

(
log r(ti − ti−1) −

∫ ti

ti−1

f �x(t)r(t − ti) dt

)
,

where Z is constant with respect to r whenever f �x is fixed (i.e., when we are maximizing over
all possible history dependence terms r given a fixed base model f �x).

This log-likelihood is quite convenient. First, it is concave in the recovery function r,
implying that no non-global local maxima exist (since r takes values in a convex set, the set of
all non-negative functions). In fact, by setting the functional gradient of the likelihood with
respect to r to zero, we can find the ML estimate for r in closed form: rMLE (τ ) solves∑

i:ti−ti−1=τ

1

rMLE (τ )
=

∑
i:ti−ti−1�τ

f �x(ti + τ),

or written more suggestively,

rMLE (τ ) = p(τ)∫
dp(f )f (τ)

∫ ∞
τ

p(t |f ) dt
,
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Figure 2. Comparison of estimates of recovery function r(τ ) given simulated data. Black
trace: true underlying r; blue: ML estimate; red: estimate due to (Berry and Meister 1998) (i.e.,
rBM(τ ) = c−1p(τ) ecτ , with p(τ) the observed inter-spike interval density and c the observed
mean firing rate). True underlying firing rate f �x(t) chosen here to vary sinusoidally at 5 Hz;
recovery function models an absolute refractory period of 10 ms, followed by complete recovery
(i.e., r(τ ) = 0 for τ � 10 ms, r(τ ) = 1, τ > 10). Note that the MLE matches true function fairly
well, but the Berry–Meister estimate is contaminated by oscillations in f �x(t) and is strongly biased
downward for large delays τ .

where p(τ) denotes the observed inter-spike interval (ISI) density, p(f ) is the observed density
of f (ti + τ), and p(t |f ) the observed density of a spike at time t given f .

In the case that p(f ) is concentrated at the point f �x(t) ≡ c (i.e., our original model is
that the spike train is a Poisson process with rate c, independent of the stimulus), we have the
commonsense solution that

rMLE (τ ) = p(τ)

c e−cτ
,

the ratio of the observed ISI density p(τ) to c e−cτ , the ISI density we would expect of a
Poisson process of rate c; thus, the MLE agrees in this very special case with the formula
given in Berry and Meister (1998) (though in general, of course, the formulae do not agree;
that is, the estimator of Berry and Meister (1998) is not generally the MLE; see figure 2 for a
comparison).

Also note that if we take our model to be f1(t) = f �x(t)rMLE(t − ti−1), plugging into
the formula above, we get that the new rMLE(τ ) ≡ 1, as hoped for; thus, iterating the above
procedure does not gain us anything new unless, of course, a new model for f �x(t) is chosen
given the new estimated refractory term rMLE. For example, we could alternately fit an LNP
model for �k, given r (using the obvious modification of the original LNP log-likelihood (1),

Lr(�k, b) ∼
∑

i

(
log f (�k �x(ti) + b) + log r(ti − ti−1) −

∫ ti

ti−1

f (�k �x(t) + b)r(t − ti−1) dt

)
,

which retains its concavity in �k and b under our condition, since r is non-negative), then fit
r given f , iterating until convergence (since both procedures ascend the likelihood surface,
convergence is guaranteed).
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7. Extension to integrate-and-fire-like models

It is worthwhile to consider the relationship between the generalized linear models under
discussion here and the more biophysically motivated models employed in studies of
intracellular dynamics (in particular, there is some evidence (Reich et al 1998) that models
of the multiplicative form considered in the last section do not adequately capture the inter-
spike interval statistics of visual neurons). One connection is provided by the following
model: consider the inhomogeneous Poisson process with rate given by f (V (t) + b), where
f is a convex, log-concave scalar function, b is a scalar, and V (t) is the solution of the
‘leaky-integrator’ differential equation

∂V

∂t
= −gV (t) + �k · �x(t) +

i−1∑
j=0

h(t − tj ),

with initial value

V (ti−1) = Vreset,

namely

V0(t) = Vreset e−g(t−ti−1) +
∫ t

ti−1


�k · �x(s) +

i−1∑
j=0

h(s − tj )


 e−g(t−s) ds,

the linear convolution of the input current with a negative exponential of time constant 1/g.
Here g denotes the membrane leak conductance, �k · �x(t) the projection of the input signal
�x(t) onto the spatiotemporal linear kernel �k, and h is a post-spike current waveform which
is summed over the previously observed spikes. As usual, in the absence of input, V decays
back to 0 with time constant 1/g. We allow h, in turn, to take values in some low-dimensional
vector space; this allows the shape and magnitude of h to be varied to fit different intrinsic
spiking patterns (including burstiness, adaptation, saturation, etc) (Gerstner and Kistler 2002,
Paninski et al 2004d).

V (t) in the above is the subthreshold, and therefore unobserved (‘hidden’), solution
of the usual leaky integrate-and-fire (LIF) equation (Dayan and Abbott 2001), for which
the voltage resets to Vreset after the spike is emitted at ti . Alternatively, we could define
V

(
t+
i

) = V (t−i ) − Vr , that is, subtract a fixed amount Vr from V after each spike. This
induces a conditional positive dependence between spikes—if V is large before the spike, it
will remain large after the spike—which is not present in the standard LIF model, but which
may be more accurate in certain cases. (Note that really this latter case is just a mixed finite-
and infinite-impulse-response linear filter model, with the spike train

∑
i δ(t − ti) treated as

an additional input in �x.)
We have written the above equations to emphasize the similarity to the form of the

‘spike-response model’ introduced by Gerstner and colleagues (Gerstner and Kistler 2002,
Jolivet et al 2003) and employed in Paninski et al (2004d), (2004c) to model extracellularly
recorded spike-train responses. The combined IF–GL model described above is conceptually
identical to a simple version of the ‘escape-rate’ approximation to the noisy LIF-type model
given in Plesser and Gerstner (2000), Gerstner and Kistler (2002) (see also Stevens and
Zador (1996)); this escape-rate approximation, in turn, was introduced to partially alleviate
the difficulties associated with computing the passage time density and firing rate of the LIF
model driven by noise (again, see Paninski et al (2004d) for more details).

Thus this ‘IF–GLM’ can be seen as a direct approximation to the noisy LIF model
developed in Paninski et al (2004d) (which in turn is a tractable approximation to more
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detailed biophysical models for spiking dynamics). The main result of interest in the context
of this paper is that this IF–GL model shares a great deal of the tractability of the noisy LIF cell:
the log-likelihood for the IF–GLM is jointly concave in the parameters {�k, h, Vreset, b}, for any
data { �x, ti}, ensuring the tractability of the MLE. (The log-likelihood is not necessarily concave
in g here, but one-dimensional maximizations are eminently tractable; it is worth noting that
the convolution kernel e−gt can be generalized as well, to possibly nonstationary kernels
(Stevens and Zador 1998, Jolivet et al 2003), at the expense of the possible addition of a few
more parameters.) See section 10 for a simple application of the IF–GLM to physiological
data.

8. Regularization of GLM ML estimates

As emphasized in section 2, the ease of computation and maximization in the GLMs considered
here make it possible to include a large number of (possibly nonlinearly transformed) input
variables �x which might increase the modeling flexibility of the basic linear–nonlinear cascade
model. However, it is well known that the phenomenon of ‘overfitting’ can actually hurt the
predictive power of models based on a large number of parameters (see, e.g., Sahani and
Linden (2003), Smyth et al (2003), Machens et al (2003) for examples in a linear regression
setting). How do we control for overfitting in the current context?

The likelihood-based methods discussed here can be adapted quite easily for this purpose.
One simple approach is to use a maximum a posteriori (MAP, instead of ML) estimate for the
model parameters. This entails maximizing an expression of the penalized form

L(�k) − Q(�k)

instead of just L(�k), where L(�k) is the log-likelihood, as above, and Q is some ‘penalty’
function (where in the classical Bayesian setting, e−Q is required to be a probability measure
on the parameter space). If Q is taken to be convex, the MAP estimator shares the MLE’s global
extrema property; as usual, simple regularity conditions on Q ensure that the MAP estimator
converges to the MLE given enough data, and therefore inherits the MLE’s asymptotic
behavior.

Thus we are free to choose Q as we like within the class of smooth convex functions,
bounded below. If −Q peaks at the point �k = �0, the MAP estimator will basically be a more
‘conservative’ version of the MLE, with the chosen coefficients shifted nonlinearly toward
zero. (Of course, other prior information—for example, we might believe �k has a certain
degree of smoothness—can be built into Q as well.) This type of ‘shrinkage’ estimator has
been extremely well studied, from a variety of viewpoints (James and Stein 1960, Donoho et al
1995, Klinger 1998, Tipping 2001, Ng 2004), and is known, for example, to perform strictly
better than the MLE in certain contexts. Again, see Sahani and Linden (2003), Smyth et al
(2003), Machens et al (2003), Harris et al (2003) for some illustrations of this effect. One
particularly simple choice for Q is the weighted Lα

α-norm

Q(�k) =
∑

j

bj |kj |α, α � 1,

where j indexes the elements of �k, while the weights bj set the relative scale of Q over the
likelihood and may be chosen by symmetry considerations, cross-validation (Machens et al
2003, Smyth et al 2003), and/or evidence optimization (Tipping 2001, Sahani and Linden
2003).
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9. Bayesian spike-train decoding

The convexity condition introduced in section 3 also has some useful implications for Bayesian
decoding of spike-train information. This is interesting especially in the context of neural
prosthetic design (Serruya et al 2002, Donoghue 2002), but also more generally in the analysis
of neural codes (Rieke et al 1997).

Spike-train decoding concerns the following problem: given a spike-train {ti} (we consider
only single spike-trains for simplicity, but the generalization to population spike-train decoding
should be clear), how can we estimate the input signal �x? The Bayesian approach is to examine
the a posteriori distribution

p( �x|{ti}) ∼ p( �x)L�k({ti}| �x),

with L�k({ti}| �x) denoting the likelihood of observing {ti} given �x under the model defined by �k.
The important thing to note here is that if �x is drawn from a log-concave prior distribution p( �x),
then the posterior distribution is also log-concave, and thus has no non-local global maxima.
This log-concavity follows from arguments nearly identical to those in section 3 applied to
�x instead of �k (plus the fact that log-concavity is preserved under multiplication), and as in
the model estimation context, this lack of local minima greatly simplifies decoding via the
MAP estimator for �x. In addition, log-concavity makes Laplace approximation—quadratic
approximation of the log-posterior density (e.g. for construction of confidence intervals)—a
reasonable approach (Barbieri et al 2004).

10. Demonstration on real data

We give a few applications to physiological data here to further illustrate the ideas discussed
above.

10.1. Prediction of in vitro responses

Our first example illustrates the utility and ease of modeling refractory behavior in the context
of these cascade models. For simplicity, we examine data discussed in Paninski et al (2003);
in an in vitro rat cortical slice preparation, we injected a white-noise current into a cell and
recorded the voltage responses (under dual whole-cell patch clamp; see Paninski et al (2003)
and references therein for full physiological details). Spike times were defined by thresholding
the bandpass-filtered voltage trace. (Recall that the temporal details of spike-trains under
these stimulus conditions are extremely reproducible (Mainen and Sejnowski 1995, Tiesinga
et al 2003).)

We then fit two models: the standard LNP model and the IF–GLM, both using the
same time-varying stimulus current as the input �x. Results are shown in figure 3; the main
conclusion is that the IF–GLM permits quite accurate prediction of the observed spike-train;
moreover, the predictions of the IF–GLM are much more precise than are those of the simple
LNP model, in large part because the refractory effects of the post-spike current h serve to
enhance the reproducibility of the resulting spike-train (Joeken et al 1997, Berry and Meister
1998, Reich et al 1998, Brown et al 2002).

10.2. Regularization of predictions from multineuronal in vivo responses

Our second example is somewhat more subtle: instead of a simple stimulus current, now we
take the input �x to be the activity of other simultaneously active cells in the cortical network
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Figure 3. Predicting in vitro responses using the LNP and IF–GLM models given intracellularly
injected current stimulus. Top: true observed intracellular voltage (display is a randomly chosen
segment of a 100 s long white-noise experiment). B: V (t) signal of estimated LNP model for
corresponding time period; V (t) = �k �x(t) here, with �k estimated from training data and �x(t) the
vector formed by collecting time-delayed copies of the white-noise stimulus current I (t) (not
shown). An exponential model for the rate function f (V ) = p(spike| �x) was used here, so V (t)

corresponds to log-firing rate at time t. Note that the model captures the subthreshold voltage
fluctuations fairly well (remember scale differences). C: predicted and true spike time rasters.
Red is LNP model (repeated independent, identically distributed draws from the inhomogeneous
Poisson model with rate f (V (t))), blue is true data (single trial; this is just a thresholded version of
the top voltage trace), and black is IF–GLM (repeated draws from Poisson model with rate given by
IF–GLM V (t), which, unlike the LNP V (t), is dependent on spike times, due to the after-current h,
and therefore changes stochastically from trial to trial). Recall that rasters should, on average, give
exponential of red and black V (t) signals; note the greatly improved spike timing in the IF–GLM
model. Bottom: V (t) signal of estimated IF–GLM model, for a single trial (corresponding to the
bottom raster in third panel). Note the post-spike episodes of extremely low log-firing rate (i.e.,
relative refractory periods) induced by the hyperpolarizing post-spike current h (recall that both
h and �k are estimated from data for this model). Also note the approximately fourfold difference
in scales between the LNP and IF–GLM V (t) traces, indicating a comparable difference in the
relative log-likelihoods of the two models.

in vivo (Tsodyks et al 1999, Maynard et al 1999, Harris et al 2003). We recorded
simultaneously from 21 isolated single cells in the arm area of the primary motor cortex
(MI) of a monkey performing a visually guided manual tracking task (Paninski et al 2004a),
then attempted to predict the activity of each cell given only the concurrent activity of the
cell’s 20 neighbors (where, for simplicity, the j th element of the input �x is defined here as the
number of spikes from cell j in a single, relatively large 500 ms window).

In particular, we were interested in the effect of regularization on the predictive power of
a GLM based on this neighbor activity. Therefore we compared the cross-validated likelihood
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Figure 4. Regularization of predictions from multineuronal in vivo data. Left: illustration of
shrinkage effect in MAP estimate. Blue and red traces indicate firing rate prediction as a function
of time, of the MLE and MAP (λ = 0.5) estimator, respectively, for a single cell; flat black line
gives baseline firing rate. Bottom panel gives observed spike-train on this trial. The red curve
(MAP) clearly fluctuates less than the blue (MLE), which for this cell turns out to lead to better
predictions, in a likelihood sense (this cell corresponded to the top red trace in the right panel).
Right: likelihoods of the models estimated via the ML and MAP rules, for various values of λ

(with λ multiplied by (log T )/T , with T ≈ 400 the length of the experiment in seconds; this
scaling was roughly inspired by the Schwarz information criterion for model selection (Schwarz
1978)). Likelihoods are shown on a log scale, with baseline firing rate prediction subtracted off
(i.e., L � 0 implies that it would have been better just to set �k = 0 than to use �kMLE or �kMAP).
Each curve corresponds to a different cell; all logs indicated are of natural base.

of the MLE on test spike-train data to that of the MAP estimator, constructed (as in section 8)
as the maximizer of the penalized likelihood

L(�k) − λ
∑

j

bj |kj |α,

with λ a free parameter we varied systematically, α fixed at 2 for simplicity, and b chosen
to standardize the data, bj = σ(p)j , the standard deviation of �xj (Klinger 1998) (the data
were centered before applying the analysis to remove mean effects). Clearly, if λ = 0, the
MLE is recovered (the zero-regularization case); as λ → ∞, the MAP estimator �kMAP(λ) is
over-regularized and shrinks to �0 (cf figure 4).

Three different behaviors are evident when we plot the cross-validated likelihood of
the MAP estimator as a function of λ: we see strictly decreasing likelihood curves (in
which regularization always hurts the estimator); strictly increasing curves (in which the
unregularized ML estimator is complete noise, performing worse than the baseline L = 0,
and regularization simply drops the estimator to zero as λ increases); and, most interestingly,
curves with a well-defined peak for 0 < λ < ∞, for which regularization increases predictive
accuracy (in some cases quite a bit) and there is an optimal degree of regularization. In
particular, some cells appear to be completely uninformative with no regularization (L(0) < 0),
but reveal their structure (i.e., the log-likelihood ratio becomes positive) as λ increases. It
is also interesting to note that the optimal λ, when it exists, takes values within a relatively
restricted range (λ ≈ 0.5), and could easily be chosen by cross-validation, as in Machens et al
(2003), Smyth et al (2003). In short, these regularization techniques can significantly increase
the predictive power of this type of multineuronal model, even in the case of relatively few
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cells (by the most recent simultaneous recording standards (Warland et al 1997, Harris et al
2003, Nicolelis et al 2003)); we expect these techniques to play a larger role in future studies
of population coding in vivo.

11. Discussion

We have provided a theory for likelihood-based estimation of point-process models of
‘generalized linear’ or ‘cascade’ form. This theory turns out to be somewhat more subtle
than the corresponding theory for, say, Wiener-series estimation (which is basically described
by the usual least-squares theory (Dayan and Abbott 2001)), but nevertheless most of our
results turned out to be built on a single main concept: the concavity of the log-likelihood
function. This simple concavity idea leads directly to the form of rate functions f we allowed
(section 3); the asymptotic bias properties of the MLE, and the connections between the MLE
and STA—in particular the result that the GLM MLE is in some sense a generalization of the
STA, with an exact correspondence in the case of exponential f (section 5); and the simple
and direct approach to shrinkage-type regularization of the MLE via MAP estimation with
log-concave priors (sections 8 and 10.2).

These concavity results lead directly to (in fact, were motivated by the desire for) highly
efficient techniques for computing the ML and MAP estimators: the likelihoods of the GLMs
studied here have no non-global local maxima and can be computed (along with their gradients)
quite rapidly, ensuring the success of the usual ascent algorithms. It is worthwhile comparing
the resulting estimators to other commonly employed techniques for modeling spike-train
data. Each method has its own drawbacks: linear and Wiener-series methods (Joeken et al
1997, Sahani and Linden 2003, Machens et al 2003, Smyth et al 2003) are fast but inflexible
(since sampling concerns typically restrict the Wiener polynomial expansion to second order,
which is often insufficient to capture the nonlinear behavior of real cells), and the fact that
these models are not defined probabilistically leads to some awkwardness when attempting to
sample from the models, or to precisely define the likelihood of a given spike-train over another;
semiparametric techniques for learning f together with �k (Weisberg and Welsh 1994, Paninski
2003, Sharpee et al 2004) are extremely flexible but suffer from the existence of many local
maxima, as does the filter-based model estimator proposed by (Keat et al 2001); correlation-
based methods depend on overly restrictive conditions on their validity (Berry and Meister
1998, Chichilnisky 2001, Paninski 2003); the approach developed in Paninski et al (2004d),
while bypassing the previous concerns, requires the iterative computation of a likelihood
function consisting of high-dimensional probability integrals which, while tractable (they can
be computed without resorting to Monte Carlo, or multiple passes over the data), are roughly
an order of magnitude slower to calculate than the GLM likelihoods considered here. Finally,
while the GLM MLE can, like the correlation-based STA, be significantly biased, the analysis
of section 5 indicates that these bias problems can be made somewhat less problematic than
for the STA (and are nonexistent in at least two cases: either when the observed rate function
happens to match the chosen f well or, as for the STA, in the case of elliptically symmetric
inputs p( �x)).

In short, we see the GLM approach—especially when augmented with the integrate-
and-fire-like spike-history dependence discussed in section 7 and applied in section 10.1—as
a very attractive alternative to the available techniques for modeling spike-train responses
given high-dimensional inputs in cases where the underlying rate function can reasonably
be modeled as monotonic. We are currently in the process of further applications of these
models to physiological data recorded both in vivo and in vitro, in order to assess whether they
accurately account for the stimulus preferences and spiking statistics of real neurons.
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