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Abstract
We analyse the convergence properties of three spike-triggered data analysis
techniques. Our results are obtained in the setting of a probabilistic linear–
nonlinear (LN) cascade neural encoding model; this model has recently become
popular in the study of the neural coding of natural signals. We start by giving
exact rate-of-convergence results for the common spike-triggered average
technique. Next, we analyse a spike-triggered covariance method, variants
of which have been recently exploited successfully by Bialek, Simoncelli
and colleagues. Unfortunately, the conditions that guarantee that these two
estimators will converge to the correct parameters are typically not satisfied by
natural signal data. Therefore, we introduce an estimator for the LN model
parameters which is designed to converge under general conditions to the
correct model. We derive the rate of convergence of this estimator, provide
an algorithm for its computation and demonstrate its application to simulated
data as well as physiological data from the primary motor cortex of awake
behaving monkeys. We also give lower bounds on the convergence rate of any
possible LN estimator. Our results should prove useful in the study of the neural
coding of high-dimensional natural signals.

1. Introduction

Systems-level neuroscientists have a few favourite problems, the most prominent of which is
the ‘what’ part of the neural coding problem: what makes a given neuron in a particular part of
the brain fire? In more technical language, we want to know about the conditional probability
distributions P(spike|X = x), the probability that our cell emits a spike, given that some
observable signal X in the world takes a value x . Because data are expensive, neuroscientists

1 http://www.cns.nycu/edu/∼liam
2 A brief summary of some of the results presented here is to appear in the NIPS02 Conference Proceedings (Paninski
2002).
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typically postulate a functional form for this collection of conditional distributions, and then
fit experimental data to these functional models, in lieu of attempting to directly estimate
P(spike|X = x) for each possible x . Clearly, to interpret the results of this kind of statistical
analysis, we must have a good understanding of the bias and variance properties of the
estimation procedure in question. This is especially true in the case of high-dimensional
data (e.g. natural sensory signals or complex motor behaviour), for which direct visualization
is often impossible.

In this paper, we analyse the statistical properties of a phenomenological model whose
popularity in the natural signal community seems to be on the rise (Theunissen et al 2001,
Brenner et al 2001, Schwartz et al 2002, Ringach et al 2002):

p(spike|�x) = f (〈�k1, �x〉, 〈�k2, �x〉, . . . , 〈�km, �x〉). (1)

Here f is some arbitrary [0, 1]-valued function and {ki} are some linearly independent elements
of (the dual space of) some vector space, X—the space of possible ‘input signals’. Interpret f
as a regular conditional probability. This model says, then, that the neuron projects the signal
�x onto some m-dimensional subspace spanned by {�ki}1�i�m (call this subspace K ) and then
looks up its probability of firing based only on this projection. This model is often called a
‘linear–nonlinear,’ or ‘LN,’ cascade model; it is a probabilistic analogue of what are called
‘Wiener cascade’ models (Hunter and Korenberg 1986) in the system identification literature.
(Note that this model is not the same as a Volterra series model (Marmarelis and Marmarelis
1978): these two classes of systems have very different approximation properties.)

The LN model has two important features which recommend it for complex natural signal
data. First, the spike trains of the cell are given by a conditionally (inhomogeneous) Poisson
process given �x ; that is, there are no dynamics in this model beyond those induced by �x and
K . This makes the LN cell a simple starting point for more detailed modelling. Second,
equation (1) implies

p(spike|�x) = p(spike|�x + �y) ∀y ⊥ K . (2)

In other words, the conditional probability of firing is constant along (hyper)planes in the
input space. This model thus separates the quite difficult nonparametric problem of learning
p(spike|�x) into two much simpler pieces: learning K and learning f . For example, if f is
known, the problem of learning K reduces to a fairly standard parametric estimation problem
(for which, say, maximum likelihood methods are generally efficient); conversely, if K is
known, learning f entails the nonparametric estimation of a density, about which, again, much
is known (see e.g. Devroye and Lugosi 2001). The semiparametric problem of estimating K
without a priori knowledge of f seems to be much less well understood; we focus primarily
on this problem here.

The main goal of this paper is to describe the convergence properties of three different
types of K estimator: (1) techniques based on the spike-triggered average (STA) (Theunissen
et al 2001); (2) techniques based on the spike-triggered covariance (Brenner et al 2001); and
(3) a new, more general technique based on a probabilistic distance measure between the spike-
triggered and ‘no-spike’-triggered distributions. We were motivated by two basic questions.
First, when do these estimators work (in the sense of ‘consistency’, that is, given enough
data, do they provide us with an accurate estimate of K (Schervish 1995))? Second, when the
estimator is consistent, what is the statistical rate of convergence (that is, how much data do we
need to be close to the correct K )? Our first main result is that the first two K estimators often
do not work, even given infinite data. More precisely, the conditions for consistency of these
estimators turn out to be surprisingly stringent; for example, these conditions are typically not
satisfied by natural signal stimulation paradigms. Our second main result provides an antidote
of sorts: the novel estimator we introduce here converges under very general conditions to the
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correct K . Finally, we provide various results on the rate of convergence of these three classes
of K estimator. Together, these results serve to put the growing subfield of LN statistical
modelling on a more solid theoretical foundation.

2. Notation; outline

The basic semiparametric model space we will work in is defined as follows. An LN model is
completely specified by knowledge of K and f , plus the stimulus distribution p(�x); thus, LN
models take values in the space

(p, K , f ) ∈ µ(X) × Gm(X) × L [0,1](�m),

where µ(X) denotes the space of all probability measures on X , Gm(X) is the space of all
m-dimensional subspaces of X , and L [0,1](�m) is the space of measurable functions on �m ,
taking values in [0, 1]. In most cases, p is held fixed and/or presumed known and we discuss
only (K , f ) instead of (p, K , f ); this should be clear from context. Note that K , the main
parameter of interest, is finite dimensional, while f , the ‘nuisance’ parameter in statistical
jargon, is infinite-dimensional.

Let N denote the number of available samples, drawn i.i.d. from p(�x). We assume
throughout this paper that p(�x) has zero mean and finite second moments; the first assumption
obviously entails no loss of generality and the second seems entirely reasonable on physical
grounds. Then our basic results will take the following form:

E(Error(K̂ )) ≈ αN−γ + β, (3)

as N becomes large. The estimator K̂ is a map taking N observations of stimulus and spike
data (where spikes are binary random variables, conditionally independent given the stimulus)
into an estimate of the true underlying K :

K̂ : (X × {0, 1})N → Gm(X)

(�xN , sN ) → K̂ (�xN , sN ),

where (�xN , sN ) denotes the N-sample data; the natural error metric, then, is the geodesic
distance on Gm(X) (the ‘canonical angle’) between the true subspace K and the estimated
subspace K̂ :

Error(K̂ ) ≡ cos−1(s(Pt
K PK̂ )),

where PV denotes the projection operator corresponding to the subspace V and s(A) denotes
the smallest singular value of the operator A. For notational ease, we will mostly work in the
m = 1 case; here the metric takes the explicit form

Error(K̂ ) ≡ cos−1 〈K̂ , �k1〉
‖K̂‖2‖�k1‖2

.

The scalar terms γ , α and β in (3) each depend on f , K and p(�x); γ is a constant giving the
order of magnitude of convergence (usually, but not always, equal to 1/2), α gives the precise
convergence rate and β gives the asymptotic error. We will mostly be concerned with giving
exact values for α, and simply indicating when β is zero or positive (i.e. when K̂ is consistent
in probability or not, respectively).

Most of the remainder of the paper will be devoted to deriving representation (3), including
the constants α, β and γ , for the three classes of K estimator mentioned in the introduction. We
carry out this programme for the spike-triggered average and the spike-triggered covariance
technique in sections 3 and 4, respectively. Section 5 contains perhaps the central results of this
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paper; here we give details of the analysis and computation of a new, universally consistent
estimator. In section 6, we present some simulation results comparing the performance of
the three estimators and applications of the new estimator to real physiological data. We
provide a few lower bounds on the convergence rate of any possible LN estimator in section 7;
these bounds provide rigorous measures of the difficulty of the K -estimation problem. Finally
(section 8), we close with a brief discussion of a few important areas for future research. Proofs
appear in an appendix.

3. Spike-triggered averaging

The first estimator, the STA, is classical and very intuitive. We define

K̂STA ≡ 1

Ns

Ns∑
i=1

�xi , (4)

where �xi is the i th stimulus for which a spike occurred and Ns denotes the total number of
spikes observed (N and Ns are, of course, roughly proportional, with constant p(spike) =∫

X p(�x) f (K �x)). As is well known, K̂STA is simply the sample mean of the spike-conditional
stimulus distribution p(�x |spike); since the spike signal is binary-valued, this is the same as
the cross-correlation between the spike and the stimulus signal. We will also consider the
following linear regression-like modification (Theunissen et al 2001):

K̂RSTA ≡ AK̂STA,

where A is an operator chosen to ‘rotate out’ correlations in the stimulus distribution p(�x) (A
is typically the (pseudo-) inverse of the stimulus correlation matrix, which we will denote as
σ 2(p(�x)). In this section and the next, we assume that σ 2(p(�x)) is known; this assumption
seems fair because either: (1) p(�x) is chosen by the experimenter, or (2), in the natural
signal paradigm, a sufficient number of samples from the natural distribution are available that
σ 2(p(�x)) can be estimated to arbitrary accuracy, i.e. the experimenter has access to many more
examples than N , the number of samples seen by the neuron. At any rate, even if σ 2(p(�x)) is
unknown, the basic analysis presented here still works, although slightly worse constants are
obtained.

We begin with necessary and sufficient conditions for consistency. As usual, we say
p(�x) is radially symmetric if p(B) = p(U B) for all measurable sets B and all unitary
transformations (rotations) U ; examples include the standard multivariate Gaussian density or
the uniform density on the sphere. (Note that, if p(�x) has this radial symmetry property, then
K̂STA = K̂RSTA.) Finally, since K̂RSTA clearly returns a single vector, that is, a one-dimensional
subspace of X , assume for the moment that K = �k1 (i.e. K is a one-dimensional subspace).
Then we have the following:

Theorem 1 (Consistency: β(K̂STA)). If p(�x) (resp. p(A1/2 �x)) is radially symmetric and
E(〈�x, �k1〉|spike) = 0, then β(K̂STA) = 0 (resp. β(K̂RSTA) = 0), that is, the spike-triggered
average estimator is consistent.

Conversely, if p(�x) is radially symmetric and E(〈�x, �k1〉|spike) = 0, then β > 0, and if
p(�x) is not radially symmetric, then there exists an f for which β > 0.

In other words, spike-triggered averaging techniques always work (given enough data)
if the input distribution p is radially symmetric and if the neuron’s tuning f is sufficiently
asymmetric, in the sense that |E(〈�x, �k1〉|spike)| > 0; conversely, it is not hard to find examples
for which these conditions are not met and the STA fails to recover �k1. The above sufficiency
conditions are fairly well known; for example, most of the sufficiency statement appeared
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(albeit in somewhat less precise form) in Chichilnisky (2001) (see also Ringach et al (1997)
and references therein for related results; (Bussgang 1952) seems to be the earliest). The
condition on E(〈�x, �k1〉|spike) is discussed in more depth below. Note the lack of restrictions
on f ; this function is not required to be smooth, or even continuous.

On the other hand, the converse is novel, to our knowledge, and is perhaps surprisingly
stringent: without a highly restrictive symmetry condition on p(�x), spike-triggered averaging
methods often remain biased, even given infinite data; thus, these estimators will typically
converge, but not necessarily to the correct �k. As is well known, distributions of natural
signals tend to lack this symmetry property (Simoncelli 1999, Ruderman and Bialek 1994);
thus, STA analyses of natural signal data must be interpreted with caution. The first part of
the necessity statement will be obvious from the following discussion of α(K̂RSTA) (and, in
fact, appears implicitly in Chichilnisky (2001)). The second part, while perhaps unsurprising
given the analysis of Chichilnisky (2001), is a little harder and seems to require characteristic
function (Fourier transform) techniques. The proof proceeds by showing that a distribution is
symmetric iff it has the property that the conditional mean of �x is zero on all planar ‘slices’
(i.e. E(〈�u, �x〉|〈�v, �x〉 ∈ B) = 0 for all �u ⊥ �v ∈ X ′ and real measurable sets B).

Next we have the rate of convergence, to give a rough idea of how many samples is
‘enough’:

Theorem 2 (Convergence rate: α(K̂STA)). Assume p(�x) is symmetric normal, with standard
deviation σ(p). If β(K̂STA) = 0, then N1/2

s (K̂STA−K ) is asymptotically symmetric normal with
mean zero (considered as a distribution on the tangent plane of Gm(X) at the true underlying
value K ), and scale

σ(p)

E(〈�x, �k1〉|spike)
.

Thus,

α(K̂STA) = σ(p)

|E(〈�x, �k1〉|spike)|
√

dim X − 1.

Thus the asymptotic error of the STA scales directly with the dimension of the ambient
space and inversely with |E(〈�x, �k1〉|spike)|, a measure of the asymmetry of the spike-triggered
distribution along k1. The standard example of a neuron for which |E(〈�x, �k1〉|spike)| is small
is a complex cell in V1, whose responses are roughly symmetric with respect to sign inversion.
The theorem serves to quantify the well-known result that spike-triggered averaging works
poorly, if at all, for neurons with this kind of response symmetry.

The proof follows by applying the multivariate central limit theorem to the sample mean
of Ns random vectors drawn i.i.d. from the spike-conditional stimulus distribution, p(�x |spike).
The proof also supplies the asymptotic distribution of Error(K̂STA) (a noncentral F), which
might be useful for hypothesis testing. The details are easy once the mean of this distribution
is identified (as in Chichilnisky (2001), under the above sufficiency conditions).

Note that we stated the result under stronger-than-necessary conditions (i.e. p(�x) is
Gaussian instead of just symmetric) in order to simplify the statement. (In this case, the form
of α becomes quite simple under these stronger assumptions; α depends on the nonlinearity
f only through E(〈�x, �k1〉|spike). The general case is proven by identical methods but results
in a slightly more complicated, f -dependent, term in place of σ(p).) This pattern of stating
non-optimal results in the text, then giving the stronger, more general results in the appendix
will reappear without comment below.

One final note: in stating the above two results, we have assumed that K is one-
dimensional. Nevertheless, the two theorems extend easily to the more general case, after
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Error(K̂STA) is redefined to measure angles between m- and one-dimensional subspaces.
(Of course, now E(K̂STA) depends strongly on the input distribution p(�x), even for radially
symmetric p(�x); see, e.g., Schwartz et al (2002) for an analysis of a special case of this effect.)

4. Covariance-based methods

The next estimator was introduced in an effort to extend spike-triggered analysis to the m > 1
case (see, e.g., de Ruyter and Bialek 1988, Brenner et al 2001, Schwartz et al 2002). Where
K̂STA was based on the first moment of the spike-conditional stimulus distribution p(�x |spike),
K̂CORR is based on the second moment. We define

K̂CORR ≡ (σ 2(p))−1eig(�̂σ 2),

where eig(A) denotes the significantly non-zero eigenspace of the operator A, and �̂σ 2 is
some estimate (typically the usual sample covariance estimate) of the ‘difference-covariance’
matrix �σ 2, defined by

�σ 2 ≡ σ 2(p(�x)) − σ 2(p(�x |spike)).

Again, we start with β:

Theorem 3 (β(K̂CORR)). If p(�x) is Gaussian and

var p(�x|spike)(〈�k, �x〉) = var p(�x)(〈�k, �x〉) ∀�k ∈ EK ,

for some orthogonal basis EK of K , then β(K̂CORR) = 0. Conversely, if p(�x) is Gaussian and
the variance condition is not satisfied for f , then β > 0, and if p(�x) is non-Gaussian, then
there exists an f for which β > 0.

As before, the sufficiency is fairly well known (see the thesis of Odelia Schwartz for a
proof, or Brenner et al (2001) for a sketch), while the necessity appears to be novel and relies
on characteristic function arguments. It is perhaps surprising that the conditions on p for the
consistency of this estimator are even stricter than for the STA. The essential fact here turns out
to be that a distribution is normal iff, after a suitable change of basis, the conditional variance
on all planar ‘slices’ of the distribution is constant.

We have, with Odelia Schwartz, developed a striking inconsistency example which is
worth mentioning here:

Example. (Inconsistency of K̂CORR). There is a nonempty open set of nonconstant f and
radially symmetric p(�x) such that K̂CORR is asymptotically orthogonal to K almost surely as
N → ∞. (In fact, the f and p in this set can be taken to be infinitely differentiable.)

The basic idea is that, for nonnormal p, the spike-triggered variance of 〈�v, �x〉 depends on
f even for �v ⊥ �k; thus, one can find f for which

|var p(�x|spike)(〈�k, �x〉) − varp(�x)(〈�k, �x〉)|
is small but

|var p(�x|spike)(〈�v, �x〉) − varp(�x)(〈�v, �x〉)|, �v ⊥ �k
is large. We leave the details to the reader.

We can derive a similar rate of convergence for these covariance-based methods. To
reduce the notational load, we state the result for m = 1 only; in this case, we can define λ�σ 2

to be the (unique and nonzero by assumption) eigenvalue of �σ 2.



Convergence properties of three spike-triggered analysis techniques 443

Theorem 4 (α(K̂CORR)). Assume p(�x) is symmetric normal. If β(K̂CORR) = 0, then
N1/2

s (K̂CORR − K ) is asymptotically symmetric normal with mean zero and

α = σ(p)
√

σ 2(p) − λ�σ 2

|λ�σ 2 |
√

dim X − 1.

(Again, while λ�σ 2 will not be exactly zero in practice, it can often be small enough that
the asymptotic error remains prohibitively large for physiologically reasonable values of Ns .)
The proof proceeds by applying the multivariate central limit theorem to the covariance matrix
estimator, then examining the first-order Taylor expansion of the eigenspace map at �σ 2. It
is also worth emphasizing that the asymptotics in the above theorem (and indeed, in all of the
results in this paper) are in N only; the theorem is not valid if dim X grows as well. (See,
e.g., Everson and Roberts (1999), Johnstone (2000) and references therein for some useful
asymptotic results on eigenspace analysis in the case that dim X is of order N .)

5. φ-divergence techniques

We have seen that the two most common K estimators are not consistent in general; that is, the
asymptotic error β is bounded away from zero for many (non-pathological) combinations of
p(�x), f , and K . In particular, we have to place very strong conditions on p to guarantee that
K̂RSTA and K̂CORR will converge to the correct K . We now introduce a new class of estimator
which is consistent (β = 0) in general.

The basic idea is that K �x is, in a sense, a sufficient statistic for �x : �x − K �x − spike forms a
Markov chain. Let us give a few definitions. Given a continuous, strictly convex real function
φ on [0,∞], with φ(1) = 0, define the φ divergence (following Csiszar (1967)) between two
measures µ and ν as

Dφ(µ; ν) ≡
∫

dν φ

(
dµ

dν

)
=

∫
dµ φ̃

(
dν

dµ

)
,

where φ̃(t) = tφ(t−1) and the densities dµ and dν are interpreted as likelihood ratios. The
best-known φ divergence is the Kullback–Leibler divergence (φ(t) = t log t). The main
property of φ divergences we need is the so-called data-processing inequality (Cover and
Thomas 1991): for any Markov morphisms S and T

Dφ(S(µ); T (ν)) � Dφ(µ; ν),

with equality only if S and T are sufficient. The above inequality is named for the following
special case: µ is p(x, y), the joint distribution of some r.v.’s X and Y , and ν is the product
p(x)p(y) of their marginals. Then, for any Markov chain X–Y –Z , Dφ(p(x, y); p(x)p(y)) �
Dφ(p(x, z); p(x)p(z)), with equality iff X—Z—Y (i.e. iff Y (Z) is sufficient for X .

Thus, if we identify the random variable ‘spike’ with X in the above Markov chain, �x with
Y , and 〈K , �x〉 with Z , it is clear from (1) that 〈K , �x〉 is sufficient for �x with respect to ‘spike’,
and the data processing inequality states that

Mφ(V ) ≡ Dφ(p(〈V , �x〉, spike); p(〈V , �x〉)p(spike)),

considered as a function of vector spaces V of dimension dim K , reaches a maximum on K ,
and this maximum is unique under certain weak conditions. (When dim V > dim K , the
maximum will no longer be unique, but it is easy to show that the maximizers still contain K .)

The basic idea is that 〈V , �x〉 is equivalent to 〈K , �x〉 plus some noise term that does not affect
the spike process (more precisely, this noise term is conditionally independent of ‘spike’ given
〈K , �x〉); this noise term is obviously 0 for V = K , and the larger this noise, the smaller Mφ(V ).
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Another way to put it is that Mφ(V ) measures how strongly 〈V , �x〉 modulates the firing rate of
the cell: for V near K , the conditional measures p(spike|〈V , �x〉) are on average very different
from the prior measure p(spike) and Mφ(V ) is designed to detect exactly these differences.
Conversely, for V orthogonal to K , the conditional measures p(spike|〈V , �x〉) will appear
relatively ‘unmodulated’ (that is, p(spike|〈V , �x〉) will tend to be much nearer the average
p(spike)) and Mφ(V ) will be comparatively small.

This all suggests that we could estimate K by maximizing Mφ,N (V ), some estimator of
the function Mφ(V ). The rest of this section is devoted to describing the mathematical and
computational properties of this type of estimator for several different forms of Mφ,N (V ). The
precise choice of φ here seems not to matter much for the asymptotic analysis, as long as φ is
smooth enough; for mathematical and computational convenience, we choose φ(t) = t2 − 1.
For this φ, a little algebra shows that

Mφ(V ) = var(p(spike = 1|〈V , �x〉))
p(spike = 1)p(spike = 0)

(where, in a slight abuse of notation, p(spike = 1) serves as a random variable—a function of
〈V , �x〉—in the numerator, and as a fixed probability in the denominator); this is a reasonably
intuitive measure of firing rate modulation in the LN model. Originally, we chose this function
because of the nice properties of φ and tφ̃(t) near zero, as previous work on the estimation of
mutual information (Paninski 2003a) indicated that the smoothness of these functions plays a
critical role in the estimability of Dφ ; other advantages of this choice will become clear as we
progress.

Before we move on to our main results, it is worth noting the recent work of Sharpee et al
(2003), who independently presented an estimator based on maximizing the mutual information
between 〈V , �x〉 and spike; this corresponds, in our notation, to maximizing Mφ(V ), with
φ(t) = t log t . While the methods and analysis presented below are somewhat more detailed
than, and differ in several important respects from, those described in Sharpee et al (2003),
it is worthwhile consulting their work for another illustration of the improved performance of
this kind of estimator. We hope to undertake a more thorough comparison of the statistical and
computational efficiency of the two estimators in the future.

5.1. Asymptotics

We will start by defining Mφ,N (V ) more precisely. The simplest idea would be to let Mφ,N (V )

be a ‘plug-in’ kernel or histogram estimator, that is,

Mφ,N (V ) ≡ Dφ( p̂N (〈V , �x〉, spike); p̂N(〈V , �x〉) p̂N (spike)),

where p̂N , in turn, is an estimate of the underlying measure, either by kernel (that is, p̂N is
obtained by filtering the empirical measure

pN ≡ 1

N

N∑
i=1

δi

according to some linear, shift-invariant kernel), or histogram (that is, X is partitioned into a
countable number of bins and p̂N is simply the discrete measure induced by pN ). We denote
such an estimator of K by

K̂φ ≡ argmax
V

Mφ,N (V ).

We assume that the chosen kernel or histogram partition is roughly isotropic, and that the data
has been pre-whitened, so that the global scale of the data is roughly the same for every V ;
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this helps to reduce the bias induced by the somewhat arbitrary scale imposed by the kernel
width or average bin size. Fancier versions of these estimators adjust to the local scale as
well (e.g. adaptive kernels or histograms), but for computational simplicity we will stick to
nonadaptive estimators of the density for now. Obviously, for either type of estimator, we
will have to let the kernel or bin width decrease with N ; it is easy to come up with examples
for which fixed bin width estimators fail (basically because, if the bin width is bounded from
below, there exist f which are ‘averaged over’ by the kernel or histogram). Thus much of the
labour in the analysis of these estimators is in dealing with shrinking bin sizes.

Our first result is a general consistency result for the kernel estimator. A nearly identical
result holds for the histogram estimator.

Theorem 5 (β(K̂φ)). If p has a nonzero density with respect to Lebesgue measure, f is not
constant a.e. and the kernel width goes to zero more slowly than Nr−1 , for some r > 0, then
β = 0 for the kernel estimator.

In other words, this new estimator K̂φ works for very general neurons f and stimulus
distributions p; in particular, K̂φ is suitable for application to natural signal data. Clearly, the
condition on f is minimal; we ask only that the neuron be tuned. The condition on p is quite
weak (and can be relaxed further); we are simply ensuring that we are sampling from all of X ,
and in particular, the part of X on which the cell is tuned.

Things get more complicated when it comes to computing the rate of convergence. The
rough picture is as follows: for each V , Mφ,N (V ) converges to Mφ(V ), with an error that
depends on N , V , the kernel width aN and the parameters of the LN model (K , f, p). We
have to choose aN in such a way as to minimize the effect of these errors on K̂φ . The error can
be split up into a bias term and a variance term. It turns out that the variance term does not
depend very strongly on aN , so we ignore this for now. The bias term can be split up further
into an approximation bias and a sample bias: the approximation bias measures the difference
between Mφ(V ) and its kernel- (or histogram-) smoothed version, defined in the obvious way,
while the sample bias is the average difference between Mφ,N (V ) and this smoothed version
of Mφ(V ). It is intuitively clear that these two types of bias behave differently as a function
of aN ; if aN goes to zero too slowly, the approximation bias will go to zero slowly but the
sample bias will die quickly (roughly, because larger kernels or histogram bins average over
more data), and vice versa. Thus, if we can compute the asymptotic approximation bias and
sample bias as a function of aN , we have a well-defined optimization problem: choose aN to
minimize their sum, the total bias.

We carry out this program in the appendix; the final result, for m = 1, for example,
is that the sample bias behaves roughly like (NaN )−1, implying that the naive estimator K̂φ

converges somewhat slowly. The following theorem follows from some simple algebra to
obtain the optimal kernel width for minimizing the bias in Mφ,N (V ), then a second-order
expansion of E(Mφ,N (V )) around K to obtain the corresponding behaviour for the bias of K̂φ .

Theorem 6 (Bias of K̂φ). If the approximation error is of the order of ar
N , then the optimal

kernel width is of the order of N−1/(r+1), corresponding to an optimal bias in the kernel or
histogram estimators which can be of the order of N−r/[2(r+1)].

Again, a similar conclusion holds for the histogram version of K̂φ . To understand what
this result means for a given set of parameters ( f, K , p), note that it is straightforward to show,
using a Taylor expansion, that the approximation error behaves like a2

N if p is well behaved
and f is, say, uniformly twice differentiable; this corresponds to a convergence rate of N−1/3

for K̂φ . As another example, step functions have an approximation error that behaves like aN ;
this leads to an even slower convergence rate, N−1/4.
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This slow bias behaviour can be corrected using a standard statistical trick: we replace
the naive ‘plug-in’ estimators for Mφ,N with their jackknifed versions, where for any function
of the data T (xN ), we define the jackknifed version of T to be

TJ K = NT − N − 1

N

N∑
i=1

T−i ,

where T−i is T computed using all but the i th data sample. Simple computations prove that
this procedure solves the bias problem (for simplicity, the next three results in this section are
stated under some weak smoothness assumptions on f and p; see the appendix for details):

Proposition 7 (Jackknife bias). If the kernel (or bin) width goes to zero more slowly than
Nr−1 , r > 0, then the sample bias of the jackknifed version of Mφ,N decays exponentially.

This is almost enough to establish an N−1/2 convergence rate for the estimator K̂φ given
by maximizing the jackknifed kernel or histogram version of Mφ,N , under suitable conditions
on the smoothness of f . The last step is to show that Mφ,N (V ) is asymptotically linear in N
and smooth enough in V , that is,

Mφ,N (V ) = Mφ(V ) + pN mV + op(N−1/2), (5)

where op(N−1/2) is a random variable which is negligible on an N1/2 scale and

pN mV ≡ 1

N

N∑
i=1

mV (�xi , spikei )

denotes the ‘empirical process’ associated with some function mV (�x, spike), uniformly
differentiable in V and with p(�x, spike)-mean zero. We leave the details behind representation
(5) for the appendix; basically, mV is computed as a derivative of Mφ,N (V ). Now, the theory of
empirical processes (van der Vaart and Wellner 1996) states that pN mV converges in a suitable
sense to a Gaussian stochastic process (this makes intuitive sense, given that, for fixed V ,
pN mV is just a sample mean of N i.i.d. random variables with finite variance) and this leads,
finally, to the asymptotic representation for K̂φ :

Theorem 8 (γ and α for (K̂φ)). If the approximation error is of the order of ar
N , r > 1, then

the jackknifed kernel or histogram versions of K̂φ , with bandwidth Ns , −1 < s < −1/r ,
converge at an N−1/2 rate.

Moreover, N1/2(K̂φ − K ) is asymptotically normal, with mean zero and

α(K̂φ) = (trace H −1 J H −1)1/2,

where

H ≡ ∂2 M(V )

∂V 2

∣∣∣∣
K

and

J ≡ E p(�x,spike)

(
∂mV

∂V

∣∣∣∣2

K

)
.

The methods follow, e.g., example 3.2.12 of van der Vaart and Wellner (1996)—basically,
a generalization of the classical theorem on the asymptotic distribution of the maximum
likelihood estimator in regular parametric families.

Numerical evidence indicates that α(K̂φ) is often smaller than α(K̂STA) or α(K̂CORR) (that
is, the φ-divergence estimator often converges faster than the STA or covariance methods, even
in the cases when the latter two methods are known to converge to the correct K ), but we have
so far been unable to obtain any general bounds on these quantities. Section 6 details a few of
these numerical experiments, using both simulated and real data; see also Sharpee et al (2003)
for some simulations of a similar estimator using natural image data.
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5.2. Computation

We still have not mentioned how to actually compute K̂φ. Histogram methods for the evaluation
of Mφ,N (V ) suffer from several problems: it is difficult to non-adaptively place histogram
partitions well for all V simultaneously, for example, and attempts to place the histogram
adaptively greatly complicate hill-climbing algorithms for the maximization of MN(V ). Kernel
methods are more attractive, but require numerical integration of effectively unconstrained
nonlinear functions over m-dimensional spaces. A more efficient approach is a ‘resubstitution’
estimator: we replace numerical integration with a kind of Monte Carlo integration, using the
observed samples as our integration points. Thus, sticking with the example of φ(t) = t2 − 1,
instead of computing the integral∫

p̂(V �x, spike)2

p̂(V �x) p̂(spike)
=

∫
p̂(spike|V �x) p̂(V �x |spike),

we compute the sum
1

Ns

∑
i∈S

p̂(spike = 1|V �xi) +
1

N − Ns

∑
i∈Sc

p̂(spike = 0|V �xi), (6)

where S is the set of stimuli which induced a spike and c denotes the set complement. The
conditional measures p̂(spike|V �x) are estimated via kernel, as discussed above; again, the
jackknife trick can be used to remove the sample bias and the asymptotic theory developed in
the last section goes through.

To compute K̂φ , now we have to maximize Mφ,N (V ); unfortunately, this function is non-
convex in general and no direct solution seems to exist. General iterative algorithms such
as simulated annealing or gradient ascent with repeated restarts may, of course, be applied
to this problem, but their convergence is extremely slow. We have developed a specialized
ascent algorithm for maximizing expression (6) that is much more efficient. This algorithm
makes use of several tricks which might be useful more generally for maximizing empirical
functionals on spaces of vector spaces; we describe these ideas in turn below. We plan to
make the algorithm publicly available at http://www.cns.nyu.edu/∼liam, in order to facilitate
quantitative evaluation on as large a variety of neural and synthetic data as possible.

The basic algorithm alternates between a local step and a global step until a convergence
criterion is satisfied. The local step is straightforward: given the current V0, we compute the
gradient of (6), using a smooth (Gaussian, say) kernel; call the gradient �e0 ⊥ V0. The global
step consists of finding the constrained maximum of (6), where V is allowed to vary only over
the circle

(1 + t2)−1/2(V0 + t�e0), t ∈ �. (7)

The first, and most important, trick now is to compute Mφ,N (V ) using, not a smooth kernel, but
rather a simple boxcar function. This allows us to compute our function for all t very quickly
(and therefore to find its global maximum over all t very quickly (noniteratively) as well. The
idea is simple: for a boxcar kernel, Mφ,N (t) changes value a finite number of times, namely at
the points ti at which kernels centred on different points intersect. Since precomputing these
‘crossing times’ ti is simple trigonometry, we only need to sort the times and keep track of
the value of each change (this turns out to be very simple as well, since (6) is a sum over the
same index i ) to compute the full function. This mix of global and local maximizations greatly
increases the efficiency of the algorithm. This also obviates the need for conjugate gradient
ascent techniques (Press et al 1992), as the boxcar kernels make Mφ,N (V ) highly unsmooth
(i.e. we do not become trapped in any long, smooth valleys).

Our other tricks do not have quite the same impact, but are helpful nevertheless. The
next two ideas are about choosing the search direction �e0 intelligently when local maxima are
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encountered (i.e. when the circle search described above returns V0 as the global maximum
over t). First, if we have kept a list of circles we have already searched over, we can use a
self-avoiding procedure to choose our next search direction: basically, we choose the next
search to be in the direction �e0 such that

�e0 = argmax
�e⊥V0

max
z

D(Vz ⊕ �ez, V0 ⊕ �e0),

where D( ) denotes geodesic distance and z indexes all past searches. This prevents us from
searching over ground we have already covered.

The second trick along these lines is a little more interesting, but requires that at least
dim X searches have already been made (roughly, we will need the set of old search circles to
span X before this method becomes useful). The idea is that, with each search, we gain some
information on the global structure of Mφ,N (V ) beyond the simpler local structure we use to
choose gradients, do circle maximizations, and so on. If we can use this global information
to guide our choice of the next search direction, we should gain in efficiency. The simplest
way to do this is a variant of the principal component analysis-style trick used by the spike-
triggered covariance estimator. We form two ‘covariance’ matrices, U and V , as follows: U
is the covariance of a set of points �yi sampled randomly from the set of all previous search
circles (this is a set of dim X-dimensional points, all of length unity) and V is the covariance
of the same set of points, with norm scaled now by the value of Mφ,N (V ) at each point,
i.e. Mφ,N (�yi)�yi . By the unitary symmetry of Mφ,N (V ), we can hope that the ‘variance’ of the
data Mφ,N (�yi)�yi should be largest near K , even if we have not searched (i.e. collected points �yi )
near K yet. Now our best guess at a good search direction �e0 solves the usual eigenvector
problem associated with the Rayleigh quotient corresponding to U and V .

Finally, we can use a few not-so-specialized tricks to help speed up convergence. Most
of these are some version of the coarse-to-fine idea. Since the speed of the algorithm scales
inversely with N , but the accuracy scales proportionally with N , we can run the algorithm
for a few iterations on a subsampled data set (artificially reducing N) to get a rough estimate,
then gradually scale up N to refine our original coarse estimate. Similar tricks can be played
with the kernel width a and dim X , assuming f and K , respectively, vary slowly enough that
coarsening makes sense.

6. Application to simulated and real data

In this section we give examples of data sets, both simulated and real, for which the novel
estimator introduced in section 5 reveals structure that is either undetected or contaminated by
the usual estimators K̂STA and K̂CORR (see, e.g., Paninski 2003b, Sharpee et al 2003 for further
numerical comparisons).

6.1. Numerical comparisons

Figures 1–3 present simple comparisons of the performance of K̂φ to that of the standard
estimators K̂STA and K̂CORR on simulated data. Simulations here have the advantage, as usual,
that we know the ‘right answer’; this allows us to rigorously quantify the distribution of error
of these estimators in simple, easy-to-understand situations, and to illustrate, in a less technical
way, some of the ideas presented in more mathematical language in the preceding sections.
Each point in each of these first three figures corresponds to the error of the two estimators
(K̂φ versus K̂STA in 1 and 2, and versus K̂CORR in figure 3), given N samples drawn i.i.d. from a
fixed distribution p(�x) and presented to an LN model whose parameters were chosen randomly
on each set of N trials. In each case, the LN model is one-dimensional (m = 1), for simplicity.
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Figure 1. Plot of the error for K̂φ versus that of K̂STA. p(�x) = Gaussian white noise; f is a step
function, where the step position is chosen randomly. Axes index error in radian units. N = 80 and
dim X = 3 here; these small values were chosen for computational efficiency, but similar results
are seen with larger values (see figure 3, for example). The error of K̂φ is slightly (but significantly)
smaller than that of K̂STA for these parameter settings.

In figure 1, we chose the input distribution p(�x) and the parameters of the LN model to be
entirely favourable to the performance of K̂STA: p(�x) was chosen to be a standard Gaussian to
satisfy the conditions of theorem 1 (implying that the STA does not suffer from an asymptotic
bias), while the nonlinearity f was chosen to be a simple Heaviside step function (taking
values zero and one), where the step position was chosen randomly according to a standard
normal as well (by theorem 2, this form of f implies that α(K̂STA) is always finite, and indeed
fairly small with high probability; the value of the linear filter �k is irrelevant, by the symmetry
of p). Nevertheless, somewhat surprisingly, K̂φ significantly outperforms K̂STA on average
(p < 0.05, rank test).

We chose the LN model parameters randomly in figure 1, partly in an effort to emulate
physical reality, where we have no control over the parameters, and partly to avoid picking an
LN model that happened to confound either estimator to an abnormal degree. However, it is
worth showing an example of the estimators’ performance on a single, fixed model and input
distribution, both because single models are perhaps easier to think about than a family of
random models and in order to give a sense of the variability involved in the above numerical
experiment. Thus, in figure 2, we present an identical simulation, except with the position of
the step in the nonlinearity f (the only random parameter) fixed at 0. The results are essentially
identical, if anything favouring the new estimator even more.

In figure 3, we use a nonlinearity which is more suited to K̂CORR: f is quadratic, of the
form

f (t) = a(t − b)2,

with a, b chosen randomly (a > 0; we have in mind an energy-type model for visual cortex
cells (see, e.g., Simoncelli and Heeger 1998 and references therein). For Gaussian input data,
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Figure 2. Plot of the error for K̂φ versus that of K̂STA; parameters as in figure 1, except the step is
always at zero. Conventions are as in figure 1.
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Figure 3. Plot of the error for K̂φ versus that of K̂CORR p(�x) = uniform on a hypercube; �k is chosen
randomly; f is quadratic, with the centre and scale chosen randomly. N = 200 and dim X = 10
here; conventions are as in figure 1.

K̂CORR is competitive with K̂φ (data not shown), as expected given theorem 3. To provide a
physiologically plausible example for which this is not the case, we took the input distribution
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p(�x) to be uniform on a hypercube; this corresponds, for example, to a temporal signal whose
value is chosen independently and identically distributed at each time step. The physical
examples we have in mind here are the full-field white visual flicker stimulus employed,
for example, in Berry and Meister (1998), Chander and Chichilnisky (2001), or the random
‘checkerboard’ spatial stimulus used in cortical and thalamic studies (e.g. Reid and Shapley
2002 and references therein). Finally, we chose the linear projection �k randomly on the sphere
for each new set of data; the results did not depend strongly on the identity of the chosen filter
(for instance, the ratio Error(K̂CORR)/Error(K̂φ) was uncorrelated with the smoothness of �k;
data not shown). Figure 3 shows that the new estimator outperforms the covariance-based
estimator by a wide margin, essentially because of the asymptotic bias effects caused by the
non-Gaussian nature of the data, as discussed in theorem 3.

6.2. Motor cortical data

In the preceding, we provided some encouraging numerical comparisons between K̂STA, K̂CORR

and the new estimator K̂φ . This last subsection presents some preliminary results which are
of interest more for their physiological relevance than for methodological reasons.

We have begun to apply these new spike-triggered analysis techniques to data collected
in the primary motor cortex (MI) of awake, behaving monkeys, in an effort to elucidate the
neural encoding of time-varying hand position signals in MI. This analysis has led to several
interesting findings on the encoding properties of these neurons,with immediate applications to
the design of neural prosthetic devices (Paninski et al 2002, Shoham et al 2003). The monkeys
are performing a random drawing task, designed roughly to mimic everyday (for humans, but
perhaps not monkeys in the wild) manual movement (for methodological details, see Paninski
et al 1999, Fellows 2001, Paninski et al 2003a, Serruya et al 2002); the ‘stimulus’ space X in
this context is the fairly high-dimensional space of time-varying hand position signals.

One novel and surprising result of this analysis is that the relevant K for MI cells
appear to be one-dimensional. In other words, the conditional firing rate of these neurons,
given a specific time-varying hand path, is well captured by the following model (figure 4):
p(spike|�x) = f (〈�k1, �x〉), where �x represents the two-dimensional hand position signal in
a temporal neighbourhood of the current time, �k1 (in a slight abuse of notation) is a cell-
specific affine functional and f (t) is a scalar nonlinearity which turns out to be relatively
cell-independent. There is no reason to have assumed MI cells would have this kind of one-
dimensional tuning—for example, it is easy to find V1 cells which are notably multidimensional
(e.g. Touryan et al 2002, Rust et al 2003)—but it is not hard to see that our observations are
consistent with and extend the classical ‘cosine’ model of MI tuning (Georgopoulos et al 1986,
Moran and Schwartz 1999).

We support the qualitative one-dimensional picture in figure 4 with two somewhat more
quantitative results. First, we could find no two-dimensional parametric model which fits the
nonlinearity (in a likelihood sense) better than a simple one-dimensional model in any of the
cells we examined (after suitable correction for differences in dimensionality (Schwarz 1978)).
Second, the mutual information in the second most modulatory axis I (spike; 〈�k2, �x〉) is not
significantly different from zero (according to a Monte Carlo test constructed by simulating
spike trains from a one-dimensional model whose parameters were matched and whose inputs
were identical to those of the real cell, then estimating K and I (spike; 〈�k2, �x〉) for this
model, repeating the procedure often enough to construct a nonparametric estimate of the
null distribution to test against). Further details of �k1, f and this information analysis will be
presented elsewhere (Paninski et al 2002, 2003b, Shoham et al 2003).
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Figure 4. Example of f̂ (K̂ �x) functions, computed from two different MI cells, with rank K̂ = 2;
the x- and y-axes index 〈k̂1, �x〉 and 〈k̂2, �x〉, respectively, while the colour axis indicates the value
of f̂ (the conditional firing rate given K̂ �x), in Hz. The scale on the x and y axes is arbitrary
and has been omitted. K̂ was computed using the φ-divergence estimator and f̂ was estimated
using an adaptive kernel within the circular region shown (where sufficient data were available
for reliable estimates). Note that the contours of these functions are approximately linear; that is,
f̂ (K̂ �x) ≈ f0(〈�k1, �x〉), where �k1 is the vector orthogonal to the contour lines and f0 is a suitably
chosen scalar function on the line.

(This figure is in colour only in the electronic version)

7. Lower bounds

Our final mathematical results are lower bounds on the convergence rates of any possible
K estimator; these kinds of bounds provide rigorous measures of the difficulty of a given
estimation problem, or of the efficiency of a given estimator. The first lower bound is local,
in the sense that we assume that the true parameter is known a priori to be in some small
neighbourhood of parameter space. Recall that the Hellinger metric between any two densities
is defined as (half of) the L2 distance between the square roots of the densities.

Theorem 9 (Local (Hellinger) lower bound). For simplicity, let p be standard normal. For
any fixed differentiable f , uniformly bounded away from 0 and 1 and with a uniformly bounded
derivative f ′, and any Hellinger ball F around the true parameter ( f, K ),

lim inf
N→∞

N1/2 inf
K̂

sup
F

E(Error(K̂ )) �
(

σ(p)

(
E p

( | f ′|2
f (1 − f )

))1/2 )−1√
dimX − 1.

The second infimum above is taken over all possible estimators K̂ . The right-hand side
plays the role of the inverse Fisher information in the Cramer–Rao bound and is derived using
a similarly local analysis; see Jongbloed (2000) for details on the Hellinger technique or Gill
and Levit (1995) on the Bayesian Cramer–Rao technique.

Global bounds are more subtle. We want to prove something like

lim inf
N→∞ aN inf

K̂
sup
F(ε)

E(Error(K̂ )) � C(ε),

whereF(ε) is some large parameter set containing, say, all K and all f for which some relevant
measure of tuning is greater than ε, aN is the corresponding convergence rate and C(ε) plays
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the role of α(K̂ ) from the previous sections. So far, our most interesting results in this direction
are negative:

Theorem 10 (φ-divergences are poor indices of K -difficulty). Let F(ε) be the set of all
(K , f ) for which the φ-divergence ‘information’ between �x and spike is greater than ε, that
is,

Dφ(p(K �x, spike); p(spike)p(K �x)) > ε.

Then, for ε > 0 small enough, for any putative convergence rate aN ,

lim inf
N→∞

aN inf
K̂

sup
F(ε)

E(Error(K̂ )) = ∞.

In other words, strictly information-theoretic measures of tuning do not provide a useful
index of the difficulty of the K -learning problem; the intuitive explanation of this result is that
purely measure-theoretic distance functions, like φ divergences, ignore the topological and
vector space structure of the underlying probability measures, and it is exactly this structure
that determines the convergence rates of any efficient K estimator. To put it more simply,
the learnability of K depends on the smoothness of f , just as we saw in the last section
(cf theorem 6), a common theme in nonparametric statistics.

8. Conclusion and directions for future work

We have presented here a fairly detailed analysis of the statistical properties of the LN model
(1). In particular, we have attempted to elucidate when and why the common estimators for
the LN model parameters work well, or not. More importantly, we have provided a new
estimator which is guaranteed to recover the true parameters in much greater generality than
was previously possible. We hope that our results will find application in understanding the
neural processing of naturalistic stimuli; as mentioned briefly in section 6.2, these methods
have already led to a better understanding of the neural coding of dynamic hand movement
signals in primary motor cortex.

We take this opportunity to outline one obvious avenue for future work: how do we extend
the basic LN model (1) in a way that allows us to capture more of the details of the neural code,
while at the same time retaining some of the simplicity that allows us to estimate the model?

8.1. Non-Poisson effects

As noted in the introduction, model (1) generates spike trains which are (conditionally
inhomogeneous) Poisson processes (note that, even if the stimulus ensemble is time-translation-
invariant, the spike train is not necessarily a marginally homogeneous Poisson process); given
the input signal �x, the spikes in one time bin do not depend on those in any other nonoverlapping
bin. We can extend this model by allowing spikes which are close to each other in time to be
dependent (the importance of such an extension has been noted in several contexts; see, e.g.,
Berry and Meister (1998),Brown et al (2002) and Pillow and Simoncelli (2003)). Some natural
questions immediately arise. Does the standard spike-triggered analysis fail in this case? If so,
why? Can we correct for these non-Poisson effects? We can give at least preliminary answers
to all of these questions, at least in the following special case:

p(spike|�x, s−) = f (〈�k1, �x〉, 〈�k2, �x〉, . . . , 〈�km, �x〉)g(T (s−)). (8)

Here T is some arbitrary statistic of s−, the spike train up to the present time (e.g. T could encode
the time since the last spike); the ‘modulation function’ g maps the range of T into the half-
interval [0,∞). The only conditions on f and g are those necessary to make p(spike|�x, s−)
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a regular conditional distribution (aside from measurability issues, it is sufficient that f, g � 0,
f g � 1 ∀(K �x, s−)).

To see why the memory effects displayed by (8) complicate the analysis presented in the
previous sections, recall the basic idea behind Chichilnisky’s proof of the fact that, for model
(1), whenever p(�x) is radially symmetric, E(K̂STA) lies in K (we are abusing notation slightly;
K here denotes the subspace generated by K , which is assumed to be one-dimensional, as
in section 3). We will write E(K̂STA) out and show the essential point of the proof; then we
will show why the memory effects seen in (8) cause problems and how these problems can be
‘fixed’, in some suitable sense. We have

E(K̂STA) =
∫

p(�x |spike)�x d�x

=
∫

p(spike|�x)
p(�x)

p(spike)
�x d�x

=
∫

f (〈 �K , �x〉) p(�x)

p(spike)
�x d�x .

The first equality is Bayes, the second (1). The essential point is that the conditional probability
of a spike given �x depends only on 〈 �K , �x〉—the proof that E(K̂STA) ∈ K follows immediately
(after a suitable change of basis). This key equality does not hold in general for (8):

p(spike|�x) =
∫

p(spike|�x, s−)p(s−|�x) ds−

=
∫

f (〈 �K , �x〉)g(T (s−))p(s−|�x) ds−

= f (〈 �K , �x〉)
∫

g(T (s−))p(s−|�x) ds−

= f (〈 �K , �x〉)h(�x).

The first equality is (8), the second linearity; the last is by way of definition: h is an abbreviation
for the conditional expectation of g(T (s−)) given �x . If g ≡ 1 (as in (1)), then h(�x) ≡ 1, and
we recover E(K̂STA) ∈ K . However, in general, h is nonconstant in �x : h depends on �x not
only through its projection onto �K but also through its projection on all time-translates of K
to the left (i.e. all functions k−τ such that k−τ (t) = k(t + τ ), for some k ∈ K and τ > 0). Most
K , of course, are not time-translation-invariant. This breaks the proof and the result; indeed,
it is easy to think of simple (non-pathological) examples of f, g, and radially symmetric p(�x)

for which E(K̂STA) ∈ K .
So we need to modify K̂STA somehow to bring its expectation back into the desired

subspace. Assume for simplicity that g is bounded below away from zero and that g and
T (s−) are known (the simultaneous estimation of f, g, and K appears to be more difficult; no
consistent estimator for ( f, g, K ) seems to be known, although attempts have appeared, e.g.,
Berry and Meister (1998). Aguera y Arcas et al (2001) suggest ignoring all spikes for which
g(T (s−)) = 1: i.e. form

K̂STA∗ ≡ 1

Ns

∑
i∈S

δ(g(T (si−)) − 1)�xi,

where S, again, indicates the set of stimuli corresponding to spikes and δ is the usual Dirac
functional. However, the above string of equations shows that this procedure can actually make
the situation worse: this effectively sets g equal to zero at all of these points where g = 1,
which, in many cases, makes h more strongly �x-dependent, not less. In addition, of course,
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ignoring these ‘bad’ spikes is expensive from a data collection point of view. An obvious
alternative would be to form

K̂STA∗ ≡ 1

Ns

∑
i∈S

g(T (si−))−1 �xi .

It is easy to see, from the above discussion, that E(K̂STA∗) ∈ K .
More complete analysis of this kind of model and estimator would clearly be useful.
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Appendix A. Proofs

A.1. K̂STA

Consistency of K̂RSTA: sufficiency. By the strong law of large numbers, the proof comes
down to a bias calculation, and Chichilnisky’s proof (Chichilnisky 2001) for K̂STA illustrates
the source of this bias very nicely. First, the conditional expectation E(〈�x, �k1〉|spike) exists
by the finite-variance assumption on p(�x). Then, for K̂RSTA, we have the following string of
equalities:

E(K̂RSTA) = E(AK̂STA)

=
∫

A�x p(�x |spike) d�x

=
∫

A�x p(spike|�x)

p(spike)
p(�x) d�x

=
∫

A�x f (〈 �K , �x〉)
p(spike)

p(�x) d�x

=
∫

A1/2 �y f (〈 �K , A−1/2 �y〉)
p(spike)

p(A−1/2 �y)|A|1/2 d�y

=
∫

A1/2 �y f (〈A−1/2 �K , �y〉)
p(spike)

p(A−1/2 �y)|A|1/2 d�y

= A1/2
∫

�y f (〈A−1/2 �K , �y〉)
p(spike)

p(A−1/2 �y)|A|1/2 d�y.

The first two equalities are by definition, the third Bayes, the fourth (1), the fifth a linear change
of coordinates y = A1/2x , the sixth by the symmetry of A−1/2, and the seventh by linearity.
The rest of the proof follows Chichilnisky (2001) (see also section 8.1).

Consistency of K̂STA: necessity. The claim is that, if p is asymmetric, then there exists some
f and �v for which∫

�x f (〈�v, �x〉)
p(spike)

p(�x) d�x = C f,�v �v,
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for some scalar C f,�v . The claim is equivalent to the following: if∫
�x f (〈�v, �x〉)

p(spike)
p(�x) d�x = C f,�v �v ∀ f, �v, (9)

then p is symmetric. It suffices to prove (9) for simple functions, that is, f = 1 on some set
B , and f = 0 everywhere else. Thus condition (9) reduces to∫

〈�v,�x〉∈B
〈�u, �x〉p(�x) d�x = 0 ∀B ∈ B, �u ⊥ �v,

with B the class of all measurable sets. This, in turn, implies that the characteristic function
(Fourier transform) of p(�x), p̌(�s), satisfies the following differential equation:

∂ p̌(�s)
∂�t = 0 ∀�s ⊥ �t .

Since p̌ is everywhere differentiable, by the finite-power assumption on p, the above equation
implies that p̌(�s) is radially symmetric in �s, which, finally, implies the symmetry of p. �

Convergence rate α(K̂RSTA). Assume p is elliptically symmetric. By the multivariate CLT
and the computations above, K̂RSTA is asymptotically normally distributed with mean

E(〈�x, �k1〉|spike)�k1

and covariance matrix
1

Ns
A2C,

where C denotes σ 2(p(�x |spike)).
The asymptotic error behaves like the norm of this distribution orthogonal to �k1, normalized

by the projection of the mean of the distribution onto �k1. The final result is

α = (trace Et A2C E)1/2

|E(〈�x, �k1〉|spike)| ,

where E is any matrix whose columns are an orthonormal basis for the subspace of X ′
orthogonal to K . This reduces to the quoted result when p is Gaussian (in which case

Et A2C E = Et AE

and white. �

A.2. K̂CORR

Consistency of K̂CORR: necessity. The argument for K̂CORR is similar to that for K̂STA. We
want to prove that, if p is non-Gaussian, then there exists some f and �u ⊥ �v for which∫

〈�u, (�x − E p(�x|spike) �x)〉2 f (〈�v, �x〉)
p(spike)

d p(�x) =
∫

〈�u, �x〉2 d p(�x)

(recall we assumed that E p(�x) �x = 0). Without loss of generality, we assume that p is white,
that is, ∫

〈�u, �x〉2 d p(�x) = 1 ∀�u : ‖�u‖2 = 1;
translating into the contrapositive again, we reformulate the claim as follows: if∫

〈�u, (�x − E p(�x|spike) �x)〉2 f (〈�v, �x〉)
p(spike)

d p(�x) = 1 ∀ f, �u ⊥ �v, (10)
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then p is Gaussian. The proof proceeds in two stages: first, we prove that the above condition
implies that p is symmetric (making use of the result for K̂STA); then we prove that any
symmetric p satisfying (10) is Gaussian. Again, we may restrict our attention to simple
functions f .

First the symmetry. Note that (10) can be written as a mixture of conditional variances,
given 〈�v, �x〉. More formally, for simple f ,∫

〈�u, (�x − E p(�x|spike) �x)〉2 f (〈�v, �x〉)
p(spike)

d p(�x) = 1

p(spike)

∫
〈�v,�x〉∈B

〈�u, (�x − E p(�x|spike) �x)〉2 d p(�x);

in other words, (10) says that the conditional variance of 〈�u, �x〉, given 〈�v, �x〉 ∈ B , is constant
(for all vectors �u ⊥ �v and all measurable sets B). Now consider disjoint subsets of B , B1 and
B2, B = B1 ∪ B2. It is clear that the following ‘mixture’ equation holds:

p(〈�u, �x〉|〈�v, �x〉 ∈ B) = 1

p(〈�v, �x〉 ∈ B)

(
p(〈�v, �x〉 ∈ B1)p(〈�u, �x〉|〈�v, �x〉 ∈ B1)

+ p(〈�v, �x〉 ∈ B2)p(〈�u, �x〉|〈�v, �x〉 ∈ B2)
)
.

Now, since the mixture of two densities with the same positive finite variance but different
means has strictly greater variance than either of the two original densities,and each component
in the above equation has the same variance, each component must also have the same mean.
That is, ∫

〈�v,�x〉∈B
〈�u, �x〉p(�x) d�x =

∫
〈�v,�x〉∈B1

〈�u, �x〉p(�x) d�x

=
∫

〈�v,�x〉∈B2

〈�u, �x〉p(�x) d�x
= 0.

The above equations hold for all such B, B1, B2, and are equivalent to condition (9) from the
proof for K̂STA; thus p is symmetric.

Now, given that p is symmetric, we can write

p(�x) = g(‖�x‖2
2)

for some scalar function g; it turns out that (10) provides us with a simple differential equation
for p (and hence g) in Fourier space. For simple f and symmetric p, (10) reduces to∫

〈�v,�x〉∈B
〈�u, �x〉2 d p(�x) =

∫
〈�v,�x〉∈B

d p(�x) ∀B ∈ B, �u ⊥ �v.

In the Fourier domain, this means that

∂2 p̌

∂�t2
= − p̌(�s), ∀�s ⊥ �t : ‖�t‖2 = 1.

Applying this equation to g, we find that

∂ ǧ(s)

∂s
= −ǧ/2,

i.e.

ǧ(s) = ce−s/2,

for some constant c; the proof is complete upon applying the inverse Fourier transform and
normalizing. �
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Convergence rate α(K̂CORR). Assume p is nondegenerate Gaussian. By the multivariate CLT,
�̂σ 2 is asymptotically normal with mean �σ 2 and covariance

C ≡ E(�̂σ 2
i j − �σ 2

i j)(�̂σ 2
gh − �σ 2

gh) = 1

Ns
(σ 2

s,ihσ
2
s, jg + σ 2

s,igσ
2
s, jh),

where σs abbreviates the spike-triggered covariance matrix. Again, the proof relies on an
analysis of the (normalized) behaviour of the estimate on the orthogonal complement of K .
This comes down to the usual local analysis, as follows.

Let eig1 denote a top eigenvector map, that is, a map

eig1 : �(dim X)2 → �dim X ,

taking a matrix to its (normalized) top eigenvector (in the case we will be dealing with, this
map is uniquely defined almost surely). We know that, for Ns large enough,

eig1�̂σ 2 − eig1�σ 2 ≈ D eig1(�σ 2)(�̂σ 2 − �σ 2),

where D eig1(�σ 2) denotes the Jacobian matrix of eig1 at the point �σ 2; �̂σ 2 − �σ 2 is
normally distributed with mean zero and covariance C , and so we know everything we need
to know about the asymptotic behaviour of �̂σ 2 if we can compute D eig1(�σ 2) on the
(proper) subspace of �(dim X)2

on which C is a positive definite operator (this subspace is
clearly contained in the space of all possible symmetric matrices, for example). The final
result is that

α(K̂CORR)N−1/2
s = (trace E(σ 2)−1 D eig1(�σ 2)C D eig1(�σ 2)t(σ 2)−1 Et )1/2.

The computation of the derivative turns out to be fairly straightforward. We want to look
at how much the symmetric perturbation εB , ε small, affects the i th component of the first
eigenvector of the symmetric matrix A = V DV t , with V orthonormal and D diagonal. This
is not difficult if V is the identity matrix; in this case, if D is zero everywhere but the first
element is λ, say, then a little direct computation shows that

eig1(D + εB) − eig1 D ≈ ε

λ
Z1 B,

where Z1 is the operator mapping a matrix to its first column, after setting the first element to
zero. The general result now follows after a change of basis or two:

eig1(A + εB) − eig1 A ≈ ε

λ
V Z1V t BV .

Plugging everything in, we get the stated result. �

A.3. K̂φ

Consistency of K̂φ . We want to prove that

argmax
V

MN (V ) → K

almost surely. According to arguments like those leading to corollary 3.2.3 of van der Vaart
and Wellner (1996), it suffices to prove the following two statements:

(1) M(V ) has a well-separated, unique maximum at K ;
(2) sup

V
|MN (V ) − M(V )| → 0 almost surely.
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When we say that M(K ) is a ‘well-separated’ maximum of M(V ), we mean that

M(K ) > sup
V ∈Oc

M(V ),

where O is any open set containing K .
Part (1) is fairly straightforward. Under the conditions of the theorem, the sufficiency

part of the data processing inequality ensures that K is a unique maximum. To see that this
unique maximum is well-separated we need only note (van der Vaart and Wellner 1996) that
M(V ) is continuous in V under the conditions of the theorem, with compact domain, and
that continuous functions on compact domains attain their suprema; thus, since M(V ) attains
its maximum on the compact set Oc, maxV ∈Oc M(V ) must be strictly less than the unique
maximum M(K ).

Part (2) requires a little more effort. Letting WaN ∗ g denote the convolution of the kernel
WaN with the function g, define the deterministic sequence of functions

M∗
N (V ) ≡

∫
spike,X

(WaN ∗ p(spike, V �x))2

p(spike)(WaN ∗ p(V �x))
.

Then the proof splits into two parts:

(2a) sup
V

|MN (V ) − M∗
N (V )| → 0 a.s.;

(2b) sup
V

|M∗
N (V ) − M(V )| → 0.

We handle part (a) with probability inequalities on uniform deviations of sample means from
expectations (the standard VC inequalities (van der Vaart and Wellner 1996, Devroye et al
1996) are sufficient); since MN (V ) is continuous on compact subsets of Gm(X) in the topology
generated by uniform convergence and p is tight, the almost sure convergence follows.

We prove (b) by noting that M∗
N (V ) is uniformly continuous in kernel width and V . Thus

it is enough to prove pointwise convergence; this can be done under standard conditions on W
(Devroye and Lugosi 2001), either using Fourier transforms or by direct argument. �

Bias of K̂φ . We need to quantify the rate of decay of MN (V ) − M(V ). As indicated in the
proof of the consistency theorem, this error has two parts: sample error and approximation
error. The sample error, in addition, can be broken up into a bias term and a variance term.
The bias term is what will cause us some problems, and it turns out that we can compute it
explicitly.

We have

E(MN (V ) − M(V )) = E

(∫
X,spike

p̂(V �x, spike)2

p̂(V �x) p̂(spike)
−

∫
X,spike

p(V �x, spike)2

p(V �x)p(spike)

)

=
∫

X

(
E

(∑
spike

(
p̂(V �x, spike)2

p̂(V �x) p̂(spike)

))
−

∑
spike

(
p(V �x, spike)2

p(V �x)p(spike)

))
,

by definition, linearity and Fubini.
Now we write out the expectation inside the integral. To simplify the computations, we

assume either that we are dealing with the histogram estimator or that the kernel is a simple
boxcar; this makes p̂ a constant multiple of a binomial random variable. (The extension to more
general kernels is not conceptually difficult (van der Vaart and Wellner 1996) but precludes
the direct calculations presented below.) Assume that N is large enough to replace p̂(spike)
with p(spike); this can be made rigorous with the usual exponential (Chernoff) inequalities
(Devroye et al 1996). Let Wa(x) denote the m-dimensional cube of width a centred on x , p∗
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the smoothed version of p, as above, s the event (spike = 1) and B(i, N, p) the probability
mass of a binomial with parameters N and p on count i ; then

E

(∑
spike

(
p̂(V �x, spike)2

p̂(V �x) p̂(spike)

))
≈ E

(∑
spike

(
p̂(V �x, spike)2

p̂(V �x)p(spike)

))

=
N∑

i=0

B

(
i, N,

∫
Wa (V �x)

p(V �x)

) i∑
j=0

B( j, i, p∗(s|V �x))

×
1

p(s)

( j
am N

)2
+ 1

1−p(s)

( i− j
am N

)2

i
am N

=
N∑

i=1

B

(
i, N,

∫
Wa (V �x)

p(V �x)

)
1

iam N

×
[

1

p(s)
((i p∗(s|V �x))2 + i p∗(s|V �x)(1 − p∗(s|V �x)))

+
1

1 − p(s)
((i(1 − p∗(s|V �x)))2 + i p∗(s|V �x)(1 − p∗(s|V �x)))

]

= 1

am N

[ N∑
i=1

B

(
i, N,

∫
Wa(V �x)

p(V �x)

)
i

(
p∗(s|V �x)2

p(s)
+

(1 − p∗(s|V �x))2

1 − p(s)

)

+ p∗(s|V �x)(1 − p∗(s|V �x))

(
1

p(s)
+

1

1 − p(s)

)

×
(

1 − (1 −
∫

Wa (V �x)

p(V �x))N

)]

=
∑
spike

(
p∗(V �x, spike)2

p∗(V �x)p(spike)

)
+ Bs(V ),

where we have abbreviated the sample bias in our estimate of M(V ) as

Bs(V ) ≡ 1

am N

∫
X

(
p∗(s|V �x)(1 − p∗(s|V �x))

p(s)(1 − p(s))

(
1 −

(
1 −

∫
Wa (V �x)

p(V �x)

)N))
.

To get a sense of how this behaves, let p be bounded and continuous, say; then the sample
bias is roughly

1

am N

∫
X

(
p∗(s|V �x)(1 − p∗(s|V �x))

p(s)(1 − p(s))
(1 − e−am N p(V �x))

)
.

Now if p decays quickly enough (say it has compact support, to make things obvious), then
the final term in the integral above tends to unity and we are left with a bias in our estimate of
M(V ) of order (am N)−1. In turn, since the maximum of the above integral with respect to V
is clearly not K in general, we are left with a bias of size up to (am N)−1/2 in our estimate of
argmaxV M(V ), as is easy to see after expanding E(Mφ,N ) about K . We should note that most
of the above can be generalized to other choices of φ, using a second-order Taylor expansion.

If the sample bias for estimating M(V ) is of the order of (am N)−1, and the approximation
bias is of the order of ar , say, for r > 0, then if we equate the two rates to minimize their sum
we get that the optimal rate of decay in kernel width is

a ∼ N−1/(r+m),

corresponding to an optimal bias rate for M(V ) of

bias ∼ N−r/(r+m),
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which in turn means that the optimal bias for estimating argmaxV M(V ) can be of the order of
N−r/[2(r+m)]. �

Bias of the jackknifed kernel estimator. We write out the bias of the jackknifed estimator,
using the formula above:

ETJ K = N ET − N − 1

N

N∑
i=1

ET−i

= N
1

am N

∫
X

p∗(s|V �x)(1 − p∗(s|V �x))

p(s)(1 − p(s))

(
1 −

(
1 −

∫
Wa(V �x)

p(V �x)

)N )

− N − 1

N

N

am(N − 1)

∫
X

p∗(s|V �x)(1 − p∗(s|V �x))

p(s)(1 − p(s))

×
(

1 −
(

1 −
∫

Wa (V �x)

p(V �x)

)N−1)

= 1

am

∫
X

p∗(s|V �x)(1 − p∗(s|V �x))

p(s)(1 − p(s))

((
1 −

∫
Wa (V �x)

p(V �x)

)N−1

−
(

1 −
∫

Wa (V �x)

p(V �x)

)N )

= 1

am

∫
X

p∗(s|V �x)(1 − p∗(s|V �x))

p(s)(1 − p(s))

(
1 −

∫
Wa (V �x)

p(V �x)

)N−1 ∫
Wa (V �x)

p(V �x)

=
∫

X

p∗(s|V �x)(1 − p∗(s|V �x))

p(s)(1 − p(s))

(
1 −

∫
Wa (V �x)

p(V �x)

)N−1

(Wa ∗ p(V �x)).

Under the conditions stated above, this dies exponentially. �

Convergence rates γ and α for K̂φ . Representation (5) follows from a fairly classical first-
order expansion; see, e.g., Serfling (1980) for background. pN mV is the Frechet differential
(aka the ‘functional derivative’ to physicists) of Mφ,N (V ) at Mφ(V ) in the direction of
pN − p; the representation as a sum of i.i.d. random variables follows from the linearity
of the differential. We obtain

mV (�x, spike) = 2
p(spike|V �x)

p(spike)
−

∑
spike

p(spike|V �x)2

p(spike)
−

∫
d p(�x)

(
p(spike|V �x)

p(spike)

)2

.

The random variable mV (�x, spike) is bounded, thus obviously has finite variance. That
the remainder term in (5) is op(N−1/2) follows by computing its variance explicitly, roughly
following the computation of the bias terms above. We skip the details. The convergence rate
and limit distribution is obtained by applying theorem 3.2.10 of van der Vaart and Wellner
(1996) to pN mV . �

A.4. Lower bounds

Local (Cramer–Rao/Hellinger) lower bounds. The basic idea behind the proof is as follows.
For any sufficiently regular finite-dimensional statistical model, the Cramer–Rao bound gives
a lower bound on the convergence rate. The models we are dealing with are not finite-
dimensional; nevertheless, we can apply the bounds to finite-dimensional submodels within
the complete, infinite-dimensional family and then try to make the bound as large as possible
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by choosing the most difficult submodel. By ‘most difficult’ we mean, roughly: as close as
possible to the true f, K , p in some probabilistic sense, but as far away as possible in the sense
of the error metric (on the manifold Gm(X)). In other words, we want the models to be as
wrong as possible but easily confusable with f, K , p.

The most obvious such submodel to try is obtained by keeping f fixed (we assume p is
fixed), and simply rotating K around in G1(X). More concretely, we define our family to be

F0 ≡ {(q, g, V ) : q = p, g = f, V ∈ G1(X)}.
To apply Cramer–Rao to this family (under the stated conditions), we need to define an
orthonormal basis of the tangent space to G1(X) at K , {ei}1�i<m ; this induces a natural
coordinate chart of G1(X):

kε,i ≡ (1 + ε2)−1/2(k + εei).

The i th component of the score vector when a spike occurs is given by

∂ log fi

∂ε
= f ′(K �x)〈ei , �x〉

f (K �x)
;

plugging this into the asymptotic minimax form of the standard Cramer–Rao bound (Gill and
Levit 1995), we have

lim inf
N→∞

N1/2 inf
K̂

sup
F

E(Error(K̂ )) � (trace IF0(p, f, K )−1)1/2,

where the Fisher information for F0 at the true model is given by

IF0(p, f, K ) = E p

( 〈ei , �x〉〈e j , �x〉 f ′(〈�k, �x〉)2

f (〈�k, �x〉)(1 − f (〈�k, �x〉))
)

.

This reduces to the quoted result when p is, e.g., standard normal.
A more systematic approach to the search for ‘hard’ subfamilies requires a more rigorous

definition of the notion of ‘confusability’ between probability measures. While the detailed
theory is beyond the scope of this paper, we mention that an appropriate measure of
confusability is given by the Hellinger distance between two probability measures; recall
that this distance is a kind of L2 norm between (the square roots of) probability distributions,
and can be written in our case as the square root of

H 2
p( f, K ; h, V ) ≡ 1

2

∫
X

(
f (K �x)1/2 − h(V �x)1/2

)2
d p(�x).

For our purposes, it suffices to note that, for sufficiently close models (K , f ) and (V , h),

H 2
p( f, K ; h, V ) ∼

∫
X

(
( f (K �x) − h(V �x))2

f (K �x)

)
d p(�x).

Simple computations with this asymptotic form of Hellinger distance indicate a stronger
subfamily:

F1 ≡ {(q, g, V ) : q = p, V ∈ G1(X), g(t) = E p(�x|〈V,�x〉=t) f (K �x)}.
The final result is

lim inf
N→∞

N1/2 inf
K̂

sup
F

E(Error(K̂ )) � (trace IF1(p, f, K )−1)1/2,

with

IF1(p, f, K ) = E p

( 〈ei , �x − E p(�x|〈k,x〉) �x〉〈e j , �x − E p(�x|〈k,x〉) �x〉 f ′(〈�k, �x〉)2

f (〈�k, �x〉)(1 − f (〈�k, �x〉))
)

.

This inequality is in general stronger, but reduces to the first when p is, say, elliptically
symmetric. �
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Global minimax lower bound. We mimic Ritov and Bickel (1990) (theorem 2). Let K0 and
KN be separated by a distance aN . It suffices to put prior distributions πN on the space of
ε-tuned LN models supported on these two planes—that is, the conditional distributions given
by model (1), with K given by K0 or KN , such that

Dφ(p(K �x, spike); p(K �x)p(spike)) > ε

—such that the conditional error probability given N data samples of the best hypothesis test
between K0 and KN converges to 1/2 as N → ∞. Since the best Bayesian test between two
aN -separated subspaces has error bounded away from zero,we have an order bound on the error
of any minimax estimator and the claim is proven. The basic idea behind the construction of
the prior is to let ‘typical’ functions (roughly, any function contained in the support of πN ) vary
much more rapidly than the average distance between the projected samples K �xi ; this makes
it impossible for any hypothesis test to discern the direction of the underlying conditional
probability contour lines which run orthogonal to K . We skip the details, which are easy to
verify given (Ritov and Bickel 1990). �
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