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ABSTRACT
Models for image quality assessment (IQA) are generally optimized
and tested by comparing to human ratings, which are expensive to
obtain. Here, we develop a blind IQA (BIQA) model, and a method
of training it without human ratings. We first generate a large num-
ber of corrupted image pairs, and use a set of existing IQA models to
identify which image of each pair has higher quality. We then train
a convolutional neural network to estimate perceived image quality
along with the uncertainty, optimizing for consistency with the bi-
nary labels. The reliability of each IQA annotator is also estimated
during training. Experiments demonstrate that our model outper-
forms state-of-the-art BIQA models in terms of correlation with hu-
man ratings in existing databases, as well in group maximum differ-
entiation (gMAD) competition.

Index Terms— Blind image quality assessment, convolutional
neural networks, gMAD competition

1. INTRODUCTION

Most methods for automatic image quality assessment (IQA) are
"full-reference", relying on specification of the original reference
image [1]. But in many practical settings, the reference image is
not available (or may not even exist), necessitating the use of no-
reference or blind IQA (BIQA) models. Such a model should be
possible because humans are able to judge the perceptual quality
of distorted visual images without comparison to any reference im-
age. Presumably our visual systems have, through evolutionary and
developmental processes, learned to preferentially represent and rec-
ognize "natural" visual images - those that are likely to arise from the
physical interactions of light, surfaces, and optics. It is thus reason-
able to assume that a BIQA model should compute values related to
the probability of occurrence of an observed image. Existing BIQA
models have been developed from models of natural scene statistics.
Spatially normalized coefficients [2] and codebook-based represen-
tations [3] are two examples that have demonstrated impressive per-
formance on common distortion types [4, 5].

In recent years, there has been a surge of interest in developing
data-driven BIQA models based on convolutional neural networks
(CNN). These are trained on human data (mean opinion scores -
MOS), which are often insufficient to constrain the large set of model
parameters (often in the order of millions). One method of compen-
sating for the lack of training data is to start with a CNN pre-trained
for object recognition [6], and refine its parameters for BIQA. Al-
ternatively, one can constrain the parameters by training a CNN on
image patches [7], but local quality generally depends on global con-
text, and in addition, it is not obvious how to combine spatially vary-
ing local scores to obtain a single global score. Some methods have
augmented training data by including scores of full-reference IQA

models as additional annotators [8, 9]. Here, we further pursue this
strategy.

In this paper, we develop a CNN-based BIQA model, and train it
on quality scores computed from a set of existing IQA models [10],
without reliance on any human data. We first generate a large num-
ber of image pairs, and use multiple IQA annotators to compute bi-
nary labels indicating which of the two images is of higher quality.
We then train a CNN to compute a quality score and associated un-
certainty, using a pairwise learning-to-rank algorithm [11]. The re-
liability of each IQA annotator and the CNN parameters are jointly
optimized by maximizing their likelihood. In comparison with eight
BIQA models, on data from three standard IQA databases [4, 12,
13], we find that our model achieves high correlation with human
perception. We further verify the generality of our model using
group maximum differentiation (gMAD) competition [14].

2. METHODS

Let q(x) represent the (true) perceptual quality of image x. Our
method relies on a group of objective IQA models {qj}Mj=1, each of
which computes an estimate of the perceived quality, qj(x). These
can be blind or full-reference IQA models; in the latter case, the ref-
erence image must also be available to compute the quality score.
In general, these IQA annotators provide noisy nonlinear approxi-
mations to the true perceived quality. As such, we adopt them to
obtain pairwise ranking information. Specifically, we use each qj

to assign a binary label rj to image pair (x,y), where rj = 1 if
qj(x) > qj(y) and rj = 0 otherwise. Given training data consist-
ing of labels from M IQA annotators computed on N image pairs,
i.e., {(xi,yi), r

1
i , · · · , rMi }Ni=1, our goal is to optimize two differ-

entiable functions, fw(x) and σw(x), parameterized by a vectorw,
that estimate the perceptual quality and its uncertainty, respectively.

2.1. Probabilistic Formulation

To model the uncertainty, we make use of the Thurstone’s model [15]
and assume that the perceptual quality is Gaussian with mean fw(x)
and standard deviation σw(x). Assuming the variability of qual-
ity across images is uncorrelated, the quality difference of two im-
ages q(x) − q(y) is also Gaussian with mean fw(x) − fw(y) and
standard deviation

√
σ2
w(x) + σ2

w(y). The probability that x has
higher quality than y (i.e., the probability of r = 1) is then

Pr(r = 1|x,y,w) = Pr(q(x) > q(y)|w)

= Φ

(
fw(x)− fw(y)√
σ2
w(x) + σ2

w(y)

)
, (1)

where Φ(·) is the standard Normal cumulative distribution function.
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To model the reliabilities of the IQA annotators, we assume
they do not depend on the input image x, and can be character-
ized entirely by probabilities of correct answers (known as "hits"
and "correct rejections" in signal detection theory). Specifically, if
the ground-truth label r = 1, the hit rate of the j-th IQA annotator
qj is defined as

αj = Pr(rj = 1|r = 1). (2)

Similarly, if r = 0, the correct rejection rate is defined as

βj = Pr(rj = 0|r = 0). (3)

The parameters {αj , βj} are estimated along with the model param-
etersw.

2.2. Maximum Likelihood Model Estimation

Given the assumption that the variability across training pairs is un-
correlated, we factorized the likelihood function of the full set of
parameters {w,α,β} as

Pr({xi,yi, ri}|w,α,β) =

N∏
i=1

Pr(r1i , · · · , rMi |xi,yi;w,α,β).

(4)

Assuming rji is conditionally independent of everything else given
αj , βj and the ground-truth label ri, we decomposed the probabili-
ties in the likelihood by conditioning on ri

Pr(r1i , · · · , rMi |xi,yi;w,α,β) =

Pr(r1i , · · · , rMi |ri = 1,α) Pr(ri = 1|xi,yi,w) +

Pr(r1i , · · · , rMi |ri = 0,β) Pr(ri = 0|xi,yi,w). (5)

The distribution of noisy estimates provided by the set of IQA anno-
tators may be written

Pr(r1i , · · · , rMi |ri = 1,α) =

M∏
j=1

Pr(rji |ri = 1, αj)

=

M∏
j=1

(αj)r
j
i (1− αj)1−r

j
i , (6)

and

Pr(r1i , · · · , rMi |ri = 0,β) =

M∏
j=1

(βj)1−r
j
i (1− βj)r

j
i . (7)

Denoting (1), (6) and (7) by p(xi,yi,w), a(ri,α) and b(ri,β),
respectively, and substituting them into (4), we obtained a likelihood
function for the parameters

Pr({xi,yi, ri}|w,α,β) =

N∏
i=1

[a(ri,α)p(xi,yi,w)

+ b(ri,β)(1− p(xi,yi,w))]. (8)

We maximized the log of this function using stochastic gradient de-
scent to obtain the optimal parameters {ŵ, α̂, β̂}.
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Fig. 1. The network architecture of our BIQA model. The param-
eterization of the convolution layers is denoted as "filter support |
input channel × output channel". The number of parameters for
each layer is given at the bottom, yielding a total of 154, 994.

2.3. CNN Architecture

We implemented functions fw(x) and σw(x) with a CNN, whose
architecture is specified in Fig. 1. The network consists of four stages
of convolution and generalized divisive normalization (GDN) [16],
a nonlinearity that is inspired by models of sensory neurons [17] and
has proven effective in density modeling [18, 19], image compres-
sion [16], and IQA [20, 21]. The number of convolution filters and
their support are fixed to 48 and 3 × 3 for all stages, respectively.
The filter weights are included in the parameter vectorw. The GDN
transform is defined as

vi =
ui(

ωi +
∑

j γiju
2
j

) 1
2

, (9)

where ωi and γij are also included in w. The GDN responses for
the first three stages are max-pooled over 2 × 2 blocks. At the final
GDN layer, we used spatial pyramid pooling [22] to summarize the
spatial statistics and generate a fixed-length representation regardless
of image size. Last, we appended two fully connected layers with a
halfwave-rectification (ReLU) nonlinearity in between, to generate
the values fw(x) and σw(x).

3. RESULTS

3.1. Model Training

We assembled a training dataset based on reference images from
the Waterloo Exploration Database [5], which contains 4, 744 high-
quality natural images with diverse content. We simulated nine
distortion types, each at five levels of severity - Gaussian blur,
additive Gaussian noise, additive pink noise, JPEG compression,
JPEG2000 compression, contrast change, color quantization with
dithering, over-exposure, and under-exposure - yielding a total of
213, 480 distorted images. To generate training labels, we used six
full-reference IQA models: SSIM [1], MS-SSIM [23], VIF [24],
MAD [12], VSI [25] and NLPD [26]; and three BIQA models:
NIQE [27], ILNIQE [28] and dipIQ [9]. Implementations of all nine
models were obtained from the respective authors, and parameters
were set independently of the test IQA databases used in Section 3.2.
We generated four types of training pairs (x,y): (1) same reference
image and distortion type, with different distortion levels; (2) same
reference image, but different distortion types and levels; (3) two
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Fig. 2. Histogram of the number of IQA models assigning a "1" to
an image pair in the training dataset.

different reference images, distortion types and levels; (4) two differ-
ent reference images, with one undistorted. Altogether, we obtained
more than 400, 000 image pairs. Consistency of the IQA annota-
tions over all pairs is summarized by the histogram in Fig. 2, which
shows the number of models that chose the first image in each pair
as the higher quality one. Overall, the nine IQA annotators are in
reasonable agreement, with complete consistency on roughly 60%
of the image pairs.

Training was performed by jointly maximizing the log of the
likelihood function (Eq. (8)), using stochastic gradient descent on
mini-batches randomly sampled from the training data. We used
the Adam stochastic optimization package [29] with a mini-batch
size of 16, and learning rates for w and {α,β} set to 10−4 and
10−3, respectively. The parameters ω and γ in GDN were projected
to nonnegative values after each step. Additionally, we forced γ
to be symmetric as suggested in [16]. We trained the network to
predict the log variance, sw(x) = log σw(x)2, so as to avoid a
potential division by zero in Eq. (1). The learning took roughly one
day, running on an NVIDIA GeForce GTX 1080 Ti machine, when
the epoch number was set to eight. In all experiments, we tested on
images of original size.

3.2. Model Performance

We first examined the correlation of the learned model with human
ratings from three standard IQA databases: LIVE [4], CSIQ [12],
and TID2013 [13]. We computed both the Spearman rank correla-
tion coefficient (SRCC) and the Pearson linear correlation coefficient
(PLCC). For the latter, we fit a four-parameter monotonic function
f̂ = (η1 − η2)/(1 + exp(−(f − η3)/|η4|)) + η2 to linearize the
predictions. Table 1 provides comparisons of our model with five
BIQA models (none of which was optimized for data in any of the
three IQA databases), two state-of-the-art full-reference IQA mod-
els, and three CNN-based BIQA models that were trained on the full
TID2013 database.

Several aspects of the results are worth noting. First, our method
achieves significant improvements on CSIQ [12] and TID2013 [13]
over the five competing BIQA models, three of which have been used
to provide noisy labels during training. This indicates the effective-
ness of our learning scheme, which takes into account the reliabil-
ity of each annotator. Second, with a substantially smaller number
of model parameters, our method exhibits better generalizability on
LIVE and CSIQ than recent CNN-based BIQA models deepIQA [7]
and DB-CNN [30]. We believe this improvement arises because
our method is trained on a much larger database with a wider va-
riety of image content. Third, our method is comparable to the two
full-reference methods MS-SSIM [23] and NLPD [26] on the CSIQ
database, but underperforms them on the other two. Performance

Table 1. Correlation (SRCC and PLCC) of IQA models against
human ratings from three different IQA databases. Top section
contains two state-of-the-art full-reference models. Second sec-
tion contains three CNN-based BIQA models trained on data in
TID2013. Third section contains five BIQA models. The top two
correlations are highlighted in boldface.

SRCC LIVE CSIQ TID2013
MS-SSIM [23] 0.951 0.913 0.787
NLPD [26] 0.941 0.921 0.800
deepIQA [7] 0.814 0.688 —
MEON [21] 0.792 0.655 —
DB-CNN [30] 0.903 0.769 —
QAC [31] 0.868 0.490 0.372
NIQE [27] 0.906 0.627 0.312
ILNIQE [28] 0.898 0.815 0.494
BLISS [8] 0.908 0.602 0.460
dipIQ [9] 0.938 0.527 0.438
Proposed 0.919 0.915 0.578

PLCC LIVE CSIQ TID2013
MS-SSIM 0.949 0.899 0.833
NLPD 0.941 0.924 0.830
deepIQA 0.837 0.745 —
MEON 0.787 0.739 —
DB-CNN 0.895 0.813 —
QAC 0.863 0.708 0.437
NIQE 0.904 0.716 0.398
ILNIQE 0.903 0.854 0.589
BLISS 0.905 0.750 0.557
dipIQ 0.935 0.779 0.477
Proposed 0.917 0.926 0.640

on TID2013 is particularly weak, presumably because that database
includes fifteen more distortion types than those in the training set.

We also performed a more direct comparison of our model
against two other BIQA methods using the gMAD competition
method [14]. gMAD is a discrete instantiation of the maximum
differentiation (MAD) competition method [32] that aims to falsify
a model by synthesizing the strongest possible counterexamples.
gMAD performs a discrete optimization over a fixed set of ex-
amples, seeking pairs of images that are of nearly equal quality
according to one model, while being as different as possible accord-
ing to the other. To build the dictionary for gMAD, we collected
1, 000 high-quality images (none from the training dataset) and
generated 45, 000 distorted images by applying the nine distortions
with five levels (described in Section 3.1). We first compared our
method with ILNIQE [28] (the current best BIQA model) in Fig. 3.
The images in the first row exhibit similar perceptual quality (in
agreement with our method) and those in the second have drasti-
cally different perceptual quality (in disagreement with ILNIQE),
suggesting that our method is better able to generalize to novel con-
tent than ILNIQE. A similar result is obtained in comparison with
DB-CNN [30] (the most recent CNN-based BIQA model), as shown
in Fig. 4. Qualitatively, we find these results to be consistent across
all quality levels.

We examined the learned uncertainty σw(x) as a function of
fw(x) on the LIVE database [4] (Fig. 5). Overall, σw is relatively
small compared to the range of predicted quality scores fw. More-
over, σw increases with decreasing fw regardless of image content,
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(a) (b)

(c) (d)

Fig. 3. gMAD competition between our method and ILNIQE [28].
(a/b) Best/worst quality images according to ILNIQE (respectively),
with near-identical quality reported by our model. (c/d) Best/worst
quality images according to our model with near-identical quality
reported by ILNIQE. Images are cropped for improved visibility.

Table 2. The learned hit rate (α) and correct rejection rate (β) of
the nine IQA annotators.

α

SSIM MS-SSIM VIF MAD VSI
0.933 0.958 0.921 0.952 0.959
NLPD NIQE ILNIQE dipIQ
0.945 0.805 0.886 0.735

β

SSIM MS-SSIM VIF MAD VSI
0.935 0.958 0.918 0.954 0.958
NLPD NIQE ILNIQE dipIQ
0.944 0.800 0.884 0.730

for some distortion types. This seems counterintuitive, because hu-
mans tend to assess images at the two ends of the quality range
with higher confidence than images in the mid-quality range. How-
ever, from the (full-reference) IQA models’ perspective, they are
in closer agreement on higher-quality images (with the help of the
reference images) and may give dramatically different penalties to
lower-quality images. This discrepancy leads to increasing uncer-
tainty, which is reflected in our model. From the figure, the cho-
sen IQA models appear to perform more consistently for JPEG and
JPEG2000 compression than the other three distortion types.

The learned hit rate α and correct rejection rate β of the nine
IQA annotators are shown in Table 2. As expected, our method trusts
full-reference IQA models more than BIQA ones. In other words,
the more accurate an IQA model is in predicting image quality, the
more influence it has on the learning process. In addition, the learned
α and β are highly correlated with each other, suggesting that they
could be replaced by a single parameter vector during training.

4. CONCLUSION

We have presented a CNN-based BIQA model by training on noisy
labels from multiple IQA models. We jointly optimized the parame-
ters of the network and IQA annotators for quality prediction and un-

(a) (b)

(c) (d)

Fig. 4. gMAD competition between our method and DB-CNN [30].
(a/b) Best/worst quality images according to DB-CNN (respec-
tively), with near-identical quality reported by our model. (c/d)
Best/worst quality images according to our model with near-
identical quality reported by DB-CNN. Images are cropped for im-
proved visibility.
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Fig. 5. Scatter plot of the learned uncertainty σw as a function of fw
on the LIVE database [4].

certainty estimation. When trained on a large number of image pairs,
the optimized model performs favorably against current BIQA mod-
els, outperforming even those trained on human ratings, and gener-
alizes reasonably to novel content and distortion types.

Although the current method benefits from large-scale training
data, it is distortion-aware in the sense that a set of distortion types
need to be specified when generating training data. As suggested by
the poor performance on the TID2013 database, this can limit the
generalizability of the model to novel distortion types. We expect
that performance on TID2013 could be improved by incorporating
additional distortion types into the training set.

A more interesting avenue for future work lies in the develop-
ment of BIQA frameworks that are distortion-unaware, and thus
must rely solely on knowledge of the appearance of natural undis-
torted images. From a probabilistic perspective, this means that the
BIQA method should embody a prior probability model for natural
images, and perhaps even that the BIQA values should be monoton-
ically related to such a probability model. Since probability models
for natural images form a cornerstone for most classical problems
in image processing and visual analysis, a generalized BIQA model
could lead to improvements in a wide variety of applications.
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