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We develop a framework for rendering photographic images by directly optimizing their perceptual similarity to
the original visual scene. Specifically, over the set of all images that can be rendered on a given display, we min-
imize the normalized Laplacian pyramid distance (NLPD), a measure of perceptual dissimilarity that is derived
from a simple model of the early stages of the human visual system. When rendering images acquired with a
higher dynamic range than that of the display, we find that the optimization boosts the contrast of low-contrast
features without introducing significant artifacts, yielding results of comparable visual quality to current state-of-
the-art methods, but without manual intervention or parameter adjustment. We also demonstrate the effective-
ness of the framework for a variety of other display constraints, including limitations on minimum luminance
(black point), mean luminance (as a proxy for energy consumption), and quantized luminance levels (halftoning).
We show that the method may generally be used to enhance details and contrast, and, in particular, can be
used on images degraded by optical scattering (e.g., fog). Finally, we demonstrate the necessity of each of the
NLPD components—an initial power function, a multiscale transform, and local contrast gain control—in
achieving these results and we show that NLPD is competitive with the current state-of-the-art image quality
metrics. © 2017 Optical Society of America

OCIS codes: (100.2810) Halftone image reproduction; (100.2980) Image enhancement; (100.3190) Inverse problems; (110.1758)

Computational imaging; (110.3000) Image quality assessment; (330.1800) Vision - contrast sensitivity.
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1. INTRODUCTION

A general goal in designing a pipeline for the capture and dis-
play of photographic images is to remain as faithful to the origi-
nal source as possible, minimizing distortions introduced by
the sensor, coding, transmission, or display processes. If images
are meant for presentation to human observers, distortion
should be measured accordingly, penalizing errors that are most
visually noticeable and/or disturbing, while permitting those
that are perceptually unnoticeable. This strategy is most evident
in the handling of color in which both sensors and displays
are designed so as to accurately capture and render the
three-dimensional subspace of wavelengths relevant for human
trichromatic visual representation, while allowing significant
distortion outside of this subspace.

Arguably the most significant limitations of current sensors
and displays are with regard to dynamic range. Early digital
sensors were restricted to capturing a limited luminance range
and were unable to adequately capture the majority of realistic
natural scenes, which contain luminances spanning up to
roughly 20 orders of magnitude. In contrast, the human visual
system is capable of sensing fixed scenes with a range of over

5 orders of magnitude in real time, up to 8 orders of magnitude
in the photopic regime when the effects of extended temporal
adaptation mechanisms are incorporated [1], and up to 14
orders of magnitude when including the scotopic and mesopic
regimes (see Fig. 1). The dynamic range of sensors has steadily
improved, and current sensors (often augmented with software
solutions that fuse images captured at different exposures) are
capable of acquiring images with dynamic range approximating
the sensitivity of human vision. Despite this, even the best dis-
play devices are limited to a significantly lower dynamic range
than these sensors can capture.

The simplest solution to the problem of displaying high dy-
namic range (HDR) images on a low dynamic range (LDR) ren-
dering device is to linearly rescale the luminance values recorded
by the sensor into the display’s reproducible range of luminances.
This, however, produces images that are quite different from the
original scene—typically all of the low-luminance information is
lost. A variety of “tone-mapping”methods have been proposed to
solve this problem by nonlinearly remapping the intensities of
the original image into the output range in a way that least in-
terferes with the visual appearance of the original scene. Most
of these are based on heuristics, and require manual parameter
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adjustments for best results. In addition, many displays introduce
constraints other than the global luminance range, such as re-
striction to discrete luminance levels (i.e., halftoning), maximal
average power consumption, and interactions between pixel val-
ues over space or time. Separate methods have been developed
for solving each of these problems.

Perceptual optimization of tone mapping was introduced in
a seminal paper by Tumblin and Rushmeier, who proposed the
selection of a tone mapping transformation from HDR images
to LDR displays to best match the appearance of the original
scene [2]. A variety of tone mapping papers have followed this
framework (see, for instance, [3–7]). These methods are depen-
dent on the parametric function used as a tone mapping
operator, which restricts the space of possible solutions: a given
functional form may not be able to achieve a perceptually op-
timal solution, or may only work satisfactorily for a particular
type of rendering constraint.

Here, we formulate a more general solution for perceptually
accurate rendering, directly optimizing the rendered image to
minimize perceptual differences with the light intensities of the
original scene, subject to all constraints imposed by the display
(Fig. 1). This constrained optimization formulation relies on
four ingredients: knowledge of the original scene luminances
(or calibration information that allows calculation of those
luminances), a measure of the perceptual similarity between
images, knowledge of the display constraints, and a method
for optimizing the image to be rendered. We use a model of
perceptual similarity loosely based on the transformations of
the early stages of the human visual system [specifically, the
retina and lateral geniculate nucleus (LGN)], that has previ-
ously been fit to a database of human psychophysical judg-
ments. Because this model is continuous and differentiable,
our method can be efficiently solved by first-order constrained
optimization techniques. We show that the solution is well de-
fined and general, and therefore represents a framework for
solving a wide class of rendering problems.

In Section 3, we optimize images captured under differing
acquisition conditions for rendering on the same display. We
show one result per experiment; more images can be found at
http://www.cns.nyu.edu/~lcv/perceptualRendering/. We start
with calibrated images, where the original scene luminances
are known. We also deal with the more common scenario
in which the exact luminances of the original scene are un-
known (the tone mapping problem). In this scenario, we have
to make some educated guesses about the luminance range of
the original scene, and we demonstrate the effect that different
assumptions have on the optimized images. Moreover, we take
advantage of these effects to solve other image processing
problems, such as detail enhancement and haze removal, by
manipulating these source assumptions. For each of these tasks,
we compare the results with state-of-the-art algorithms de-
signed to solve each specific case. In Section 4, we optimize
images to be displayed under differing display restrictions, in-
cluding luminance limited displays, power limited displays, and
displays restricted to a small set of output values. Finally, we
analyze the effect that each component of our perceptual mea-
surement has on the quality of our optimized images.

2. OPTIMAL RENDERING FRAMEWORK

Optimally rendering an image I on a given display means dis-
playing it in such a way that it remains faithful to the human
perception of the original scene S. Here, S and I are vectors
representing the luminances of all pixels in the respective im-
ages. We formalize this as a constrained optimization problem,

ÎC�S� � arg min
I

D�S; I �; s:t: I ∈ C; (1)

where D�·; ·� is a measure of human perceptual dissimilarity,
and C is the set of all images that can be rendered on the display.
This formulation can express many well-known rendering
problems, such as tone mapping or dithering, which differ only
in the specification of C. In general, the optimization problem
expressed in Eq. (1) cannot be solved analytically, and thus we
will not obtain an explicit function to compute ÎC�S�, given
S and C. Instead, we choose a perceptual measure that is differ-
entiable with respect to I , and use modern high-dimensional
optimization tools to numerically solve for ÎC�S�. Specifically,
we descend the objective function, alternating between mini-
mizing the perceptual distance and projecting the image back
onto the constraint set. Specific formulations for different ex-
ample problems can be found online at http://www.cns.nyu.
edu/~lcv/perceptualRendering/.

We follow a principled, two-step approach to quantify per-
ceptual distance. Rather than defining a perceptual distance di-
rectly (as in SSIM [8], for example) we first define a nonlinear
perceptual transform f �·� that approximates the computations
performed within the early stages of the human visual system.
We apply this to both the original scene luminances S and the
rendered image I and then measure the distance between f �S�
and f �I �. We refer to this casually as a “metric” (as is common
in the image quality assessment literature), even though it is not
guaranteed to satisfy all requirements of the mathematical def-
inition of a metric. Specifically, it is symmetric and yields a
value of zero for identical images, but for some parameter values

Fig. 1. Perceptually optimized rendering framework. When we view
a real-world scene, the luminances, specified by a vector S, give rise to
an internal perceptual representation f �S�. While luminances in the
real world can range from complete darkness (0 cd∕m2) to extremely
bright (e.g., midday sun, roughly 109 cd∕m2), a typical display can
generate a relatively narrow range of roughly 5 to 300 cd∕m2. The
optimization goal is to adjust the luminances I generated by the dis-
play to minimize the difference between the perceptual representations
f �S� and f �I � while remaining within the set of images that can be
generated by the display.
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the transformation can discard information (allowing it to pro-
duce a zero distance for non-identical images), and it also may
not satisfy the triangle inequality.

Figure 2 illustrates the components of the perceptual trans-
form, which we call the normalized Laplacian pyramid (NLP),
a multiscale nonlinear representation that mimics the opera-
tions of the early stages of the human visual system. This rep-
resentation is inspired by a model for responses of the LGN
[11], and includes both luminance and contrast gain control
mechanisms. The former is primarily attributed to the photo-
receptors and initial transformations within the retina whereas
the latter is likely initiated in the retina and is enhanced/
amplified in the LGN [12]. This transform bears some
resemblance to previously published image metrics that utilize
local normalization but differs in motivation, structure, and
implementation [8,9,13–15]. Here, we adapt this model to
operate directly on luminances (in cd∕m2), rather than values
that have been gamma-adjusted for a particular display, which
provides a standardized set of units for defining constraints on
acquisition and display.

Luminances are first transformed elementwise using a power
law that approximates the transformation of light to response of
retinal photoreceptors:

x�1� � Sγ : (2)

This initial nonlinear transformation is followed by a
recursive partition into frequency channels, as in the Laplacian
pyramid [10], mimicking the center-surround receptive fields
found in the retina (and LGN),

x�k�1� � DLx�k�; k ∈ f1;…; N k − 1g; (3)

z�k� � x�k� − LUx�k�1�; (4)

z�Nk� � x�Nk�; (5)

where D and U indicate down/upsampling by a factor of two,
respectively (Fig. 2). For the filtering operation L, we apply a

spatially separable 5-tap filter (0.05, 0.25, 0.4, 0.25, 0.05), as
originally specified in [10].

Within each channel, each coefficient is divided by a
weighted local sum of the elementwise amplitudes (absolute
values) plus a constant:

y�k� � z�k� ⊘ �σ � Pjz�k�j�; (6)

where P indicates convolution with a filter, and ⊘ indicates
pointwise division. All bandpass channels and the highpass
channel share the same parameters P and σ, whereas the
lowpass channel (k � Nk) has its own parameter set P l and
σl . This function is a simplified variant of divisive normaliza-
tion used to describe the responses of neurons in different
parts of the visual system [16–18]. The NLP coefficients of
all channels y�k� combined represent the response of the per-
ceptual transform:

f �S� � fy�k�; k � 1;…; N kg: (7)

Figure 3 illustrates the construction of the metric employed
in the perceptual space. We compute the Lα-norm of the
differences between NLP coefficients within each frequency
channel (that is, we raise the absolute value of each coefficient
difference to the power α, sum over the entire channel, and take
the αth root). These values are then combined across channels
using an Lβ-norm, to yield the final NLP distance (NLPD):
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where ỹ �k�i indicates the kth subband arising from the displayed
image I (i.e., f �I � � fỹ �k�; k � 1;…; N kg) and N �k�

c is the
number of coefficients in that subband. A similar summation
model has been employed in previous perceptual quality
metrics [20,21].

All parameters of the perceptual transform and metric
were optimized to best explain human perceptual ratings of dis-
torted images in a public database of grayscale images [19].
Specifically, we chose parameters to maximize the correlation
between the mean opinion scores from the human observers
and the distance computed by the metric. The optimized

Fig. 2. Perceptual transform f �S� constructed as a NLP [9]. The
scene luminances S (in cd∕m2) are first transformed using a power
function (top left). The transformed luminance image is then decom-
posed into frequency channels using the recursive implementation of
the Laplacian pyramid [10]. Each channel z�k� is then divided by a
weighted sum of local amplitudes (computed with lowpass filter P)
plus a constant σ. The final lowpass channel x�Nk� is also normalized,
but with distinct parameters (top right). Symbols ↑ and ↓ indicate
upsampling and downsampling by a factor of 2, respectively.

Fig. 3. Construction of the NLPD measure. Two images are trans-
formed by f �·� to a perceptual representation, yielding two NLPs
(see Fig. 2). We compute the α-norm over the vector of differences
for each frequency channel, and then combine these over channels
using a β-norm. For all rendering results, we use α � 2.0 and
β � 0.6, which are optimized to fit the human perceptual ratings
of the distorted images reported in [19].
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exponent for the front-end nonlinearity was γ � 1
2.6 . Unlike

previous work [9], we set the normalization parameters to
be identical for all bandpass channels (assuming scale invari-
ance), but allowed a different set for the lowpass channel.
For bandpass channels, the additive constant was σ � 0.17,
and the local weighting functions P were filters with 5 × 5
support, with values

P �

2
66664
4 4 5 4 4
4 3 4 3 4
5 4 5 4 5
4 3 4 3 4
4 4 5 4 4

3
77775 · 10−2: (9)

The parameters for the lowpass channel were P l � 1 (the
identity) and σl � 4.86. Optimized exponents for the metric
were α � 2.0 and β � 0.6. Appendix B shows that the perfor-
mance of this extended and optimized version of the NLP
metric surpasses that of state-of-the-art image quality metrics.
This metric, with parameters held fixed at their optimized
values, was used to optimize all of the rendering results
presented below.

3. VARYING IMAGE ACQUISITION CONDITIONS

We performed a set of experiments to test the capabilities of
our optimization framework over different image acquisition
conditions. We begin with calibrated images, for which we
know the exact luminance values (in cd∕m2) of the original
scene. We then move on to uncalibrated images, for which
we need to make an assumption about the luminance values
in the original scene. Finally, we close this section by demon-
strating that the method is stable and flexible enough that it can
be used to solve other rendering problems, such as haze removal
and artificial detail enhancement.

Each example requires us to minimize the perceptual dis-
tance with respect to the rendered image I , subject to the dis-
play constraints. In general, this is accomplished by alternating
between projection onto the constraint set and minimization of
the distance using the adaptive moment estimation (Adam)
algorithm [22]. The gradient of the perceptual distance with
respect to I is described in Appendix A. Implementation of
the derivatives, along with additional optimized examples,
are provided on the project webpage http://www.cns.nyu.
edu/~lcv/perceptualRendering/. All images presented here are
intended for viewing on a display with luminance ranging from
5 to 300 cd∕m2, and a gamma value of 2.2. Computation
time scales linearly with the size of the image. When optimized
on a Tesla K40 GPU card, it takes approximately 1 s per
10000 pixels (i.e., an image of 1000 × 1000 requires less
than 2 min).

A. Rendering Calibrated HDR Luminances

We begin by considering the rendering of images S obtained
from a calibrated HDR imaging device, such that we know the
true luminance values of all pixels. As an example, Fig. 4 shows
an image from the database of Mark Fairchild [24], with lumi-
nance range Smin � 0.78 to Smax � 16; 200 cd∕m2. We wish
to display this image on a device with a limited luminance range
of Imin � 5 to Imax � 300 cd∕m2 (typical values for a com-
puter monitor). We solve for the perceptually optimal rendered
image:

Î�S�� argmin
I

D�S;I �; s:t: ∀ i: Imin≤ I i ≤ Imax: (10)

Figure 4 shows the original image intensities, linearly re-
scaled to fit within the luminance range �Imin; Imax�, an image
tone-mapped using a recent state-of-the-art method by
Paris et al. [23], and our perceptually optimized image
Î�S�. The second image was computed using the default

Fig. 4. Rendering of a calibrated HDR image on a display with a limited luminance range. The scene luminances for this image spanned the
range from Smin � 0.78 cd∕m2 to Smax � 16; 200 cd∕m2, whereas the display luminances are assumed to lie between 5 cd∕m2 and 300 cd∕m2.
Left: the image rendered by linear rescaling of luminance values into the display range. Center: the image rendered using a state-of-the-art tone
mapping algorithm [23]. Right: the image rendered using the proposed method of minimizing the NLPD metric subject to the display constraints.
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parameters recommended by the authors for tone mapping
of HDR images: α � 1, β � 0, and σ � log 2.5. Linearly
rescaling yields a rendered image in which most of the de-
tails cannot be seen or differentiated. The algorithm by
Paris et al. [23] does an excellent job in mitigating this
problem, rendering an image that reveals detail in both
the dark and bright regions. Nevertheless, the solution ap-
pears less detailed and lower in contrast than the image
computed using our method. This is mostly because the
Paris algorithm does not take into account the display lu-
minance range. Although it (and most other tone-mapping
algorithms) has additional parameters that can be adjusted,
it is not obvious to a naive user how to select these param-
eters based on the display properties. In contrast, our sol-
ution is fully automatic (assuming the luminance values of
the source image and the range of the display are known),
albeit at the expense of significantly more computation.

B. Rendering LDR Images with an Image Acquisition
Model

Our method can also be used to improve the appearance of
images acquired with a conventional LDR digital camera that
has been calibrated to allow the recovery of luminance values
from recorded pixel values R. For most modern digital cameras,
the acquisition luminance range is still generally much larger

than the display range, and in any case, is unlikely to be exactly
matched. Thus, we need to solve the following optimization
problem analogous to the previous section:

Î�R�� argmin
I

D�g�R�;I �; s:t: ∀ i: Imin≤ I i ≤ Imax; (11)

where g is the mapping from the recorded pixel values to the
estimated scene luminances (in cd∕m2).

The results for two example grayscale images from the
McGill database [25] are shown in Fig. 5. For each image,
we again compare the original image intensities, linearly re-
scaled to fit within the luminance range �Imin; Imax�, to our
perceptually optimized image Î�R�, and a tone-mapped image
computed using the Paris et al. method [23]. For the latter,
we have again used the parameters recommended by the
authors for tone mapping of HDR images: α � 1, β � 0,
and σ � log 2.5. Our method again offers a visual advantage,
producing higher contrast and more visible details. The
improvement here is perhaps even more noticeable than in
the HDR case, for which the Paris et al. algorithm was
developed.

C. Rendering Uncalibrated HDR Images

Unlike the situation in Section 3.A, the typical scenario for im-
ages acquired from HDR cameras is that they are uncalibrated.
That means that we have access to measurements L that are

Fig. 5. Rendering of two calibrated LDR images to a display with a limited luminance range of �5; 300� cd∕m2 (see caption of Fig. 4).
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linearly related to actual luminances, but we do not have access
to the scaling parameters (for instance, they might be normal-
ized values, lying between 0 and 1). To apply our method, the
measurements need to be linearly rescaled to luminance values,
which amounts to estimating the minimum and the maximum
luminance in the original scene (Smin and Smax, respectively).
One can often use an educated guess for those values given the
content of the image; for instance, the luminance of a filament
of a clear incandescent lamp is roughly 106 cd∕m2. As in the
previous experiments, we solve the resulting optimization
problem as follows:

Î�S� � arg min
I

D�S; I �; s:t: ∀ i : Imin ≤ I i ≤ Imax;

where S � �Smax − Smin� · L� Smin: (12)

Figure 6 shows the results for the widely used HDR image
“Memorial” for different values of Smax (and a fixed value of
Smin � 5). The proposed method converges to an image that
exhibits enhanced contrast in all the regions, preserving the
details, but also preserving the relative contrast and luminance
between regions. This is particularly evident in high-luminance
regions (for instance, the bright window behind the altar, or
the round window in the top of the dome), where both
the perceived details and luminance intensity are effectively
portrayed.

As we increase the assumed maximum luminance of the
original scene (while fixing the display restrictions), our algo-
rithm further amplifies the contrast of details in the image.
This makes sense from a perceptual perspective. If the original
scene was brighter, an observer would be able to perceive
more details within the scene. Therefore, the method has to

Fig. 6. Rendering of an uncalibrated HDR image on a display with a limited luminance range. Linear mapping of luminances leads to loss of
detail (top left: rescaling of luminances to the display range, assuming Smax � 300 cd∕m2; top center: rescaling of luminances, assuming a more
realistic value of Smax � 106 cd∕m2 ). Top right: the image rendered using [23]. Bottom: the image optimized for NLPD, with different assumed
maximum luminance values.
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artificially enhance these details to mimic the appearance of the
original scene. In the next two sections we take advantage of
this behavior.

D. Artificial Detail Enhancement

We showed in the preceding sections that using knowledge
about the image acquisition process helps greatly in automati-
cally rendering images, given the display constraints. In
some cases, however, detail visibility in the scene might
be unsatisfactory. Intuitively, photographers know that the
amount of detail visible in a scene depends on the amount
of available light. If the image has already been acquired, it is
of course not possible to alter the light sources. However,
since the scene luminances scale linearly with the intensity
of the light sources, our method allows us to simulate
increased intensity post hoc, by linearly re-scaling the lumi-
nances of the scene S.

Figure 7 shows the results of modifying our choice of Smax

(as in the previous experiment, we fixed Smin � 5). Note that
with increasing values of Smax, details become more visible. We
also show the results of applying the Paris et al. algorithm for
which we have employed the following parameters proposed in
their paper for the detail enhancement problem: α � 0.25,
β � 1, and σ � 0.3.

E. Haze Removal

Surprisingly, this same method of detail enhancement can
also be used for the problem of haze removal. In a hazy
scene, the local contrast has effectively been reduced (roughly
speaking, by adding a constant level of scattered light)
which makes detail more difficult to discern. In this experi-
ment, we also choose Smin � 5 (we find that results are
fairly robust with the selection of this parameter) and
Smax � 104.

Figure 8 compares the performance of our method with two
other methods [26,27]. Our algorithm converges on an image
that greatly enhances the details of the original hazy image,
boosting the contrast and reducing the perception of haze
within the image. Although the other two methods are specifi-
cally designed for this particular problem, our method obtains a
similar result without modification.

4. VARYING DISPLAY CONSTRAINTS

While examining the effects of various image acquisition sce-
narios in the previous section, we assumed only that the dis-
play luminance is bounded. The upper bound is a natural
constraint for any real display. The lower bound is also
relevant for a wide range of practical display devices, and
arises from reflected ambient light and scatter within the

Fig. 7. Example of artificial detail enhancement by simulating more light in the original scene. Top left: the original image. Top center: the image
enhanced using [23]. Bottom: the image optimized for NLPD, with different assumed values of maximum luminance.
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display. In this section, we examine the effect of each of these
constraints independently, along with a few more complex
constraints.

Figure 9 shows the results for different minimum and maxi-
mum luminance bounds, (Imin, Imax). Our method enhances
local contrast, whereas linear rescaling can only manipulate
contrast globally. For a wide range of display characteristics,
optimizing the image to minimize the NLP distance reduces
distortion in the rendered images and increases the visibility
of perceptually relevant features.

A. Rendering with Limited Power Consumption

The proposed framework allows us to seamlessly introduce
arbitrary display constraints. For example, we can optimize
the trade-off between image quality and power consumption.
To illustrate this, we assume that power consumption is
proportional to mean display luminance (as, for instance, in
organic light-emitting diode displays used in cell phones; if
the relationship were nonlinear, that could also be incorporated
into the problem), and optimize the NLPD while constraining
both the mean luminance and the range as follows:

Î�S� � arg min
I

D�S; I �; s:t: ∀ i : Imin ≤ I i ≤ Imax

and
1

N i

X
i

I i � Imean: (13)

Figure 10 shows images optimized for different mean lumi-
nance values compared to images linearly rescaled to achieve
the same target mean luminance. For each mean luminance
value, the NLPD-optimized images retain more detail from
the original scene than the rescaled images. In Fig. 11, we plot
the mean luminance as a function of the perceptual distortion
(NLPD) for both methods. Optimizing the images yields
a clear benefit in terms of the trade-off between the mean
luminance and perceptual distortion. Over a wide range of
distortion levels we see that the NLPD-optimized images
reduce the power consumption by roughly 80% compared
to linear rescaling.

B. Rendering with a Discrete Set of Gray Levels
(Dithering)

Most displays have a limited number of available gray
levels. In the extreme case, this can be as few as two

Fig. 8. Example of haze removal. Top left: the original image. Top right: the image processed using He et al. algorithm [26]. Bottom left:
the image processed using the Fattal algorithm [27]. Bottom right: the image processed by optimizing NLPD, with Smin � 5 and
Smax � 104.
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Fig. 9. Effect of different maximum and minimum display luminance constraints. Top two rows: the image rendered for different levels of
maximum luminance (assuming Imin � 5) by linearly rescaling (1st row) versus the proposed NLPD-optimization method (2nd row). Bottom
two rows: analogous, but for different levels of minimum luminance (assuming Imax � 300).
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(e.g., black-and-white printers, e-ink devices, etc.). Here, we
illustrate that the proposed method is flexible enough to
produce good results even under such extreme constraints.
The optimization problem is the same as before, but here
we restrict the pixel values to be taken from a discrete set:

Î�S� � arg min
I

D�S; I �; s:t: ∀ i : I i ∈ fImin;…; Imaxg:

(14)

The discrete nature of the optimization problem prevents us
from using a gradient-based method. Instead, we use a greedy
error-diffusion algorithm, analogous to the classic Floyd–
Steinberg method. We first initialize the image to the solution

obtained for a continuous range of luminances, as in previous
experiments. Then, we iteratively select the discrete value for
each pixel of the image in raster-scan order, each time picking
the discrete value that minimizes the NLP distance of the
intermediate result to the original scene.

Figure 12 shows the results for images rendered using two
and four gray levels. In low-contrast regions, our method is seen
to preserve significantly more detail than the Floyd–Steinberg
method. In addition, the Floyd–Steinberg algorithm tends to
generate artificial patterns in extensive regions of slowly varying
luminance, which can be seen in the dark regions of the bird’s
wings. Our method, however, does not generate these artificial
patterns.

Fig. 10. Rendering with a power consumption constraint. Top left: the image at full luminance (smartphone screenshot). Top row: the image
linearly rescaled to achieve the target mean luminance. Bottom row: the image optimized for NLPD with the target mean luminance constraint.
Assuming the power consumption is proportional to the mean luminance, the NLPD-optimized renderings convey more detail than their linearly-
rescaled counterparts, while consuming the same power.
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5. CONTRIBUTION OF PERCEPTUAL METRIC
COMPONENTS

To provide intuition regarding the effect of each of the primary
components of the NLP, we optimized images for rendering
while removing one of three components of the transform:
the initial pointwise nonlinearity (set γ � 1), the multiscale
decomposition (set Nk � 1), and divisive normalization (set
P � 0 and σ � 1). Figure 13 shows the results for each
manipulation. Note that we did not refit each of the partial
transforms to predict human perceptual judgments; therefore,
these results should be seen as a way to understand the impor-
tance of each computation and not as a quantitative compari-
son of image quality assessment performance (see details in
Appendix B).

Each of the three images differs noticeably from the one op-
timized with the full transform. Without the initial pointwise
nonlinearity, the algorithm produces images in which low to
medium luminance patches of an image are misrepresented.
The high-luminance areas are detailed but some parts with
medium or low luminance are reduced in contrast. Without
the multiscale decomposition, the algorithm produces images
in which extremely high and extremely low frequencies are well
preserved, but intermediate frequencies are underrepresented,
and in some cases nearly disappear. Without the contrast
normalization, the algorithm converges to images that saturate
at the luminance boundary constraints of the display.
Normalization preserves the relative luminance changes
between coefficients while allowing the absolute luminance

to be modified. This allows the rendered image pixel intensities
to be proportional to the relative power in each local region.
Moreover, this ensures that regions with similar content scale
in a similar way.

6. DISCUSSION

We have described a framework for directly optimizing ren-
dered images, account for display limitations, to minimize per-
ceptual differences between the rendered image and the original
scene. The method is parameter free and only requires knowl-
edge of the display restrictions and the original scene intensities.
Since these restrictions are expressed in standard physical units
(cd∕m2), if either is missing, suitable values can be estimated
easily. We have shown that our method matches or exceeds the
state-of-the-art for rendering across a variety of acquisition con-
ditions and display restrictions.

We have employed a perceptual metric based on an abstrac-
tion of the transformations implemented in the early stages of
the human visual system. The metric is an extension of the
NLP distance presented in [9], adapted to deal directly with
luminances and images of any size. We fit the parameters
of this metric to optimize its ability to predict human
distortion ratings. We have shown that this metric is consistent
with human perception, exhibiting correlation with human
quality ratings that is similar to or better than full-reference
models specifically designed to assess perceptual quality (see
Appendix B). It is continuous and has well-behaved gradients,
making it easy to incorporate into a rendering optimization
framework. In addition, it has also been previously employed
to optimize an image compression algorithm [29].

Most contemporary tone mapping methods do not make
explicit use of perceptual metrics (see [30] for a nice review),
but rather provide the user with a small set of free parameters to
hand-adjust the mapping from the scene to the displayed
image. These methods are conceptually simpler than ours,
and some of them can produce high quality results in controlled
situations (see for instance [23]). Nevertheless, their parameters
are often difficult to interpret (and thus, to set), and the restric-
tion to particular functional forms may limit their applicability
to specific rendering problems.

In contrast, by directly optimizing the rendered image itself,
our method is able to take into account different display con-
straints without requiring manual selection of an appropriate
parametric mapping for each situation and without requiring
a human operator to adjust any parameters. The downside
of this approach is computational cost: optimization over
the high-dimensional space of feasible rendered images is ex-
pensive, and although both hardware and software continue
to improve, this optimization will always be significantly more
expensive than optimizing a small set of parameters for a fixed
transformation. Even if the computational costs prevent the use
of this method in a real-world application, the results can still
serve as a benchmark for what is possible, thus facilitating the
development of alternative methods.

Although our framework may be applied to any display
problem, the solution can depend heavily on both the percep-
tual metric employed and the method used to solve the con-
strained optimization (for example, if the constraints force the

Fig. 11. Trade-off between the power consumption and the image
quality, comparing the linear luminance rescaling to the optimization
of the perceptual distortion with a mean luminance constraint. Top:
the relationship between perceptual distortion D�S ; I � and the mean
display luminance Imean. For any given acceptable distortion level,
the optimization method requires only a fraction of the display
luminance, hence significantly decreasing the power consumption.
Bottom: power savings, quantified as one minus the ratio of the
required mean display luminances for the two methods.
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problem into nonconvex or discrete regimes). Optimization has
undergone dramatic changes in the past decade, and methods
for handling nonconvex and discrete problems have become
more reliable and efficient. As an example, we believe it will

be possible to improve on our halftoning solution (for which
we used a simple greedy method with error diffusion).

Our use of a simple physiologically-inspired model for
assessing perceptual distortion also offers opportunities for

Fig. 12. Rendering with a discrete set of gray levels. Top left: the original image. Center column: the image rendered with 2 or 4 gray levels using a
standard error diffusion (Floyd–Steinberg) method [28]. Right column: the image rendered with NLPD error diffusion.

Fig. 13. Rendering of an HDR image with different parts of the NLP transformation removed (see text).
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improvement (note that most image quality models are less
physiologically motivated [8,31,32]). For example, the NLPD
can likely be improved by including the relationships between
frequency channels, which could help to control artifacts such
as halos that sometimes appear around high-contrast edges. In
addition, the NLP model should be extended to operate on
color images, and to include another stage of processing
corresponding to primary visual cortex (for example, using
oriented, multiscale, derivative filters with cross-scale and
cross-orientation normalization). All of these improvements
can be made following the same framework that we have pre-
sented for the current model: defining a functional form based
on the transformations of sensory neurobiology, fitting the
parameters using human perceptual data, and using this model
with fixed parameters to optimize the rendering of images.

APPENDIX A. DERIVATIVE OF THE DISTANCE
WITH RESPECT TO THE RENDERED IMAGE

Here we provide, for the interested reader, the gradient of the
perceptual distance D�S ; I � with respect to the rendered image
I . The distance is given by

D�S; I � �
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where d �k�
i is the distance between the transformed images,

y � f �S� and ỹ � f �I �:
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Differentiating with respect to the image pixels gives
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From here we apply the chain rule to expand the full equa-
tion. The derivative of the bracketed expression is
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and the derivative of this bracketed expression can be written in
terms of the derivative of the distance:
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Combining these equations, we obtain the desired
derivative:
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Now, expanding the derivative of the difference
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where sgn�zi� is the sign of zi. The first parenthesized
derivative is

∂y�k�i

∂z�k�i

� σ � P ijzj − Pii sgn�zi� zi
�σ � P ijzj�2

;

∂y�k�i

∂z�k�l

� −Pil sgn�zl � zi
�σ � P ijzj�2

; l ≠ i.

The second parenthesized derivative is

∂z�k�

∂xj
� Q �k�

�:;j�;

where Q is the matrix of the linear transformation performed
by the Laplacian pyramid z � Qx. The third parenthesized
derivative is

∂x�k�j

∂I j
� 1

γ
I
�1γ−1�
j :

APPENDIX B. IMAGE QUALITY ASSESSMENT
PERFORMANCE OF NORMALIZED LAPLACIAN
PYRAMID

Perceptual image quality assessment (IQA), as a means of com-
paring results obtained by different methods, has become an
important topic in image processing. Although the only guar-
anteed IQA method is through the explicit measurement of
human responses, this is a difficult and costly undertaking.
An objective measure of perceptual quality alleviates this diffi-
culty. If the measure is differentiable and well behaved, an addi-
tional advantage arises from using it to optimize the perceptual
performance of algorithms.

The most widely used method of validating IQA models is
by measuring their correlation with human quality ratings on a
diverse set of distorted images [8,31,32]. Table 1 presents cor-
relation results against five databases of human mean opinion
scores: four were measured using LDR displays, and one was
targeted at HDR displays. All results are obtained using the
achromatic version of the images in the databases (we have
not yet extended the NLP metric to handle color), and leaving
out the images with chromatic distortions. We also include the
results for several widely employed IQA methods. Note that
other IQA methods have been proposed that use local gain con-
trol mechanisms [13–15,21].

The table shows results for two types of correlation: the
Pearson correlation, which measures linear predictability of
the human responses, and the Spearman correlation, which
is concerned only with the ranking of the responses, and thus
more robust to (monotonic) nonlinear distortions. Note that
the latter measure is perhaps too flexible, since the nonlinear
relationship between the MOS and the predicted value can
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be different for each database, it is often reported when evalu-
ating IQA methods, and we include it here for completeness.

Our results indicate that the proposed metric behaves well
for both LDR and HDR images. Note that the parameters of
our metric were adjusted using the TID 2008 [19] database,
the VDP 2.2 metric was trained using HDR images, the
TID 2008 [19] and the CSIQ [35] database, and the SSIM
and MS-SSIM metrics were trained using the LIVE database
[34]. The Pearson (linear) correlation of our proposed metric
is clearly better for four of five datasets (including the HDR
dataset), and the Spearman (nonlinear) correlation is equal
to or better than all the other metrics for all the datasets.
We conclude that our proposed NLP metric is competitive
with the current state of the art in IQA. In addition, the
NLP metric is the only one that has proven to be easily differ-
entiable for incorporation into optimization procedures. For
example, the application of SSIM to optimization procedures
is not straightforward and involves some modifications of the
metric [37].
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