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Abstract

Efficient coding provides a powerful principle for explaining early sensory cod-
ing. Most attempts to test this principle have been limited to linear, noiseless
models, and when applied to natural images, have yielded oriented filters consis-
tent with responses in primary visual cortex. Here we show that an efficient coding
model that incorporates biologically realistic ingredients – input and output noise,
nonlinear response functions, and a metabolic cost on the firing rate – predicts
receptive fields and response nonlinearities similar to those observed in the retina.
Specifically, we develop numerical methods for simultaneously learning the linear
filters and response nonlinearities of a population of modelneurons, so as to max-
imize information transmission subject to metabolic costs. When applied to an
ensemble of natural images, the method yields filters that are center-surround and
nonlinearities that are rectifying. The filters are organized into two populations,
with On- and Off-centers, which independently tile the visual space. As observed
in the primate retina, the Off-center neurons are more numerous and have filters
with smaller spatial extent. In the absence of noise, our method reduces to a gen-
eralized version of independent components analysis, withan adapted nonlinear
“contrast” function; in this case, the optimal filters are localized and oriented.

1 Introduction

Coding efficiency is a well-known objective for the evaluation and design of signal processing sys-
tems, and provides a theoretical framework for understanding biological sensory systems. Attneave
[1] and Barlow [2] proposed that early sensory systems are optimized, subject to the limitations of
their available resources, for representing information contained in naturally occurring stimuli. Al-
though these proposals originated more than 50 years ago, they have proven difficult to test. The
optimality of a given sensory representation depends on thefamily of possible neural transforma-
tions to which it is compared, the costs of building, maintaining, and operating the system, the
distribution of input signals over which the system is evaluated, and the levels of noise in the input
and output.

A substantial body of work has examined coding efficiency of early visual representations. For
example, the receptive fields of retinal neurons have been shown to be consistent with efficient
coding principles [3, 4, 5, 6]. However, these formulationsrely on unrealistic assumptions of linear
response and Gaussian noise, and their predictions are not uniquely constrained. For example, the
observation that band-pass filtering is optimal [4] is insufficient to explain rotationally symmetric
(center-surround) structure of receptive fields in the retina.

1



The simplest models that attempt to capture both the receptive field properties and the response non-
linearities are linear-nonlinear (LN) cascades, in which the incoming sensory stimulus is projected
onto a linear kernel, and this linear response is then passedthrough a memoryless scalar nonlinear
function whose output is used to generate the spiking response of the neuron. Such approaches have
been used to make predictions about neural coding in general[7, 8], and, when combined with a
constraint on the mean response level, to derive oriented receptive fields similar to those found in
primary visual cortex [9, 10]. These models do not generallyincorporate realistic levels of noise.
And while the predictions are intuitively appealing, it is also somewhat of a mystery that they bypass
the earlier (e.g., retinal) stages of visual processing, inwhich receptive fields are center-surround.

A number of authors have studied coding efficiency of scalar nonlinear functions in the presence
of noise and compared them to neural responses to variables such as contrast [11, 12, 13, 14, 15].
Others have verified that thedistributions of neural responses are in accordance with predictions of
coding efficiency [16, 17, 18, 19]. To our knowledge, however, no previous result has attempted to
jointly optimize the linear receptive field and the nonlinear response properties in the presence of
realistic levels of input and output noise, and realistic constraints on response levels.

Here, we develop methods to optimize a full population of linear-nonlinear (LN) model neurons for
transmitting information in natural images. We include a term in the objective function that captures
metabolic costs associated with firing spikes [20, 21, 22]. We also include two sources of noise, in
both input and output stages. We implement an algorithm for jointly optimizing the population of
linear receptive fields and their associated nonlinearities. We find that, in the regime of significant
noise, the optimal filters have a center-surround form, and the optimal nonlinearities are rectifying,
consistent with response properties of retinal ganglion cells. We also observe asymmetries between
the On- and the Off-center types similar to those measured inretinal populations. When both the
input and the output noise are sufficiently small, our learning algorithm reduces to a generalized form
of independent component analysis (ICA), yielding optimalfilters that are localized and oriented,
with corresponding smooth nonlinearities.

2 A model for noisy nonlinear efficient coding

We assume a neural model in the form of an LN cascade (Fig. 1a),which has been successfully fit
to neural responses in retina, lateral geniculate nucleus,and primary visual cortex of primate visual
systems [e.g., 23, 24, 25]. We develop a numerical method to optimize both the linear receptive
fields and the corresponding point nonlinearities so as to maximize the information transmitted about
natural images in the presence of input and output noise, as well as metabolic constraints on neural
processing.

Consider a vector of inputsx of dimensionalityD (e.g. an image withD pixels), and output vector
r of dimensionalityJ (the underlying firing rate ofJ neurons). The response of a neuronrj is
computed by taking an inner product of the (noise-corrupted) input with a linear filterwj to obtain
a generator signalyj (e.g. membrane voltage), which is then passed through neural nonlinearityfj
(corresponding to the spike-generating process) and corrupted with additional neural noise,

rj = fj (yj) + nr (1)

yj = w
T
j (x+ nx) , (2)

(Fig. 1a). Note that we did not constrain the model to be “complete” (the number of neurons can be
smaller or larger than the input dimensionality) and that each neuron can have a different nonlinear-
ity.

We aim to optimize an objective function that includes the mutual information between the input
signal and the population responses, denotedI(X ;R), as well as an approximate measure of the
metabolic operating cost of the system. It has been estimated that most of the energy expended by
spiking neurons is associated with the cost of generating (and recovering from) spikes and that this
cost is roughly proportional to the neural firing rate [22]. Thus we incorporate a penalty on the
expected output, which gives the following objective function:

I(X ;R)−
∑

j

λj 〈rj〉 . (3)
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Figure 1:a. Schematic of the model (see text for description). The goal is to maximize information
transfer between imagesx and the neural responser, subject to metabolic cost of firing spikes.b.
Information about the stimulus is conveyed both by the arrangement of the filters and the steepness
of the neural nonlinearities.Top: two neurons encode two stimulus components (e.g. two pixelsof
an image,x1 andx2) with linear filters (black lines) whose output is passed through scalar nonlinear
functions (thick color lines; thin color lines show isoresponse contours at evenly spaced output
levels). The steepness of the nonlinearities specifies the precision with which each projection is
represented: regions of steep slope correspond to finer partitioning of the input space, reducing the
uncertainty about the input.Bottom: joint encoding leads to binning of the input space accordingto
the isoresponse lines above. Grayscale shading indicates the level of uncertainty (entropy) in regions
of the input (lighter shades correspond to higher uncertainty). Efficient codes optimize this binning,
subject to input distribution, noise levels, and metaboliccosts on the outputs.

Parameterλj specifies the trade-off between information gained by firingmore spikes, and the cost
of generating them. It is difficult to obtain a biologically valid estimate for this parameter, and
ultimately, the value of sensory information gained depends on the behavioral task and its context
[26]. Alternatively, we can useλj as a Lagrange multiplier to enforce the constraint on the mean
output of each neuron.

Our goal is to adjust both the filters and the nonlinearities of the neural population so as to maximize
the expectation of (3) under the joint distribution of inputs and outputs,p(x, r). We assume the
filters are unit norm (‖wj‖=1) to avoid an underdetermined model in which the nonlinearity scales
along its input dimension to compensate for filter amplification. The nonlinearitiesfj are assumed
to be monotonically increasing. We parameterized theslope of the nonlinearitygj =dfj/dyj using
a weighted sum of Gaussian kernels,

gj(yj |cjk, µjk, σj) =

K
∑

k=1

cjk exp

(

−
(yj − µjk)

2

2σ2

j

)

, (4)

with coefficientscjk≥0. The number of kernelsK was chosen for sufficiently flexible nonlinearity
(in our experimentsK = 500). We spacedµjk evenly over the range ofyj and choseσj for smooth
overlap of adjacent kernels (kernel centers2σj apart).

2.1 Computing mutual information

How can we compute the information transmitted by the nonlinear network of neurons? Mutual
information can be expressed as the difference between two entropies,I(X ;R) = H(X)−H(X |R).
The first term is the entropy of the data, which is constant (i.e. it does not depend on the model) and
can therefore be dropped from the objective function. The second term is the conditional differential
entropy and represents the uncertainty in the input after observing the neural response. It is computed
by taking the expectation over output valuesH(X |R) = Er

[

−
∫

p(x|r) ln p(x|r)dx
]

. In general,
computing the entropy of an arbitrary high dimensional distribution is not tractable. We make several
assumptions that allow us to approximate the posterior, compute its entropy, and maximize mutual
information. The posterior is proportional to the product of the likelihood and the prior,p(x|r) ∝
p(r|x)p(x); below we describe these two functions in detail.
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The likelihood. First, we assume the nonlinearity is smooth enough that, at the level of the noise
(both input and output),fj can be linearized using first-order Taylor series expansion. This means
that locally, for each inputxi and instance of noise,

r
i ≈ G

i
W

T (xi + n
i
x) + n

i
r + f

i
0
, (5)

whereW is a matrix collecting the neural filters,f i
0

is a vector of constants, andGi is a diagonal
matrix containing the local derivatives of the response functionsgj(yj) at yj(xi). Here we have
usedi to index parameters and random variables that change with each input. (Similar approxima-
tions have been used to minimize reconstruction error in neural nonlinearities [27] and maximize
information in networks of interacting genes [28].)

If input and output noises are assumed to be constant and Gaussian, with covariancesCnx
andCnr

,
respectively, we obtain a Gaussian likelihoodp(r|x), with covariance

C
i
r|x = G

i
W

T
Cnx

WG
i +Cnr

. (6)

We emphasize that although the likelihoodlocally takes the form of a Gaussian distribution, its
covariance is not fixed but depends on the input, leading to different values for the entropy of the
posterior across the input space. Fig. 1b illustrates schematically how the organization of the filters
and the nonlinearities affects the entropy and thus determines the precision with which neurons
encode the inputs.

The prior. We would like to make as few assumptions as possible about theprior distribution of
natural images. As described below, we rely on sampling image patches to approximate this density
when computingH(X |R). Nevertheless, to compute local estimates of the entropy weneed to
combine the prior with the likelihood. For smooth densities, the entropy depends on the curvature
of the prior in the region where likelihood has significant mass. When an analytic form for the prior
is available, we can use a second-order expansion of the prior around the maximum of the posterior
(known as the “Laplace approximation” to the posterior). Unfortunately, this is difficult to compute
reliably in high dimensions when only samples are available. Instead, we use theglobal curvature
estimate in the form of the covariance matrix of the data,Cx.

Putting these ingredients together, we compute the posterior as a product of two Gaussian distribu-
tions. This gives a Gaussian with covariance

C
i
x|r =

(

C
−1

x +WG
i(Gi

W
T
Cnx

WG
i +Cnr

)−1
G

i
W

T
)i

(7)

This provides a measure of uncertainty about each input and allows us to express information con-
veyed about the input ensemble by taking the expectation over the input and output distributions,

−H(X |R) = −E

[

1

2
ln 2πe det(Ci

x|r)

]

. (8)

We obtain Monte Carlo estimates of this conditional entropyby averaging the term in the brackets
over a large ensemble of patches drawn from natural images and input/output noise sampled from
assumed noise distributions.

2.2 Numerical optimization

We made updates to model parameters using online gradient ascent on the objective function com-
puted on small batches of data. We omit the gradients here, asthey are obtained using standard
methods but do not yield easily interpretable update rules.One important special case is derived
when the number of inputs equals the number of outputs, and both noise levels approach zero. In
this setting, the update rule for the filters reduces to the ICA learning rule [8], with the gradient
updates maximizing the entropy of the output distributions. Because our response constraint effec-
tively limits the mean firing rate and not the maximum, the anti-Hebbian term is different from that
found in standard ICA, and the optimal (maximum entropy) response distributions are exponential,
rather than uniform. Note also that our method is more general than standard ICA: it adaptively
adjusts the nonlinearities to match the input distribution, whereas standard ICA relies on a fixed
nonlinear “contrast” function.

To ensure all nonlinearities were monotonically increasing, the coefficientscjk were adapted in
log-space. After each step of gradient ascent, we normalized filters so that‖wj‖= 1. It was also
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necessary to adjust the sampling of the nonlinearities (location ofµjk ’s) because, as the fixed-norm
filters rotated through input space, the variance of the projections can change drastically. Thus,
whenever data fell outside the range, the range was doubled,and when all data fell inside the central
25%, it was halved.

3 Training the model on natural images

3.1 Methods

Natural image data were obtained by sampling 16×16 patches randomly from a collection of
grayscale photographs of outdoor scenes [29], whose pixel intensities were linear w.r.t. light lumi-
nance levels. Importantly, we did not whiten images. The only preprocessing steps were to subtract
the mean of each large image and rescale the image to attain a variance of 1 for the pixels.

We assumed that the input and output noises were i.i.d., soCnx
=σ2

nx

ID andCnr
=σ2

nr

IJ . We chose
8dB for the input (σnx

≈0.4). Although this is large relative to the variance of a pixel,as a result of
strong spatial correlations in the input, some projectionsof the data (low frequency components) had
SNR over 40dB. Output noise levels were set to -6dB (computedas20 log

10
(〈rj〉 /σnr

); σnr
=2) in

order to match the high variability observed in retinal ganglion cells (see below). Parameterλj was
adjusted to attain an average rate of one spike per neuron perinput image,〈rj〉=1.

The model consisted of 100 neurons. We found this number to besufficient to produce homogeneous
sets of receptive fields that spatially tiled the image patch. In the retina, the ratio of inputs (cones)
to outputs (retinal ganglion cells) varies greatly, from almost 1:3 in central fovea to more than 10:1
in the periphery [30]. Our ratio of 256:100 is within the physiological range, but other factors, such
as eccentricity-dependent sampling, optical blur, and multiple ganglion cell subtypes make exact
comparisons impossible.

We initialized filter weights and nonlinearity coefficientsto random Gaussian values. Batch size was
100 patches, resampled after each update of the parameters.We trained the model for 100,000 itera-
tions of gradient ascent with fixed step size. Initial conditions did not affect the learned parameters,
with multiple runs yielding similar results. Unlike algorithms for training generative models, such
as PCA or ICA, it is not possible to synthesize data from the LNmodel to verify convergence to the
generating parameters.

3.2 Optimal filters and nonlinearities

We found that, in the presence of significant input and outputnoise, the optimal filters have center-
surround structure, rather than the previously reported oriented shapes (Fig. 2a). Neurons orga-
nize into two populations with On-center and Off-center filters, each independently tiling the visual
space. The population contains fewer On-center neurons (41of 100) and their filters are spatially
larger (Fig. 2b). These results are consistent with measurements of receptive field structure in retinal
ganglion cells [31] (Fig. 3).

The optimal nonlinear functions show hard rectification, with thresholds near the mode of the input
distribution (Fig. 2c). Measured neural nonlinearities are typically softer, but when rectified noise
is taken into account, a hard-rectified model has been shown to be a good description of neural
variability [32]. The combination of hard-rectifying nonlinearities and On/Off filter organization
means that the subspace encoded by model neurons is approximately half the dimensionality of
the output. For substantial levels of noise, we find that evena “complete” network (in which the
number of outputs equals the number of inputs) does not span the input space and instead encodes
the subspace with highest signal power.

The metabolic cost parametersλj that yielded the target output rate were close to 0.2. This means
that increasing the firing rate of each neuron by one spike perimage leads to an information gain of
20 bits for the entire population. This value is consistent with previous estimates of 40-70 bits per
second for the optic nerve [33], and an assumption of 2-5 fixations (and thus unique images seen)
per second.

To examine the effect of noise on optimal representations, we trained the model under different
regimes of noise (Fig. 4). We found that decreasing input noise leads to smaller filters and a reduction
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Figure 2: In the presence of biologically realistic level ofnoise, the optimal filters are center-
surround and contain both On-center and Off-center profiles; the optimal nonlinearities are hard-
rectifying functions.a. The set of learned filters for 100 model neurons.b. In pixel coordinates,
contours of On-center (Off-center) filters at 50% maximum (minimum) levels.c. The learned non-
linearities for the first four model neurons, superimposed on distributions of filter outputs.
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Figure 3: a. A characterization of two retinal ganglion cells obtainedwith white noise stimulus
[31]. We plot the estimated linear filters, horizontal slices through the filters, and mean output as
a function of input (black line, shaded area shows one standard deviation of response).b. For
comparison, we performed the same analysis on two model neurons. Note that the spatial scales of
model and data filters are different.

in the number of On-center neurons (bottom left panel). In this case, increasing the number of
neurons restored the balance of On- and Off-center filters (not shown). In the case of vanishing
input and output noise, we obtain localized oriented filters(top left panel), and the nonlinearities are
smoothly accelerating functions that map inputs to an exponential output distribution (not shown).
These results are consistent with previous theoretical work showing that optimal nonlinearity in the
low noise regime maximizes the entropy of the output subjectto response constraints [11, 7, 17].

How important is the choice of linear filters for efficient information transmission? We compared
the performance of different filtersets across a range of firing rates (Fig. 5). For each simulation, we
re-optimized the nonlinearities, adjustingλj ’s for desired mean rate, while holding the filters fixed.
As a rough estimate of input entropyH(X), we used an upper bound – a Gaussian distribution with
the covariance of natural images. Our results show that whenfilters are mismatched to the noise
levels, performance is significantly degraded. At equivalent output rate, the “wrong” filters transmit
approximately 10 fewer bits; conversely, it takes about 50%more spikes to encode the same amount
of information.

We also compared the coding efficiency of networks with variable number of neurons. First, we
fixed the allotted population spike budget to 100 (per input), fixed the absolute output noise, and
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Figure 5: Information transmitted as a function of spike rate, under noisy conditions (8dB SNRin,
−6dB SNRout). We compare the performance of optimal filters (W1) to filters obtained under low
noise conditions (W2, 20dB SNRin, 20dB SNRout) and PCA filters, i.e. the first 100 eigenvectors
of the data covariance matrix (W3).

varied the number of neurons from 1 (very precise) neuron to 150 (fairly noisy) neurons (Fig. 6a).
We estimated the transmitted information as described above. In this regime of noise and spiking
budget, the optimal population size was around 100 neurons.Next, we repeated the analysis but
used neurons with fixed precision, i.e., the spike budget wasscaled with the population to give 1
noisy neuron or 150 equally noisy neurons (Fig. 6b). As the population grows, more information is
transmitted, but the rate of increase slows. This suggests that incorporating an additional penalty,
such as a fixed metabolic cost per neuron, would allow us to predict the optimal number of canonical
noisy neurons.

4 Discussion

We have described an efficient coding model that incorporates ingredients essential for computa-
tion in sensory systems: non-Gaussian signal distributions, realistic levels of input and output noise,
metabolic costs, nonlinear responses, and a large population of neurons. The resulting optimal solu-
tion mimics neural behaviors observed in the retina: a combination of On and Off center-surround
receptive fields, halfwave-rectified nonlinear responses,and pronounced asymmetries between the
On- and the Off- populations. In the noiseless case, our method provides a generalization of ICA
and produces localized, oriented filters.

In order to make the computation of entropy tractable, we made several assumptions. First, we
assumed a smooth response nonlinearity, to allow local linearization when computing entropy. Al-
though some of our results produce non-smooth nonlinearities, we think it unlikely that this sys-
tematically affected our findings; nevertheless, it might be possible to obtain better estimates by
considering higher order terms of local Taylor expansion. Second, we used the global curvature of
the prior density to estimate the local posterior in Eqn. 7. Abetter approximation would be obtained
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Figure 6: Transmitted information (solid line) and total spike rate (dashed line) as a function of the
number of neurons, assuming (a) fixed total spike budget and (b) fixed spike budgetper neuron.

from an adaptive second-order expansion of the prior density around the maximum of the poste-
rior. This requires the estimation of local density (or rather, its curvature) from samples, which is a
non-trivial problem in a high-dimensional space.

Our results bear some resemblance to previous attempts to derive retinal properties as optimal so-
lutions. Most notably, optimal linear transforms that optimize information transmission under a
constraint on total response power have been shown to be consistent with center-surround [4] and
more detailed [34] shapes of retinal receptive fields. But such linear models do not provide a unique
solution, nor can they make predictions about nonlinear behaviors. An alternative formulation, using
linear basis functions toreconstruct the input signal, has also been shown to exhibit center-surround
shapes [35, 6]. However, this approach makes additional assumptions about the sparsity of weights
in linear filters, nor does it explicitly maximize the efficiency of the code.

Our results suggest several directions for future efforts.First, noise in our model is a known con-
stant value. In contrast, neural systems must deal with changing levels of noise and signal, and must
estimate them based only on their inputs. An interesting question, unaddressed in current work, is
how to adapt representations (e.g., synaptic weights and nonlinearities) to dynamically regulate cod-
ing efficiency. Second, we are interested in extending this model to make predictions about higher
visual areas. We do not interpret our results in the noiseless case (oriented, localized filters) as pre-
dictions for optimal cortical representations. Instead, we intend to extend this framework to cortical
representations that must deal with accumulated nonlinearity and noise arising from previous stages
of the processing hierarchy.
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