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Abstract

Humans and animals are capable of flexibly switching between a multitude of
tasks, each requiring rapid, sensory-informed decision making. Incoming stimuli
are processed by a hierarchy of neural circuits consisting of millions of neurons
with diverse feature selectivity. At any given moment, only a small subset of these
carry task-relevant information. In principle, downstream processing stages could
identify the relevant neurons through supervised learning, but this would require
many training trials. Such extensive learning periods are inconsistent with the
observed flexibility of humans or animals, both of whom can adjust to changes in
task parameters or structure almost immediately. Here, we propose a novel solution
based on functionally-targeted stochastic modulation. It has been observed that trial-
to-trial neural activity is modulated by a shared, low-dimensional, stochastic signal
that introduces task-irrelevant noise. Counter-intuitively, this noise appears to be
preferentially targeted towards task-informative neurons, corrupting the encoded
signal. We hypothesize that this modulation offers a solution to the identification
problem, labeling task-informative neurons so as to facilitate decoding. We simulate
an encoding population of spiking neurons whose rates are modulated by a shared
stochastic signal, and show that a linear decoder with readout weights estimated
from neuron-specific modulation strength can achieve near-optimal accuracy. Such
a decoder allows fast and flexible task-dependent information routing without
relying on hardwired knowledge of the task-informative neurons (as in maximum
likelihood) or unrealistically many supervised training trials (as in regression).

1 Introduction

Our survival depends on the actions we take, which are derived from internal states and sensory
input. Accurate decisions require reliable encoding and flexible task-specific decoding of sensory
information. Take for instance the perceptual task of detecting a change in orientation of a grating
within a small aperture, placed at a particular location in the visual field (Fig. 1). Neurons in primary
visual cortex (V1) that respond selectively to features at different spatial locations and orientations
encode the visual stimulus. However, only a small fraction of those neurons would show a change
in response when the grating changes orientation (Fig. 1, red); the overwhelming majority will not
respond at all or their responses would not change significantly (Fig. 1, gray). Since nearly all visual
information passes through V1, any downstream areas’ sole source of information is contained in
the responses of those few V1 cells. Thus, solving this task relies on the ability to properly gather
and combine the responses of these task-relevant neurons, while ignoring the background chatter
of activity emanating from the remainder of the population. Furthermore, if the task changes (e.g.,
due to a change in stimulus position or orientation), the informative sub-population within V1 will
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change, and downstream areas will need to modify their processing accordingly. The means by which
the brain can achieve such dynamic task-dependent routing of information is a mystery.

The readout of sensory information in neural responses is often explored using statistically optimal
decoders derived from specific encoding models. While these decoders can provide an upper bound
on performance [1, 2, 3, 4, 5, 6, 7, 8], they should not be interpreted as models for biological decoding,
since they generally rely on full knowledge of the stimulus response and noise properties of neurons.
It seems inconceivable that upstream decoding circuits could have access to, or store, such detailed
information. An alternative possibility is that the decoder is learned from experience. This requires
extensive training on the discrimination task, accompanied by feedback regarding the success or
failure on each trial. The need for many trials, with feedback, seems inconsistent with the observed
behavioral flexibility of animals or humans, both of whom can rapidly adjust to changes in task
conditions [9].

Here we propose a novel framework for biologically plausible, flexible decoding, inspired by recent
results on task-dependent noise properties of neural populations in the visual system. Neural noise
limits the amount of stimulus information that a neural population can encode [10, 1] and is commonly
modeled with a Poisson process. However, neurons seem to share sources of multiplicative trial-to-
trial variability, or correlated noise, suggesting that additional time-varying modulators influence the
response of neurons [11]. Theoretical work indicates that such correlated noise can be detrimental
for population encoding, as it cannot be averaged out [7, 12]. Importantly, in some experiments this
noise seems to be specifically targeted to neurons that are informative for the task, which further
exacerbates the detrimental effects on encoding. Specifically, V4 neurons have been shown to share a
common source of noise-modulation, which affects neurons that are informative for the task more
strongly [13]. Similarly, V1 noise correlation structure is better explained by task-informativeness
than by stimulus tuning properties, suggesting that the source of these correlations is top-down (as
opposed to stimulus-driven) [14].

The mechanisms underlying this modulation remain unclear but the observed task-specific structure
has functional implications. From an encoding perspective, it is counterintuitive that the system would
corrupt the responses of task-informative neurons. However, we suggest that this noisy task-irrelevant
modulator plays a key role in solving the mystery of decoding. Specifically, we propose that the
modulatory fluctuations serve as a label for the task-relevant neurons, helping the decoder to select
these neurons for readout. Specifically, we posit that the decoder makes use of the modulator itself (or
the modulator-induced covariability) when assigning appropriate decoding weights to each neuron.
We construct such a modulator-guided decoder, and show through simulations that moderate levels
of task-specific stochastic modulation of an encoding population can lead to a substantial overall
benefit in decoding accuracy, while keeping the assumed knowledge about the encoding population at
a biologically plausible level. Thus, structured noise may be an essential feature of brain computation,
which could guide AI algorithms to overcome an essential gap to human behavioral performance.

2 Encoding/decoding models

To test our hypothesis, we simulate encoding in a population of stimulus-selective, noise-modulated
Poisson neurons [13] and compare statistically optimal ideal observer decoders, that have full
knowledge of the stimulus-selectivity and modulatory structure of the encoding population, with
biologically plausible decoders, that must operate with limited knowledge of the encoding population.

Encoding model: Poisson spiking population with task-targeted modulation

The variability in spike count response kt over repeated presentations t of a stimulus s reflects
the stochastic nature of neural spiking, commonly modeled using a Poisson point process with
stimulus-dependent firing rate λ(s). We account for supra-Poisson variability in neural responses,
by introducing additional sources of stochasticity [11, 15, 16]. Specifically, the stimulus-driven rate
of neuron n is dynamically modulated by a time-varying signal mt [13], which leads to a doubly
stochastic spiking process:

knt(s,mt) ∼ Poiss (λn(s)g(mt)) , (1)

where g(·) is a positive-valued link function, here an exponential, to guarantee a positive firing rate.
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Figure 1: Encoding model. A. The encoding population consists of stimulus-tuned Poisson spiking neurons.
Shared stochastic modulation (green) targets preferentially task-informative neurons and acts as a multiplicative
gain. The decoder uses the modulatory signal to identify the task-informative neurons, and combines their
responses to arrive at a decision. B. Stimulus selectivity of the population, qualitatively matched to experimental
data. Neurons fall into three categories, based on their mean response to each of the two stimuli in the
discrimination task. Neurons that respond differentially to the two stimuli are informative (red). Neurons with
substantial but nearly equal responses to both stimuli are uninformative (black). The remaining neurons are
inactive (and thus also uninformative), showing weak responses to both stimuli (gray).

We simulate a binary discrimination task (i.e., discriminate s = 0 from s = 1) similar to the change-
detection task used in [17]. Empirical observations in macaque area V4 show that the modulatory
signal mt is low-dimensional, shared across the neural population, and selectively targets neurons in
proportion to their task-informativeness [13]. To capture these effects, we assume a one-dimensional
modulator and introduce neuron-specific modulation weights, wn, that are proportional to the nth
neuron’s ability to discriminate the two stimuli. Overall modulation strength in the population is
determined by the modulator variance (var(mtwn) = σ2

mw
2
n - see also [18]).

knt(s,mt) ∼ Poiss (λn(s) exp(wnmt)) . (2)
Following a previous encoding model [13], we assume i.i.d. zero-mean Gaussian noise and variance
σ2
m for mt. Given the exponential nonlinearity, the modulatory factor causes an increase in spike

count by exp
(
σ2
mw

2
n

2

)
. To remove trivial benefits of the modulator due to an increase in firing rates,

we correct for this expected increase by normalizing the firing rates in the encoding model:

knt(s,mt) ∼ Poiss

(
λn(s) exp

(
wnmt −

σ2
mw

2
n

2

))
. (3)

Statistically optimal “ideal observer” decoders

Given the modulated Poisson encoding model, an ideal observer with complete knowledge of both
stimulus response properties {λn(s)} and modulation {wn,mt} provides an upper-bound on task-
decision accuracy. It operates by comparing the probability of the two stimuli under the full model
(equivalently, by examining the sign of their log odds). For our modulated Poisson encoding model
(see Eq. 3), this reduces to comparing a weighted linear combination of the observed neural spike
counts against a time-varying threshold that is a function of the modulator (see derivation in Suppl.
Info. S1). We refer to this as the modulator-conditioned maximum likelihood (MC-ML) decoder1:∑

n

a(MC)
n knt > c

(MC)
t , (4)

with weights:
a(MC)
n = log(λn(1))− log(λn(0)), (5)

and time-varying threshold:

c
(MC)
t = −

∑
n

exp(mtwn) [λn(1)− λn(0)] , (6)

1For brevity, ‘decoder’ refers to both the stimulus readout, and its corresponding optimal discriminator.
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where λn(s) denotes the mean response of the n-th neuron to stimulus s when mt = 0.

The MC-ML decoder provides an upper bound on achievable performance, and relies on perfect
knowledge of the modulator mt, the stimulus selectivity of the neurons, λn(s), and the coupling
weights wn. We can relax these requirements, by assuming that the modulator is unknown, and only
the modulator-marginalized stimulus selectivity of the cells is available (i.e., the stimulus response
averaged over possible modulators - see Suppl. Info. S1). We refer to this solution as the modulator-
marginalized maximum likelihood (MM-ML) decoder. Due to the particularities of the Poisson noise
model, this second decoder also computes a weighted sum over responses:

a(MM)
n = log(λ ∗

n(1))− log(λ ∗
n(0)). (7)

But it compares this weighted sum to a fixed threshold:

c(MM) = −
∑
n

[λ ∗
n(1)− λ ∗

n(0)] , (8)

where λ ∗
n(s) is the mean response of the nth neuron averaged (marginalized) over possible modulator

values. For the encoding model in Eq. (3), λ ∗
n(s) = λn(s), which means that the decoding weights

are the same as those used in the MC-ML decoder (i.e., a(MM)
n = a

(MC)
n ). Hence, in the case of

a binary discrimination task, the MM-ML decoder is able to achieve an unbiased estimate of the
decoding weights from the stimulus responses, without knowing the modulator. However, it does
lead to systematic time-dependent biases in the decoder threshold and therefore to biased decisions.

Biologically plausible decoders

The MC-ML and MM-ML decoders are not plausible as a description of decoding in the brain,
but they do provide a useful yardstick against which to compare the performance of more realistic
decoders. They also motivate the use of a linear-threshold functional form for the solution. We now
seek decoders of this form, that satisfy three criteria: (1) they are biologically plausible, in that they
do not rely on detailed knowledge about the encoding population (neither the stimulus responses, nor
the modulation weights), (2) they are behaviorally plausible, in that they have the ability to efficiently
adapt to changes in task structure, so as to reflect the flexibility seen in monkey behavior [17, 9], and
(3) they achieve accuracy approaching that of the optimal decoders.

We start with the simplest decoder, motivated by early work on neural binary discrimination/detection
[1], assuming minimal knowledge of the encoding population, in line with our first criterion. The
idea is to average the response of two sub-populations (“preferred” and “anti-preferred”) and then
compare these averages. Hence, the problem of learning decoding weights is reduced to choosing
which population each neuron is assigned to; this is mathematically equivalent to determining the
signs of a weight vector containing values ±1. For this reason, we refer to this model as the sign-only
(SO) decoder. The signs are optimally estimated by comparing the mean responses to the two stimuli.
This solution is agnostic to the details of the encoding model.

In order for this decoders to satisfy our second criterion – decoding flexibility – we need to estimate
the signs given few trials. Indeed we see that classification into the two signed groups reaches high
(90%) accuracy with only a few tens of trials, assuming low to moderate modulator strength (see
Fig. 2A). If all neurons in a population were informative, learning the signs would provide an accurate
readout of task information and the SO decoder would successfully fulfill also the last criterion
(decoding accuracy). However, neural populations are diverse, and would generally be expected to
include many uninformative neurons [19, 7]. The exact percentage depends on the neural population
and behavioral task. We assess this parameter in detail in the section on decoder accuracy. An
illustration of such an encoding population is given in Fig. 1 B which shows average responses of
simulated neurons with diverse stimulus tuning features to two task-specific stimuli. Only a small
fraction of neurons are responsive, while the large majority of neurons respond weakly (“inactive”).

If the noise from these inactive neurons is not excluded by the decoder, it could still corrupt the
signal [1]. We assessed decoding performance (% accurately discriminated stimuli) as a function of
the number of inactive neurons (Fig. 2B). The SO decoder includes inactive neurons and assigns them
to one decoding group or the other based on noise alone. Even though the individual noise of each
inactive neuron is small by definition, together their task-irrelevant response eventually dominates
the relevant stimulus signal (see Fig. 2B). In order to discount the inactive neurons, they should
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Figure 2: Accuracy of sign estimation, for simulated data. A. Mean % correctly attributed signs for informative
neurons as a function of number of training trials with varying modulator strength (percentage of spike count
variance of the informative neurons accounted for by the modulator). Decoding signs are learned within a few
tens of trials. B. Mean performance of RG and SO decoders as the number of inactive neurons is increased. The
RG decoder downweights inactive neurons, thus allowing it to maintain better performance than the SO decoder.

be assigned decoding weights with smaller amplitudes. The limited knowledge constraint, would
however mean that these weights cannot be assumed to be known, but must be learned/adapted based
on information readily available to upstream circuits.

Since informative neurons necessarily have to show activity during a task, one simple heuristic rule is
to set decoding weights proportional to the mean spike count of their associated neurons:

|a(RG)
n | ∝ 1

T

∑
t

knt. (9)

For this decoder, the sign of the weights must again be learned (as for the SO decoder). The time-
variant threshold is set optimally (see Eq. 6). This rate-guided (RG) decoder improves decoding
accuracy over the SO decoder by excluding neurons that do not respond to the stimuli (Fig. 1B, grey
points). Fig. 2B shows that while the SO decoder’s performance drops to chance level with increasing
numbers of inactive neurons, the RG decoder is much less affected. However, the RG decoder is still
far from optimal. In particular, it cannot exclude neurons that are active, but respond similarly to both
stimuli (and are thus uninformative - Fig. 1B, black points).

The modulator could deliver this missing differentiation through its task-specific targeting structure.
Here we propose a simple local rule for learning the modulation weights, by taking the inner product
of spike counts and the modulator:

|a(MG)
n | = 1

T

∑
t

mtknt (10)

This modulator guided (MG) decoder satisfies the first criterion (biological plausibility), as it only
assumes knowledge about the low-dimensional modulator, and the second (flexibility), as it learns
absolute decoding weights on the fast modulator time scale, instead of the slow time scale dictated by
the task-feedback arising from each trial.

Our heuristic learning rule results in estimates of the form (see Suppl. Info. S2):

E
[
|a(MG)
n |

]
= λnσ

2
mwn, (11)

which scale with the average response of neuron n across stimuli, λn, and the modulator variance,
σ2
m. For this to be an unbiased estimate of the optimal decoding weights, we need the modulation

strength to scale as wn = λ
−1

n |a
(MC)
n |. This additional assumption for the encoding model will not

affect the optimal decoding weights, but will change the expression for the optimal threshold (see
Eq.6). We use this bias-correcting encoder here. Empirically, we have found that the positive effects
of modulation on decoding remain, even in the absence of de-biasing.

Note that the above expression only provides the magnitude of the weights. The corresponding signs
must be separately estimated, as for the SO decoder. For simplicity we assume that the MG threshold
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Decoder Stimulus response knowledge Modulation knowledge Degrees of freedom
MC-ML λn(s) (modulator-conditioned) mt, wn 2N+N+T
MM-ML λ ∗

n(s) (modulator-marginalized) σm, wn 2N+N+1
MG none mt T
RG none none 0
SO none none 0

Table 1: Knowledge assumed by each of the five decoders (modulator conditioned: MC-ML, modulator
marginalized: MM-ML, modulator guided: MG, rate guided: RG, sign only: SO - see text for details). Last
column gives the dimensionality of variables that are assumed known or need to be estimated from neural
responses, with N the number of neurons in the population, and T the number of time points.

has the optimal functional form, as defined by the MC-ML decoder (Eq.6). To maintain biological
plausibility, we replace the true wn (which requires precise knowledge of the encoding model) with
estimates |ã(MG)

n |. Furthermore, the difference in firing rates [λn(1)− λn(0)] is replaced by an
empirical estimate ∆λ; this is determined as a function of the estimated decoding weights, the learned
signs and one free parameter per informative subpopulation (two parameters in total). It measures the
population average change in activity as a function of the stimulus and can easily be learned within a
few trials.

3 Decoder accuracy

We tested the decoders listed in Table 1 in a binary discrimination task that evokes differential
responses in a small subset of cells in the encoding population. We quantified decoding performance
for discrimination between two stimuli s = 0 and s = 1, as we varied the overall strength of
modulation. Results are shown in Fig. 3A. The MC-ML decoder provides a strict upper bound
on decoding performance, as it assumes full knowledge of the encoding model. As the modulator
variance σm increases, the performance of this decoder monotonically decreases, confirming the
intuition that the injecting correlated noise in task-relevant neurons is detrimental for encoding. For
the encoding population tested here, the MM-ML decoder is nearly as good as the MC-ML decoder,
however, performance falls faster with increasing modulator strength. This is due to the use of a fixed
threshold, that does not adjust to temporal fluctuations of the modulator.

Among the biologically plausible decoders, SO performs near chance level, as it is unable to pick up
the signal of the few informative neurons in the population. The RG decoder performs only slightly
better, since it cannot differentiate between informative and uninformative neurons. Interestingly, the
MG decoder performance shows a non-monotonic dependence on modulator strength. At low levels
of modulation, performance increases with modulator strength - in this regime, the modulation allows
the decoder to assign larger weights to the most informative cells. At higher levels, performance
decreases, as with the ideal decoders, reflecting the corruption of the encoded signal. Hence, there
exists an ideal range of modulation at which the MG decoder reaches its best performance, which
is close to that of the ideal MC-ML decoder. Note also that since the MG decoder is capable of
adjusting its threshold over time, depending on the modulator, it outperforms the MM-ML decoder
(which uses a constant threshold) in the regime of high modulator strength.

We study this optimum with respect to modulator strength by looking at the encoding and decod-
ing processes separately. For encoding, we predict the signal-to-noise ratio using Fisher’s Linear
Discriminant (FLD):

SNR =

(
aT (µ1 − µ0)

)2
aTΣ1a + aTΣ0a

(12)

for the optimal decoding weights a = a(MC) (Fig. 3B, bottom). Decoding accuracy was estimated
by the MSE of the MG-estimated decoding weights relative to the theoretical optimum. Given that
the MG-decoding weights are unbiased, the MSE is given by the variance of the estimator, which
decreases in inverse proportion to T (see Suppl. Info. S2):

Var
[
|a(MG)
n |

]
=
σ2
m

T

(
λn(1 + σ2

mw
2
n) + λ2neσ

2
mw

2
n(1 + 4σ2

mw
2
n)− λ2nw2

nσ
2
m

)
, (13)

where λn and λ2n are the mean and second moment of the neural response across stimuli.
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Figure 3: Comparison of different decoders, on simulated data. A. Decoding accuracy as a function of relative
modulator strength (percentage of total spike count variance that can be attributed to the modulator in informative
neurons). Lines indicate mean accuracy (% correct), and shaded region its 95% confidence interval. We
simulated 5000 cells in total, of which 50 were active cells and of those 12 (24% of active) were informative
cells. Baseline firing rates were set similar for all active neurons. B. Increasing modulator strength has opposite
effects on encoding and decoding accuracy. It decreases the FLD ratio (encoding accuracy), but it also increases
decoding accuracy, measured as the inverse of the MSE; these two effects jointly produce the maximum in
accuracy of the MG-decoder (blue shaded region). C. Performance of different decoders as a function of the
number of informative neurons (in % informative neurons of active neurons). The strength of modulation was
set fixed to the MG-optimal strength (see A). Other parameters are the same as in A.

We also tested the influence of percentage of informative neurons in the encoding population on
these results. The decoding problem of identifying task-informative neurons is particularly difficult
when only very few of the active neurons are task-informative. In experiments, the percentage of
informative neurons varies depending on the intrinsic tuning properties of the cells (e.g. width of
tuning curves), and extrinsic task properties (e.g. coarse vs. fine discrimination). In our simulations,
varying the percentage of informative neurons serves as a proxy for both. Unsurprisingly, increasing
the percentage of informative neurons increases decoding accuracy across the board (Fig.3C). While
the SO decoder improvements are modest, the RG decoder achieves reasonable accuracy if more
than half of the neurons are informative. The advantage of the MG decoder over RG is strongest if
the fraction of informative neurons is small. These results are robust to changes in the overall size
of the population (not shown). Overall, this suggests that, under realistic conditions, our proposed
modulator-guided decoding mechanism provides a substantial benefit over simpler solutions.

Finally, the modulation strengths above were set to the optimal decoding weights for every neuron,
hence assuming high precision targeting and no additional sources of noise (Eq.3). In Fig.4 we show
numerically that our results are robust to noise in the modulator weights, as well as to perturbations
in the firing rates of the neurons, in the form of additive Gaussian noise.

4 Discussion

Artificial neural networks may excel at solving the one task they have been trained for, but require
substantial retraining when goals change. In contrast, human and animals can rapidly and flexibly
switch between goals, with existing neural resources quickly recruited for the task at hand. Here we
proposed that a functionally targeted stochastic modulator [13] could dynamically label informative
neurons, facilitating their flexible and accurate task-specific readout. We showed that a modulator-
guided linear decoder, in which weights are estimated through correlation of responses with the
modulator, can achieve near-optimal performance. We investigated how parameters of the encoder
(proportion of inactive neurons, and active but uninformative neurons) impact performance and found
that these dictate a choice of modulator strength that best balances the disruptive effects of correlated
noise on encoding against its positive effects for decoding. Importantly, performance is invariant to
other parameter changes, such as size of the population and baseline firing rate, demonstrating the
robustness of the modulation labeling scheme to circuit details.

Historically, ideal observer models have ignored the presence of modulation, yet have provided
good approximations of behavioral performance. Our MM-ML ideal observer provides a possible
explanation for this incongruity: an experimenter that measures tuning functions by averaging
neural responses in the presence of unaccounted-for modulation is effectively marginalizing over
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it. Optimal decoding weights derived from these estimates are in fact correct, but the use of a
fixed decision threshold is suboptimal. This suboptimality is relatively minor in the context of our
simulations (compare MC-ML and MM-ML in Fig. 3A), but could prove more substantial when fit
to physiological data. Another source of bias, often ignored in ideal observer analyses, arises from
the selection of experimentally recorded neurons. Neural recordings are generally biased towards
active neurons, partly because low firing neurons are more likely to be overlooked, and partly because
experimental stimuli are often optimized to drive the recorded population. While the signal may
be concentrated in the recorded subpopulation, a downstream decoding area must also process the
substantially larger unrecorded population.

Our encoding model assumes multiplicative noise since, to date, there is no evidence that additive
noise is functionally targeted. Even more, experimental reports are conflicting as to whether additive
noise is a common phenomenon (e.g. Goris et al. [11] argue that an additive noise model is inconsistent
with their data). Should it be there, task-invariant additive noise would decrease the performance
of all decoders, but would not qualitatively change our results (see Fig. 4 C). For simplicity, we
have assumed a single task-specific signal that underlies the correlated noise within the population.
This is consistent with [13], which showed that V4 noise correlations were largely captured using
a one dimensional modulator per hemisphere. Alternatively, one could introduce several Gaussian
modulators, that combine linearly to jointly gate neural responses. This model would be harder to
parameterize, but the net effect would be similar. Additional modulators that are not targeted would
reduce the SNR of all neurons and negatively affect all decoders, but again, should not qualitatively
change the results.

Our theory does not specify the biological implementation of the modulation, in terms of where
it is generated, the mechanism by which it targets encoding neurons in a task-specific manner, or
the means by which it is made available to downstream circuits. In principle, dynamic changes in
population noise correlations could arise through either local [20] or top-down mechanisms [14].
For the orientation discrimination task considered here, one could imagine taking advantage of the
topological organization of the sensory code for orientation, modulating spatially-localized clusters
of neurons in V1 without requiring explicit knowledge of their individual tuning. The induced noise
correlations would then propagate bottom-up to higher areas, labeling task-relevant neurons that need
not be topographically clustered. This mechanism predicts a hierarchy of modulator-based labeling
across the sensory processing stages, consistent with the experimental observation that correlations
between V1 and MT increase with behavioral performance, triggered by attending towards a stimulus
[21]. Alternatively, on a slower time scale, the top-down connections could self-organize to allow for
feature-selective noise targeting, akin to attentive mechanisms recently introduced in artificial neural
networks [22, 23].

The topic of flexible information routing in the brain has a long history. In particular, the signal
transmitted by sensory neurons is enhanced when their firing is synchronized, and thus, oscillations
have been hypothesized to serve as labeling mechanism [24]. The “communication through coher-
ence”(CTC) theory [25] has refined this idea in an encoding-decoding framework, where a top-down
oscillatory signal projects to both encoding neurons with the same feature selectivity, and to the
decoding network that reads out from them. Oscillations can play a similar role to our modulator,
with some important distinctions. First, CTC considers a fixed labeling strategy, with oscillations
targeting feature-selective neurons, while our framework focuses on the flexible learning through
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targeting of task-informative neurons. The two proposals might be hard to distinguish in a detection
task, but make distinct predictions for discrimination. Second, CTC assumes a decoder with fixed
threshold, which (at least within our modeling framework) is suboptimal. Third, the two theories
differ in the statistics of the labeling signal: CTC assumes periodic signals, while our model uses
stochastic signals, assuming only a timescale. We note, though, that our framework could be readily
adapted to the case of an oscillatory modulator.

Our model makes several predictions which can be examined in an experimental context that includes
a dynamically changing task. In particular, the influence of low-dimensional (shared) noise should
shift with the task, so as to continue to preferentially target task-informative neurons. Moreover,
a modulator-guided decoder should outperform simpler strategies (sign-only or rate-guided) when
applied to physiological data. Since our theory posits an optimal level of modulation relative to
the stimulus-induced variance, we expect that attention shifts the level of modulation towards this
(empirically estimable) optimum. Furthermore, the direction of the shift may provide clues regarding
the mechanisms underlying noise generation [20].

Our decoders are designed for a classification (as opposed to estimation) task because the experiments
showing task-specific modulation have been done with binary discrimination tasks. In principle, it
might be possible to extend this framework to estimation, which also entails learning to appropriately
weight informative neurons while ignoring uninformative ones. Modulator-labeling should prove
useful in this context, although the details of the decoder will likely change. There is growing interest
in the machine learning community in developing more flexible, adaptive neural models. Despite
some recent progress, the design of artificial neural networks that can handle many tasks and leverage
past learning to generalize to new tasks (e.g., multi-task, meta-learning, transfer learning) is in its
infancy. Our proposal provides a novel biologically-inspired solution, as a potential step toward this
goal.
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