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Abstract

Learning probability models from data is at the heart of many machine learning
endeavors, but is notoriously difficult due to the curse of dimensionality. We
introduce a new framework for learning normalized energy (log probability) models
that is inspired from diffusion generative models, which rely on networks optimized
to estimate the score. We modify a score network architecture to compute an energy
while preserving its inductive biases. The gradient of this energy network with
respect to its input image is the score of the learned density, which can be optimized
using a denoising objective. Importantly, the gradient with respect to the noise level
provides an additional score that can be optimized with a novel secondary objective,
ensuring consistent and normalized energies across noise levels. We train an energy
network with this dual score matching objective on the ImageNet64 dataset, and
obtain a cross-entropy (negative log likelihood) value comparable to the state
of the art. We further validate our approach by showing that our energy model
strongly generalizes: log probabilities estimated with two networks trained on non-
overlapping data subsets are nearly identical. Finally, we demonstrate that both
image probability and dimensionality of local neighborhoods vary substantially
depending on image content, in contrast with conventional assumptions such as
concentration of measure or support on a low-dimensional manifold.

1 Introduction

Many problems in image processing and computer vision rely, explicitly or implicitly, on prior
probability models. However, learning such models by maximizing the likelihood of a set of training
images is difficult. The dimensionality of the space (i.e., the number of image pixels) is large, and
worst-case data requirements for estimation grow exponentially (the “curse of dimensionality””). The
machine learning community has developed a variety of methods to train a parametric network to
estimate log p(z), known as an “energy model” (Hinton et al., 1986; LeCun et al., 20006), relying
on the inductive biases of the network to alleviate the data requirements. For all but the simplest
of models, this approach is frustrated by the intractability of estimating the normalization constant
(Hinton, 2002; LeCun and Huang, 2005; Yedidia et al., 2005; Gutmann and Hyvirinen, 2010; Dinh
et al., 2014; Rezende and Mohamed, 2015; Dinh et al., 2017; Song and Kingma, 2021).

A clever means of escaping this conundrum is to estimate the gradient of the energy with respect to
the image (known as the “score”), which eliminates the normalization constant, and can be learned
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from data with a “score-matching” objective (Hyvirinen and Dayan, 2005). The recent development
of “diffusion” generative models (Sohl-Dickstein et al., 2015; Song and Ermon, 2019; Ho et al.,
2020; Kadkhodaie and Simoncelli, 2020) builds on this concept, by estimating a family of score
functions for images corrupted by Gaussian white noise at different amplitudes. The scores may
then be used to sample from the corresponding estimated density, using an iterative reverse diffusion
procedure. These methods have enabled dramatic improvements in both the quality and diversity
of generated image samples, but the learned density is implicit. An explicit and normalized energy
model (and density) can be obtained through integration of the divergence of the score vector field
along a trajectory (Song et al., 2021a), at tractable but large computational cost.

Here, we leverage the power of diffusion models to develop a robust and efficient framework for
directly learning a normalized energy model from image data. We approximate the energy with a
deep network that takes as input both a noisy image and the corresponding noise variance, and derive
two separate objectives by differentiating with respect to these two inputs. The first is a denoising
objective, as used in diffusion models. The second is novel and ensures consistency of the energy
estimates across noise levels, which we show to be critical for obtaining accurate and normalized
energies. We optimize the sum of the two, in a procedure that we refer to as “dual score matching”.
We also propose a novel architecture for energy estimation by computing the inner product of the
output of a score network with its input image. This preserves the inductive biases of the base score
network, leading to equal or superior denoising performance (and thus, sample quality).

We train our energy model on ImageNet64 (Russakovsky et al., 2015; Chrabaszcz et al., 2017),
and show that the estimated energies lead to negative log likelihood (or cross-entropy) values
comparable to the state of the art. We further demonstrate that the energy model strongly generalizes
in the sense of Kadkhodaie et al. (2024): two separate models trained on non-overlapping subsets
of the training data assign essentially the same probabilities to each image. This convergence
is observed at moderate training set sizes, and is far faster than the worst case prediction of the
curse of dimensionality. We find that the distribution of log probabilities over ImageNet images
covers a broad range, with densely textured images at the lower end, and sparse images at the
upper end. The probability is stable with respect to image luminance, but decreases with dynamic
range. Finally, we highlight two geometrical properties of the learned image distribution. The
first is an extremely tight inverse relationship between volume and density that leads to an absence
of concentration of energy values. They furthermore follow a Gumbel distribution, indicating a
surprising statistical regularity. The second is that the local dimensionality of the energy landscape
in the neighborhood of an image varies greatly depending on image content and neighborhood size.
We find both images with full-dimensional neighborhoods of non-negligible size and images with
lower-dimensional neighborhoods even at sub-quantization scales. These results challenge several
traditional presuppositions regarding high-dimensional distributions, such as the concentration of
measure phenomenon (Vershynin, 2018; Wainwright, 2019) or the manifold hypothesis (Tenenbaum
et al., 2000; Bengio et al., 2013). We release code to reproduce all experiments and pre-trained
models at https://github. com/FlorentinGuth/DualScoreMatching.

2 Learning normalized energy models with dual score matching

Estimating a high-dimensional probability density from samples faces two significant challenges as a
result of the curse of dimensionality. The first is statistical: reasonably-sized datasets do not contain
enough information about the unknown distribution. One then needs powerful inductive biases,
typically in the form of a parametric network architecture, to hope to recover the data distribution.
The second challenge is computational: the traditional objective aims to maximize the likelihood of
the model over the data, which is intractable due to the need to compute the normalization constant.
Nevertheless, recently developed generative models implicitly solve this problem. Our approach
draws inspiration from diffusion models (Section 2.1), and derives a novel objective (Section 2.2)
and architecture (Section 2.3) to learn normalized log probabilities (energies) from data, addressing
both challenges. We provide numerical validation in Section 2.4.

2.1 Motivation

Traditionally, energy models are defined in terms of a parametric function Uy(z) that approximates
the unnormalized log density over z € R%: py(x) = Z%e*U"(z), with a normalizing constant
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Figure 1: Comparison of single and dual score matching on recovering the energy of a scale mixture
of two Gaussians in d = 1000 dimensions. Experimental details are provided in Appendix C.3. Left:
Radial slices of the log probability. The single score matching estimate (green dashed curve) fails to
recover the true energy (blue solid curve), even after global normalization (green dotted curve), while
dual score matching (red dashed curve) succeeds. Middle: Radial components of the scores. Single
score matching learns an accurate score over the support of the data (blue bar plot) but not outside
of it. Right: Energy landscape across space and time (noise level) for a mixture of two Gaussians
in one dimension. The direct path between the modes at ¢ = 0 crosses a large energy barrier (green
curve), which is alleviated on a path that is not restricted to ¢ = 0 (red curve).

Zy = [ e~Uo(*)dz. The parameters 6 are estimated by minimizing the expected negative log
likelihood (NLL), E, [— log pg(x)] = E,[Ug(x)] + log Zy, which is equivalent to minimizing the KL
divergence between py(x) and the data distribution. The normalizing constant Z, plays a critical role
in learning, representing the total energy over R? which trades off against the energy of the data. But
direct estimation (i.e., computing the integral) is typically intractable.

The normalization constant can be eliminated from the NLL by differentiating w.r.t. z, yielding a
quantity known as the (negative) score: —V log pg(x) = V,Up(z). As a result, a score model can
be efficiently fitted to data via “score matching” (Hyvirinen and Dayan, 2005), which minimizes the
Fisher (rather than KL) divergence between the model and the data. In the case of data corrupted
by Gaussian white noise, this amounts to solving a denoising problem (Vincent, 2011; Raphan and
Simoncelli, 2011). But this computational advantage comes at a statistical cost: a good approximation
of the score does not always lead to a good model of the energy (Koehler et al., 2023), as we now
illustrate. Consider the case of an equal mixture of two multivariate Gaussian distributions with zero
mean and different variances o7 and 3. In high dimensions, this distribution concentrates near the

two spheres of radii o1v/d and 02V/d, leading to data scarcity in the rest of the space. We show in
Figure 1 energies estimated from samples by optimizing their gradient via (single) score matching.
This fails to recover the true energy, even after adjusting a normalization constant. Indeed, estimating
the energy difference between the two Gaussians requires a good estimation of the score along an
integration path between them. If there is no data in-between modes to constrain the score, due to an
energy barrier or concentration phenomena, this leads to inconsistent energy values across modes. In
other words, single score matching estimates energy values up to a mode-dependent additive constant.

Diffusion models expand on score matching by learning scores of data corrupted by white Gaussian
noise for a range of different noise amplitudes, —V, U (y, t), with y = z + N(0, tId). The evolution
of the density p(y|t) as “time” (noise variance) ¢ increases is a diffusion process, and thus the
corresponding energies increase in smoothness with ¢. This multiscale family of scores can be used to
draw high-quality samples from p(x) using a reverse diffusion algorithm, which follows a trajectory
of partial denoising steps (Song and Ermon, 2019; Song et al., 2021a; Ho et al., 2020; Kadkhodaie
and Simoncelli, 2020). In fact, the diffusion scores implicitly capture a density model of the data
(Song et al., 2021b; Kingma et al., 2021): the relative energy levels between modes, to which score
matching at ¢ = 0 is blind (Zhang et al., 2022), are encoded in the score at the time ¢ when they merge
(Raya and Ambrogioni, 2023; Biroli et al., 2024). This implicit density model can be evaluated in
various ways, which all involve a tractable but costly integration of score divergences (or denoising
errors) as a function of time (Song et al., 2021a; Kong et al., 2023; Skreta et al., 2024; Karczewski
et al., 2025). See Appendix A.2 for a more in-depth exposition.

Intuitively, diffusion models deal with multimodal distributions by providing a high-probability path
between modes through space and time, as visualized in the right panel of Figure . In other words,



the joint distribution p(y, t) qualitatively has a connected support. This suggests that we may learn
the joint “space-time” energy U (y, t) by score matching on (y, t). Specifically, the “space score”
—V,Ug(y,t) can be learned using a denoising objective, and the “time score” —0;Uy(y, t) (Choi
et al., 2022) can be learned using an analogous score matching objective. Matching both space and
time scores correctly constrains the energy levels across modes: the energy difference between two
modes can be explicitly recovered by integrating the energy derivative along the red path in Figure |
(although we will not need to do so).

2.2 Dual score matching: Objective function

Space and time score matching. We want to learn a time-dependent energy function, Uy (y, t), to
approximate the NLL of the noisy image distribution at all noise levels ¢:

Uly,t) = —1og(/p(x)e—zlt|f—y|2—31°g<2”>dx). (1)

Differentiating this NLL with respect to y gives the (negative) “space score”, which can be expressed
using the Miyasawa-Tweedie identity (Robbins, 1956; Miyasawa, 1961) as
-z

V,U(y.t) =E, [y . y} 2)

This leads to the denoising score matching objective (Vincent, 2011; Raphan and Simoncelli, 2011;
Saremi et al., 2018) used to train diffusion models:
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We also can differentiate the energy with respect to ¢, producing a (negative) “time score” (Choi et al.,
2022), for which we can derive a similar identity (see Appendix B.1):
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Combining objectives across noise levels. The two objectives in egs. (3) and (5) are defined for
a fixed noise level t. We can form an overall objective by integrating over ¢, with an appropriate
weighting. For the denoising score matching objective, a natural choice is the so-called maximum-
likelihood weighting (Song et al., 2021b; Kingma et al., 2021), which provides a bound on the KL
divergence with the data distribution:

1 oo
KL < 5 [ fosu(6.0)dt, ©
0

where py is the implicit density of the generative diffusion model. This integral can be approximated
by Monte-Carlo sampling from a distribution of noise levels. In practice, we have found it best
to sample log ¢ uniformly over a finite interval (specifically, p(t) o< 1/t,t € [tmin, tmax])» Which
corresponds to the following implementation of the integral:

tmax
/ Cosni(0,1) dt = Byt fpsn (0, )] @
tmin

Note that the resulting term in the expected value is unitless: it is invariant to simultaneous rescaling
of the data and noise level. We thus choose to weight the time score matching objective in eq. (5) by
12, so that it is also unitless, and to evaluate over the same distribution p(t). Finally, after appropriate
normalization by the dimensionality d that ensures that the two objectives have comparable orders
of magnitude, we simply add them (we found no significant improvement from tuning a tradeoff
hyperparameter). In summary, our dual score matching objective is:

(6) = E, l;emw,w + (;) eTSMw,t)]- ®)



Normalization. Since we match only the partial derivatives of Uy(y, t) to those of the true energy
U(y,t), we only recover the energy up to a global constant: at the end of training, Uy(y,t) =
U(y,t) 4+ const. Note again that this crucially relies on p(y,t) having a connected support. An
important aspect of our framework is that it enables estimation of this constant, which determines the
normalization of e~U¢(¥:!) Indeed, the time score objective ensures that this normalizing constant
does not depend on time: mass is conserved through the diffusion. Since the true distribution is
approximately Gaussian at large noise levels, p(y|tmax) = N (0, tmaxId), we can set this constant to
the entropy of this Gaussian distribution:

d
U9 (y7 t) — U9 (y7 t) - Ey[UO (3/, t) |t = tmax] + 5 log(27retmax)~ (9)

Figure 1 provides a high-dimensional numerical example verifying that dual score matching indeed
provides both an accurate estimate of normalized energy values (in particular, for ¢ = 0), in contrast
to single score matching.

Related approaches. Similar combinations of space and time scores were considered by Choi et al.
(2022) (where it is called the “pathwise” method) and Kobler and Pock (2023). These time score
objectives, however, relied on a second derivative in time instead of a regression objective. Our time
score objective is a special case of the conditional time score matching objective of the concurrent
work of Yu et al. (2025). Finally, Yadin et al. (2024) train an energy model with an objective
combining score matching with a classification cross-entropy loss on estimating a discretized version
of the noise level ¢.

2.3 Dual score matching: Architecture

How should one choose an architecture to compute the energy Uy (y, t)? Rather than designing one
from scratch (Salimans and Ho, 2021; Cohen et al., 2021; Thiry and Guth, 2024), we construct
one by modifying a score-based denoising architecture that is known to have appropriate inductive
biases. Let sg: R% x R — R% be such an architecture (e.g., a UNet). We wish to define a new
energy architecture Uy : R x R — R such that V,Ug = sg, preserving the inductive biases of sy.
To achieve this, we set

1
This inner product parameterization has been concurrently proposed by Thornton et al. (2025).
We show in Appendix B.2 that V,Uy(y,t) = sq(y, t) if the score network sy is conservative and
homogeneous (Romano et al., 2017; Reehorst and Schniter, 2018). Homogeneity has been shown
to hold approximately in the related setting of blind denoisers (Mohan* et al., 2020; Herbreteau

et al., 2023), and can be enforced architecturally. We note that the seemingly similar choice of a

squared norm such as Uy (y, t) = %|/so(y, t) ||* used in some previous energy models (Salimans and
Ho, 2021; Hurault et al., 2021; Du et al., 2023; Yadin et al., 2024; Thiry and Guth, 2024) leads to the
same desirable homogeneity properties in y but not in 0, and thus fails to preserve the optimization

properties of the original score network. Further architectural details are provided in Appendix C.1.

2.4 Performance evaluation

Denoising performance. We first verify that the gradient of the energy network, V, Uy, provides as
good a denoiser as the score network sp on which it is based. We train the two networks separately Uy
with the dual score matching objective (eq. (8), using double back-propagation) and sy with only the
standard (denoising) score matching objective (eq. (3)). Further details are provided in Appendix C.2.
Table 1 compares denoising performance across noise levels. For all but the smallest noise levels, the
energy-based model achieves (slightly) better denoising performance than the score model. Thus,
there is no penalty in modeling the energy rather than the score. This is contrary to the results of
Salimans and Ho (2021), and is likely due to our use of an architecture that is homogeneous, and
for which non-conservativeness of the score is not a large source of denoising error (Mohan* et al.,
2020; Chao et al., 2023). Finally, these results demonstrate that the two components of our dual score
matching objective are not trading off against each other; rather, they complement and even reinforce
each other (i.e. their minima coincide).



Table 1: Denoising MSE at several noise levels for corresponding score and energy networks,
averaged over images in ImageNet64. All quantities are expressed as peak signal-to-noise ratio
(PSNR) in dB: PSNR = —10log;,(MSE).

Noise variance 90 75 60 45 30 15 0 —15 —30

Score network  90.20 75.47 60.43 47.19 35,58 2592 1884 13.31 —-0.11
Energy network  90.09  75.17 60.45 47.25 3567 26.01 1888 13.48 2.53

Table 2: Negative log likelihood (in bits/dimension) on ImageNet64 test set. See Appendix A.1 for
more details.

Method  Anti-aliasing Augmentation Discreteness Type Single NFE ~ NLL

Glow (Kingma and Dhariwal, 2018) X None Continuous Normalized v 3.81
PixelCNN (Van den Oord et al., 2016) X None Discrete Normalized X 3.57
I-DDPM (Nichol and Dhariwal, 2021) X None Continuous Upper bound X 3.54
VDM (Kingma et al., 2021) X None Discrete Upper bound X 3.40

FM (Lipman et al., 2023) v None Uniform* Normalized X 331

NFDM (Bartosh et al., 2024) X Horizontal flips Uniform* Normalized X 3.20

TarFlow (Zhai et al., 2024) X Horizontal flips Uniform Normalized 4 2.99

Ours v Horizontal flips Continuous Estimate v 3.36

Negative log likelihood. How accurate are our energy estimates? A standard evaluation of proba-
bilistic models consists in estimating the cross-entropy E,.[— log ps(x)] between the data distribution
and the model, also known as negative log likelihood (NLL). In practice, NLL is computed by comput-
ing the probability the model assigns to a held-out test set. There are however several subtleties that
make direct model comparisons challenging. Specifically, there are 3 factors that can cause variations
in NLL up to £0.5 bits/dimension or more: details of data pre-processing (e.g., downsampling or
data augmentation), conversion method from continuous to discrete probability, and the estimator
type (exactly normalized, variational bound, or approximately normalized). We expand on these
issues in Appendix A.1.

We compare NLLs of our method and a variety of recent energy models in Table 2. This evaluation
demonstrates that our model is comparable to the best-performing models in the literature, within the
variability arising from the three factors of variation mentioned in the previous paragraph. Two unique
advantages of our method are that it provides (1) direct (one-shot) estimates of energy (as opposed to
other density estimation approaches in diffusion models, which we review in Appendix A.2), and (2)
access to energy across all noise levels, providing a window into larger-scale features of the energy
landscape. For instance, our energy network can compute the probability of 50k images in 12s on an
A100 GPU, whereas a score network requires upwards of 3h20, even with as few as 100 times steps
and 10 noise samples to compute the energy (see Appendix A.2). This justifies the longer training
time due to the cost of double-backpropagation (training for 1M steps on ImageNet64 on a single
A100 GPU respectively took 120 hours, compared to 32 hours for the score network), which may be
alleviated by the use of sliced score matching (Song et al., 2020).

3 Analysis of the learned energy-based model

3.1 Generalization

The previous section demonstrated that our energy-based model achieves near state-of-the-art NLL on
ImageNet64. That is, the model on average assigns high probability to a set of held-out test images.
Next, we establish that the energies of the individual images are reliable. In particular, we verify that
the model’s energy assignment is stable under change of the training data.

To this end, we borrow the strong generalization test developed in Kadkhodaie et al. (2024). We
partition the training data into two non-overlapping sets, train a separate energy-based model on each
set, and then compare the energies computed by these two models on images from both training
subsets. We gradually increase the size of each training set until the two models assign approximately
equal log probability across all images. Figure 2 shows the results of this experiment. The two
models assign very different probabilities to the same image when the training set size, IV, is small.
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Figure 2: Convergence of energy estimates. The data set is split into two halves (denoted A and
B), and separate energy models are trained on N samples drawn from each half. Each scatterplot
compares the energy estimates of the two models at ¢ = 0, over all 2N training images. As IV
increases, the energy estimates of the two models converges for all images.
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Figure 3: Histogram of log probabilities of images in the ImageNet dataset. Color-coded arrows
indicate values for the example images on the right, and the leftmost (brown) and rightmost (green)
arrows indicate values for a uniform noise image in [0, 1] and a constant image of intensity 0.5,
respectively. The distribution is well-fit by a Gumbel distribution (red line). Additional examples of
images organized by probability are shown in Figures 6 to 8 (Appendix D).

But they converge gradually and compute nearly the same values at N = 10°. Note that the rate
of convergence depends on image probability: more data is needed before the two models agree
on the high-probability images. It is also worth noting that the transition from memorization to
generalization of energy models is marked by a large increase of variance in energy over the training
set (starting at N = 100).

This result establishes that the model variance vanishes with a feasible training set size. However,
it does not guarantee that the values are accurate—the models could be biased. Direct calculation
of model bias requires access to the true density, which is only available for synthetic data (as in
Figure 1). However, smaller NLL values over test data (Table 2) suggest smaller model bias.

3.2 Distribution of energies and relationship to image content

We now study properties of the learned energy model. What is the entropy (average energy) of the
image dataset? Do all images have the same probability? If not, what determines the probability of
an image? To investigate these questions, we compute the log probability of all 50, 000 images in
the ImageNet64 test set in Figure 3. We express log probability in units of decibels per dimension
(dB/dim), computed as élOlog10 po(z), with d = 64 x 64 = 4096. In this scale, an additive change

of 10 dB/dim corresponds to a multiplicative change in probability density of 10¢.

Entropy. The average value of —logpy(x) provides an estimate of the differential entropy of
ImageNet, which is here equal to —11.4 dB/dim. Note that the uniform distribution over the
hypercube [0, 1] has an entropy of 0. This indicates that natural images occupy a fractional volume
of about 1071144, This can be converted to an estimate of discrete entropy by assuming that log
probability is constant within quantization bins. For 8-bit images (with 256 possible intensity values),
this corresponds to an entropy of 4.20 bits/dimension (the deviation from the value in Table 2 is due
to the use of grayscale images here). In other words, there are ~ 105180 quantized ImageNet images
out of 109860 possible images at this resolution.
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Figure 4: Influence of image statistics on probability. Left. log pg(ax + b) as a function of ¢ and b.
Middle. Horizontal slice (b = %) of the left panel for the example images of Figure 3. Right. Log
probability as a function of sparsity, measured as the participation ratio of wavelet coefficients.

Lack of concentration. Many high-dimensional probability distributions exhibit a concentration
phenomenon: typical realizations have nearly equal energy. For instance, in simple image probability
models such as a Gaussian model or a sparse wavelet model (where wavelet coefficients are indepen-
dent), the energy of independent components add, and the law of large numbers imply a concentration
of the energy around its mean. In contrast, our energy network reveals enormous diversity in the log
probabilities of individual ImageNet images (Figure 3). Over the entire test set, they span a range
of 34.4 dB/dim, corresponding to a probability ratio of ~ 10**:9°°, Given this enormous ratio, it is
surprising that any low probability image appears in a finite dataset. To make sense of this apparent
contradiction, it is important to realize that the total probability mass of images with a given value
of log p in a dataset is equal to this probability value multiplied by the volume of the corresponding
probability level set. Observing a range of probability values of 1014°°° thus reveals that these
enormous variations in probability density must be nearly compensated by inverse variations in the
volume of their corresponding level sets.

Shape of the distribution of log probabilities. The distribution of log probability values is highly
skewed: there is a heavy tail of high-probability images and a much lighter tail of low-probability
images. Surprisingly, this distribution is well approximated by a Gumbel distribution (we report
parameter values in Appendix C.3). This arises as a limit distribution for the maximum of many
i.i.d. random variables. This surprising observation is, to the best of our knowledge, new, and
calls for an explanation. In independent component models, the log probabilities are sums of i.i.d.
random variables, and are therefore Gaussian distributed (with a vanishing variance compared to their
mean). A simple model which reproduces this Gumbel distribution is a high-dimensional spherically-
symmetric distribution with an exponentially-distributed radial marginal (Lyu and Simoncelli, 2009).

Image content. We also show in Figure 3 examples of images at various log probabilities. High-
probability images invariably contain small objects, on a blank (often white) background. Conversely,
low-probability images are generally filled with dense detailed texture. This agrees with the behavior
of compression engines. Indeed, the energy of an image, when expressed in bits, corresponds to the
size of its optimally compressed representation. This implies that low-probability images should
intuitively have more “content” than high-probability images.

Intensity range and sparsity. Following these visual observations, we further examine the influence
of intensity range and sparsity on image probability (Figure 4). First, we evaluate the log probability
of reference images as we manipulate their brightness or contrast through an affine operation. We
find that the brightness has minimal effect on the probability, while higher-contrast images have
lower probability. This reveals that the distribution is star-shaped: any pair of images are connected
by a high-probability path passing through a constant image. Next, we verify that log probability
is correlated with a simple measure of sparsity of images. We compute a multi-scale wavelet
decomposition of the images, and measure the /!-norm divided by the £2-norm of the coefficients.
The square of this quantity, ||z||?/d||z||3 € (0, 1] is known as the participation ratio, with smaller
values indicating higher sparsity. The right panel of Figure 4 shows that this simple measure captures
a significant portion of the variance of log pg ().



3.3 Effective dimensionality of the energy landscape

Beyond estimating log probability for a given image, we aim to characterize the local behavior of the
density in the vicinity of that image. For instance, we would like to assess whether the probability is
locally concentrated near a low-dimensional “tangent” subspace, and if so, estimate its dimensionality.
In this section, we explain how these quantities may be computed from our energy model. We
then show that the local dimensionality around an image is often much lower than the ambient
dimensionality of the space, but that this dimensionality varies with the particular image and the
scale that is used to define the local neighborhood.

Multi-scale dimensionality. Consider the distribution supported on the blue regions in the left two
panels of Figure 5. For the leftmost region, the effective dimensionality of a local neighborhood
decreases with the size of that neighborhood. The opposite behavior is also possible, as shown in
the rightmost region. These examples show that dimensionality measures which aim to describe
these geometrical structures need to depend on both the location and the scale of the neighborhood
(Mohan* et al., 2020; Tempczyk et al., 2022).

Effective dimensionality. We now introduce an effective dimensionality measure which can be
equivalently defined from the optimal denoiser or the evolution of the probability landscape as it
diffuses. Given a noisy observation y of a clean image x with noise variance ¢, the optimal denoiser
estimates x with the conditional expectation E[z | y]. Its average deviation from z capture the local
support of the data distribution around x at scale ¢. Intuitively, from observing y, the optimal denoiser
identifies that x is located on a d.g-dimensional “tangent” space and projects y onto it. This preserves
the components of the noise that lie along the subspace, incurring a denoising error td.g. Thus, we
define the local effective dimensionality around x at scale ¢ as

1
desr(w,t) = 3B, [l = Ealz | 9] | ] (an

Effective dimensionality can be equivalently defined directly from the energy. Consider the forward
diffusion which progressively adds more noise to an image x, blurring the probability landscape.
At time ¢, we can define an effective energy E,[U(y,t) | z]. Its rate of change with ¢ captures
the effective dimensionality around x. Intuitively, if this landscape is locally a d.g-dimensional
subspace, then adding more noise causes probability to diffuse in the d — deg normal “off-manifold”
directions, spreading over a volume ~ ¢(?~%f)/2_ Taking the logarithm, we obtain E, [U (y,t) | 2] ~
(d — defr) 3 log t. Thus, we can equivalently define

desi (2, 1) = d — O3 1 By [U (1, 1) | 2] (12)

logt

We show in Appendix B.3 that the definitions in eqs. (11) and (12) are equivalent, unifying two
seemingly distinct points of view adopted by related dimensionality measures (Wu and Verdu, 2011;
Mohan* et al., 2020; Tempczyk et al., 2022; Stanczuk et al., 2022; Kamkari et al., 2024; Horvat and
Pfister, 2024).

Numerical results. We show in Figure 5 the behavior of the effective energy and dimensionality
as a function of the noise level. As the noise level increases, the log probability initially remains
constant, indicating that probability is uniformly spread in a ball around x. The probability eventually
decreases as the diffusion radius becomes larger than the local support size, and all lines converge
to the mean (the negative entropy), consistent with the asymptotic Gaussian behavior of the energy.
The effective dimensionality vanishes at large noise levels (images have a compact support, which
behaves like a point at sufficiently large noise levels) but increases as the noise level is reduced,
eventually reaching the ambient dimensionality d (our model has a continuous non-zero density
everywhere by construction). In-between these two extremes, there exists a sizable range of scales
t € [1072,1072] where almost the entire range of dimensionalities coexist. In particular, higher-
probability images have lower-dimensional neighborhoods, even at relatively small scales, while
lower-probability images have nearly full-dimensional neighborhoods, even at relatively large scales.
This result empirically confirms the point raised in Section 3.2: the local probability mass around
high and low probability images are of the same order, despite the enormous gap between their
probability values. The local high dimensionality of the low-probability images corresponds to a
significantly larger volume occupied by their local neighborhood. We note two potential limits to
these estimates. First, the quantization of pixel values into bins of size 1/256 limits the resolution
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Figure 5: Left: Two hypothetical examples illustrating how local effective dimensionality depends on
the scale of the neighborhood. For both examples, support of density corresponds to the blue regions.
In the left example, the dimensionality around the red point decreases with scale (from 2 down to 0),
while the opposite is true for the right example. Right: Log probability and effective dimensionality
as a function of noise level. Colored lines correspond to different example images x (shown in right
panel of Figure 3), while the dashed black line shows the average over the ImageNet test set. The
vertical gray line indicates the minimum noise level presented during training (¢ = 10~°), and the
horizontal gray line the ambient dimensionality of the dataset (d = 4096).

to t ~ 1075, possibly explaining the momentary decrease in dimensionality as ¢ decreases. Second,
our energy model was only trained on noise levels down to ¢,,;, = 10~°. Thus, energies at smaller
values of ¢ are solely determined by model inductive biases, which favor a constant energy.

4 Discussion

We have developed a novel framework for estimating the log probability (energy) of a distribution of
images from observed samples. The estimation method is simple and robust, and converges to a stable
solution with relatively small amounts of data (in our examples, 100, 000 images of size 64 x 64
suffices). The framework leverages the tremendous power of generative diffusion models, relying on
networks trained to estimate the score of the data distribution by minimizing a denoising objective.
We augment this with a secondary objective that ensures consistency of the model across noise levels,
and an architecture constructed from an existing denoiser so as to preserve its inductive biases. We
validate our model by verifying that it achieves denoising performance equal to or surpassing the
original denoiser, and NLL values comparable to the state of the art. We note that our approach
is straightforward to extend to conditional models: given conditioning information, the network
computes the conditional energy function. The expression of the DSM and TSM losses are unchanged,
as well as the energy architecture.

We have investigated the geometrical properties of the learned energy model. Notably, we observe a
lack of concentration of measure, with log probability values varying over a wide range and following
a Gumbel distribution. As a limit distribution for the maximum, rather than the sum, of i.i.d. random
variables, we expect that it might arise in a broad class of high-dimensional distributions. We also
introduced a novel image- and scale-dependent measure of effective dimensionality which unifies two
separate points of view developed in the literature. We demonstrate that different image neighborhoods
display both high and low dimensionality over a wide range of scales. These results challenge simple
interpretations of the manifold hypothesis. Furthermore, the estimated dimensionalities remain too
high to explain how the curse of dimensionality may be lifted. This indicates that the energy landscape
of natural images must have additional geometrical regularity.

We mention two important limitations of our work. First, our energy model has a roughly quadrupled
training time compared to the base score network, due to the use of double back-propagation. We
believe this can be improved through architecture improvements, specialized auto-differentiation
functions, or by doing sliced score matching (Song et al., 2020). Furthermore, the additional training
time is offset by the dramatic efficiency gains when computing energy values. Another limitation of
our approach is that we cannot provide any theoretical guarantees that minimizing our objective leads
to a good approximation of the true energy. We expand on this question in Appendix A.3.
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A Discussions on density estimation

A.1 On comparison of NLL values

We identify three issues that arise in estimation of NLL values, each of which limits the precision
with which they can be compared.

A first issue concerns the selection and pre-processing of the training data. There are two different
versions of ImageNet at 64 x 64 resolution: one introduced in Van den Oord et al. (2016), no longer
available, and a second which uses anti-aliasing during downsampling (reducing entropy and thus
NLL), introduced in Chrabaszcz et al. (2017). This change in the dataset accounts for variations
of about 0.3 bits/dimension (Zheng et al., 2023). Similarly, the data augmentations used can both
increase entropy (e.g., random flips) or reduce it (e.g., center crops, or resizing operations with
anti-aliasing).

A second point is that NLL estimates must be computed on a discrete probability model, and NLL
estimates for continuous models are dependent on the method used to discretize the distribution.
The simplest option is to assume that the probability is uniform within quantization bins. Discrete
probabilities are then computed as a product of the continuous probability with the volume of the
quantization bin, which corresponds to an additive shift of 8 bits in the NLL for image data. This
can be enforced by adding uniform noise to the data, a technique known as “uniform dequantization”
(Ho et al., 2019), which leads to an upper bound on the NLL of the corresponding discrete model
(Theis et al., 2016). These differences can account for variations of 0.1 to 0.5 bits/dimension (Kong
et al., 2023). A more sophisticated variational dequantization procedure can improve results by an
additional 0.1 bits/dimension (Ho et al., 2019; Song et al., 2021b). In contrast, directly modeling the
discrete data with appropriate methods can lead to reductions in NLL of more than 2 bits/dimension
(Bhattacharya et al., 2025).

Finally, a third point is that depending on the method, the NLL should be interpreted differently.
Classically, py is a normalized probability distribution, typically obtained through a change-of-
variable formula (as in flow-based models), so that up to an unknown additive constant (the entropy
of the data), the NLL directly evaluates the KL divergence KL(p || pg). For some other models (such
as VAEs), the NLL is not directly tied to a probabilistic model and is instead evaluated through a
variational lower bound, leading to upper bounds on — log p(x) for each . The NLL however remains
an upper bound on the entropy of the data. The MSE-based formulas of Kong et al. (2023) also
fall in this category when using a (necessarily suboptimal) network denoiser. Lastly, approximately
normalized energy-based models such as ours or CDM (Yadin et al., 2024) compute estimates of
— log p(x) that are neither lower nor upper bounds, so that NLL can only be interpreted as an estimate
of the entropy of the data.

As aresult of these differences, NLL values of different methods are often not directly comparable.
Here, we aim to learn an accurate continuous probability model of image distributions rather than
obtaining the best upper bound on the discrete entropy of the data.

When evaluating previously published NLL results, we found that these details were often not
provided, and we thus had to make assumptions in compiling Table 2. The “anti-aliasing” column
refers to the version of ImageNet64 used, we assumed that articles that cite Van den Oord et al.
(2016) for the dataset made use of the aliased version. We assume no data augmentation if none is
mentioned (for TarFlow (Zhai et al., 2024), the authors mention performing center crops of the data,
but an inspection of their code indicates that it has been disabled for ImageNet64). The “discreteness”
column refers to the nature of the probability model and the potential conversion from continuous
to discrete probabilities (“discrete” for discrete probability models, “continuous” for an additive
shift of 8 bits, and “uniform” for uniform dequantization by adding uniform noise). We assume a
continuous model if no dequantization is mentioned (FM (Lipman et al., 2023) and NFDM (Bartosh
et al., 2024) use a slightly different notion of uniform dequantization which improves NLL by 0.04
bits/dimension). The “type” column refers to the nature of the LLM estimate (‘“normalized” for an
exactly normalized probability model coming from a flow-based model, “upper bound” for variational
lower bounds on log probability, and “estimate” for other approaches). Finally, we indicate those
methods that use a single neural function evaluation (NFE) to compute log probability in the “single
NFE” column.
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A.2 Background on density computation in diffusion models

We review several methods of estimating log probabilities from diffusion models that have appeared
in the literature.

In early publications on diffusion methods, probabilities are computed with the so-called probability
flow ODE (Song et al., 2021a). This corresponds to the distribution of samples generated by the
backward ODE. Given a large noise level ¢,,,x, the backward ODE solves the equation
dl’t
dt
backwards in time from z;___ ~ N (0, t;naxId) and produces an approximate sample z = zg ~ popE-
The log probability of this sample can be calculated as (Song et al., 2021a)

1
= *ivae(%t% 13)

[E 1 [l
T 5 log(2mtmax) — 5 i Ay Up(zy, t)dt. (14)

—logpope(z) = o

Note that eq. (14) is also valid for arbitrary test points x, in which case the ODE (13) needs to be
solved forward in time from zo = z att = 0 to t = t;,,x. Equation (14) requires estimating the
divergence of the score (the Laplacian of the energy), which is typically approximated with the
Hutchinson trace estimator (Hutchinson, 1989).

Another approach is to use a variational bound as in Song et al. (2021b); Kingma et al. (2021); Kong
et al. (2023). This variational bound arises from the exact identity (Kong et al., 2023)

dt

o (15)

—logp(x) = Ey[U(y, tmax) | ] — /Otmax (td —E, {Hx —E.[z]|y] H2 ‘ :cD

The first term is the effective energy at ¢ = t,,,x, Which is equivalent to g log(2metmax) as tmax — 0.
The second term features the optimal mean squared error over noise levels ¢t € [0, tax]. Note that
the integrand can be rewritten as (d — deg(w,t))d (5 logt), and eq. (15) can thus be derived by
integrating the two equivalent definitions of effective dimensionality (11) and (12) (see Appendix B.3).
Equation (15) naturally leads to an upper-bound on the negative log probability of the data when
replacing the optimal denoiser E, [« | y, t] with the denoiser derived from the Miyasawa-Tweedie
expression, y — tV,Up(y, t):

(16)

d = dt
~log puise(o) = 5 log(2retuns) ~ [ (td =B, [llr —y+ 0V, Un(0. 01" o] ) 55
0

This framework can be generalized to other noise distributions (Guo et al., 2013) such as Poisson
noise, which is more adapted to discrete distributions (Bhattacharya et al., 2025).

Finally, it was recently observed in Skreta et al. (2024); Karczewski et al. (2025) that a cheaper
unbiased stochastic estimator of this bound can be obtained with the It6 formula. Given a realization
(w¢)ter, of the forward SDE (Brownian motion) dx; = dwy started at 29 = = ~ p(z), then

tmax 1
—logp(x) =Ul(xt,,.., tmax) — / <<VyU(xt, t),dxs) — 2||VyU(xt,t)|2dt). a7
0

2
When ty,,x — 00, one can again use U (2, , tmax) ~ Hgﬂ;tmi“"” + %10g(27rtmax). Replacing the

unknown true energy U in the integrand with a model Uy leads to a biased stochastic estimate of the
log probability:

2 t
x d max 1
~ log pap (x) = Wil 45 10B (2~ / ((VyUg(xt,t),dxt> — S IV s, D)t
0

2tmax
(18)
Karczewski et al. (2025) show that averaging over SDE trajectories started at the same zy = z leads
to an upper bound on the NLL, in fact recovering the one in eq. (16).

In summary, the ODE gives deterministic probabilities exactly corresponding to the corresponding
generative model (eq. (14)), while for the SDE one can choose between a denoising-based upper
bound (eq. (16)) or a cheap stochastic estimator of it (eq. (18)). These evidently similar approaches
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are equivalent if and only if the model is consistent across noise levels (i.e., satisfies the diffusion equa-
tion). In practice, the choice of estimation method can lead to variations of up to 0.5 bits/dimension
(Kong et al., 2023), see in particular Karczewski et al. (2025) for a careful study). These approaches
also apply to our model, in addition to the direct evaluation of Uy (x, ¢ = 0). While this latter estimate
does not correspond to a generative model (like the ODE) or a variational bound (like the SDE), its
main advantage is its computational efficiency, as it does not require integrating over noise levels and
gives deterministic values without averaging over noise realizations (for a divergence term or mean
squared error).

A.3 On the theoretical justification of dual score matching

A limitation of our approach is that we offer no theoretical guarantees that minimizing our objective
leads to a good approximation of the energy. It would be desirable to show that our training objective
(assuming infinite training data) quantitatively controls the distance between the learned energy and
the data energy. This could be achieved by showing that the joint distribution p(y,t) (with log ¢
uniformly distributed in [log tmin, 10g tmax]) satisfies a Poincaré inequality, i.e.,

Var{Us(y. 1) = U(y, )] < CE [V, Ua(y.t) = V,U . + 00 (y. 1) = U (4. 1)*], (19)

for some constant C' that is not too large. While we conjecture that such a result holds (or
a variant, such as when considering the distribution of (y/v/%,logt), to match our noise level
weighting), note that this is weaker than a control in the Kullback-Leibler divergence. Replacing
Var[Uy(y,t) — Ul(y, t)] with KL(p || pg) in eq. (19) would require that the model distribution py(y, t)
satisfies a log-Sobolev inequality, which could only be enforced with specific architectures. As
a result, there is no control of the learned energy outside the support of the data distribution, so
that out-of-distribution detection may be unreliable. It also implies our model may not be exactly
normalized. Our NLL calculations are thus only approximate (although computationally cheap).
These limitations are common to all current score-based and unnormalized energy-based approaches,
including the related work of Yadin et al. (2024).

A.4 On frequency estimation with density models

Here, we describe a counterintuitive property of density models in high dimensions which poses a
challenge for estimating frequencies. We also refer the interested reader to Theis et al. (2016), which
offers related observations.

Consider a mixture of two uniform distributions on two compact sets (classes) C; and Cy with
respective frequencies f; and f5. The probability density is then constant on each class, with value
p; = f7: where V; is the volume of C;. The volume V; typically scales exponentially with d, V; ~ 1";1
where 7; is the characteristic size of C;. The energy values on each class are then

U; = —logp; = dlogr; — log f;. (20)

In high dimensions d >> 1, the energy values are dominated by the volume and only weakly depend
on the frequencies of each class.

A concrete example of this phenomenon can be seen in the mixture of two Gaussian distributions
considered in Figure 1, where the two classes correspond to the two spheres of radius v/do; for
i € {1,2}. The typical values of the energy U; = %log(Zﬂ'eof) — log f; are dominated by the
entropy of the corresponding Gaussian.

The implications of this observation for high-dimensional density models are twofold. First, estimated
densities are dominated by volumes of typical sets (entropies of the mixture components), more than
frequencies of different categories (one-dimensional marginals). (Note that the latter is easily learned
from data, while estimating the former is a much more challenging task.) This observation explains
empirical reports that energy models may assign higher probability to out-of-distribution samples
(Nalisnick et al., 2019; Karczewski et al., 2025). Second, estimating energy up to a small relative
error is not sufficient to capture observed frequencies. For our ImageNet64 model (d = 4096), a
relative error of ~ 0.1 dB/dimension (as estimated from the generalization experiment in Figure 2) is
negligible compared to typical energy differences of ~ 10 dB/dimension, but the required precision
to estimate frequencies with a relative accuracy of 10% is 1/d = 2 x 10~* dB/dimension.
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B Proofs and derivations

B.1 Time score matching (proof of eq. (4))

We start from the expression of the energy (negative log probability) of noisy data:

Uy,t) = —logp(ylt), 2D
p(01t) = [ pla)plolz ). 2)

Differentiating the energy with respect to ¢ yields

Iep(ylt)
U (y,t) = — (23)

O
__ Ip@)plylz, t)0; log p(yl, t)dx 24)
pylt)

Note that the derivation exactly matches that of the Miyasawa-Tweedie identity by replacing 0; with
V. and does not make any assumptions about the form of p(y|x, t). Restricting to additive Gaussian

noise, —log p(y|z,t) = % |ly — ol + 4 log(2nt), and substituting into eq. (25) gives the “time
score-matching” identity of eq. (4):

2
d _y—=

8tU(yat) :]Ez 2t 2t2

y] : (26)

B.2 Energy architecture

Suppose that the energy network is defined in terms of a score network sy (y,t) as Up(y,t) =
%(y, se(y,t)), where the score network is assumed conservative and homogeneous. Conservativity
means that there exists a scalar function ¢ such that s¢(y,t) = V,¢é(y, t), which implies that the
Jacobian Vys9(y,t) = Vi¢(y,t) is symmetric. The homogeneity property requires that for all
A >0, sg(Ay, t) = Asg(y, t). Differentiating with respect to A and setting A = 1 yields

Vyse(y:t)y = so(y,t). 27)

We now calculate the gradient of the energy network:

1
VUUe(y7 t) = 5(59(3% t) + vy59(y7 t)Ty) = 59(2—/, t)a (28)

using the conservative and homogeneity properties to derive that V,sy(y,t)y = Vyse(y,t)Ty =
so(y,t). Note that even if s¢ is not conservative, then it still holds that V,Uj(y,t) =
% (Vy59 (y,t) + Vysa(y, t)T)y, which can be interpreted as a symmetrization of the Jacobian of sg.

We also remark that if sy is homogeneous, then Uy is quadratically homogeneous (Up(Ay,t) =
A2Uy(y,t)). Note that this does not correspond to enforcing (asymmetric) Gaussian one-dimensional
marginals (y, u). Rather, this enforces that the distribution of (y, u) conditioned on the orthogonal
projection y — (y, u)u/||ul|® is (asymmetric) Gaussian.

B.3 Effective dimensionality (equivalence between eqs. (11) and (12))

We start by calculating the time derivative of the effective energy E, [U(y, t) | x]. We have
O, Uy 1) 2] =1 [ plyle U (v, 00y 29)

- / @rpyl. OU (. 1) + plyle, 0T (. 1) dy. (30)
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The first term is the derivative with respect to variance of a Gaussian distribution A/ (z, tId). It
satisfies the diffusion equation:

1
ap(ylz,t) = §Ayp(y\x,t)- (31

Similarly, for the second term, we use the fact that U (y, t) = — log p(y|t) where p(y|t) also satisfies
the diffusion equation (as can be seen from the Fokker-Planck equation in the variance exploding
case (Song et al., 2021a)):

0
O (y,t) = - ;Z();yg) (32)
Ayp(ylt)
= -t 33
2p(ylt) 53)
1
=—V,- )V, U(y|t 34
s Ve PWIHVLU 1) (34)
1 1
= 50Ut = 51V, Uyl (35)

This equation appeared in Lai et al. (2023); Bruna and Han (2024) and is a special case of a Hamilton-
Jacobi equation (Evans, 1993).

Combining egs. (31) and (35) into eq. (30) and integrating by parts twice, we have
1
0, Uy 1) 2] = [ plole. 1) (Aywy,t) - 2|va<y|t>||2>dy. (36)

We recognize the expression of the mean squared error as given by combining Miyasawa-Tweedie
with Stein’s unbiased risk estimate (SURE). Indeed,

E, [z~ E.[e |y]I*| 2] =B, [l -y + 9,001 |<] 37
=E, [l =yl + 2t =y, V,U(y,0)) + 2|V, U || 39)

—td+ E[-22,U(y,t) + |V, U (3, 1) | o] (39)

where we have used Stein’s lemma in the last step. We finally combine eqs. (36) and (39) to obtain
VB [llr — Eula )1 | 2] = d - 2008, [U(5,1) | ). 0)

. . . _ 1 _dt
It is convenient to rewrite 260y = 01 154, as d(3logt) = gt

We define the common value in eq. (40) to be deg (2, t). It is related (but not equal) to dimensionality
measures estimated from the singular values of the Jacobian of a denoiser (Mohan* et al., 2020;
Horvat and Pfister, 2024). The limit of deg(x, t) when ¢ — 0 has appeared in the literature under
the name of local intrinsic dimensionality using (approximate) likelihood (LIDL) (Tempczyk et al.,
2022; Stanczuk et al., 2022; Kamkari et al., 2024). Its average over images x is equal to the MMSE
dimension of Wu and Verdd (2011).

C Experimental details

C.1 Energy network architecture

UNet architecture. Our UNet architecture sy is composed of 3 encoder blocks, a middle block,
and 3 decoder blocks. Each block is itself composed of 3 layers, each a sequence of bias-free
convolution, normalization, and non-linearity, for a total of 21 layers. The first convolutional layer of
each encoder block but the first and the middle block has a stride of 2 (downsampling, in both vertical
and horizontal directions), and the last convolutional layer of each decoder block (except for the last
one and the middle block) is transposed with a stride of 2 (upsampling). The output of each encoder
block is concatenated to the input of the corresponding decoder block (which comes from the output
of the corresponding encoder block, via a “skip connection”). The number of channels is doubled in
each block, starting from a base value of 64 at the coarsest scale. We replace ReLLUs with GeL.Us
to ensure that V, Uy is differentiable. Thus, Uy is only approximately quadratically homogeneous.
As aresult, and because training does not result in an exactly conservative sg, V, Uy (y,t) should be
computed directly as opposed to using sg.
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Normalization. We also replace batch normalizations, whose behavior during the backward pass is
incompatible with a second back-propagation, with a homogeneous version of instance normalization
(Ulyanov et al., 2016). If the input z consists of C' channels (z.)1<.<c, and its spatial mean is
u(z) € RC, each channel is normalized according to

|z — p(@)|*+¢
M \/O”SEC — ,Uf(xc)”Z i E(xc - M(‘Tc))' (41)

Up to a small ¢ > 0 parameter for numerical stability, this ensures that after normalization all
channels z. have equal norms while preserving the global norm ||z||. This normalization layer is also
homogeneous when ¢ = 0, as the spatial mean is estimated from the input z. This normalization is
followed by a learned rescaling of each channel, z, — 7.z., where v € R is learnable.

Noise level conditioning. The noise variance ¢ is also an input of sg. As is standard in diffusion
models (Nichol and Dhariwal, 2021), a time embedding e(t) € R?°® is computed with Fourier
features cos(wyt), sin(wyt) (we use 32 frequencies (wy,), that are linearly spaced in the log domain
and ranging from 1/ty,x to 1/tm;n) followed by a shallow MLP. This time embedding e(t) is then
used to condition the output of each normalization layer via gain control: z. — ((1 + (we, e(t)))z.)
where w, is a learned layer- and channel-dependent vector € R256,

C.2 Training hyper-parameters

To summarize Section 2.2, the dual score matching training objective is

2 2
1 2
‘\/gvyw;(y,t) -2 (flatw)(y,t) -3 (1 - 'd>> @)

where z ~ p(z) is the data distribution, z ~ A(0,1d) is the noise, y = = + \/tz is the noisy
measurement, and logt ~ U(log tmin,logtmax). In our experiments we use tyi, = 1079 and
tmax = 10%, and the training image intensities are rescaled to have values in [0, 1].

6(0) = Er,z,t

We use the ImageNet64 dataset (Chrabaszcz et al., 2017), with (only) horizontal flips as data
augmentation. The models used in Tables | and 2 and for the generalization experiment in Figure 2
are trained on color images, while the model used in Figures 3 to 5 is trained on grayscale images.
Pixel values are rescaled to [0, 1] by dividing by 255. All models are trained for 1M steps, with a
batch size of 128. We use the Adam optimizer with default parameters and an initial learning rate
of 0.0005 (except for the generalization experiments which used a learning rate of 0.0002) that is
halved every 100, 000 steps. All models are trained on a single NVIDIA H100 GPU, which takes
about 5 days for ImageNet64.

C.3 Additional details

Gaussian scale mixture example (Figure 1). We generate n = 100, 000 samples from a mixture
of two Gaussian distributions, 3\ (0, o71d) + 3N (0, 031d), with o1 = 1 and o = 4, in dimension
d = 1,000. The true (normalized) energy is glven by

U( _log (Z e HyZ“«Ft) 10%(271'(0?*%1‘/))*10% 2) . (43)

We parameterize the energy as a mixture of quadratics:

2
Ug(y,t) = —log (Z eai(t)|y|2bi(t)> , (44)
i=1
where the functions a;, b; are computed by a 5-layer MLP with a hidden dimension of 256 that takes
log(t + tmin) as input. This network is trained either with single (space) score matching or with
dual score matching, both across noise levels ¢ € [tin, tmax]. Training is otherwise similar to the
ImageNet64 experiments (see Appendix C.2), for 20, 000 training steps with a batch size of 512 and
an initial learning rate of 0.0001, over noise levels from t,,;, = 1072 t0 tyax = 102. We note that
the energy learned after single score matching training is stochastic: as the relative energy between
the two mixture components is not constrained by the data, its value is determined by the random
initialization, so that rerunning the experiment will lead to a different value.
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Histogram of log probabilities (Figure 3). The Gumbel fit is calculated by maximizing likelihood.
The obtained parameters (in decibels/dimension) are 9.57 for the location and 3.17 for the scale.
Equivalently, p(x) follows a Fréchet distribution, with a scale parameter equal to 9.05% and shape
parameter equal to 1.37/d, where d = 64 x 64 = 4096 is the dimension of ImageNet64 grayscale
images.

Computing dimensionality (Figure 5). Equations (11) and (12) provide two ways to estimate
effective dimensionality from a learned energy model. If the model is exact, Uy(y,t) = U(y,t),
then they coincide (more generally, they coincide when the model satisfies the diffusion equation),
but in general they only approximately coincide. For numerical stability, we found it preferable to
use the version defined from the mean squared error of the underlying denoiser (eq. (11)). This
guarantees non-negative dimensionalities, and also has the advantage of being an upper bound on the
true dimensionality (as any denoiser yields an upper bound on the minimum MSE).

D ImageNet images according to their probability

Figure 8: Images in ImageNet64 (test set) with linearly-spaced log probabilities, from low to high.
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