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Abstract

This dissertation investigates two fundamental aspects of neural population coding: adaptive

coding efficiency and stochastic representational geometry. We introduce a theory for adaptive

statistical whitening revolving around a gain control mechanism, based on a novel overcomplete

matrix factorization of the whitening transform. From this theory, we derive an online whitening

algorithm that maps directly onto a recurrent neural network with primary neurons and an over-

complete, auxiliary set of gain-modulating interneurons. Further elaborating on this framework,

we integrate adaptive gain control with existing theories of adaptive whitening into a single uni-

fied adaptation objective using synaptic plasticity in a multi-timescale mechanistic model. This

model adapts to changing sensory statistics by modifying gains and synapses at varying rates, re-

sulting in improved adaptive whitening responses that is robust to non-stationary environments.

Leveraging V1 population adaptation data, we demonstrate that propagation of single neuron

gain changes through recurrent network structures is sufficient to explain the entire set of ob-

served adaptation effects. Finally, we shift our focus to stochastic representational geometry, and

introduce a family of distance metrics for comparing geometry between stochastic neural net-

works. These metrics are based on concepts from optimal transport theory and provide unique

insights into the representations of noisy artificial and biological neural networks. Taken to-

gether, this thesis advances our understanding of neural population coding by examining the

adaptive coding efficiency and the stochastic geometry of neural representations, with possible

implications to the fields of neuroscience and machine learning.
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1 | Introduction

1.1 Adaptive Coding Efficiency in Neural Populations

1.1.1 The efficient coding hypothesis

Coding efficiency is deeply rooted in the principles of information theory, and is a common

goal in the design of machine systems. At its conception, information theory was used to de-

termine fundamental bounds for signal processing algorithms in compressing, transmitting, and

storing data (Cover, 1999). Interestingly, these concepts were recognized as applicable to per-

ceptual and biological systems as well. Early studies proposed that our sensory and perceptual

systems should leverage statistical regularities in the natural environment to optimally encode

sensory information (Attneave, 1954; Barlow, 1961).

The efficient coding hypothesis proposed by Barlow (1961), postulates that sensory systems

have evolved to maximize the efficiency of information coding, subject to metabolic and phys-

ical constraints. From an information-theoretic perspective, the hypothesis states that sensory

neurons are optimized to represent the most information possible about their probabilistic input

distribution (e.g., the statistics of the natural environment), subject to constraints such as energy

expenditure from spiking.

The efficient coding hypothesis can intuitively be understood at the level of a single neuron

encoding a scalar input using a continuous response function (e.g. visual contrast). This response
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function has a minimum and maximum value, and the neuron’s response is assumed to be de-

terministic. The occurrence frequency of input values in the environment is represented by a

probability distribution. In this scenario, the optimal response function that maximizes informa-

tion is directly proportional to the cumulative probability distribution of the input (Figure 1.1).

The neuron thereby dedicates more sensitive regions of its response range to accurately encode

frequently encountered inputs, but sacrifices fidelity in encoding less common inputs. The foun-

dational study by Laughlin (1981) measured the probability distribution of stimulus intensity

levels in natural scenes and discovered that the intensity-response function of a large monopolar

cell in a fly closely resembled the cumulative distribution.

While Barlow’s theory was predicated on the notion that sensory systems have evolved to

efficiently encode the statistical properties of the natural environment (Ganguli and Simoncelli,

2014), it remains unclear how his theory can be reconciledwith the fact that natural environments

are in general non-stationary. Statistical properties of the natural world dynamically vary with

time (Młynarski and Hermundstad, 2021); this can be due to slow-timescale changes (day-night

cycles), more immediate changes in the environment (e.g. stepping into mirror fun-house at the

carnival), or task demands. The existence of dynamic sensory statistics suggests that an efficient

code at one moment may not necessarily be efficient for the next, and that a truly efficient system

would need to be constantly adapting to these changes (Barlow and Foldiak, 1989).

1.1.2 The neural basis of adaptation

For nearly a century, it has been known that individual neurons rapidly regulate their sen-

sitivity, also known as their gain, based on their recent response history (Adrian and Matthews,

1928a). This adaptive behavior enables neurons to normalize the variance of their outputs (Bonin

et al., 2006; Nagel and Doupe, 2006), thereby maximizing the information transmitted about sen-

sory inputs (Barlow, 1961; Fairhall et al., 2001; Laughlin, 1981). This is illustrated in Figure 1.1.

With changing input distribution (blue densities), a neuron adjusts its gain (the slope of its input-
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output function) to normalize its response statistics (e.g. Nagel and Doupe, 2006).

Figure 1.1: Schematic illustrating single-neuron adapta-
tion results from (Fairhall et al., 2001; Nagel and Doupe,
2006). Gain control confers adaptive coding efficiency in
single neurons. Despite changing input statistics (den-
sities with different variances, bottom), neuron output
statistics are unaffected (left) due to the neuron modulat-
ing its input-output function slope, i.e. gain.

At the neural population level, be-

yond variance normalization, there have

been reports of adaptive transforma-

tions across different species and sensory

modalities. These observed effects en-

compass various phenomena, such as re-

ductions in response maxima and min-

ima (Movshon and Lennie, 1979), tun-

ing curve repulsion (Hershenhoren et al.,

2014; Shen et al., 2015; Yaron et al.,

2012), and stimulus-driven decorrelation

(Benucci et al., 2013; Friedrich, 2013;

Gschwend et al., 2015; Muller et al., 1999;

Wanner and Friedrich, 2020). While cod-

ing efficiency and gain-mediated adapta-

tion have been extensively studied in sin-

gle neurons, these nuanced empirical ob-

servations appear to necessitate a more intricate adaptation mechanism that involves coordinated

interactions among neurons within the population. Previous studies have indeed relied on adap-

tive changes in feedforward or recurrent synaptic efficacy to account for these phenomena (e.g.,

by altering the synaptic weights of the entire network; Młynarski and Hermundstad, 2021; Rast

and Drugowitsch, 2020; Wainwright et al., 2001; Westrick et al., 2016). However, this approach

requires synaptic weights to continually remap under different statistical contexts, which can un-

dergo significant and transient changes at short timescales. This proposed adaptation mechanism

stands in stark contrast to the single neuron scenario that simply relies solely on gain rescaling.
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In this thesis, we introduce novel theories which generalize single-neuron gain adaptation to the

level of a population.

Figure 1.2: Factorizations of the (inverse) symmetric whitening matrix. Left: conventional eigenvector-
based whitening. Right: an example of the overcomplete factorization framework proposed in this thesis.

1.1.3 Statistical whitening transformations

Redundancy reduction, i.e. reducing inter-channel statistical dependencies in a multi-channel

neural code, is core to Barlow’s efficient coding hypothesis. Empirical observations have shown

that neural populations exhibit adaptive decorrelation and statistical whitening (e.g. Wanner and

Friedrich, 2020), which is a specific form of redundancy reduction. For multivariate Gaussian

variables, which are fully characterized by their first and second statistical moments, decorre-

lation is necessary and sufficient to conclude that each channel is independent (Bishop, 2006).

By decorrelating neural responses, the population ensures that each neuron conveys unique and

independent information. With this lack of redundancy, neural populations maximize the infor-
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mation content conveyed by the ensemble of neurons, enabling more efficient representation of

sensory inputs (Cover, 1999).

Statistical whitening is a commonly used linear transformation in signal processing and sta-

tistical machine learning. Formally, an 𝑁 -dimensional neural population response, r ∼ 𝑝 (r), is

white if and only if its covariance C = E[rr⊤] − E[r]E[r]⊤ = I𝑁 . From this we can see that

statistical whitening serves to both decorrelate neurons (as indicated by off-diagonal entries of

C being zero), in addition to normalizing variances (diagonal entries are 1). Thus, a neural sys-

tem whose objective is to adaptively whiten its outputs can be interpreted as a population-level

generalization of the adaptive variance normalization effects observed in single neurons.

Figure 1.3: Representing a Gaussian using 1D projections. Top: A non-white 2D Gaussian, and a set of
1D projection axes (colors). These 1D marginal densities (middle column) encode the original 2D density.
Because the density is not white, the marginal variances (right panel) are not all equal to 1. Bottom: A
white Gaussian has variance of 1 along all possible directions. However, only 𝐾 = 𝑁 (𝑁 + 1)/2 projections
are necessary to conclude a density is white. In this figure where 𝑁 = 2, 3 projections are required. See
Chapter 2, Proposition 2.1 for details.

Whitening is not a unique transformation: any orthogonal rotation of a random vector with

an identity covariancematrix will also result in an identity covariancematrix. Various approaches

exist to address this rotational ambiguity, each offering its own benefits (Kessy et al., 2018). In
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this thesis, we specifically focus on the symmetric whitening transformation, commonly known

as Zero-phase Component Analysis (ZCA) whitening or Mahalanobis whitening. This transform

is the unique solution to the objective seeking to minimize the mean squared error between the

inputs and the whitened outputs (Appendix A.1).

The symmetric whitening transform is a matrix that can obtained through the eigendecom-

position of the covariance matrix, C = V𝚲VT, where V is a matrix of eigenvectors (i.e. principal

axes) and 𝚲 is a diagonal matrix of corresponding eigenvalues. To obtain the unique, symmet-

ric whitening transform, we take the inverse PSD matrix square root of the covariance matrix,

M := V𝚲−1/2V⊤. Then, the whitened responses are computed as Mr (Figure 1.2, left).

Neural circuit models of adaptive whitening typically operate via synaptic plasticity, modify-

ing between-neuron connections in response to novel stimulus statistics (Lipshutz et al., 2023;

Pehlevan et al., 2015). These models effectively encode the eigenvectors V into the synaptic

weights of the network. However, because the statistics of natural environments are dynamic,

this implies that the principal axes V, and therefore the synaptic weights, must constantly change

to adaptively whiten newly-observed contexts. If input statistics were to return to a previously-

observed state (e.g. statistical context 𝐴 → 𝐵 → 𝐴), then the network must re-learn the optimal

weights corresponding to the original condition. This lack of stability and reversibility poses a

challenge for achieving long-term and robust adaptive whitening in neural circuit models.

In Chapter 2, we introduce a completely different approach to adaptive whitening which obvi-

ates adapting synaptic weights altogether. We propose a novel, overcomplete factorization of the

(inverse) whitening matrix, W diag (g)W⊤, where W ∈ R𝑁×𝑁 (𝑁+1)/2, which allows the network

to adaptively whiten its inputs exclusively using single-neuron gains (elements of g), thereby

allowing the synaptic weights, W, to remain fixed during adaptation.

Intuitively this factorization relies on the fact that any (zero-mean) Gaussian is entirely de-

scribed by its covariance, and thus has 𝑁 (𝑁 + 1)/2 degrees of freedom (the number of unique

entries of a symmetric matrix), and can therefore be encoded in an overcomplete set of𝑁 (𝑁 +1)/2
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scalar projections. This is referred to as “overcomplete” because 𝑁 (𝑁 + 1)/2 > 𝑁 , the dimen-

sionality of the space. Thus, measuring variances along 𝑁 (𝑁 + 1)/2 unique axes is sufficient to

encode the covariance of an 𝑁 -dimensional density. For the case where 𝑁 = 2 (Figure 1.3), only

3 projections are required. Furthermore, as we will demonstrate in Chapter 2, measuring unity

variance along𝑁 (𝑁 +1)/2 unique projections is necessary and sufficient to conclude that a density

is statistically white. We exploit this geometric insight in forming our novel matrix factorization

for adaptive whitening, an example of which is shown in Figure 1.2 (right). Elaborating on this

idea in Chapter 3, we unify the two seemingly disparate concepts of gain control and synaptic

plasticity into a single adaptive whitening framework using both synaptic plasticity and gain

control, each operating over separate timescales.

Figure 1.4: Two non-stochastic multi-neuron network responses to several conditions (upper), and their
low-dimensional response representations, depicted as Pringle-shaped manifolds (lower). Each dot is a
single condition. The green Pringle is a rotated, slightly warped version of the purple Pringle. Modified
from Williams et al. (2021).
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1.2 Stochastic Representational Geometry

1.2.1 Comparing neural representational geometry

Neural representational geometry refers to the arrangement of response patterns that encode

information about stimuli or other variables (e.g. behavioral state, time, etc.) in the activations

neural networks (Figure 1.4). This generally involves studying how the responses of neural popu-

lations are organized in a high-dimensional space (Chung andAbbott, 2021; Kriegeskorte andWei,

2021). With the advent of modern recording tools capable of capturing signals from hundreds to

thousands of neurons simultaneously, the study of representational geometry has catalyzed our

understanding of neural computations at the population level. This framework has revealed that

individual networks - be they different animals, distinct brain areas, or artificial neural networks

trained with different initializations - can form unique representational geometries even for a

common task. Thus, despite these advancements, a key challenge persists: quantitatively com-

paring the representational geometry between neural populations.

Numerous methods have been proposed to facilitate such comparisons. Pioneering work in-

troduced Representational Similarity Analysis (RSA) (Kriegeskorte et al., 2008a), drawing inspi-

ration from cognitive psychology analyses (Edelman et al., 1998). Alternative techniques have

also been explored, including Canonical Correlations Analysis (CCA) (Gallego et al., 2020; Raghu

et al., 2017) and its generalizations (reviewed in Zhuang et al., 2020), Procrustes alignment (De-

genhart et al., 2020), and hyperalignment (Haxby et al., 2020). In machine learning, studies have

examined representational geometry of deep neural networks using similar approaches, notably

Centered Kernel Alignment (CKA) (Kornblith et al., 2019), which has been noted to share simi-

larities with a variant of RSA (Williams et al., 2021, Appendix C). Notably, all of these techniques

ignore trial-to-trial variability (stochasticity) in neural responses.
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Figure 1.5: Aligning (deterministic) neural representations using shape metrics. Two network represen-
tations are aligned through some nuisance transformation (here, a rotation) 𝑇 (first and second column).
The remaining difference after accounting for this nuisance transformation is the distance 𝑑 (X𝑖 ,X𝑗 ) be-
tween them. We can repeat this procedure for

(
𝐾
2
)
network pairs in our dataset to form a 𝐾 × 𝐾 distance

matrix (third column). We can visualize each 𝐾 network as a point in “shape space” by embedding the
distance matrix using standard tools such as multidimensional scaling (right column). Because the dis-
tances in this matrix were computed using a bona fide metric, this enables downstream analyses such as
nearest-neighbors clustering with theoretical guarantees on correctness (Cover and Hart, 1967).

1.2.2 Shape metrics on deterministic neural representations

Here, we review a framework for comparing deterministic (i.e. non-stochastic) neural net-

works, called shape metrics, recently proposed by Williams et al. (2021). Consider a large dataset

of 𝐾 sets of simultaneously recorded neurons, which could denote different animals, recording

sessions from the same animal, or neurons from varied brain regions. Each set consists of 𝑁

neurons, observed over𝑀 task conditions, with 𝐿 repeated trials for every condition. In practice,

different recording sessions may yield different neural population sizes, implying variation in the

value of 𝑁 ; here, we consider equal numbers of neurons, but the framework is general enough to

handle unequal populations.

The analysis starts by computing trial-averaged neural responses within each session. The

data can then be interpreted as a series of𝑀 × 𝑁 matrices, designated as 𝑿1,𝑿2, ...,𝑿𝐾 . Concep-

tually, each column of 𝑿𝑘 corresponds to a neuron’s tuning curve measured in neural network 𝑘

(Figure 1.4). Shape metrics devise functions 𝑑 (𝑿𝑖,𝑿 𝑗 ) that evaluate the difference between two

sets of tuning curves.
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It is useful to consider concepts of distance that comply with the following three properties:

Equivalence: 𝑑
(
𝑿𝑖,𝑿 𝑗

)
= 0 if and only if 𝑿𝑖 is equivalent to 𝑿 𝑗 (1.1)

Symmetry: 𝑑
(
𝑿𝑖,𝑿 𝑗

)
= 𝑑

(
𝑿 𝑗 ,𝑿𝑖

)
(1.2)

Triangle Inequality: 𝑑
(
𝑿𝑖,𝑿 𝑗

)
≤ 𝑑 (𝑿𝑖,𝑿𝑘) + 𝑑

(
𝑿𝑘 ,𝑿 𝑗

)
(1.3)

Distances adhering to these properties are formally referred to as metrics, and are used to

define metric spaces. Most of the methods listed in the previous subsection are not metrics.

These spaces are useful because they allow us to conceptualize each network responses as a

single point in some abstract space of all possible network responses. Specifically, we can imag-

ine our recordings from 𝐾 neural networks 𝑿1, ...,𝑿𝐾 as points within the space of all potential

neural recordings, which we term “neural shape space”. There are many readily available statis-

tical methods that function on a matrix of pairwise distances, 𝑫𝑖 𝑗 = 𝑑 (𝑿𝑖,𝑿 𝑗 ). For instance, we

might be interested in identifying clusters of animals with similar neural responses. To accom-

plish this, we can use hierarchical clustering methods, which work with theoretical guarantees

in metric spaces. Moreover, we can use multidimensional scaling to visualize data across animals

in low-dimensional spaces and rigorously quantify how well these vector embeddings represent

distances in the original metric space (Figure 1.5, right). Finally, we might measure a behavioral

variable for each animal (e.g., performance on a task) that we want to predict from neural data.

Defining distance functions 𝑑 (𝑿𝑖,𝑿 𝑗 ) is a complex task because simple measures like Eu-

clidean distance are effectively meaningless whenever neurons are not identified and matched

one-to-one across recordings. This suggests a need to at the very least account for misalignment

between neural representations before quantifying their distance. Williams et al. (2021) suggest a

constrained set of linear isometric transformations (e.g. permutations, rotations, etc.), parameter-

ized by a matrix 𝑸 , to achieve this alignment. Furthermore, since it’s typical to preprocess neural

data (for instance, by z-scoring each neuron), they propose applying a user-defined function 𝜙 (·)
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before fitting the alignment. Putting these together, we arrive at a general formula for a neural

representational distance:

𝑑 (𝑿𝑖,𝑿 𝑗 ) = min
𝑸∈G
∥𝜙 (𝑿𝑖) − 𝜙 (𝑿 𝑗 )Q∥𝐹 (1.4)

where G is the set of allowable linear transformations. This equation defines a family of metrics

referred to as generalized shape metrics, as they expand on classical notions of shape distance,

such as Procrustes distance (Dryden and Mardia, 2016). Each set of network responses is in-

terpreted as a high-dimensional geometric shape. Quantifying similarity between these shapes

should be agnostic to a defined set of nuisance transformations defined in G (determined by the

researcher), such as neuron permutations, or arbitrary rotations/reflections (Figure 1.5).

Figure 1.6: Noise correlations impact neural population coding. Two networks (left and right) have the
samemean responses for a navy and cyan input (white stars), but different noise correlations, as indicated
by the orientation of the ellipses. The white line indicates the direction of the linear discriminant.

11



1.2.2.1 Stochasticity and noise correlations

Existing methods comparing representational geometry, including the shape metrics frame-

work described above, focus on deterministic responses, and therefore ignore stochasticity in

neural responses; however, it is well known that neural responses are generally correlated on a

trial-to-trial basis (Averbeck et al., 2006). Figure 1.6 shows two different neural populations with

identical class-conditional means and different noise correlations. In this example, noise correla-

tions parallel to the linear discriminant of the two classes hinder downstream linear classification

performance (Moreno-Bote et al., 2014). Given how noise correlations are pervasive throughout

the brain, we consider it of paramount importance to be able to quantify differences in noisy

representational geometry between networks.

1.2.3 Optimal transport

Optimal transport theory provides a powerful mathematical framework for understanding

and quantifying differences between different probability densities (Cuturi, 2013). By modeling

neural responses as (conditional) probability distributions, optimal transport allows us to analyze

the similarities and differences between these distributions, enabling insights into the underlying

mechanisms of information processing in the brain. In Chapter 5, we integrate ideas from optimal

transport into the shape metrics methodology to create a general framework for comparing the

representational geometry of stochastic neural networks. The two optimal transport distances

we focus on in this thesis are the Wasserstein and Energy distances.

1.2.3.1 Wasserstein distance

The Wasserstein distance, also known as the Earth Mover’s distance or the Kantorovich-

Rubinstein distance, is an example of a metric used to quantify the dissimilarity between prob-

ability distributions (Villani, 2009). It provides a measure of how much “mass” must be moved
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from one distribution to another to transform the former into the latter.

The 𝑝-Wasserstein distance between two probability densities 𝑃 and𝑄 on a metric space X is

𝑊𝑝 (𝑃,𝑄) =
(

inf
𝛾∈Π(𝑃,𝑄)

∫
X×X

𝑑 (𝑥,𝑦)𝑝 𝛾 (𝑥,𝑦) 𝑑𝑥 𝑑𝑦
)1/𝑝

, (1.5)

where Π(𝑃,𝑄) represents the set of all joint probability measures onX×X with marginals 𝑃 and

𝑄 , and 𝑑 (𝑥,𝑦) is the metric or distance function on X. Note that the integrals are taken over the

entire space X and 𝑑𝑥 𝑑𝑦 represents the integration with respect to the joint measure 𝛾 .

In this thesis, we consider when 𝑝 = 2 for multivariate Gaussian densities, and distance func-

tions 𝑑 (𝑥,𝑦) = |𝑥 − 𝑦 |. The 2-Wasserstein distance for multivariate Gaussians is particularly at-

tractive due to its analytically tractable form that decomposes into the sum of a metric measuring

the distance on means, and a metric measuring the distance on covariances. For two multivari-

ate Gaussian densities, 𝑃 = N(𝝁𝑃 , 𝚺𝑃 ) and 𝑄 = N(𝝁𝑄 , 𝚺𝑄 ), with mean vectors 𝝁𝑃 and 𝝁𝑄 , and

covariance matrices 𝚺𝑃 and 𝚺𝑄 , the 2-Wasserstein distance is

W2(𝝁𝑃 , 𝝁𝑄 )2 = ∥𝝁𝑃 − 𝝁𝑄 ∥22 + trace
(
𝚺𝑃 + 𝚺𝑄 − 2

(
𝚺

1/2
𝑄

𝚺𝑃𝚺
1/2
𝑄

)1/2
)

(1.6)

The first term is simply the squared Euclidean distance between the means of each distribution,

while the second term is precisely the squared Bures distance between 𝚺𝑃 and 𝚺𝑄 .

1.2.3.2 The Bures distance on covariance matrices

The Bures distance is a metric used to quantify the dissimilarity between symmetric positive

definite matrices, such as covariance matrices. When considering zero-mean multivariate Gaus-

sian distributions, the Bures distance provides a way to compare these distributions in terms of

their covariance matrices. Specifically, for two zero-mean multivariate Gaussian distributions 𝑃

and𝑄 with covariance matrices 𝚺𝑃 and 𝚺𝑄 , the Bures distance, denoted asB(𝑃,𝑄), and its square
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Figure 1.7: Bures metric interpolation. Families of densities which linearly interpolate the Bures distance
between two covariances C𝑎 → C𝑏 , and C𝑎 → C𝑐 (left). The top shows a 2D simple rotation, while the
bottom shows an isotropic scaling. This geodesic path in Bures distance linearly interpolates the principal
standard deviations of the densities (right). Colors on the right correspond to the sum of square root
eigenvalues of the densities on the left.

is defined as

B2(𝑃,𝑄) = trace
(
𝚺𝑃 + 𝚺𝑄 − 2

(
𝚺

1/2
𝑄

𝚺𝑃𝚺
1/2
𝑄

)1/2
)
. (1.7)

The Bures distance provides a measure of the work required to “reshape” one pile of dirt with

elliptical volume into another. Geometrically, a straight line as measured via Bures distance (i.e.

a Bures geodesic; Thanwerdas and Pennec, 2022) traces out a sequence of densities with fixed

mean, and varying covariance matrices (Figure 1.7). The sum of principal standard deviations of

each density (sum of square root eigenvalues) along this path, forms a straight line. Thus, linear

interpolation of the Bures distance can be interpreted as linear interpolation of principal standard

deviations between densities.
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In this thesis, we use an alternative, equivalent form of Equation 1.7 (Bhatia et al., 2019),

B2(𝑃,𝑄) = min
𝑼∈O(𝑛)

∥𝚺1/2
𝑃
− 𝚺1/2

𝑄
𝑼 ∥2𝐹 . (1.8)

Equation 1.8 states that the Bures distance between two covariances 𝚺𝑃 and 𝚺𝑄 can be interpreted

as the least squares solution to a problem involving finding the optimal rotation U between their

PSD square roots. This least squares optimization can easily be solved in closed form using the

singular value decomposition (Appendix D.6.4). We exploit this formulation to derive an alter-

nating least squares algorithm for our Wasserstein-based shape metrics in Chapter 5.

1.2.3.3 Energy distance

The Energy distance is a non-parametric distance, widely used in various fields, including

statistics andmachine learning (Feydy et al., 2019; Székely and Rizzo, 2013). Given two probability

distributions 𝑃 and 𝑄 defined on a metric space X, the (squared) 𝑞-Energy distance between 𝑃

and 𝑄 , denoted as E2
𝑞 (𝑃,𝑄), is defined as follows:

E2
𝑞 (𝑃,𝑄) = E[𝑋 − 𝑌 ]𝑞 −

1
2
E[𝑋 − 𝑋 ′]𝑞 − 1

2
E[𝑌 − 𝑌 ′]𝑞, (1.9)

where 𝑋,𝑋 ′ ∼ 𝑃 , 𝑌,𝑌 ′ ∼ 𝑄 , and 0 < 𝑞 < 2. Concretely, we form all possible pairwise differences

of data points within and between distributions, and compute an average between-distribution

similarity term (first term) and within-distribution similarity terms (last two terms). By subtract-

ing the within-distribution similarity terms from the average between-distribution similarity, the

Energy distance captures the discrepancy between the two distributions, considering both the

location and spread of the data. In practice, the Wasserstein distance suffers from the curse of di-

mensionality, while estimates of Energy distance converge at a faster rate, making it an attractive

alternative (Gretton et al., 2012; Sejdinovic et al., 2013).
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1.3 Thesis Organization

The remaining chapters of this thesis are organized as follows. Chapters 2, 3, and 4 propose

new theories and models of neural population adaptation. These specifically focus on adaptive

gain control, and how classical concepts of single-neuron gain adaptation can be generalized to

explain population-level adaptation. In Chapter 5, we outline a new statistical framework for

comparing and aligning multi-dimensional stochastic neural responses. Finally, the discussion in

Chapter 6 closes out this dissertation with concluding remarks.
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2 | Adaptive Whitening in Neural

Populations with Gain-modulating

Interneurons

2.1 Overview

A version of this work was presented at Computational and Systems Neuroscience (2023),

and the main findings are published in the Proceedings of the 40th International Conference on

Machine Learning (Duong et al., 2023c).

Statistical whitening transformations play a fundamental role in many computational sys-

tems, and may also play an important role in biological sensory systems. Existing neural circuit

models of adaptive whitening operate by modifying synaptic interactions; however, such modifi-

cations would seem both too slow and insufficiently reversible. Motivated by the extensive neuro-

science literature on gainmodulation, we propose an alternativemodel that adaptivelywhitens its

responses by modulating the gains of individual neurons. Starting from a novel whitening objec-

tive, we derive an online algorithm that whitens its outputs by adjusting the marginal variances

of an overcomplete set of projections. We map the algorithm onto a recurrent neural network

with fixed synaptic weights and gain-modulating interneurons. We demonstrate numerically

that sign-constraining the gains improves robustness of the network to ill-conditioned inputs,
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and a generalization of the circuit achieves a form of local whitening in convolutional popula-

tions, such as those found throughout the visual or auditory systems.

Figure 2.1: Schematic of a recurrent statistical whitening networkwith 2 primary neurons and 3 interneu-
rons. Left: 2D Scatter plot of network inputs s = [𝑠1, 𝑠2]⊤ (e.g. post-synaptic currents), with covariance
indicated by the ellipse. Center: Primary neurons, with outputs r = [𝑟1, 𝑟2]⊤, receive external feedfor-
ward inputs, s, and recurrent feedback from an overcomplete population of interneurons, −∑3

𝑖=1 𝑔𝑖𝑧𝑖w𝑖 .
Projection vectors {w1,w2,w3} ∈ R2 encode feedforward synaptic weights connecting primary neurons
to interneuron 𝑖 = 1, 2, 3, with symmetric feedback connections. Weight vectors are shown in the left and
right panels with corresponding colors. In general, there can exist all-to-all connectivity; we use a re-
duced subset of weights here for diagram clarity. Inset: The 𝑖th interneuron (e.g. here 𝑖 = 2) receives input
𝑧𝑖 = w⊤𝑖 r, which is multiplied by its gain 𝑔𝑖 to produce output 𝑔𝑖𝑧𝑖 . Its gain, 𝑔𝑖 , is adjusted s.t. Δ𝑔𝑖 ∝ 𝑧2

𝑖 −1.
The dark arrow indicates that the gain update operates on a slower time scale. Right: Scatter plots of
the whitened network outputs r. Outputs have unit variance along all w𝑖 ’s, which is equivalent to having
identity covariance matrix, i.e., C𝑟𝑟 = I𝑁 (black circle).

2.2 Introduction

Statistical whitening transformations, inwhichmulti-dimensional inputs are decorrelated and

normalized to have unit variance, are common in signal processing andmachine learning systems.

For example, they are integral to many statistical factorization methods (Bell and Sejnowski,

1996; Hyvärinen and Oja, 2000; Olshausen and Field, 1996), they provide beneficial preprocessing

during neural network training (Krizhevsky et al., 2009), and they can improve unsupervised

feature learning (Coates et al., 2011). More recently, self-supervised learning methods have used

decorrelation transformations such as whitening to prevent representational collapse (Bardes
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et al., 2022; Ermolov et al., 2021; Hua et al., 2021; Zbontar et al., 2021). While whitening has

mostly been used for training neural networks in the offline setting, it is also of interest to develop

adaptive (run-time) variants that can adjust to dynamically changing input statistics withminimal

changes to the network (e.g. Hu et al., 2022; Mohan et al., 2021).

Single neurons in early sensory areas of many nervous systems rapidly adjust to changes

in input statistics by scaling their input-output gains (Adrian and Matthews, 1928b). This al-

lows neurons to adaptively normalize the variance of their outputs (Bonin et al., 2006; Nagel and

Doupe, 2006), maximizing information transmitted about sensory inputs (Barlow, 1961; Fairhall

et al., 2001; Laughlin, 1981). At the neural population level, in addition to variance normaliza-

tion, adaptive decorrelation and whitening transformations have been observed across species

and sensory modalities, including: macaque retina (Atick and Redlich, 1992); cat primary visual

cortex (Benucci et al., 2013; Muller et al., 1999); and the olfactory bulbs of zebrafish (Friedrich,

2013) and mice (Giridhar et al., 2011; Gschwend et al., 2015). These population-level adaptations

reduce redundancy in addition to normalizing neuronal outputs, facilitating dynamic efficient

multi-channel coding (Barlow and Foldiak, 1989; Schwartz and Simoncelli, 2001). However, the

mechanisms underlying such adaptive whitening transformations remain unknown, and would

seem to require coordinated synaptic adjustments amongst neurons, as opposed to the single

neuron case which relies only on gain rescaling.

Here, we propose a novel recurrent network architecture for online statistical whitening that

exclusively relies on gain modulation. Specifically, the primary contributions of our study are as

follows:

1. We introduce a novel factorization of the (inverse) whiteningmatrix, using an overcomplete,

arbitrary, but fixed basis, and a diagonal matrix with statistically optimized entries. This is

in contrast with the conventional factorization using the eigendecomposition of the input

covariance matrix.
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2. We introduce an unsupervised online learning objective using this factorization to express

the whitening objective solely in terms of the marginal variances within the overcomplete

representation of the input signal.

3. We derive a recursive algorithm to optimize the objective, and show that it corresponds to

an unsupervised recurrent neural network (RNN), comprised of primary neurons and an

auxiliary overcomplete population of interneurons, whose synaptic weights are fixed, but

whose gains are adaptively modulated. The network responses converge to the classical

symmetric whitening solution without backpropagation.

4. We show how enforcing non-negativity on the gain modulation provides a novel approach

for dealing with ill-conditioned or noisy data. Further, we relax the global whitening con-

straint in our objective and provide amethod for local decorrelation of convolutional neural

populations.

2.3 A Novel Objective for Symmetric Whitening

Consider a neural network with 𝑁 primary neurons. For each 𝑡 = 1, 2, . . . , let s𝑡 and r𝑡

be 𝑁 -dimensional vectors whose components respectively denote the inputs (e.g. post-synaptic

currents), and outputs of the primary neurons at time 𝑡 (Figure 2.1). Without loss of generality,

we assume the inputs s𝑡 are centered.

2.3.1 Conventional objective

Statistical whitening aims to linearly transform inputs s𝑡 so that the covariance of the outputs

r𝑡 is the identity, i.e.,

C𝑟𝑟 = ⟨r𝑡r⊤𝑡 ⟩𝑡 = I𝑁 , (2.1)
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where ⟨·⟩𝑡 denotes the expectation operator over 𝑡 , and I𝑁 denotes the 𝑁 × 𝑁 identity matrix.

It is well known that whitening is not unique: any orthogonal rotation of a random vector

with identity covariance matrix also has identity covariance matrix. There are several common

methods of resolving this rotational ambiguity, each with their own advantages (Kessy et al.,

2018). Here, we focus on the symmetric whitening transformation, often referred to as Zero-

phase Component Analysis (ZCA) whitening or Mahalanobis whitening, which minimizes the

mean-squared error between the inputs and the whitened outputs (alternatively, the one whose

transformation matrix is symmetric). The symmetric whitened outputs are the optimal solution

to the minimization problem

min
{r𝑡 }
⟨∥s𝑡 − r𝑡 ∥22⟩𝑡 s.t. ⟨r𝑡r⊤𝑡 ⟩𝑡 = I𝑁 , (2.2)

where ∥ · ∥2 denotes the Euclidean norm on R𝑁 . Assuming the covariance of the inputs C𝑠𝑠 :=

⟨s𝑡s⊤𝑡 ⟩𝑡 is positive definite, the unique solution to the optimization problem in Equation 2.2 is

r𝑡 = C−1/2
𝑠𝑠 s𝑡 for 𝑡 = 1, 2, . . . , where C−1/2

𝑠𝑠 is the symmetric inverse matrix square root of C𝑠𝑠 (see

Appendix A.1).

Previous approaches to online symmetric whitening have optimized Equation 2.2 by deriving

RNNs whose synaptic weights adaptively adjust to learn the eigendecomposition of the (inverse)

whitening matrix, C1/2
𝑠𝑠 = VΛ1/2V⊤, where V is an orthogonal matrix of eigenvectors and Λ is a

diagonal matrix of eigenvalues (Pehlevan and Chklovskii, 2015). We propose an entirely different

decomposition: C1/2
𝑠𝑠 = W diag (g)W⊤ + I𝑁 , where W is a fixed overcomplete matrix of synaptic

weights, and g is a vector of gains that adaptively adjust to match the whitening matrix. For more

details on this factorization, see Appendix A.3.
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2.3.2 A novel objective using marginal statistics

We formulate an objective for learning the symmetric whitening transform via gain modula-

tion. Our innovation exploits the fact that a random vector has identity covariance matrix (i.e.,

Equation 2.1 holds) if and only if it has unit marginal variance along all possible 1D projections (a

form of tomography; see Figure 1.3 and Related Work). We derive a tighter statement for a finite

but overcomplete set of at least𝐾 ⩾ 𝐾𝑁 := 𝑁 (𝑁 +1)/2 distinct axes (‘overcomplete’ means that the

number of axes exceeds the dimensionality of the input, i.e., 𝐾 > 𝑁 ). Intuitively, this equivalence

holds because an 𝑁 ×𝑁 symmetric matrix has 𝐾𝑁 degrees of freedom, so the marginal variances

along 𝐾 ⩾ 𝐾𝑁 distinct axes are sufficient to constrain an 𝑁 ×𝑁 covariance matrix. We formalize

this equivalence in the following proposition, whose proof is provided in Appendix A.2.

Proposition 2.1. Fix 𝐾 ≥ 𝐾𝑁 . Suppose w1, . . . ,w𝐾 ∈ R𝑁 are unit vectors1 such that

span({w1w⊤1 , . . . ,w𝐾w⊤𝐾 }) = S𝑁 , (2.3)

where S𝑁 denotes the 𝐾𝑁 -dimensional vector space of 𝑁 ×𝑁 symmetric matrices. Then Equation 2.1

holds if and only if the projection of r𝑡 onto each unit vector w1, . . . ,w𝐾 has unit variance, i.e.,

⟨(w⊤𝑖 r𝑡 )2⟩𝑡 = 1 for 𝑖 = 1, . . . , 𝐾 . (2.4)

Assuming Equation 2.3 holds, we can interpret the set of vectors {w1, . . . ,w𝐾 } as a frame (i.e.,

an overcomplete basis; Casazza et al., 2013) in R𝑁 such that the covariance of the outputs C𝑟𝑟 can

be computed from the variances of the 𝐾-dimensional projection of the outputs onto the set of

frame vectors. Thus, we can replace the whitening constraint in Equation 2.2 with the equivalent
1The unit-length assumption is imposed, without loss of generality, for notational convenience.
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marginal variance constraint to obtain the following objective:

min
{r𝑡 }
⟨∥s𝑡 − r𝑡 ∥22⟩𝑡 s.t. Equation 2.4 holds. (2.5)

2.4 An RNN with Gain Modulation for Adaptive

Symmetric Whitening

In this section, we derive an online algorithm for solving the optimization problem in Equa-

tion 2.5 and map the algorithm onto an RNN with adaptive gain modulation. Assume we have

an overcomplete frame {w1, . . . ,w𝐾 } in R𝑁 satisfying Equation 2.3. We concatenate the frame

vectors into an 𝑁 × 𝐾 synaptic weight matrix W := [w1, . . . ,w𝐾 ]. In our network, primary

neurons project onto a layer of 𝐾 interneurons via the synaptic weight matrix to produce the

𝐾-dimensional vector z𝑡 := W⊤r𝑡 , encoding the interneurons’ post-synaptic inputs at time 𝑡 (Fig-

ure 2.1). We emphasize that the synaptic weight matrix W remains fixed.

2.4.1 Enforcing the marginal variance constraints with scalar gains

We introduce Lagrange multipliers𝑔1, . . . , 𝑔𝐾 ∈ R to enforce the𝐾 constraints in Equation 2.4.

These are concatenated as the entries of a 𝐾-dimensional vector g := [𝑔1, . . . , 𝑔𝐾 ]⊤ ∈ R𝐾 , and

express the whitening objective as a saddle point optimization:

max
g

min
{r𝑡 }
⟨ℓ (s𝑡 , r𝑡 , g)⟩𝑡 , (2.6)

where ℓ (s, r, g) := ∥s − r∥22 +
𝐾∑︁
𝑖=1

𝑔𝑖
{
(w⊤𝑖 r)2 − 1

}
.

Here, we have exchanged the order of maximization over g and minimization over r𝑡 , which is

justified because ℓ (s𝑡 , r𝑡 , g) satisfies the saddle point property with respect to r and g, see sec-
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tion A.4.

In our RNN implementation, there are𝐾 interneurons and𝑔𝑖 corresponds to the multiplicative

gain associated with the 𝑖th interneuron, so that its output at time 𝑡 is 𝑔𝑖𝑧𝑖,𝑡 (Figure 2.1, Inset).

Equation 2.6, shows that the gain of the 𝑖th interneuron, 𝑔𝑖 , encourages the marginal variance of

r𝑡 along the axis spanned by w𝑖 to be unity. Importantly, the gains are not hyper-parameters, but

rather they are optimization variables which statistically whiten the outputs {r𝑡 }, preventing the

neural outputs from trivially matching the inputs {s𝑡 }.

2.4.2 Deriving RNN neural dynamics and gain updates

To solve Equation 2.6 in the online setting, we assume there is a time-scale separation between

‘fast’ neural dynamics and ‘slow’ gain updates, so that at each time step the neural dynamics

equilibrate before the gains are adjusted. This allows us to perform the inner minimization over

{r𝑡 } before the outer maximization over the gains g. This is consistent with biological networks

in which a given neuron’s responses operate on a much faster time-scale than its intrinsic input-

output gain, which is driven by slower processes such as changes in Ca2+ concentration gradients

and Na+-activated K+ channels (Ferguson and Cardin, 2020; Wang et al., 2003).

2.4.2.1 Fast neural activity dynamics

For each time step 𝑡 = 1, 2, . . . , we minimize the objective ℓ (s𝑡 , r𝑡 , g) over r𝑡 by recursively

running gradient-descent steps to equilibrium:

r𝑡 ← r𝑡 −
𝛾

2
∇rℓ (s𝑡 , r𝑡 (𝜏), g)

r𝑡 ← r𝑡 + 𝛾 {s𝑡 −W(g ◦ z𝑡 ) − r𝑡 } , (2.7)

where 𝛾 > 0 is a small constant, z𝑡 = W⊤r𝑡 , the circle ‘◦’ denotes the Hadamard (element-wise)

product, g ◦ z𝑡 is a vector of 𝐾 gain-modulated interneuron outputs, and we assume the primary
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cell outputs are initialized at zero.

We see from the right-hand-side of Equation 2.7 that the ‘fast’ dynamics of the primary neu-

rons are driven by three terms (within the curly braces): 1) constant feedforward external input

s𝑡 ; 2) recurrent gain-modulated feedback from interneurons −W(g ◦ z𝑡 ); and 3) a leak term −r𝑡 .

Because the neural activity dynamics are linear, we can analytically solve for their equilibrium

(i.e. steady-state), r̄𝑡 , by setting the update in Equation 2.7 to zero:

r̄𝑡 =
[
I𝑁 +W diag (g)W⊤

]−1 s𝑡

=

[
I𝑁 +

𝐾∑︁
𝑖=1

𝑔𝑖w𝑖w⊤𝑖

]−1

s𝑡 , (2.8)

where diag (g) denotes the 𝐾 × 𝐾 diagonal matrix whose (𝑖, 𝑖)th entry is 𝑔𝑖 , for 𝑖 = 1, . . . , 𝐾 . The

equilibrium feedforward interneuron inputs are then given by

z̄𝑡 = W⊤r̄𝑡 . (2.9)

The gain-modulated outputs of the𝐾 interneurons, g◦z𝑡 , are then projected back onto the primary

cells via symmetric weights, −W (Figure 2.1). After g adapts to optimize Equation 2.6 (provided

Proposition 2.1 holds), the matrix within the brackets in Equation 2.8 will equal C1/2
𝑠𝑠 , and the

circuit’s equilibrium responses are symmetrically whitened. The result is a novel overcomplete

symmetric matrix factorization in which W is arbitrary and fixed, while C1/2
𝑠𝑠 is adaptively learned

and encoded in the gains g.
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2.4.2.2 Slow gain dynamics

After the fast neural activities reach steady-state, the interneuron gains are updated with a

stochastic gradient-ascent step with respect to g:

g← g + 𝜂
2
∇gℓ (s𝑡 , r̄𝑡 , g)

g← g + 𝜂
(
z̄◦2𝑡 − 1

)
, (2.10)

where 𝜂 > 0 is the learning rate, z̄◦2𝑡 = [𝑧2
𝑡,1, . . . , 𝑧

2
𝑡,𝐾
]⊤, and 1 = [1, . . . , 1]⊤ is the 𝐾-dimensional

vector of ones2. Remarkably, the update to the 𝑖th interneuron’s gain 𝑔𝑖 (Equation 2.10) depends

only on the online estimate of the variance of its equilibrium input 𝑧2
𝑡,𝑖 , and its distance from 1

(i.e. the target variance). Since the interneurons adapt using local signals, this circuit is a suit-

able candidate for hardware implementations using low-power neuromorphic chips (Pehlevan

and Chklovskii, 2019). Intuitively, each interneuron adjusts its gain to modulate the amount of

suppressive (inhibitory) feedback onto the joint primary neuron responses. In Appendix A.3, we

provide conditions under which g can be solved analytically. Thus, while statistical whitening

inherently involves a transformation on a joint density, our solution operates solely using single

neuron gain changes in response to marginal statistics of the joint density.

2.4.2.3 Online unsupervised algorithm

By combining Equations 2.7 and 2.10, we arrive at our online RNN algorithm for adaptive

whitening via gain modulation (Algorithm 1). We also provide batched and offline versions of

the algorithm in Appendix A.6.

There are two points worth noting about this network: 1) W remains fixed in Algorithm 1.

Instead, g adapts to statistically whiten the outputs. 2) In practice, since network dynamics are
2Appendix A.5 generalizes the gain update to allowing for temporal-weighted averaging of the variance over past

samples.
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Algorithm 1: Adaptive whitening via gain modulation
1: Input: Centered inputs s1, s2, · · · ∈ R𝑁
2: Initialize: W ∈ R𝑁×𝐾 ; g ∈ R𝐾 ; 𝜂,𝛾 > 0
3: for 𝑡 = 1, 2, . . . do
4: r𝑡 ← 0
5: while not converged do
6: z𝑡 ←W⊤r𝑡
7: r𝑡 ← r𝑡 + 𝛾 {s𝑡 −W(g ◦ z𝑡 ) − r𝑡 }
8: end while
9: g← g + 𝜂

(
z◦2𝑡 − 1

)
10: end for

linear, we can bypass the inner loop (the fast dynamics of the primary cells, lines 5–8), by directly

computing r̄𝑡 , and z̄𝑡 (Eqs. 2.8, 2.9).

2.5 Numerical Experiments and Applications

Weprovide different applications of our adaptive symmetric whitening network via gainmod-

ulation, emphasizing that gain adaptation is distinct from, and complementary to, synaptic weight

learning (i.e. learning W). We therefore side-step the goal of learning the frame W, and assume it

is fixed (for example, through longer time scale learning). This allows us to decouple and analyze

the general properties of our proposed gain modulation framework, independently of the choice

of frame. Python code for this study can be located at github.com/lyndond/frame_whitening.

We evaluate the performance of our adaptive whitening algorithm using the matrix operator

norm, ∥ · ∥Op, which measures the largest eigenvalue,

Error := ∥C𝑟𝑟 − I𝑁 ∥Op.

As a performance criterion, we use ∥C𝑟𝑟−I𝑁 ∥Op ≤ 0.1, the point at which the principal axes of C𝑟𝑟

are within 0.1 of unity. Geometrically, this means the ellipsoid corresponding to the covariance

matrix lies between the circles with radii 0.9 and 1.1.
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For visualization of output covariance matrices, we plot 2D ellipses representing the 1 stan-

dard deviation probability level-set contour of the density. These ellipses are defined by the set

of points {∥C1/2
𝑟𝑟 v∥v : ∥v∥ = 1}.
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Figure 2.2: Network from Figure 2.1 (with corresponding colors; 𝑁=2, 𝐾=𝐾𝑁=3, 𝜂=2E-3) adaptively
whitening samples from two randomly generated statistical contexts online (10K steps each). Top:
Marginal variances measured by interneurons approach 1 over time. Middle: Dynamics of interneuron
gains, which are applied to 𝑧𝑖 before feeding back onto the primary cells. Dashed lines are optimal gains
(Appendix A.3). Bottom: Error over time, as measured by the maximal difference between the standard
deviation along the principal axes of C𝑟𝑟 and unity.

2.5.1 Adaptive symmetric whitening via gain modulation

We first demonstrate that our algorithm successfully whitens its outputs. We initialize a net-

work with fixed interneuron weights, W, corresponding to the frame illustrated in Figure 2.1

(𝑁=2, 𝐾=𝐾𝑁=3). Figure 2.2 shows the network adapting to inputs from two successively pre-

sented contexts with randomly-generated underlying input covariances C𝑠𝑠 (10K gain update

steps each). As update steps progress, all marginal variances converge to unity, as expected from
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the objective (top panel). Since the number of interneurons satisfies 𝐾=𝐾𝑁 , the optimal gains to

achieve symmetric whitening can be solved analytically (Appendix A.3), and are shown in the

middle panel (dashed lines).

Figure 2.2 illustrates the online, adaptive nature of the network; it whitens inputs from novel

statistical contexts at run-time, without supervision. By Proposition 2.1, measuring unit variance

along 𝐾𝑁 unique axes, as in this example, guarantees that the underlying joint density is statis-

tically white. Indeed, the whitening error (bottom panel), approaches zero as all 𝐾𝑁 marginal

variances approach 1. Thus, with interneurons monitoring their respective marginal input vari-

ances 𝑧2
𝑖 , and re-scaling their gains to modulate feedback onto the primary neurons, the network

adaptively whitens its outputs in each context.

2.5.2 Algorithmic convergence rate depends on W

Our model assumes that the frame, W, is fixed and known (e.g., optimized via pre-training

or development). This distinguishes our method from existing symmetric whitening methods,

which typically operate by estimating and transforming to the eigenvector basis. By contrast,

our network obviates learning the principal axes of the data altogether, and instead uses a statis-

tical sampling approach along the fixed set of measurement axes spanned by W. While the result

expressed in Proposition 2.1 is exact, and the optimal solution to the whitening objective Equa-

tion 2.5 is independent of W (provided Equation 2.3 holds), we hypothesize that the algorithmic

convergence rate would depend on W.

Figure 2.3 summarizes an experiment assessing the convergence rate of different networks

whitening inputs with a random covariance, C𝑠𝑠 , with 𝑁 = 2 (the results are consistent when

𝑁 > 2). We initialize three kinds of frames W ∈ R𝑁×𝐾𝑁 with 100 repetitions each: ‘Random’,

a frame with i.i.d. Gaussian entries; ‘Optimized’, a randomly initialized frame whose columns

are then optimized to have minimum mutual coherence and cover the ambient space; and ‘Spec-

tral’, a frame whose first 𝑁 columns are the eigenvectors of the data and the remaining 𝐾𝑁 − 𝑁
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columns are zeros. For clarity, we remove the effects of input sampling stochasticity by running

the offline version of our network, which assumes having direct access to the input covariance

(Appendix A.6); the online version is qualitatively similar.

Figure 2.3: Convergence rate depends on structure of W. For each network, 𝜂=1E-2. A: Error over time.
Curves are median and [25%, 75%] quantile regions over 100 repeats. Dashed line indicates when the
principal axes of 1-standard deviation ellipse representing C𝑟𝑟 are within 0.1 of unity. B: Scatter plots and
covariance ellipses of r for a single experiment with each frame type at different steps. Gray dashed lines
are axes spanned by W.

When the input distribution is known, then using the input covariance eigenvectors, as with

the Spectral frame, defines a bound on achievable performance, converging faster, on average,

than the Random and Optimized frames (Figure 2.3A,B). This is because the frame is aligned with

the input covariance’s principal axes, and a simple gain scaling along those directions is sufficient

to achieve a whitened response. We find that the networks with Optimized frames converge at

similar rates to those with Spectral frames, despite the frame vectors not being aligned with the

principal axes of the data (Figure 2.3B). Comparing the Random toOptimized frames gives a better

understanding of how one might choose a frame in the more realistic scenario when the input

distribution is unknown. The networks with Optimized frames systematically converge faster

than Random frames. Thus, when the input distribution is unknown, we empirically find that
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the convergence rate of Algorithm 1 benefits from a frame that is optimized to splay the ambient

space. Increased coverage of the space by the frame vectors facilitates whitening with our gain

re-scaling mechanism. Sec. 2.5.5 elaborates on how underlying signal structure can be exploited

to inform more efficient choices of frames.

Figure 2.4: Gain modulation as a fast implicit sparse gating mechanism. Top: Error over time for Spectral
vs. Random networks (𝑁=6; 𝐾=𝐾𝑁=21; 𝜂=1E-3) adapting to 2 alternating statistical contexts with differ-
ent input covariances. Dashed line indicates when the principal axes of 1-standard deviation ellipsoid
representing C𝑟𝑟 are within 0.1 of unity. Bottom: Gains act as implicit context switches, sparsely gating
the respective eigenbases embedded in the Spectral frame to optimally whiten each context.

2.5.3 Implicit sparse gating via gain modulation

Motivated by the findings in Sec 2.5.2, and concepts from sparse coding (Olshausen and Field,

1996), we explore how adaptive gain modulation can complement or augment a ‘pre-trained’

network with context-dependent weights. Figure 2.4 shows an experiment using either a pre-
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trained Spectral, or Random W (𝑁=6, 𝐾=𝐾𝑁=21) adaptively whitening inputs from two random,

alternating statistical contexts, A and B, for 10K steps each. The first and second𝑁 columns of the

Spectral frame are the eigenvectors of context A and B’s covariance matrix, respectively, and the

remaining elements are random i.i.d. Gaussian; the Random frame has all i.i.d. Gaussian elements.

Figure 2.4 (top panel) shows that both networks successfully adapt to whiten the inputs from each

context, with the Spectral frame converging faster than the Random frame (as in Sec 2.5.2).

Inspecting the Spectral frame’s 𝐾 interneuron gains during run-time (bottom panel) reveals

that they sparsely ‘select’ the frame vectors corresponding to the eigenvectors of each respective

condition (indicated by the blue/red intensity). This effect arises without a sparsity penalty or

modifying the objective. Gain modulation thus sparsely gates context-dependent information

without an explicit context signal.

2.5.4 Normalizing ill-conditioned data

Foundational work by Atick and Redlich (1992) showed that neural populations in the retina

may encode visual inputs by optimizing mutual information in the presence of noise. For natural

images with 1/𝑓 spectra, the optimal transform is approximately a product of a whitening filter

and a low-pass filter. This is a particularly effective solution because when inputs are low-rank,

C𝑠𝑠 is ill-conditioned (Figure 2.5A), and classical whitening leads to noise amplification along axes

with small variance. In this section, we show how a simple modification to the objective allows

our gain-modulating network to handle these types of inputs.

We prevent amplification of inputs below a certain variance threshold by replacing the unit

marginal variance equality constraints with upper bound constraints3:

⟨(w⊤𝑖 r𝑡 )2⟩𝑡 ⩽ 1 for 𝑖 = 1, . . . , 𝐾 . (2.11)

3We set the threshold to 1 to remain consistent with the whitening objective, but it can be any arbitrary variance.
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Figure 2.5: Two networks (𝑁=2, 𝐾=3, 𝜂=0.02) whitening ill-conditioned inputs. A: Outputs without
whitening. 2D scatterplot of a non-Gaussian density whose underlying signal lies close to a latent 1D axis.
Many points lie outside of the axis limits in this panel. Signal magnitude along that axis is denoted by
the grayscale gradient. The 1-standard deviation covariance matrix is depicted as a black ellipse. Colored
lines are axes spanned by Optimal frame (see Sec 2.5.2). B: Symmetric whitening boosts noise along the
uninformative direction. C: Modulating gains according to Eq. 2.14 rescales the data without amplifying
noise. D: Gains updated with Eq. 2.10 vs. Eq. 2.14. Colors correspond to frame axes in panels A–C.

Our modified network objective then becomes

min
{r𝑡 }
⟨∥s𝑡 − r𝑡 ∥22⟩𝑡 s.t. Equation 2.11 holds. (2.12)

Intuitively, if the projected variance along a given direction is already less than or equal to unity,

then it will not affect the overall loss. Interneuron gain should accordingly stop adjusting once

the marginal variance along its projection axis is less than or equal to one. To enforce these upper

bound constraints, we introduce gains as Lagrange multipliers, but restrict the domain of g to be
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the non-negative orthant R𝐾+ , resulting in non-negative optimal gains:

max
g∈R𝐾+

min
{r𝑡 }
⟨ℓ (s𝑡 , r𝑡 , g)⟩𝑡 , (2.13)

where ℓ (s, r, g) is defined as in Equation 2.6. At each time step 𝑡 , we optimize Equation 2.13 by

first taking gradient-descent stepswith respect to r𝑡 , resulting in the same neural dynamics (Equa-

tion 2.7) and equilibrium solution (Equation 2.8) as before. To update g, we modify Equation 2.10

to take a projected gradient-ascent step with respect to g:

g← ⌊g + 𝜂 (z̄◦2𝑡 − 1)⌋ (2.14)

where ⌊·⌋ denotes the element-wise half-wave rectification operation that projects its inputs onto

the non-negative orthant R𝐾+ , i.e., ⌊v⌋ := [max(𝑣1, 0), . . . ,max(𝑣𝐾 , 0)]⊤.

Figure 2.5 shows a simulation of a network whitening ill-conditioned inputs with an Opti-

mized frame (𝑁=2, 𝐾=𝐾𝑁 ; see Sec. 2.5.2) where gains are either unconstrained (Equation 2.10),

or rectified (Equation 2.14). We observe that these two models converge to two different so-

lutions (Figure 2.5B, C). When 𝑔𝑖 is unconstrained, the network achieves global whitening, as

before, but in doing so it amplifies noise along the axis orthogonal to the latent signal axis. The

gains constrained to be non-negative converged to different values than the unconstrained gains

(Figure 2.5D), with one of them (green) converging to zero rather than becoming negative. In

general, with constrained 𝑔𝑖 , the whitening error network converges to a non-zero value (see

Appendix A.7 for details). Thus, with a non-negative constraint, the network normalizes the

responses r, and does not amplify the noise. In Appendix A.7 we show additional cases that pro-

vide further geometric intuition on differences between symmetric whitening with and without

non-negative constrained gains.
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Figure 2.6: Local spatial whitening. A) Large grayscale image from which we draw 12×12 image patch
samples. Colors represent random-walk sampling from regions of the image corresponding to contexts
with different underlying statistics. Six samples from each context are shown below. B)Without whiten-
ing, pixel correlations decay rapidly with spatial distance in each context, suggesting that local whitening
may be effective. C) Binned pairwise output pixel correlation of patches from the red context before (gray)
and after global (black dots) vs. local whiteningwith overlapping 4×4 neighborhoods (red). Shaded regions
represent standard deviations. D) Top: Correlation matrices of flattened patches from the red context be-
fore whitening (left), and after local symmetric whitening (right). Both panels use the same color scale.
Bottom: Corresponding covariance eigenspectra. Dashed lines are spectra after global whitening.

2.5.5 Gain modulation enables local spatial decorrelation

Requiring𝐾𝑁 interneurons to guarantee a statistically white output (Proposition 2.1) becomes

prohibitively costly for high-dimensional inputs: the number of interneurons scales as O(𝑁 2).

This leads us to ask: how many interneurons are needed in practice? For natural sensory inputs

such as images, it is well-known that inter-pixel correlation is highly structured, decaying as a

function of distance. We simulate an experiment of visual gaze fixations and micro-saccadic eye

movements using a Gaussian random walk, drawing 12×12 patch samples from a region of a

natural image (Figure 2.6A; van Hateren and van der Schaaf, 1998); this can be interpreted as a

form of video-streaming dataset where each frame is a patch sample. We repeat this for different

randomly selected regions of the image (Figure 2.6A colors). The image content of each region is

quite different, but the inter-pixel correlation within each context consistently falls rapidly with
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distance (Figure 2.6B).

We relax the O(𝑁 2) marginal variance constraint to instead whiten spatially local neighbor-

hoods of primary neurons whose inputs are the image patches. We construct a frame W that

exploits spatial structure in the image patches, and spans 𝐾 < 𝐾𝑁 axes in R𝑁 . W is convolu-

tional, such that overlapping neighborhoods of 4 × 4 primary neurons are decorrelated, each by

a population of interneurons that is ‘overcomplete’ with respect to that neighborhood (see Ap-

pendix A.8 for details). Importantly, taking into account local structure dramatically reduces the

interneuron complexity from O(𝑁 2) → O(𝑁 ), thereby making our framework practically feasi-

ble for high-resolution image inputs and video streams. This frame is still overcomplete (𝐾 > 𝑁 ),

but because 𝐾 < 𝐾𝑁 , we no longer guarantee at equilibrium that C𝑟𝑟 = I𝑁 (Proposition 2.1).

After the network converges to the inputs drawn from the red context (Figure 2.6C): i) inter-

pixel correlations drop within the region specified by the local neighborhood; and ii) surprisingly,

correlations at longer-range (i.e. outside the window of the defined spatial neighborhood) are

also dramatically reduced. Accordingly, the eigenspectrum of the locally whitened outputs is

significantly flatter compared to the inputs (Figure 2.6D left vs. right columns). We also provide an

example using 1D inputs in Appendix A.8. This empirical result is not obvious — that whitening

individual overlapping local neighborhoods of neurons should produce a more globally whitened

output covariance. Indeed, exactly how or when a globally whitened solution is possible from

whitening of spatial overlapping neighborhoods of the inputs is a problem worth pursuing.

2.6 Related Work

2.6.1 Biologically plausible whitening networks

Biological circuits operate in the online setting and, due to physical constraints, must learn

exclusively using local signals. Therefore, to plausibly model neural computation, a neural net-
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work model must operate in the online setting (i.e., streaming data) and use local learning rules

(Pehlevan and Chklovskii, 2019). There are a few existing normative models of adaptive statisti-

cal whitening and related transformations; however, these models use synaptic plasticity mech-

anisms (i.e., changing W) to adapt to changing input statistics (Chapochnikov et al., 2021; Lip-

shutz et al., 2023; Młynarski and Hermundstad, 2021; Pehlevan and Chklovskii, 2015; Westrick

et al., 2016). Adaptation of neural population responses to changes in sensory input statistics

occurs rapidly, on the order of hundreds of milliseconds to seconds (Muller et al., 1999; Wanner

and Friedrich, 2020), so it could potentially arise from short-term synaptic plasticity, which op-

erates on the timescale of tens of milliseconds to minutes (Zucker and Regehr, 2002), but not by

long-term synaptic plasticity, which operates on the timescale of minutes or longer (Martin et al.,

2000). Here, we have proposed an alternative hypothesis: that modulation of neural gains, which

operates on the order of tens of milliseconds to minutes (Ferguson and Cardin, 2020), facilitates

rapid adaptation of neural populations to changing input statistics.

2.6.2 Tomography and “sliced” density measurements

Leveraging 1D projections to compute the symmetric whitening transform is reminiscent of

approaches taken in the field of tomography. Geometrically, our method represents an ellipsoid

(i.e., the 𝑁 dimensional covariance matrix) using noisy 1D projections of the ellipsoid onto axes

spanned by frame vectors (i.e., estimates of the marginal variances). This is a special case of

reconstruction problems studied in geometric tomography (Gardner, 1995; Karl et al., 1994). A

distinction between tomography and our approach to symmetric whitening is that we are not re-

constructing the multi-dimensional inputs; instead, we are utilizing the univariate measurements

to transform an ellipsoid into a hyper-sphere.

In optimal transport, “sliced” methods offer a way to measure otherwise intractable Wasser-

stein distances in high dimensions (Bonneel et al., 2015), thereby enabling their use in optimiza-

tion loss functions. Sliced methods estimate Wasserstein distance by taking series of 1D pro-
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jections of two densities, then computing the expectation over all 1D Wasserstein distances, for

which there exists an analytic solution. The 2-Wasserstein distance between a 1D zero-mean

Gaussian with variance 𝜎2 and a standard normal density is

𝑊2
(
N

(
0, 𝜎2) ;N (0, 1)

)
= ∥𝜎 − 1∥ .

This is strikingly similar to Equation 2.10. However, distinguishing characteristics of our ap-

proach include: 1) minimizing distance between variances rather than standard deviations; 2)

directions along which we compute slices are fixed, while sliced methods compute a new set of

projections at each optimization step; 3) our network operates online, without backpropagation.

2.7 Discussion

Our study introduces a recurrent circuit for adaptive whitening using gain modulation to

transform joint second-order statistics of their inputs based onmarginal variance measurements.

We demonstrate that, given sufficiently many marginal measurements along unique axes, the

network produces symmetric whitened outputs. Our objective (Equation 2.5) provides a novel

way to think about the classical problem of statistical whitening, and draws connections to old

concepts from tomography and transport theory. This framework is flexible and extensible, with

some possible generalizations explored in Appendix A.9. For example, we show that our model

provides a way to prevent representational collapse in the analytically tractable example of online

principal subspace learning (AppendixA.9.1). By replacing the unitymarginal variance constraint

by a set of target variances differing from 1, the network can be used to transform its input density

to one matching the corresponding (non-white) covariance (Appendix A.9.2).
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2.7.1 Implications for machine learning

Decorrelation and whitening are canonical transformations in signal processing, widely used

in compression and channel coding. Deep nets are generally not trained to whiten, although their

response variances are generally normalized during training through batch normalization, and

recent methods (e.g. Bardes et al., 2022) do impose global whitening properties in their objective

functions. Modulating feature gains has proven effective in adapting pre-trained neural networks

to novel inputs with out-of-training distribution statistics (Ballé et al., 2020; Duong et al., 2023b;

Mohan et al., 2021). Future architectures may benefit from adaptive run-time adjustments to

changing input statistics (e.g. Hu et al., 2022). Our framework provides an unsupervised, online

mechanism that avoids ‘catastrophic forgetting’ in neural networks during continual learning.

2.7.2 Implications for neuroscience

It has been known for nearly 100 years (Adrian and Matthews, 1928b) that single neurons

rapidly adjust their sensitivity (gain) adaptively, based on recent response history. Experiments

suggest that neural populations jointly adapt, adjusting both the amplitude of their responses, as

well as their correlations (e.g. Benucci et al., 2013; Friedrich, 2013) to confer dynamic, efficient

multi-channel coding. The natural thought is that they achieve this by adjusting the strength

of their interactions (synaptic weights). Our work provides a fundamentally different solution:

these effects can arise solely through gain changes, thereby generalizing rapid and reversible

single neuron adaptive gain modulation to the level of a neural population.

Support for our model will ultimately require careful experimental measurement and analy-

sis of responses and gains of neurons in a circuit during adaptation (e.g. Wanner and Friedrich,

2020). Our model predicts: 1) Specific architectural constraints, such as reciprocally connected

interneurons (Kepecs and Fishell, 2014), with consistency between their connectivity and popu-

lation size (e.g. in the olfactory bulb). 2) Synaptic strengths that remain stable during adaptation,
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which would adjudicate between our model and more conventional adaptation models relying on

synaptic plasticity (e.g. Lipshutz et al., 2023). 3) Interneurons that modulate their gains accord-

ing to the difference between the variance of their post-synaptic inputs and some target variance

(Equation 2.10; also see Appendix A.9.2). Experiments could assess whether interneuron input

variances converge to the same values after adaptive whitening. 4) Interneurons that increase

their gains with the variance of their inputs (i.e. 𝑧2
𝑖,𝑡 ). Input variance-dependent gain modulation

may be mediated by changes in slow Na+ currents (Kim and Rieke, 2003). This predicts a mecha-

nistic role for interneurons during adaptation, and complements the observed gain effects found

in excitatory neurons described in classical studies (Fairhall et al., 2001; Nagel and Doupe, 2006).

2.7.3 Conclusion

Whitening is an effective constraint for preventing feature collapse in representation learning

(Ermolov et al., 2021; Zbontar et al., 2021). The networks developed here provide a whitening so-

lution that is particularly well-suited for applications prioritizing streaming data and low-power

consumption.
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3 | Adaptive Whitening with Fast Gain

Modulation and Slow Synaptic

Plasticity

3.1 Overview

The work in this chapter unifies our adaptive gain control framework presented in Chapter 2

with existing, disparate models of adaptive whitening based on synaptic plasticity. We show that

these two mechanisms are complementary forms of adaptation, and can operate in tandem over

different timescales. Our results are published as a preprint (currently under review; Duong et al.,

2023d).

Neurons in early sensory areas rapidly adapt to changing sensory statistics, both by nor-

malizing the variance of their individual responses and by reducing correlations between their

responses. Together, these transformations may be viewed as an adaptive form of statistical

whitening. Existing mechanistic models of adaptive whitening exclusively use either synaptic

plasticity or gain modulation as the biological substrate for adaptation; however, on their own,

each of these models has significant limitations. In this work, we unify these approaches in a

normative multi-timescale mechanistic model that adaptively whitens its responses with com-

plementary computational roles for synaptic plasticity and gain modulation. Gains are modified
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on a fast timescale to adapt to the current statistical context, whereas synapses are modified on

a slow timescale to learn structural properties of the input statistics that are invariant across

contexts. Our model is derived from a novel multi-timescale whitening objective that factorizes

the inverse whitening matrix into basis vectors, which correspond to synaptic weights, and a

diagonal matrix, which corresponds to neuronal gains. We test our model on synthetic and nat-

ural datasets and find that the synapses learn optimal configurations over long timescales that

enable the circuit to adaptively whiten its responses on short timescales exclusively using gain

modulation.

3.2 Introduction

Individual neurons in early sensory areas rapidly adapt to changing sensory statistics by nor-

malizing the variance of their responses (Fairhall et al., 2001; Nagel and Doupe, 2006). At the

population level, neurons also adapt by reducing correlations between their responses (Benucci

et al., 2013; Muller et al., 1999). These adjustments enable the neurons to maximize the informa-

tion that they transmit by utilizing their entire dynamic range and reducing redundancies in their

representations (Attneave, 1954; Barlow, 1961; Barlow and Foldiak, 1989; Laughlin, 1981). A natu-

ral normative interpretation of these transformations is adaptive whitening, a context-dependent

linear transformation of the sensory inputs yielding responses that have unit variance and are

uncorrelated.

Decorrelation of the neural responses requires coordination between neurons and the neu-

ral mechanisms underlying such coordination are not known. Since neurons communicate via

synaptic connections, it is perhaps unsurprising that most existing mechanistic models of adap-

tive whitening decorrelate neural responses by modifying the strength of these connections

(Chapochnikov et al., 2021; King et al., 2013; Lipshutz et al., 2023; Pehlevan and Chklovskii, 2015;

Pehlevan et al., 2018; Westrick et al., 2016; Wick et al., 2010). However, synaptic plasticity is gen-
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Adapted within contexts:
Adapted across contexts:

context 1
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context 2

Figure 3.1: Adaptive whitening circuit, illustrated with 𝑁 = 2 primary neurons and 𝐾 = 2 interneurons.
Left: Dashed ellipses representing the covariance matrices of 2D stimuli s drawn from different statistical
contexts. Center: Primary neurons (shaded blue circles) receive feedforward stimulus inputs (shaded
purple circles), s, and recurrent weighted inputs, −Wn, from the interneurons (teal circles), producing
responses r. The interneurons receive weighted inputs, z = W⊤r, from the primary neurons, which are
then multiplied elementwise by gains g to generate their outputs, n = g ◦ z. The gains g are modulated
at a fast timescale to adaptively whiten within a specific stimulus context. Concurrently, the synaptic
weights are optimized at a slower timescale to learn structural properties of the inputs across contexts.
Right: Dashed unit circles representing the whitened circuit responses r in each statistical context.

erally associated with long-term learning and memory (Martin et al., 2000), and thus may not

be a suitable biological substrate for adaptive whitening (though short-term synaptic plasticity

has been reported, Zucker and Regehr, 2002). On the other hand, there is extensive neuroscience

literature on rapid and reversible gain modulation (Abbott et al., 1997; Chance et al., 2002; Fer-

guson and Cardin, 2020; Polack et al., 2013; Salinas and Thier, 2000; Schwartz and Simoncelli,

2001; Wyrick and Mazzucato, 2021). Motivated by this, Duong et al. (2023c) proposed a mecha-

nistic model of adaptive whitening in a neural circuit with fixed synaptic connections that adapts

exclusively by modifying the gains of interneurons that mediate communication between the

primary neurons. They demonstrate that an appropriate choice of the fixed synaptic weights can

both accelerate adaptation and significantly reduce the number of interneurons that the circuit

requires. However, it remains unclear how the circuit learns such an optimal synaptic configura-

tion, which would seem to require synaptic plasticity.
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In this study, we combine the learning and adaptation of synapses and gains, respectively,

in a unified mechanistic neural circuit model that adaptively whitens its inputs over multiple

timescales (Fig. 3.1). Our main contributions are as follows:

1. We introduce a novel multi-timescale adaptive whitening objective in which the (inverse)

whitening matrix is factorized into a synaptic weight matrix that is optimized across con-

texts and a diagonal (gain) matrix that is optimized within each statistical context.

2. With this objective, we derive a multi-timescale online algorithm for adaptive whitening

that can be implemented in a neural circuit comprised of primary neurons and an auxiliary

population of interneurons with slow synaptic plasticity and fast gain modulation (Fig. 3.1).

3. We test our algorithm on synthetic and natural datasets, and demonstrate that the synapses

learn optimal configurations over that enable the circuit to adaptively whiten its responses

on short timescales exclusively using gain modulation.

Beyond the biological setting, multi-timescale learning and adaptation may also prove important

in machine learning tasks. For example, Mohan et al. (2021) adjust the gains of channels in a

deep denoising neural network (with pre-trained synaptic weights) to improve performance on

samples with out-of-distribution noise corruption. The normative multi-timescale framework

developed here offers a new approach to continual learning and test-time adaptation problems

such as this.

3.3 Adaptive Symmetric Whitening

Consider a neural population with 𝑁 primary neurons (Fig. 3.1). The stimulus inputs to the

primary neurons are represented by a random 𝑁 -dimensional vector s whose distribution 𝑝 (s|𝑐)

depends on a latent context variable 𝑐 . The stimulus inputs s can be inputs to peripheral sensory

neurons (e.g., the rate at which photons hit 𝑁 cones) or the postsynaptic inputs to neurons in
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an early sensory area (e.g., glomerulus inputs to 𝑁 mitral cells in the olfactory bulb). Context

variables can include location (e.g., a forest or a meadow) and time (e.g., season or time of day).

For simplicity, we assume the context-dependent inputs are centered; that is, Es∼𝑝 (s|𝑐) [s] = 0,

where Es∼𝑝 (s|𝑐) [·] denotes the expectation over the conditional distribution 𝑝 (s|𝑐) and 0 denotes

the vector of zeros.

The goal of adaptive whitening is to linearly transform the inputs s so that, conditioned on

the context variable 𝑐 , the 𝑁 -dimensional neural responses r have identity covariance matrix;

that is,

r = F𝑐s such that Es∼𝑝 (s|𝑐)
[
rr⊤

]
= I𝑁 ,

where F𝑐 is a context-dependent 𝑁 × 𝑁 whitening matrix. Whitening is not a unique transfor-

mation; left multiplication of the whitening matrix F𝑐 by any 𝑁 × 𝑁 orthogonal matrix results

in another whitening matrix. We focus on symmetric whitening (also referred to as Zero-phase

Components Analysis (ZCA) whitening or Mahalanobis whitening), in which the whitening ma-

trix for context 𝑐 is uniquely defined as

F𝑐 = C−1/2
𝑠𝑠 (𝑐), C𝑠𝑠 (𝑐) := Es∼𝑝 (s|𝑐)

[
ss⊤

]
. (3.1)

This is the uniquewhitening transformation thatminimizes themean-squared difference between

the inputs and the outputs (Eldar and Oppenheim, 2003).

To derive an algorithm that learns the symmetric whitening matrix F𝑐 , we express F𝑐 as the

solution to an appropriate optimization problem. For a context 𝑐 , we can write the inverse sym-

metric whitening matrix M𝑐 := F−1
𝑐 as the unique optimal solution to the minimization problem

M𝑐 = arg min
M∈S𝑁++

𝑓𝑐 (M), 𝑓𝑐 (M) := Tr
(
M−1C𝑠𝑠 (𝑐) +M

)
, (3.2)
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where S𝑁++ denotes the set of 𝑁 × 𝑁 positive definite matrices.1 This follows from the fact that

𝑓𝑐 (M) is strictly convex (under the assumption C𝑠𝑠 (𝑐) is positive definite for all contexts 𝑐) with

its unique minimum achieved at M𝑐 , where 𝑓𝑐 (M𝑐) = 2M𝑐 . Existing neural circuit models of

adaptive whitening solve the minimization problem in Eq. 3.2 by choosing a matrix factorization

of M𝑐 and then optimizing the components (Duong et al., 2023c; Lipshutz et al., 2023; Pehlevan

and Chklovskii, 2015; Pehlevan et al., 2018).

3.4 Adaptive Whitening in Neural Circuits: a Matrix

Factorization Perspective

Here, we review two adaptive whitening objectives, which we unify into a single objective

that adaptively whitens responses across multiple timescales.

3.4.1 Objective for adaptive whitening via synaptic plasticity

Pehlevan and Chklovskii (2015) proposed a neural circuit model that whitens neural responses

by adjusting the synaptic weights between the𝑁 primary neurons and𝐾 ⩾ 𝑁 auxiliary interneu-

rons according to a Hebbian update rule. Their circuit can be derived by factorizing the context-

dependent matrix M𝑐 into a symmetric product M𝑐 = W𝑐W⊤𝑐 for some context-dependent 𝑁 ×𝐾

matrix W𝑐 (Lipshutz et al., 2023). Substituting this factorization into Eq. 3.2 results in the synaptic

plasticity objective in Table 3.1. In the circuit implementation, W⊤𝑐 denotes the weight matrix of

synapses connecting primary neurons to interneurons and the matrix −W𝑐 denotes the weight

matrix of synapses connecting interneurons to primary neurons. Importantly, this requires the

synapses W𝑐 to adaptively reconfigure each time the context 𝑐 changes, counter to the prevailing

view that synaptic plasticity implements long-term learning and memory (Martin et al., 2000).
1For technical purposes, we extend the definition of 𝑓𝑐 to all S𝑁 by setting 𝑓𝑐 (M) = ∞ if M ∉ S𝑁++.
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Table 3.1: Factorizations of the context-dependent inverse whitening matrix M𝑐 , and corresponding ob-
jectives for adaptive whitening circuits. The first was proposed by Pehlevan and Chklovskii (2015), the
second was by Duong et al. (2023c), and the third is our proposed factorization and objective which unifies
the two across timescales.

Model Matrix factorization Objective

Synaptic plasticity W𝑐W⊤𝑐 minW 𝑓𝑐 (WW⊤)

Gain modulation I𝑁 +Wfixdiag(g𝑐)W⊤fix ming 𝑓𝑐

(
I𝑁 +Wfixdiag(g)W⊤fix

)
Multi-timescale 𝛼I𝑁 +Wdiag(g𝑐)W⊤ minW E𝑐∼𝑝 (𝑐)

[
ming 𝑓𝑐 (𝛼I𝑁 +Wdiag(g)W⊤)

]
3.4.2 Objective for adaptive whitening via gain modulation

Duong et al. (2023c) proposed a neural circuit model with fixed synapses that whitens the

𝑁 primary responses by adjusting the multiplicative gains in a set of 𝐾 auxiliary interneurons.

To derive a neural circuit with gain modulation, they considered a novel diagonalization of the

inverse whitening matrix, M𝑐 = I𝑁 + Wfixdiag(g𝑐)W⊤fix, where Wfix is an arbitrary, but fixed

𝑁 × 𝐾 matrix of synaptic weights (with 𝐾 ≥ 𝐾𝑁 := 𝑁 (𝑁 + 1)/2) and g𝑐 is an adaptive, context-

dependent real-valued 𝐾-dimensional vector of gains. Note that unlike the conventional eigen-

decomposition, the number of elements along the diagonal matrix is significantly larger than

the dimensionality of the input space. Substituting this factorization into Eq. 3.2 results in the

gain modulation objective in Table 3.1. As in the synaptic plasticity model, W⊤fix denotes the

weight matrix of synapses connecting primary neurons to interneurons while −Wfix connects

interneurons to primary neurons. In contrast to the synaptic plasticity model, the interneuron

outputs are modulated by context-dependent multiplicative gains, g𝑐 , that are adaptively adjusted

to whiten the circuit responses.

Duong et al. (2023c) demonstrate that an appropriate choice of the fixed synaptic weight ma-

trix can both accelerate adaptation and significantly reduce the number of interneurons in the

circuit. In particular, the gain modulation circuit can whiten any input distribution provided the

gains vector g𝑐 has dimension 𝐾 ⩾ 𝐾𝑁 (the number of degrees of freedom in an 𝑁 × 𝑁 symmet-
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ric covariance matrix). However, in practice, the circuit need only adapt to input distributions

corresponding to natural input statistics (Barlow, 1961; Ganguli and Simoncelli, 2014; Młynarski

and Hermundstad, 2021; Simoncelli and Olshausen, 2001). For example, the statistics of natural

images are approximately translation-invariant, which significantly reduces the degrees of free-

dom in their covariance matrices, from O(𝑁 2) to O(𝑁 ). Therefore, while the space of all possible

correlation structures is 𝐾𝑁 -dimensional, the set of natural statistics likely has far fewer degrees

of freedom and an optimal selection of the weight matrix Wfix can potentially offer dramatic re-

ductions in the number of interneurons 𝐾 required to adapt. As an example, Duong et al. (2023c)

specify a weight matrix for performing “local” whitening with O(𝑁 ) interneurons when the in-

put correlations are spatially-localized (e.g., as in natural images). However, they do not prescribe

a method for learning a (synaptic) weight matrix that is optimal across the set of natural input

statistics.

3.4.3 Unified objective for adaptive whitening via synaptic plasticity

and gain modulation

We unify and generalize the two disparate adaptive whitening approaches (Duong et al.,

2023c; Pehlevan and Chklovskii, 2015) in a singlemulti-timescale nested objective in which gains

g are optimized within each context and synaptic weights W are optimized across contexts. In

particular, we optimize, with respect to W, the expectation of the objective from (Duong et al.,

2023c) (for some fixed 𝐾 ⩾ 1) over the distribution of contexts 𝑝 (𝑐):

min
W∈R𝑁×𝐾

E𝑐∼𝑝 (𝑐)

[
min
g∈R𝐾

𝑓𝑐
(
𝛼I𝑁 +Wdiag(g)W⊤

) ]
, (3.3)

where we have also generalized the objective from (Duong et al., 2023c) by including a fixed

multiplicative factor 𝛼 ⩾ 0 in front of the identity matrix I𝑁 , and we have relaxed the requirement

that 𝐾 ⩾ 𝐾𝑁 .
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What is an optimal solution of Eq. 3.3? Since the convex function 𝑓𝑐 is (uniquely) minimized

at M𝑐 , a sufficient condition for the optimality of a synaptic weight matrix W is that for each

context 𝑐 , there is a gains vector g𝑐 such that 𝛼I𝑁 +Wdiag(g𝑐)W⊤ = M𝑐 . Importantly, under

such a synaptic configuration, the function 𝑓𝑐 can attain its minimum exclusively by adjusting

the gains vector g. In the space of covariance matrices, we can express the statement as

C𝑠𝑠 (𝑐) ∈ F(W) :=
{[
𝛼I𝑁 +Wdiag(g)W⊤

]2 : g ∈ R𝐾
}
∩ S𝑁++ for every context 𝑐,

where F(W) contains the set of covariance matrices that can be whitened with fixed synapses

W and adaptive gains g. Fig. 3.2 provides an intuitive Venn diagram comparing a non-optimal

synaptic configuration W0 and an optimal synaptic configuration W𝑇 .

Figure 3.2: Illustration ofmulti-timescale learning in the space of covariancematrices. Orange and purple
regions (identical on the left and right) respectively represent the cone of all positive definite matrices
S𝑁++, and the subset of naturally-occurring covariance matrices {C𝑠𝑠 (𝑐)}. Blue regions represent the set of
covariance matrices that can be whitened with adaptive gains for a particular synaptic weight matrix. On
each side, the yellow circle denotes a naturally-occurring input covariance matrix C𝑠𝑠 (𝑐) and the dotted
white curve illustrates the trajectory of covariance matrices the circuit is adapted to whiten as the gains
are modulated (with fixed synapses, note the dotted white curve remains in the blue region). Left: With
initial synaptic weights W0 the circuit cannot whiten some natural input distributions exclusively via gain
modulation, i.e., {C𝑠𝑠 (𝑐)} ⊄ F(W0). Right: After learning optimal synaptic weights W𝑇 , the circuit can
match any naturally-occurring covariance matrix using gain modulation, i.e., {C𝑠𝑠 (𝑐)} ⊂ F(W𝑇 ).
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3.5 Multi-timescale Adaptive Whitening Algorithm and

Circuit Implementation

In this section, we derive an online algorithm for optimizing the multi-timescale objective

in Eq. 3.3, then map the algorithm onto a neural circuit with fast gain modulation and slow

synaptic plasticity. To derive an online algorithm that includes neural dynamics, we first add

neural responses r to the objective, which introduces a third timescale to the objective. We then

derive a multi-timescale gradient-based algorithm for optimizing the objective.

Adding neural responses to the objective. First, observe that we can write 𝑓𝑐 (M), for M ∈

S𝑁++, in terms of the neural responses r:

𝑓𝑐 (M) = Es∼𝑝 (s|𝑐)

[
max
r∈R𝑁

Tr
(
2rs⊤ −Mrr⊤ +M

) ]
.

To see this, maximize over r to obtain r = M−1s and then use the definition of C𝑠𝑠 (𝑐) from Eq. 3.1.

Substituting this expression for 𝑓𝑐 , with M = 𝛼I𝑁 + Wdiag(g)W⊤, into Eq. 3.3, dropping the

constant term 𝛼I𝑁 term and using the cyclic property of the trace operator results in the following

objective with 3 nested optimizations:

min
W∈R𝑁×𝐾

E𝑐∼𝑝 (𝑐)

[
min
g∈R𝐾
Es∼𝑝 (s|𝑐)

[
max
r∈R𝑁

ℓ (W, g, r, s)
] ]
, (3.4)

where ℓ (W, g, r, s) := 2r⊤s − 𝛼 ∥r∥2 −
𝐾∑︁
𝑖=1

𝑔𝑖
[
(w⊤𝑖 r)2 − ∥w𝑖 ∥2

]
.

The inner-most optimization over r corresponds to neural responses and will lead to recurrent

neural dynamics. The outer 2 optimizations correspond to the optimizations over the gains g and

synaptic weights W from Eq. 3.3.

To solve Eq. 3.4 in the online setting, we assume there is a timescale separation between
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neural dynamics and the gain/weight updates. This allows us to perform the optimization over

r before optimizing g and W concurrently. This is biologically sensible: neural responses (e.g.,

action potential firing) operate on a much faster timescale than gain modulation and synaptic

plasticity (Ferguson and Cardin, 2020; Wang et al., 2003). In Appx. B.1, we also consider the case

there is also a timescale separation between the gain updates and weight updates, so that the

weights are optimized after the gains have equilibrated.

Recurrent neural dynamics. At each iteration, the circuit receives a stimulus s. Wemaximize

ℓ (W, g, r, s) with respect to r by iterating the following gradient-ascent steps that correspond to

repeated timesteps of the recurrent circuit (Fig. 3.1) until the responses equilibrate:

r← r + 𝜂𝑟

(
s −

𝐾∑︁
𝑖=1

𝑛𝑖w𝑖 − 𝛼r

)
, (3.5)

where 𝜂𝑟 > 0 is a small constant, 𝑧𝑖 = w⊤𝑖 r denotes the weighted input to the 𝑖th interneuron,

𝑛𝑖 = 𝑔𝑖𝑧𝑖 denotes the gain-modulated output of the 𝑖th interneuron. For each 𝑖 , synaptic weights,

w𝑖 , connect the primary neurons to the 𝑖th interneuron and symmetric weights, −w𝑖 , connect the

𝑖th interneuron to the primary neurons. From Eq. 3.5, we see that the neural responses are driven

by feedforward stimulus inputs s, recurrent weighted feedback from the interneurons −Wn, and

a leak term −𝛼r.

Fast gain modulation and slow synaptic plasticity. After the neural activities equilibrate,

we minimize ℓ (W, g, r, s) by taking concurrent gradient-descent steps

Δ𝑔𝑖 = 𝜂𝑔
(
𝑧2
𝑖 − ∥w𝑖 ∥2

)
Δw𝑖 = 𝜂𝑤 (r𝑛𝑖 −w𝑖𝑔𝑖) ,
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where 𝜂𝑔 and 𝜂𝑤 are the respective learning rates for the gains and synaptic weights. By choosing

𝜂𝑔 ≫ 𝜂𝑤 , we ensure that the gains are updated at a faster timescale than the synaptic weights.

The update to the 𝑖th interneuron’s gain 𝑔𝑖 depends on the difference between online estimate

of the variance of its input, 𝑧2
𝑖 , and the squared-norm of the 𝑖th synaptic weight vector, ∥w𝑖 ∥2,

quantities that are both locally available to the 𝑖th interneuron. Using the fact that 𝑧𝑖 = w⊤𝑖 r, we

can rewrite the gain update as Δ𝑔𝑖 = 𝜂𝑔 [w⊤𝑖 (rr⊤ − I𝑁 )w𝑖]. From this expression, we see that the

gains equilibrate when the marginal variance of the responses along the direction w𝑖 is 1, for

𝑖 = 1, . . . , 𝐾 .

The update to the (𝑖, 𝑗)th synaptic weight𝑤𝑖 𝑗 is proportional to the difference between 𝑟𝑖𝑛 𝑗 and

𝑤𝑖 𝑗𝑔 𝑗 , which depends only on variables that are available in the pre- and postsynaptic neurons.

Since 𝑟𝑖𝑛 𝑗 is the product of the pre- and postynaptic activities, we refer to this update as Hebbian.

In Appx. B.3.2, we decouple the feedforward weights w⊤𝑖 and feedback weights −w𝑖 and provide

conditions under which the symmetry asymptotically holds.

Multi-timescale online algorithm. Combining the neural dynamics, gain modulation and

synaptic plasticity yields our online multi-timescale adaptive whitening algorithm, Alg. 2, which

we express is vector-matrix form with ‘◦’ denoting the Hadamard (elementwise) product of two

vectors.
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Algorithm 2:Multi-timescale adaptive whitening via synaptic plasticity and gain mod-
ulation

1: Input: s1, s2, · · · ∈ R𝑁
2: Initialize: W ∈ R𝑁×𝐾 ; g ∈ R𝐾 ; 𝜂𝑟 > 0; 𝜂𝑔 ≫ 𝜂𝑤 > 0
3: for 𝑡 = 1, 2, . . . do
4: r𝑡 ← 0
5: while not converged do
6: z𝑡 ←W⊤r𝑡
7: n𝑡 ← g ◦ z𝑡
8: r𝑡 ← r𝑡 + 𝜂𝑟 (s𝑡 −Wn𝑡 − 𝛼r𝑡 )
9: end while
10: g← g + 𝜂𝑔 (z𝑡 ◦ z𝑡 − diag (W⊤W))
11: W←W + 𝜂𝑤

(
r𝑡n⊤𝑡 −Wdiag(g)

)
12: end for
Alg. 2 is naturally viewed as a unification and generalization of previously proposed neural

circuit models for adaptation. When 𝛼 = 0 and the gains g are constant (e.g., 𝜂𝑔 = 0) and identi-

cally equal to the vector of ones 1 (so that n𝑡 = z𝑡 ), we recover the synaptic plasticity algorithm

from (Lipshutz et al., 2023). Similarly, when 𝛼 = 1 and the synaptic weights W are fixed (e.g.,

𝜂𝑤 = 0), we recover the gain modulation algorithm from (Duong et al., 2023c).

3.6 Numerical Experiments

We test Alg. 2 on stimuli s1, s2, . . . drawn from slowly fluctuating latent contexts 𝑐1, 𝑐2, . . . ;

that is, s𝑡 ∼ 𝑝 (s|𝑐𝑡 ) and 𝑐𝑡 = 𝑐𝑡−1 with high probability.2 To measure performance, we evaluate

the operator norm on the difference between the expected response covariance and the identity

matrix:

Error(𝑡) = ∥M−1
𝑡 C𝑠𝑠 (𝑐𝑡 )M−1

𝑡 − I𝑁 ∥op, M𝑡 := 𝛼I𝑁 +W𝑡diag(g)W⊤𝑡 . (3.6)

2Note: A Python (numPy) implementation of our algorithm is included with our submission. Code to reproduce
all figures will be released on GitHub at the time of publication.
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Geometrically, this “worst-case” error measures the maximal Euclidean distance between the el-

lipsoid corresponding to M−1
𝑡 C𝑠𝑠 (𝑐𝑡 )M−1

𝑡 and the (𝑁 − 1)-sphere along all possible axes. To com-

pare two synaptic weight matrices A,B ∈ R𝑁×𝐾 , we evaluate ∥Â − B∥𝐹 , where Â = AP and P is

the permutation matrix (with possible sign flips) that minimizes the error.

Figure 3.3: Adaptive whitening of a synthetic dataset with 𝑁 = 2, 𝜂𝑤 = 1E-5, 𝜂𝑔 = 5E-2. A) Covariance
ellipses (orange) of 4 out of 64 synthesized contexts. Black dashed lines are axes corresponding to the
column vectors of V. The unit circle is shown in green. Since the column vectors of V are not orthogonal,
these covariance matrices do not share a common set of eigenvectors (orange lines). B)Whitening error at
the end of each context presentation of 1E3 samples. We apply a moving average window of 10 stimulus
samples. C) Error at each stimulus presentationwithin five different contexts (gray panels), presentedwith
W0, or W𝑇 . D) Column vectors of W0, W𝑇 , V (each axis corresponds to the span of one column vector
in R2). E) Smoothed distributions of error (in Frobenius norm) between Ŵ and V across 250 random
initializations of W0.

3.6.1 Synthetic dataset

To validate our model, we first consider a 2-dimensional synthetic dataset in which an optimal

solution is known. Suppose that each context-dependent inverse whitening matrix is of the form

M𝑐 = I𝑁 + V𝚲(𝑐)V⊤, where V is a fixed 2 × 2 matrix and 𝚲(𝑐) = diag(𝜆1(𝑐), 𝜆2(𝑐)) is a context-

dependent diagonal matrix. Then, in the case𝛼 = 1 and𝐾 = 2, an optimal solution of the objective

in Eq. 3.3 is when the column vectors of W align with the column vectors of V.

To generate this dataset, we chose the column vectors of V uniformly from the unit circle, so
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they are not generally orthogonal. For each context 𝑐 = 1, . . . , 64, we assume the diagonal entries

of 𝚲(𝑐) are sparse and i.i.d.: with probability 1/2, 𝜆𝑖 (𝑐) is set to zero and with probability 1/2, 𝜆𝑖 (𝑐)

is chosen uniformly from the interval [0, 4]. Example covariance matrices from different contexts

are shown in Fig. 3.3A (note that they do not share a common eigen-decomposition). Finally, for

each context, we generate 1E3 i.i.d. samples with context-dependent distribution s ∼ N(0,M2
𝑐 ).

We test Alg. 2 with 𝛼 = 1, 𝐾 = 2, 𝜂𝑤 = 1E-5, and 𝜂𝑔 = 5E-2 on these sequences of synthetic

inputs with the column vectors of W0 chosen uniformly from the unit circle. The model success-

fully learns to whiten the different contexts, as indicated by the decreasing whitening error with

the number of contexts presented (Fig. 3.3B). At the end of training, the synaptic weight matrix

W𝑇 is optimized such that the circuit can adapt to changing contexts exclusively by adjusting its

gains. This is evidenced by the fact that when the context changes, there is a brief spike in error

as the gains adapt to the new context (Fig. 3.3C, red line). By contrast, the error remains high in

many of the contexts when using the initial random synaptic weight matrix W0 (Fig. 3.3C, blue

line). In particular, the synapses learn (across contexts) an optimal configuration in the sense that

the column vectors of W learn to align with the column vectors of V over the course of training

(Fig. 3.3DE).

3.6.2 Natural images dataset

By hand-crafting a particular set of synaptic weights, Duong et al. (2023c) showed that their

adaptive whitening network can approximately whiten a dataset of natural image patches with

O(𝑁 ) gain-modulating interneurons instead of O(𝑁 2). Here, we show that our model can exploit

spatial structure across natural scenes to learn an optimal set of synaptic weights by testing our

algorithm on 56 high-resolution natural images (van Hateren and van der Schaaf, 1998) (Fig. 3.4A,

top). For each image, which corresponds to a separate context 𝑐 , 5 × 5 pixel image patches are

randomly sampled and vectorized to generate context-dependent samples s ∈ R25 with covari-

ance matrix C𝑠𝑠 (𝑐) ∈ S25
++ (Fig. 3.4A, bottom). We train our algorithm with a timescale separation
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between gain and weight updates (Appx. B.1, Alg. 5, 𝜂𝑤 =5E-2) with 𝐾 = 𝑁 = 25 and random

W0 ∈ 𝑂 (25) on a training set of 50 of the images, presented uniformly at random 2E4 total times.

We find that the model successfully learns a basis that enables adaptive whitening across differ-

ent visual contexts via gain modulation, as shown by the decreasing training error (Eq. 3.6) in

Fig. 3.4B.

Figure 3.4: Adaptive whitening of natural images. A) Examples of 2 out of 56 high-resolution images (top)
with each image corresponding to a separate context. For each image, 5 × 5 pixel patches are randomly
sampled to generate context-dependent stimuli with covariance matrix C𝑠𝑠 (𝑐) ∈ S25

++ (bottom). B) Mean
error during training (Eq. 3.6) with 𝐾 = 𝑁 = 25. Shaded region is standard deviation over 2E3 random
initializations W0 ∈ 𝑂 (25). C) Smoothed distributions of average adaptive whitening error over all 2E3
initializations. The red distribution corresponds to the error on the held-out images with fixed learned
synapses W𝑇 and modulated gains g. The blue (resp. green, purple) distribution corresponds to the same
error, but tested on the training images (resp. with fixed gains equal to the average gains over the final
100 iterations, with fixed random synapses W0). D) The learned weights (re-shaped columns of W𝑇 )
approximate orthogonal 2D sinusoids. E) Final error (after 𝑇 = 5E4 iterations) as a function of number of
interneurons 𝐾 . Bars are standard deviations centered on the mean error at each 𝐾 . F) Frobenius norm
between the eigenbasis of E𝑐∼𝑝 (𝑐) [C𝑠𝑠 (𝑐)] (i.e. across all contexts), Q∗, with W𝑇 , W0, and eigenbasis of
each individual context covariance, Q(𝑐), when 𝐾 = 𝑁 = 25. See Appx. B.2 for details.

How does the network learn to leverage statistical structure that is consistent across con-

texts? We test the circuit with fixed synaptic weights W𝑇 and modulated (adaptive) gains g on

stimuli from the held-out images (Fig. 3.4C, red distribution shows the smoothed error over 2E3
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random initializations W0). The circuit performs as well on the held-out images as on the train-

ing images (Fig. 3.4C, red versus blue distributions). In addition, the circuit with learned synaptic

weights W𝑇 and modulated gains g outperforms the circuit with learned synaptic weights W𝑇

and fixed gains (Fig. 3.4C, green distribution), and significantly outperforms the circuit with ran-

dom synaptic weights W0 and modulated gains (Fig. 3.4C, purple distribution). Together, these

results suggest that the circuit learns features W𝑇 that enable the circuit to adaptively whiten

across statistical contexts exclusively using gain modulation, and that gain modulation is crucial

to the circuit’s ability to adaptively whiten. In Fig. 3.4D, we visualize the learned filters (columns

of W𝑇 ), and find that they are approximately equal to the 2D discrete cosine transform (DCT,

Appx. B.2), an orthogonal basis that is known to approximate the eigenvectors of natural image

patch covariances (Ahmed et al., 1974; Bull and Zhang, 2021).

To test how the number of interneurons 𝐾 impacts the performance of the circuit, we train

the algorithm with 𝐾 = 1, . . . , 2𝑁 and report the final error in Fig. 3.4E. There is a steady drop

in error as 𝐾 ranges from 1 to 𝑁 , at which point there is a (discontinuous) drop in error fol-

lowed by a continued, but more gradual decay in both training and test images error as 𝐾 ranges

from 𝑁 to 2𝑁 (the overcomplete regime). To understand this behavior, note that the covariance

matrices of image patches approximately share an eigen-decomposition (Bull and Zhang, 2021).

To see this, let Q(𝑐) denote the orthogonal matrix of eigenvectors corresponding to the context-

dependent covariance matrix C𝑠𝑠 (𝑐). As shown in Fig. 3.4F (green histogram), there is a small, but

non-negligible, difference between the eigenvectors Q(𝑐) and the eigenvectors Q∗ of the average

covariance matrix E𝑐∼𝑝 (𝑐) [C𝑠𝑠 (𝑐)]. When 𝐾 = 𝑁 , the column vectors of W𝑇 learn to align with

Q∗ (as shown in Fig. 3.4F, blue histogram), and the circuit approximately adaptively whitens the

context-dependent stimulus inputs via gain modulation. As 𝐾 ranges from 1 to 𝑁 , W𝑇 progres-

sively learns the eigenvectors of Q∗ (Appx. B.2). Since W𝑇 achieves a full set of eigenvectors at

𝐾 = 𝑁 , this results in a large drop in error when measured using the operator norm. Finally, as

mentioned, there is a non-negligible difference between the eigenvectors Q(𝑐) and the eigenvec-
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tors Q∗. Therefore, increasing the number of interneurons from 𝑁 to 2𝑁 allows the circuit to

discover basis vectors W𝑇 to account for the small deviations between Q(𝑐) and Q∗, resulting in

improved whitening error (Appx. B.2).

3.7 Discussion

Our normative derivation relies on a novel multi-timescale objective (Eq. 3.3) in which the (in-

verse) whitening matrix is factorized into components that are optimized at different timescales.

This model draws inspiration from the extensive neuroscience literature on rapid gain modu-

lation (Ferguson and Cardin, 2020) and long-term synaptic plasticity (Martin et al., 2000), and

concretely proposes complementary roles for these computations: synaptic plasticity facilitates

learning features that are invariant across statistical contexts while gain modulation facilitates

adaptation within a statistical context. Experimental support for this will come from detailed un-

derstanding of natural sensory statistics across statistical contexts and estimates of (changes in)

synaptic connectivity from wiring diagrams (e.g. Wanner and Friedrich, 2020) or neural activities

(e.g. Linderman et al., 2014).

Our circuit uses local learning rules for the gain and synaptic weight updates, so it serves as

a plausible model of neural computation and can potentially be implemented in low-power neu-

romorphic hardware (Pehlevan and Chklovskii, 2019). However, there are aspects of our circuit

that are not biologically realistic. For example, we do not sign-constrain the gains or synap-

tic weight matrices, so our circuit can violate Dale’s law. In addition, the feedforward synaptic

weights W⊤ and feedback weights −W are constrained to be symmetric. In Appx. B.3, we con-

sider modifications of our model to be more biologically realistic. Additionally, while we focus on

the potential joint function of gain modulation and synaptic plasticity in adaptation, short-term

synaptic plasticity, which operates on similar timescales as gain modulation, has also been re-

ported (Zucker and Regehr, 2002). Theoretical studies suggest that short-term synaptic plasticity
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is useful in multi-timescale learning tasks (Aitken and Mihalas, 2023; Masse et al., 2019; Tsodyks

et al., 1998) and it may also contribute to multi-timescale adaptive whitening. Ultimately, support

for different adaptation mechanisms will be adjudicated by experimental observations.

The work we present here may also be relevant beyond the biological setting. Decorrelation

and whitening transformations are common preprocessing steps in statistical and machine learn-

ing methods (Bell and Sejnowski, 1996; Coates et al., 2011; Hyvärinen and Oja, 2000; Krizhevsky

et al., 2009; Olshausen and Field, 1996), and are useful for preventing representational collapse

in recent self-supervised learning methods (Bardes et al., 2022; Ermolov et al., 2021; Hua et al.,

2021; Zbontar et al., 2021). Therefore, our online multi-timescale algorithm may be useful for

developing online adaptive self-supervised learning algorithms. In addition, our work is related

to the general problem of online meta-learning (Finn et al., 2019; Thrun and Pratt, 2012); that

is, learning methods that can rapidly adapt to new tasks. Our solution—which is closely related

to mechanisms of test-time feature gain modulation developed for machine learning models for

denoising (Mohan et al., 2021), compression (Ballé et al., 2020; Duong et al., 2023b), and classifica-

tion (Wang et al., 2020)—suggests a general approach to meta-learning inspired by neuroscience:

structural properties of the tasks (contexts) are encoded in synaptic weights and adaptation to

the current task (context) is achieved by adjusting the gains of individual neurons.
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4 | Adaptive Coding Efficiency in

Recurrent Cortical Circuits via

Gain Control

4.1 Overview

An earlier version work in this chapter was presented at Computational and Systems Neuro-

science (2022), and is published in preprint form (currently under review; Duong et al., 2023a).

Sensory systems across all modalities and species exhibit adaptation to continuously chang-

ing input statistics. Individual neurons have been shown to modulate their response gains so as

to maximize information transmission in different stimulus contexts. Experimental measure-

ments have revealed additional, nuanced sensory adaptation effects including changes in re-

sponse maxima and minima, tuning curve repulsion from the adapter stimulus, and stimulus-

driven response decorrelation. Existing explanations of these phenomena rely on changes in

inter-neuronal synaptic efficacy, which, while more flexible, are unlikely to operate as rapidly or

reversibly as single neuron gain modulations. Using published V1 population adaptation data,

we show that propagation of single neuron gain changes in a recurrent network is sufficient to

capture the entire set of observed adaptation effects. We propose a novel adaptive efficient coding

objective with which single neuron gains are modulated, maximizing the fidelity of the stimulus
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representation while minimizing overall activity in the network. From this objective, we analyt-

ically derive a set of gains that optimize the trade-off between preserving information about the

stimulus and conserving metabolic resources. Our model generalizes well-established concepts

of single neuron adaptive gain control to recurrent populations, and parsimoniously explains

experimental adaptation data.

4.2 Introduction

Some of the earliest neurophysiological recordings showed that repeated or prolonged stim-

ulus presentation leads to a relative decrease in neural responses (Adrian and Zotterman, 1926).

Indeed, neurons across different species, brain areas, and sensorymodalities adjust their gains (i.e.

input-output sensitivity) in response to recent stimulus history (Kohn, 2007;Weber et al., 2019, for

reviews). Gain control provides a mechanism for single neurons to rapidly and reversibly adapt

to different stimulus contexts (Abbott et al., 1997; Brenner et al., 2000; Fairhall et al., 2001; Muller

et al., 1999; Młynarski and Hermundstad, 2021) while preserving synaptic weights that serve to

represent features that remain consistent across contexts (Ganguli and Simoncelli, 2014). From

a normative standpoint, this allows a single neuron to adjust the dynamic range of its responses

to accommodate changes in input statistics (Fairhall et al., 2001; Laughlin, 1981) – a core tenet of

theories of efficient sensory coding (Attneave, 1954; Barlow, 1961).

Experimental measurements, however, reveal that adaptation induces additional complex

changes in neural responses, including tuning-dependent reductions in both response maxima

andminima (Movshon and Lennie, 1979), tuning curve repulsion (Hershenhoren et al., 2014; Shen

et al., 2015; Yaron et al., 2012), and stimulus-driven decorrelation (Benucci et al., 2013; Gutnisky

and Dragoi, 2008; Muller et al., 1999;Wanner and Friedrich, 2020). Although coding efficiency and

gain-mediated adaptation is well studied in single neurons, it appears as though these nuanced

empirical observations require a more complex adaptation mechanism, involving joint coordi-
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nation among neurons in the population. Indeed, to explain these phenomena, previous studies

have relied on adaptive changes in feedforward or recurrent synaptic efficacy (i.e. by changing

the entire network’s set of synaptic weights; Młynarski and Hermundstad, 2021; Rast and Dru-

gowitsch, 2020; Wainwright et al., 2001; Westrick et al., 2016). However, this requires synaptic

weights to continuously remap under different statistical contexts, which may change signifi-

cantly and transiently at short time scales.

Here, we hypothesize that adaptation effects reported in neural population recording data can

be explained by combining normative theory with a mechanistic recurrent population model that

includes single neuron gain modulation. The primary contributions of our study are as follows:

1. We introduce an analytically tractable recurrent neural network (RNN) architecture for

adaptive gain control, in which single neurons adjust their gains in response to novel stim-

ulus statistics. The model respects experimental evidence that cortical anatomy is domi-

nated by recurrence (Douglas and Martin, 2007), allowing the effects of single neuron gain

changes to propagate through lateral connections.

2. We propose a novel adaptive efficient coding objective for adjustment of the single neuron

gains, which optimizes coding fidelity of the stimulus ensemble, subject to metabolic and

homeostatic constraints.

3. Through numerical simulations, we compare model predictions to experimental measure-

ments of cat V1 neurons responding to a sequence of gratings drawn from an ensemble

with either uniform or biased orientation probability (Benucci et al., 2013). We show that

adaptive adjustment of neural gains, with no changes in synaptic strengths, parsimoniously

captures the full set of adaptation phenomena observed in the data.
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Figure 4.1: Recurrent adaptation model. A) A population of recurrently-connected orientation-tuned
cells receives external feedforward drive (purple arrows) from a presented oriented grating stimulus, ran-
domly sampled from a set of possible orientations. The width of the arrow denotes the strength of the
drive, and indicates that the center neuron is tuned towards the horizontal-oriented stimuli. The feedfor-
ward drive of each neuron is multiplicatively modulated by its a scalar gain (orange dials). Lateral recur-
rent input between neurons is denoted by green arrows. Recurrent connectivity is all-to-all, with synaptic
strengths determined by the distance between neurons’ preferred feedforward orientation. Output re-
sponses (red) of each neuron are a function of both feedforward drive and recurrent drive. B) Response
tuning curves for orientation-tuned units to stimuli presented with uniform probability (left column), or
biased probability (right column). Middle row shows recordings of neurons in visual area V1 of cats, ag-
gregated over 11 sessions. Bottom row shows model responses. Shaded regions are standard error of the
mean (SEM).

4.3 Related Work

Models of statistical adaptation in neural populations. While evidence for adaptive ef-

ficient coding via gain modulation in single neurons is relatively well understood (Fairhall et al.,

2001; Młynarski and Hermundstad, 2021; Nagel and Doupe, 2006), the question of whether neural

population adaptation can be explained by efficient coding and gain modulation remains under-

explored. Normative models of population adaptation have generally relied on synaptic plastic-

ity (i.e. between-neuron synaptic weight adjustments) as the mechanism mediating adaptation

(Lipshutz et al., 2023; Młynarski and Hermundstad, 2021; Pehlevan and Chklovskii, 2015; Rast

and Drugowitsch, 2020; Wainwright et al., 2001; Westrick et al., 2016). For example, Westrick

et al. (2016) argue that empirical observations of V1 neural populations (Benucci et al., 2013)
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can be explained by adapting normalization weights (parameterized by all-to-all synaptic con-

nections) to different stimulus statistical contexts. The major downside of this approach is that

changes in synaptic weights require O(𝑁 2) adaptation parameters, for a population of size 𝑁 .

Here, we examine the effects of classical single-neuron adaptive gain modulation on responses of

a recurrently-connected population, and demonstrate that these are sufficient to explain adap-

tation phenomena, while requiring only O(𝑁 ) adaptation parameters. Holding the synaptic

weights fixed prevents overfitting, and allows the network to remain stable across input con-

texts. Network stability is also relevant for contemporary machine learning applications that

rely on adaptive adjustments to changing input statistics (e.g. Ballé et al., 2020; Hu et al., 2022;

Mohan et al., 2021).

The adaptation model most similar to ours, developed by Gutierrez and Denève (2019), pro-

poses an adaptive recurrent spiking neural network whose dynamics are derived from an effi-

cient coding objective. Our model is complementary to this, but is simpler and more tractable,

providing an analytic solution for population steady-state responses that facilitates comparisons

to experimental data. Finally, recent work (published while this manuscript was being written)

uses gain control as a normative population adaptation mechanism, but with the central goal of

statistically whitening neural responses, while ignoring the means of responses (i.e. redundancy

reduction via decorrelation and variance equalization; Duong et al., 2023c). Here, we demon-

strate that our model captures adaptive effects involving mean responses as well as population

response redundancy reduction, but that its steady-state responses are not whitened. We show

that these deviations from whitening are similar to those seen in the neural recordings analyzed

here.

Recurrent circuitry in sensory cortex. It is well known that recurrent excitation domi-

nates cortical circuits (Douglas and Martin, 2007). In early sensory areas, a series of optogenetic

inactivation experiments showed that recurrent excitation in cortex serves to progressively am-
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plify thalamic inputs (Lien and Scanziani, 2013; Reinhold et al., 2015). In the context of sensory

adaptation, King et al. (2016) performed silencing experiments in mice to show that the majority

of adaptation effects seen in V1 arise from local activity-dependent processes, rather than being

inherited from depressed thalamic responses upstream. Similarly, in monkey V1 neurophysio-

logical recordings, Westerberg et al. (2019) used current source density analyses to show that

stimulus-driven adaptation is primarily due to recurrent intracortical effects rather than feedfor-

ward effects. We leverage these functional observations, along with anatomical measurements

of intracortical synaptic connectivity (Ko et al., 2011; Lee et al., 2016; Rossi et al., 2020) to inform

the recurrent architecture used in our study.

4.4 An Analytically Tractable RNN with Gain Modulation

4.4.1 Adaptive gain modulation in a population without recurrence

We first consider the steady-state response of 𝑁 neurons, rf ∈ R𝑁 , receiving sensory stim-

ulus inputs s ∈ R𝑀 , with feedforward drive, f (s) = [𝑓1(s), 𝑓2(s), . . . , 𝑓𝑁 (s)]⊤, which are each

multiplicatively scaled by gains, g = [𝑔1, 𝑔2, . . . , 𝑔𝑁 ]⊤:

rf(s, g) = g ◦ f (s). (4.1)

The gains, g, have the effect of adjusting the amplitudes of responses f (s), and therefore the

dynamic range of each neuron. As we demonstrate in Section 4.7, these simple multiplica-

tive gain scalings are incapable of shifting the peaks of tuning curves, as seen in physiologi-

cal data (Movshon and Lennie, 1979; Muller et al., 1999; Saul and Cynader, 1989). Previous ap-

proaches modeling neural population adaptation in cortex modify the structure of f (s) in re-

sponse to changes in input statistics (e.g. Wainwright et al., 2001; Westrick et al., 2016). Here, we

propose a fundamentally different approach, requiring no changes in synaptic weighting between
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neurons.

4.4.2 Gain modulation in a recurrent neural population

We show that by incorporating single neuron gainmodulation into a recurrent network, adap-

tive effects in each neuron propagate laterally to affect other cells in the population. Consider

a model of 𝑁 recurrently connected neurons with fixed feedforward and recurrent weights (Fig.

4.1A), presumed to have been learned over timescales much longer than the adaptive timescales

examined in this study. We assume that the population of neural responses r ∈ R𝑁 , driven by

input stimuli s ∈ R𝑀 presented with probability 𝑝 (s), are governed by linear dynamics:

𝑑r(s, g)
𝑑𝑡

= −r + g ◦ f (s) +Wr, (4.2)

where W ∈ R𝑁×𝑁 is a matrix of recurrent synaptic connection weights; and neuronal gains,

g ∈ R𝑁 , are adaptively optimized to a given 𝑝 (s). Both the feedforward functions 𝑓𝑖 (s) and

recurrent weightsW are assumed to be fixed despite varying stimulus contexts (i.e. non-adaptive).

For notational convenience, we omit explicit time-dependence of the responses and stimuli (i.e.

r(s, g, 𝑡), s(𝑡)).

Empirical studies typically consider neural activity at steady-state before and after adapting

to changes in stimulus statistics (Clifford et al., 2007). We therefore analyze the responses of

our network at steady-state, r∗(s, g), to facilitate comparison with data. The network dynamics

of Equation 4.2 are linear in r, and computing its steady-state is analytically tractable. Setting

Eq. 4.2 to zero and isolating r (with the mild assumptions on invertibility; see Appendix C.1),

yields the steady-state solution,

r∗(s, g) = [I −W]−1 (g ◦ f (s)) . (4.3)
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We can interpret these equilibrium responses as a modification of the gain-modulated feedfor-

ward drive, g ◦ f (s), which is propagated to other cells in the network via recurrent interactions,

[I −W]−1. When W is the zeros matrix (i.e. no recurrence), Equation 4.3 reduces to Equation 4.1,

and adjusting neuronal gains simply rescales the feedforward responses without affecting the

shape of response curves. The presence of the recurrent weight matrix W allows changes in neu-

ronal gains to alter the effective tuning of other neurons in the network without changes to any

synaptic weights.

4.4.3 Structure of recurrent connectivity matrix W

Importantly, in our recurrent network, there are no explicit excitatory and inhibitory neurons

– the recurrent activity term (last term in Eq. 4.2) represents the net lateral input to a neuron (i.e.

the combination of both excitatory and inhibitory inputs). In addition, model simulations in this

study use a W that is translation invariant (i.e. convolutional) in preferred orientation space, with

strong net recurrent excitation near the preferred orientation of the cell, and relatively weak net

excitation far away. This structure is motivated by functional and anatomical measurements in

V1, indicating that orientation-tuned cells receive excitatory and inhibitory presynaptic inputs

from cells tuned to every orientation, with disproportionate excitatory bias from similarly-tuned

neurons (Lee et al., 2016; Rossi et al., 2020; Rubin et al., 2015). We elaborate on specific choices of

W in Appendix C.1.

4.5 A Novel Objective for Adaptive Efficient Coding via

Gain Modulation

Theories of efficient coding postulate that sensory neurons optimally encode the statistics of

the natural environment (Barlow, 1961; Laughlin, 1981), subject to constraints on finite metabolic
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resources (e.g. energy expenditure from firing spikes; Ganguli and Simoncelli, 2014; Olshausen

and Field, 1996). However, sensory input statistics vary with context, and the means by which

a neural population might confer an adaptive and dynamic efficient code remains an open ques-

tion (Barlow and Foldiak, 1989; Duong et al., 2023c; Gutierrez and Denève, 2019; Młynarski and

Hermundstad, 2021). How should our network (Equation 4.3) adaptively modulate its gains, g,

according to the statistics of a novel stimulus ensemble? We assume an initial stimulus ensemble,

with probability density 𝑝0(s) (Fig. 4.1B), with a corresponding set of optimal gains, g0, toward

which adaptive gains are homeostatically driven; and an optimal linear decoder, D ∈ R𝑁×𝑀 .

D is fixed and set to the pseudoinverse of r∗(s, g) under the initial stimulus ensemble (see Ap-

pendix C.3).

Given a novel stimulus ensemble with probability density 𝑝 (s), we propose an adaptive effi-

cient coding objective that neurons minimize by adjusting their gains,

L(g, 𝑝 (s)) = Es∼𝑝 (s)
{
∥s − D⊤r∗(s, g)∥22 + 𝛼 ∥r∗(s, g) ∥22

}
+ 𝛾 ∥ g − g0 ∥22, (4.4)

where 𝛼 and𝛾 are scalar hyperparameters. Intuitively, as the stimulus ensemble changes 𝑝0(s) →

𝑝 (s), the gains g are adaptively adjusted to maximize the fidelity of the representation (first term),

while minimizing overall activity in the network (second term), and minimally deviating from the

initial gain state (third term). The gain homeostasis term serves to prevent catastrophic forgetting

in the network under different stimulus contexts (Kirkpatrick et al., 2017): minimizing the gains’

deviation from their optimal state under 𝑝0(s) allows the system to stably maintain reasonable

performance on previously presented data and prevents the system from radically reorganizing

itself on a fast time scale. In Appendix C.2, we show that adapting to 𝑝 (s) with gain homeostasis

allows the network to maintain improved stimulus representation error under the 𝑝0(s) ensemble

relative to a network optimizedwithout gain homeostasis. We also perform ablations to show that

the three terms in the objective are jointly necessary to produce the adaptation effects observed
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in data.

4.5.1 Objective optimization

The objective given in Equation 4.4 is bi-convex in g and D, and we can analytically solve

for either variable independently or in alternation (i.e., coordinate descent via alternating least

squares). See Appendix C.3 for the complete derivation. We initialize the network under the

uniform stimulus density 𝑝0(s) to obtain a homeostatic gain target, g0, and a fixed decoder, D.

4.6 V1 Neural Population Adaptation Data Reanalysis

In the following section, we compare our simulated adaptation model responses to reanalyzed

neural population recordings from cat primary visual cortex (data obtained with permission from

Benucci et al., 2013). Here, we provide an overview of our data analysis procedure which we also

apply to our simulated model responses. Some of our analysis plots are new and are not in the

original study1. For details on the recordings and preprocessing, we refer the reader to the original

paper.

In the experiment, oriented stimuli were briefly presented randomly in rapid succession, with

presentation probability determined by one of two contextual distributions: a uniform distribu-

tion 𝑝0(s), or a biased distribution, in which one orientation was presented significantly more

frequently than the others, 𝑝 (s) (Figure 4.1B, top row). Figure 4.1B (middle row) shows responses

for 𝑁 = 13 units, aggregated over 11 recording sessions. For 𝑁 units and 𝐾 distinct stimuli,

the authors fit orientation tuning curves to neural responses to produce matrices of orientation

tuning curves, R ∈ R𝑁×𝐾 for each of the uniform and biased stimulus ensembles.

We normalize each unit’s response curves under both contexts according to its minimum and

maximum response during the 𝑝0(s) context, such that all responses lie in the interval [0, 1] for
1Additionally, our plots are derived from steady-state fitted response curves, whereas the original publication

used temporal information.
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𝑝0(s). That is, zero is the minimum stimulus-evoked response under the uniform ensemble, and

one is the maximum. For responses to the biased ensemble, 𝑝 (s), a minimum response less than 0

indicates that the evoked response after adaptation has decreased relative to the uniform ensem-

ble; similarly, a maximum response less than 1 indicates the response maximum after adaptation

has decreased relative to that of the uniform ensemble (Figure 4.1B).

We compute response means, 𝝁 ∈ R𝑁 , and signal (as opposed to noise) covariance matrices,

𝚺 ∈ S𝑁+ ,

𝝁 = E[R], 𝚺 = E[RR⊤] − 𝝁𝝁⊤, (4.5)

where the expectation is over 𝑝0(s) or 𝑝 (s). To facilitate comparisons between response covari-

ances under the uniform and biased stimulus ensembles, we scale response covariance matrices

by the variances of the neurons under the uniform stimulus probability condition, 𝝈2
0 ∈ R𝑁+ ,

�̂� = diag (𝝈0)−1
𝚺 diag (𝝈0)−1 . (4.6)

As in the original work, we symmetrize recorded responses before computing changes in

response amplitude, maxima, andminima; and we anti-symmetrized the data to compute changes

in preferred tuning. Amplitudes before and after adaptation are computed by taking the ratio

of the peak-to-trough heights of the response curves. Finally, we compute shifts in minimum

response relative to the response curves under the uniform ensemble condition. Because the

stimuli s ∼ 𝑝 (s) under consideration are oriented gratings, we compute non-parametric circular

statistics to characterize response changes with adaptation.
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4.7 Numerical Simulations and Comparisons to Neural

Data

We compare numerical simulations of our normative adaptation model with reanalyzed cat

V1 population recording data (Benucci et al., 2013).

4.7.1 Model and simulation parameters

For all simulation results and figures in this study, we consider a network comprised of 𝑁 =

255 recurrently connected neurons, with𝐾 = 𝑀 = 511 orientation stimuli as inputs. The neuronal

gains, g, adapt to changes in stimulus ensemble statistics (𝑝0(s) → 𝑝 (s)), while the feedforward

synaptic weights, f (s), and recurrent synaptic weights, W, remain fixed. We set the homeostatic

target gains, g0, to the optimal values of g under the uniform probability stimulus ensemble, 𝑝0(s).

Feedforward orientation-tuning functions, f (s), are evenly distributed in the stimulus domain,

and are broadly-tuned Gaussians with full-width half-max (FWHM) of 30◦ (Benucci et al., 2013).

The recurrent weight matrix, W, is a Gaussian with 10◦ FWHM, summed with a weaker, broad,

untuned excitatory component (see Appendix C.1).

To determine appropriate values of 𝛼 and 𝛾 in the objective (Equation 4.4), we performed

a grid search hyperparameter sweep, minimizing the deviation between model and experimen-

tally measured tuning curves for the biased stimulus ensemble. The figures here all use model

responses from a simulation using 𝛼 = 1E-3, 𝛾 = 1E-2. We find that qualitative effects are in-

sensitive to small changes in these parameters. The key finding from this parameter sweep is

that the gain homeostasis penalty weight must be sufficiently greater than the activity penalty

weight (i.e. 𝛾 > 𝛼). After initializing the network gains to the statistics of 𝑝0(s), we adapt the

gains to 𝑝 (s) by optimizing Equation 4.4, then compare our model predicted responses to cat V1

population recordings Figure 4.1B.
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Figure 4.2: Adaptive response equalization. Each dot is the average response of a neuron. A) Response
averages under the uniform stimulus ensemble condition. B) Without adaptation, response averages
under the biased stimulus ensemble show substantial deviation from equalization (which corresponds
to the dashed black line). C) After adaptation, response averages to the biased ensemble are nearly
equalized. Shaded regions are SEM.

4.7.2 Adaptive gain modulation predicts response eqalization

Population response equalization is an adaptive mechanism first proposed in psychophysics

(Anstis et al., 1998). The authors argued that adaptation should serve as a “graphic equalizer” in

response to alterations in environmental statistics. Others have have described equalization as

a mechanism that centers a population response by subtracting the responses to the prevailing

stimulus ensemble (Clifford et al., 2000), to rescale responses such that the average of a measured

signal remains constant (Ullman and Schechtman, 1982). Figure 4.2 shows how our model re-

capitulates mean firing rates across all stimuli under the uniform and biased ensembles without

adaptation, along with adaptive population response equalization under the biased ensemble.

Figure 4.2A shows how the average response of each pre-adapted neuron under the uniform

ensemble is equal. By contrast, Figure 4.2B demonstrates that our model predicts how the pre-

adaptation tuning curves under the biased stimulus ensemble would produce a substantial devia-

tion from equalization. Finally, adaptively optimizing neuron gains via Equation 4.4 predicts the

compensatory response equalization under the biased stimulus ensemble observed in data (panel

C).
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Figure 4.3: Recurrent network model with adaptive gain modulation (red) captures the full set of post-
adaptation first-order response changes observed in data (black points), while a network without recur-
rence (blue) does not. A) Ratios of after/before adaptation response maxima. B) Ratios of response ampli-
tudes (∥max−min ∥ response) after/before adaptation. C)Changes in averageminimumevoked response.
D) Shifts in tuning away from the adapter. Shaded regions are SEM. Dashed lines indicate predictions for
a non-adaptive model.

4.7.3 Adaptive gain modulation predicts nuanced changes in

first-order statistics of responses

Figure 4.3 summarizes adaptive changes in neural responses by comparing tuning curve re-

sponses under the biased stimulus ensemble compared to responses under the uniform stimulus

ensemble (i.e. right vs. left columns of Fig. 4.1B). Our gain-modulating efficient coding model can

capture this entire array of observed adaptation effects.

Changes in response maxima, amplitudes, and minima. Stimulus-dependent response re-

ductions are a ubiquitous finding in adaptation experiments (Weber et al., 2019). Figure 4.3A,B

show changes in response maxima, and response amplitudes (peak-to-trough height) following

adaptation to the biased stimulus ensemble. Ratios less than 1 indicate a reduction in maxima or

amplitudes following adaptation. Under the biased stimulus ensemble, the model optimizes its

gains according to the objective (Eq. 4.4) to preferentially reduce activity near the over-presented

adapter stimulus. By optimizing gains to the adaptive efficient coding objective, our linear model

undershoots the magnitude of change around the adapter (Fig. 4.3A,B red curve near 0◦), but

captures the overall effect of adaptive amplitude and maxima reduction.
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Figure 4.3C shows that adaptation induces a tuning-dependent, global reduction in mini-

mum stimulus-evoked response across the population. These minima typically occur at the anti-

preferred orientation for each neuron (Fig. 4.1B). Previous work has attributed this to an untuned

reduction in thalamic inputs, or a drop in base firing (Benucci et al., 2013; Westrick et al., 2016).

Our model proposes a different mechanism: gain reductions in neurons tuned for the adapter

propagate laterally through the network, and result in commensurate reductions in the broad-

/untuned recurrent excitation to other neurons in the population. This ultimately leads to a

reduction in minimum evoked response across the entire population (Fig. 4.3C); importantly, the

model also captures the qualitative shape of the change. Our mechanistic prediction that this

effect arises due to recurrent contributions is in concordance with the broad literature on recur-

rent cortical circuitry, its role in amplification (Reinhold et al., 2015), and in sensory adaptation

(Hershenhoren et al., 2014; King et al., 2016).

Shifts in tuning preference. Tuning curve shifts following adaptation have been reported

across many visual and auditory adaptation studies (Clifford et al., 2007; Whitmire and Stan-

ley, 2016, for reviews). Figure 4.3D quantifies changes in neuron preferred orientation (i.e. the

orientation at which response maximum occurs) after adapting to the biased stimulus ensem-

ble. The sinusoidal shape of the curve indicates that adapted tuning curves are repelled from the

over-presented adapter stimulus. This rearrangement of tuning curve density is consistent with

efficient coding studies that argue that a sensory neural population should optimally allocate its

finite resources toward encoding information about the current stimulus ensemble (Ganguli and

Simoncelli, 2014; Gutnisky and Dragoi, 2008). Here, we show that these effects can mechanisti-

cally be explained by optimizing neuronal gains to maintain a high fidelity representation of the

stimulus under the biased ensemble.

Objective and network ablations. In Appendix C.2, we assess the importance of each term

of the adaptation objective (Eq. 4.4) by ablating them from the objective and re-simulating the
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network adapting to the biased stimulus ensemble. We show that each of the three terms is

jointly necessary to capture the adaptation effects shown here. In terms of network architec-

tural ablations, the blue curves in Figure 4.3 demonstrate how removing recurrence (i.e. W = 0;

Equation 4.1) impacts adaptive changes in neural responses. While this single stage feedforward

model can reproduce reductions in response maxima Fig. 4.3A, it is incapable of producing the

appropriate change in response amplitudes (Fig. 4.3B), and completely fails at producing adaptive

reductions in minimum response, or shifts in tuning preference (Fig. 4.3C,D). Intuitively, this is

because the gains in this reduced model serve to set the amplitude of the output, and cannot al-

ter the qualitative shape of the tuning curve without propagating through the recurrent circuitry.

The structure of W used in our model is informed by functional and anatomical studies in cortical

circuits (Lee et al., 2016; Rossi et al., 2020), comprising strong net excitation from similarly-tuned

neurons and untuned weak net excitation from dissimilarly-tuned neurons. In Appendix C.1, we

study the impact of W’s structure on model adapted responses. The structure of W can be quite

flexible while still producing the effects shown here, so long as recurrent input includes weak net

excitation from dissimilarly-tuned neurons.

4.7.4 Adaptive gain modulation predicts homeostasis in second-order

statistics of responses

The principle of redundancy reduction is core to the efficient coding hypothesis (Barlow,

1961), and evidence supporting adaptive redundancy reduction has been reported across multiple

brain regions and modalities (Atick and Redlich, 1992; Muller et al., 1999; Wanner and Friedrich,

2020). In the task modeled in our study, over-presenting the adapter stimulus can be viewed

as increasing redundancy in the stimulus ensemble (Figure 4.1B, top). This manifests as a “hot

spot” in the center of Σ̂ if the neural responses were to remain unadapted to 𝑝 (s) (Fig. 4.4A,

middle column). However, when the model adapts its gains according to the objective (Eq. 4.4),
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Figure 4.4: Population response redundancy reduction and signal covariance homeostasis. A) Scaled
response covariance matrices, �̂� (Eq. 4.6), for V1 data (top row) and model simulations (bottom row), for
unadapted tuning curves and uniform stimulus ensemble (left column), unadapted tuning curves and
biased stimulus ensemble (middle column), and adapted tuning curves and biased stimulus ensemble
(right column). B) Three example horizontal slices of the data (dashed) and model (solid) �̂� from A, at 0,
-45, and -90 degrees orientation (colors).

the covariance near the adapter stimulus is reduced, and the predicted signal covariance is well

matched to data (Fig. 4.4A, right column, Fig. 4.4B).

A signal covariance matrix devoid of redundancy would be one that is statistically white (i.e.

the identity matrix). However, under both the uniform and biased stimulus ensemble conditions

(Figure 4.4A, top left and right), we note that the experimentally observed signal covariance ma-

trix is not statistically white2. Thus, previous normative approaches to population adaptation

that explicitly whiten neural responses may not be suitable models for this data (e.g. Młynarski

and Hermundstad, 2021; Pehlevan and Chklovskii, 2015). By contrast, our adaptation objective,

which emphasizes stimulus signal fidelity subject to metabolic and homeostatic constraints pre-

dicts an adapted signal covariance matrix whose deviations from the identity matrix are similar to

those observed in data. Notably, this effect naturally emerges from our model without additional

parameter-tuning.
2In their study, Benucci et al. (2013, Fig. 3) replaced negative entries of Σ̂ with zeros.
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4.8 Discussion

Study limitations. The network considered here is a rate model whose tractable linear dy-

namics allow us to examine adaptation responses at steady-state. Response dynamics during

adaptation are rich (Dragoi et al., 2000; Patterson et al., 2013; Quiroga et al., 2016), and are rela-

tively understudied. Developing our model and objective into a biologically plausible online net-

workwith explicit excitatory and inhibitory neurons, while adapting gains according to only local

signals (Duong et al., 2023c; Gutierrez and Denève, 2019) is an interesting direction worth pur-

suing. Furthermore, because we model trial-averaged experimental data in this study, our model

does not account for stochasticity in neural responses. Thus, our model cannot explain adap-

tive changes in trial-to-trial variability (Gutnisky and Dragoi, 2008). Finally, there exist adaptive

changes to simultaneously-presented stimuli, usually explained via divisive normalization (As-

chner et al., 2018; Solomon and Kohn, 2014; Yiltiz et al., 2020), which is not included in our model

(see Appendix C.4). One possible way to bridge this gap would be to combine our normative

approach with recently-proposed recurrent models of normalization (Heeger and Mackey, 2018;

Heeger and Zemlianova, 2020).

Alternative network architectures. There are alternative, equivalent formulations of our

model that may give rise to the same steady-state responses as Eq. 4.3, which we illustrate in

Appendix C.4. Firstly, our model is equivalent to a two-stage feedforward network with gain

modulation preceding the inputs of the second stage. Since orientation tuning arises in V1, these

two stages could be two different layers within V1; the core mechanism of our framework can

thus be related to studies describing adaptive gain changes being inherited from one group of

neurons to the next (Dhruv and Carandini, 2014; Kohn and Movshon, 2003; Stocker and Simon-

celli, 2009). Secondly, gain modulation in our model, which serves to multiplicatively scale input

drive, f (s), can equivalently be interpreted as multiplicatively attenuating the recurrent drive of
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the network. In this sense, our model resembles that of Heeger and Zemlianova (2020), in which

divisive normalization is mediated by gating recurrent amplification.

Experimental predictions. We propose that rapid neural population adaptation in cortex can

bemediated by single neuron adaptive gain modulation. Validating this hypothesis would require

careful experimental measurements of neurons during adaptation. First, our framework predicts

that between-neuron synaptic connectivity (i.e. W) remains stable through adaptation. Second,

our normative objective suggests that gain homeostasis plays a central role in population adapta-

tion (see Appendix C.2). Evidence for stimulus-dependent gain control such as this can possibly

be found by measuring neuron membrane conductance during adaptation, mediated by changes

in slow hyperpolarizing Ca2+- and Na+-induced K+ currents (Sanchez-Vives et al., 2000). Lastly,

while there has been considerable progress inmapping the circuits involved in sensory adaptation

(Wanner and Friedrich, 2020), determining the exact structure of functional recurrent connectiv-

ity remains an open problem. Indeed, we show how different (but not all) forms of W can give

rise to the same qualitative results shown here (Appendix C.1). Performing adaptation experi-

ments with richer sets of stimulus ensembles, 𝑝 (s), can provide better constraints for solving this

functional inverse problem.

4.8.1 Conclusion

We demonstrate that adaptation effects observed in cortex – changes in response maxima

and minima, tuning curve repulsion, and stimulus-dependent response decorrelation – can be

explained as arising from the recurrent propagation of single neuron gain adjustments aimed at

coding efficiency. This adaptation mechanism is general, and can be applied to modalities other

than vision. For example, studies of neural adaptation in auditory cortex have shown that adap-

tive responses such tuning curve shifts cannot be explained by feedforward mechanisms, and

likely arise from adaptive changes to intracortical recurrent interactions (Hershenhoren et al.,
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2014; Lohse et al., 2020). Previous population adaptation models rely on changes in all-to-all

synaptic weights to explain these phenomena (e.g. Westrick et al., 2016), but our results suggest

that single neuron gain modulations may provide a more plausible mechanism which uses O(𝑁 )

instead of O(𝑁 2) adaptive parameters. Adaptation in cortex happens on the order of hundreds

of milliseconds, and is just as quickly reversible (Muller et al., 1999); a network whose synaptic

weights were constantly remapping would be undesirable due to a lack of stability, while a mech-

anism such as adaptive single neuron gain modulation can be local, fast, and reversible (Ferguson

and Cardin, 2020). Taken together, our study offers a simple mechanistic explanation for observed

adaptation effects at the level of a neural population, and expands upon well-established concepts

of adaptive coding efficiency with single neuron gain control.
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5 | Representational Dissimilarity

Metric Spaces for Stochastic

Neural Networks

5.1 Overview

In this chapter, we shift our focus away from adaptive coding efficiency in neural popula-

tions to introduce a new statistical tool for comparing representational geometry, and aligning

stochastic neural population responses. An earlier version of this work appeared in Computa-

tional and Systems Neuroscience 2023. These findings presented in this chapter published in the

Proceedings of the Eleventh International Conference on Learning Representations (Duong et al.,

2023e).

Quantifying similarity between neural representations—e.g. hidden layer activation vectors—

is a perennial problem in deep learning and neuroscience research. Existing methods compare

deterministic responses (e.g. artificial networks that lack stochastic layers) or averaged responses

(e.g., trial-averaged firing rates in biological data). However, these measures of deterministic rep-

resentational similarity ignore the scale and geometric structure of noise, both of which play

important roles in neural computation. To rectify this, we generalize previously proposed shape

metrics (Williams et al., 2021) to quantify differences in stochastic representations. These new
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distances satisfy the triangle inequality, and thus can be used as a rigorous basis for many super-

vised and unsupervised analyses. We show that this approach is practical for large-scale data and

provides insights that cannot be measured with existing metrics. Leveraging this novel frame-

work, we find that the stochastic geometries of neurobiological representations of oriented vi-

sual gratings and naturalistic scenes respectively resemble untrained and trained deep network

representations. Further, we are able to more accurately predict certain network attributes (e.g.

training hyperparameters) from its position in stochastic (versus deterministic) shape space.

5.2 Introduction

Comparing high-dimensional neural responses—neurobiological firing rates or hidden layer

activations in artificial networks—is a fundamental problem in neuroscience and machine learn-

ing (Chung and Abbott, 2021; Dwivedi and Roig, 2019). There are now many methods for quanti-

fying representational dissimilarity including canonical correlations analysis (CCA; Raghu et al.,

2017), centered kernel alignment (CKA; Kornblith et al., 2019), representational similarity analysis

(RSA; Kriegeskorte et al., 2008a), shape metrics (Williams et al., 2021), and Riemannian distance

(Shahbazi et al., 2021) . Intuitively, these measures quantify similarity in the geometry of neu-

ral responses while removing expected forms of invariance, such as permutations over arbitrary

neuron labels.

However, these methods only compare deterministic representations—i.e. networks that can be

represented as a function 𝑓 : Z ↦→ R𝑛 , where𝑛 denotes the number of neurons andZ denotes the

space of network inputs. For example, each 𝒛 ∈ Z could correspond to an image, and 𝑓 (𝒛) is the

response evoked by this image across a population of 𝑛 neurons (Fig. 5.1A). Biological networks

are essentially never deterministic in this fashion. In fact, the variance of a stimulus-evoked

neural response is often larger than its mean (Goris et al., 2014). Stochastic responses also arise

in the deep learning literature inmany contexts, such as in deep generativemodeling (Kingma and
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Welling, 2019), Bayesian neural networks (Wilson, 2020), or to provide regularization (Srivastava

et al., 2014).

Stochastic networks may be conceptualized as functions mapping each 𝒛 ∈ Z to a proba-

bility distribution, 𝐹 (· | 𝒛), over R𝑛 (Fig. 5.1B, Kriegeskorte and Wei 2021). Although it is easier

to study the representational geometry of the average response, it is well understood that this

provides an incomplete and potentially misleading picture (Kriegeskorte and Douglas, 2019). For

instance, the ability to discriminate between two inputs 𝒛, 𝒛′ ∈ Z depends on the overlap of 𝐹 (𝒛)

and 𝐹 (𝒛′), and not simply the separation of their means (Fig. 5.1C-D). A rich literature in neuro-

science has built on top of this insight (Abbott and Dayan, 1999; Rumyantsev et al., 2020; Shadlen

et al., 1996). However, to our knowledge, no studies have compared noise correlation structure

across animal subjects or species, as has been done with trial-averaged responses. In machine

learning, many studies have characterized the effects of noise on model predictions (An, 1996;

Sietsma and Dow, 1991), but only a handful have begun to characterize the geometry of stochas-

tic hidden layers (Dapello et al., 2021). Further, the recent surge of interest in neural network

symmetries and permutation-invariant mode connectivity has been largely limited to the deter-

ministic setting (Ainsworth et al., 2022; Bronstein et al., 2021; Tatro et al., 2020). Altogether, this

points to a need for systematic frameworks for analyzing large ensembles of stochastic networks

in terms of representational geometry.

To address these gaps, we formulate a novel class of metric spaces over stochastic neural rep-

resentations. That is, given two stochastic networks 𝐹𝑖 and 𝐹 𝑗 , we construct distance functions

𝑑 (𝐹𝑖, 𝐹 𝑗 ) that are symmetric, satisfy the triangle inequality, and are equal to zero if and only if

𝐹𝑖 and 𝐹 𝑗 are equivalent according to a pre-defined criterion. In the deterministic limit—i.e., as

𝐹𝑖 and 𝐹 𝑗 map onto Dirac delta functions—our approach converges to well-studied metrics over

shape spaces (Dryden and Mardia, 1993; Srivastava and Klassen, 2016), which were proposed by

Williams et al. (2021) to measure distances between deterministic networks. The triangle inequal-

ity is required to derive theoretical guarantees for many downstream analyses (e.g. nonparamet-
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Figure 5.1: (A) Illustration of a deterministic network mapping inputs, (color-coded images) into points
in R𝑛 . (B) Illustration of a stochastic network, where each input, 𝒛 ∈ Z, maps onto a distribution, 𝐹 (· | 𝒛),
over R𝑛 . (C) Example where noise correlations impair discriminability between two image classes. (D)
Example where noise correlations improve discriminability (see Abbott and Dayan, 1999). (E) Illustration
of two stochastic networks with equivalent representational geometry.

ric regression, Cover and Hart 1967, and clustering, Dasgupta and Long 2005). Thus, we lay an

important foundation for analyzing stochastic representations, akin to results shown byWilliams

et al. (2021) in the deterministic case.

To demonstrate the utility of this framework, we apply stochastic shape metrics to neurobio-

logical recordings of mouse visual cortex, and show that contributions of mean and covariance to

stochastic representational geometry differ across simple, artificial stimulus sets (oriented grat-

ings) and rich stimulus sets (natural scenes). Further, we analyze stochastic representations in

artificial networks, and find that a network’s position in stochastic shape space can be used to ac-

curately predict its hyperparameters, including the random seed. Interestingly, these predictions

are often more accurate if contributions from the average representational geometry are ignored,

suggesting that the features of neural “noise” carries salient information about network structure

and computations.
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5.3 Methods

Deterministic Shape Metrics

We begin by reviewing how shape metrics quantify representational dissimilarity in the de-

terministic case. In the Discussion (section 5.5), we review other related prior work.

Let {𝑓1, . . . , 𝑓𝐾 } denote 𝐾 deterministic neural networks, each given by a function

𝑓𝑘 : Z ↦→ R𝑛𝑘 . Representational similarity between networks is typically defined with respect to

a set of 𝑀 inputs, {𝒛1, . . . , 𝒛𝑀 } ∈ Z𝑀 . We can collect the representations of each network into a

matrix:

𝑿𝑘 =


𝑓𝑘 (𝒛1)
...

𝑓𝑘 (𝒛𝑀 )


. (5.1)

A naïve dissimilarity measure would be the Euclidean distance, ∥𝑿𝑖 −𝑿 𝑗 ∥𝐹 . This is nearly always

useless. Since neurons are typically labelled in arbitrary order, our notion of distance should—at

the very least—be invariant to permutations. Intuitively, we desire a notion of distance such that

𝑑 (𝑿𝑖,𝑿 𝑗 ) = 𝑑 (𝑿𝑖,𝑿 𝑗𝚷) for any permutation matrix, 𝚷 ∈ R𝑛×𝑛 . Linear CKA and RSA achieve this

by computing the dissimilarity between 𝑿𝑖𝑿⊤𝑖 and 𝑿 𝑗𝑿⊤𝑗 instead of the raw representations.

Generalized shape metrics are an alternative approach to quantifying representational dissim-

ilarity. The idea is to compute the distance after minimizing over nuisance transformations (e.g.

permutations or rotations in R𝑛). Let 𝜙𝑘 : R𝑀×𝑛𝑘 ↦→ R𝑀×𝑛 be a fixed, “preprocessing function” for

each network and let G be a set of nuisance transformations on R𝑛 . Williams et al. (2021) showed

that:

𝑑 (𝑿𝑖,𝑿 𝑗 ) = min
𝑻∈G
∥𝜙𝑖 (𝑿𝑖) − 𝜙 𝑗 (𝑿 𝑗 )𝑻 ∥𝐹 (5.2)

is ametric over equivalent neural representations provided two technical conditions are met. The

first is that G is a group of linear transformations. This means that: (a) the identity is in the set

84



of nuisance transformations (𝑰 ∈ G), (b) every nuisance transformation is invertible by another

nuisance transformation (if 𝑻 ∈ G then 𝑻−1 ∈ G), and (c) nuisance transformations are closed

under composition (𝑻1𝑻2 ∈ G if 𝑻1 ∈ G and 𝑻2 ∈ G). The second condition is that every nuisance

transformation is an isometry, meaning that ∥𝑿𝑖𝑻 −𝑿 𝑗𝑻 ∥𝐹 = ∥𝑿𝑖 −𝑿 𝑗 ∥𝐹 for every 𝑻 ∈ G. Several

choices of G satisfy these conditions including the permutation group, P, and the orthogonal

group, O, which respectively correspond to the set of all permutations and rotations on R𝑛 .

Equation 5.2 provides a recipe to construct many notions of distance. To enumerate some

examples, we will assume for simplicity that 𝜙1 = . . . = 𝜙𝐾 = 𝜙 and all networks have 𝑛 neu-

rons. Then, to obtain a metric that is invariant to translations and permutations, we can set

𝜙 (𝑿 ) = (1/𝑛) (𝑰 − 11⊤)𝑿 and G = P(𝑛). If we instead set G = O(𝑛), we recover the well-known

Procrustes distance, which is invariant to rotations. Finally, if we choose 𝜙 (·) to whiten the co-

variance of 𝑿 , we obtain notions of distance that are invariant to linear transformations and are

closely related to CCA. Williams et al. (2021) provides further discussion and examples.

An attractive property of Equation 5.2 is that it establishes a metric space over deterministic

representations. That is, distances are symmetric 𝑑 (𝑿𝑖,𝑿 𝑗 ) = 𝑑 (𝑿 𝑗 ,𝑿𝑖) and satisfy the triangle

inequality𝑑 (𝑿𝑖,𝑿𝑘) ≤ 𝑑 (𝑿𝑖,𝑿 𝑗 )+𝑑 (𝑿 𝑗 ,𝑿𝑘). Further, the distance is zero if and only if there exists

a 𝑻 ∈ G such that 𝜙𝑖 (𝑿𝑖) = 𝜙 𝑗 (𝑿 𝑗 )𝑻 . These fundamental properties are needed to rigorously

establish many statistical analyses (Cover and Hart, 1967; Dasgupta and Long, 2005).

Stochastic Shape Metrics

Let {𝐹1, . . . , 𝐹𝐾 } denote a collection of𝐾 stochastic networks. That is, each 𝐹𝑘 is a function that

maps each input 𝒛 ∈ Z to a conditional probability distribution 𝐹𝑘 (· | 𝒛). How can Equation 5.2 be

generalized to measure representational distances in this case? In particular, the minimization in

Equation 5.2 is over a Euclidean “groundmetric,” and wewould like to choose a compatible metric

over probability distributions. Concretely, letD(𝑃,𝑄) be a chosen “ground metric” between two

distributions 𝑃 and 𝑄 . Let 𝛿𝒙 and 𝛿𝒚 denote Dirac masses at 𝒙,𝒚 ∈ R𝑛 and consider the limit
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that 𝑃 → 𝛿𝒙 and 𝑄 → 𝛿𝒚 . In this limit, we seek a ground metric for which D(𝛿𝒙, 𝛿𝒚) is related

to ∥𝒙 − 𝒚∥. Many probability metrics and divergences fail to meet this criterion. For example,

if 𝒙 ≠ 𝒚, then the Kullback-Leibler (KL) divergence approaches infinity and the total variation

distance and Hellinger distance approach a constant that does not depend on ∥𝒙 −𝒚∥.

In this work, we explored two ground metrics. First, the 𝑝-Wasserstein distance (Villani, 2009):

W𝑝 (𝑃,𝑄) = (inf E
[
∥𝑋 − 𝑌 ∥𝑝

]
)1/𝑝 (5.3)

where 𝑝 ≥ 1, and the infimum is taken over all random variables (𝑋,𝑌 ) whose marginal distri-

butions coincide with 𝑃 and 𝑄 . Second, the energy distance (Székely and Rizzo, 2013):

E𝑞 (𝑃,𝑄) = (E [∥𝑋 − 𝑌 ∥𝑞] − 1
2E [∥𝑋 − 𝑋

′∥𝑞] − 1
2E [∥𝑌 − 𝑌

′∥𝑞])1/2 (5.4)

where 0 < 𝑞 < 2 and 𝑋,𝑋 ′ i.i.d.∼ 𝑃 and 𝑌,𝑌 ′ i.i.d.∼ 𝑄 . As desired, we haveW𝑝 (𝛿𝒙, 𝛿𝒚) = ∥𝒙 −𝒚∥

for any 𝑝 , and E𝑞 (𝛿𝒙, 𝛿𝒚) = ∥𝒙 −𝒚∥𝑞/2. Thus, when 𝑞 = 1 for example, the energy distance con-

verges to the square root of Euclidean distance in the deterministic limit. Interestingly, when

𝑞 = 2, the energy distance produces a deterministic metric on trial-averaged responses (see sub-

section D.6.1).

The Wasserstein and energy distances are intuitive generalizations of Euclidean distance.

Both can be understood as being proportional to the amount of energy it costs to transport a

pile of dirt (a probability density 𝑃 ) to a different configuration (the other density 𝑄). Wasser-

stein distance is based on the cost of the optimal transport plan, while energy distance is based

on the the cost of a random (i.e. maximum entropy) transport plan (see Fig. 5.2, and Feydy et al.

2019).

Our main proposition shows that these two ground metrics can be used to generalize Equa-

tion 5.2.
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Figure 5.2: Proposed method intuition using distances based on eitherW2 or E ground metrics. (A)
and (B) Two example stochastic network representations to five stimuli (colors). (C) The optimal align-
ment of the representations over nuisance transformations (e.g. rotations, G = O). (D) Intuitively, the
2-Wasserstein distance (W2) is the minimum cost of turning one density (pile of dirt) to another (Peyré
and Cuturi, 2019; Villani, 2009). Here we highlight the distance between the two green densities to reduce
clutter. (E) Energy distance is based on the maximum-entropy transport map between the two distribu-
tions (Feydy et al., 2019).

Proposition 5.1 (Stochastic Shape Metrics). Let𝑄 be a distribution on the input space, 𝜙1, . . . , 𝜙𝐾

be measurable functions mapping onto R𝑛 and let 𝐹𝜙
𝑖
= 𝐹𝑖 ◦𝜙−1

𝑖 . LetD2 denote the squared “ground

metric,” and let G be a group of isometries with respect to D. Then,

𝑑 (𝐹𝑖, 𝐹 𝑗 ) = min
𝑻∈G

(
E
𝒛∼𝑄

[
D2

(
𝐹
𝜙

𝑖
(· | 𝒛), 𝐹𝜙

𝑗
(· | 𝒛) ◦ 𝑻−1

)] )1/2
(5.5)

defines a metric over equivalence classes, where 𝐹𝑖 is equivalent to 𝐹 𝑗 if and only if there is a 𝑻 ∈ G

such that 𝐹𝜙
𝑖
(· | 𝒛) and 𝐹𝜙

𝑗
(· | 𝒛) ◦ 𝑻−1 are equal for all 𝒛 ∈ supp(𝑄).

Above, we use the notation 𝑃 ◦𝜙−1 to denote the pushforward measure—i.e. the measure de-

fined by the function composition, 𝑃 (𝜙−1(𝐴)) for a measurable set𝐴, where 𝑃 is a distribution and
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𝜙 is a measurable function. A proof is provided in section D.3. Intuitively, 𝑻 plays the same role as

in Equation 5.2, which is to remove nuisance transformations (e.g. rotations or permutations; see

Fig. 5.1E). The functions 𝜙1, . . . , 𝜙𝐾 also play the same role as “preprocessing functions,” imple-

menting steps such as whitening, normalizing by isotropic scaling, or projecting data onto a prin-

cipal subspace. For example, to obtain a translation-invariant distance, we can subtract the grand

mean response from each conditional distribution. That is, 𝜙𝑘 (𝒙) = 𝒙 − E𝒛∼𝑄 [E𝒙∼𝐹𝑘 (𝒙 | 𝒛) [𝒙]].

Practical Estimation of Stochastic Shape Metrics

Stochastic shape distances (eq. 5.5) are generally more difficult to estimate than deterministic

distances (eq. 5.2). In the deterministic case, the minimization over 𝑻 ∈ G is often a well-studied

problem, such as linear assignment (Burkard et al., 2012) or the orthogonal Procrustes prob-

lem (Gower and Dijksterhuis, 2004). In the stochastic case, the conditional distributions 𝐹𝑘 (· | 𝒛)

often do not even have a parametric form, and can only be accessed by drawing samples—e.g. by

repeated forward passes in an artificial network. Moreover, Wasserstein distances suffer a well-

known curse of dimensionality: in 𝑛-dimensional spaces, the plug-in estimator converges at a

very slow rate proportional to 𝑠−1/𝑛 , where 𝑠 is the number of samples (Niles-Weed and Rigollet,

2022).

Thus, to estimate shape distances withWasserstein ground metrics, we assume that, 𝐹𝜙
𝑖
(· | 𝒛),

is well-approximated by a Gaussian for each 𝒛 ∈ Z. The 2-Wasserstein distance has a closed form

expression in this case (Remark 2.31 in Peyré and Cuturi 2019 and Theorem 1 in Bhatia et al. 2019):

W2(N (𝝁𝑖, 𝚺𝑖),N(𝝁 𝑗 , 𝚺 𝑗 )) =
(
∥𝝁𝑖 − 𝝁 𝑗 ∥2 + min

𝑼∈O(𝑛)
∥𝚺1/2

𝑖
− 𝚺1/2

𝑗
𝑼 ∥2𝐹

)1/2 (5.6)

where N(𝝁, 𝚺) denotes a Gaussian density. It is important not to confuse the minimization over

𝑼 ∈ O(𝑛) in this equation with the minimization over nuisance transformations, 𝑻 ∈ G, in

the shape metric (eq. 5.5). These two minimizations arise for entirely different reasons, and the
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Wasserstein distance is not invariant to rotations. Intuitively, we can estimate the Wasserstein-

based shape metric by minimizing over 𝑼 ∈ O(𝑛) and 𝑻 ∈ G in alternation (for full details, see

subsection D.4.1).

In biological data, we often only have enough trials to estimate the first two moments of a

neural response, and one may loosely appeal to the principle of maximum entropy to justify the

Gaussian approximation (Uffink, 1995). In certain artificial networks the Gaussian assumption

is satisfied exactly, such as in variational autoencoders (see subsection 5.4.3). Finally, even if

the Gaussian assumption is violated, Equation 5.6 can still be a reasonable ground metric that is

only sensitive to the first two moments (mean and covariance) of neural responses (see subsec-

tion D.5.3).

The Gaussian assumption is also unnecessary if we use the energy distance (eq. 5.4) as the

ground metric instead of Wasserstein distance. Plug-in estimates of this distance converge at

a much faster rate in high-dimensional spaces (Gretton et al., 2012; Sejdinovic et al., 2013). In

this case, we propose a two-stage estimation procedure using iteratively reweighted least squares

(Kuhn, 1973), followed by a “metric repair” step (Brickell et al., 2008) which resolves small triangle

inequality violations due to distance estimation error (see Appendix D.4.2 for full details).

We discuss computational complexity in Appendix D.4.1.1 and provide user-friendly imple-

mentations of stochastic shape metrics at: github.com/ahwillia/netrep.

Interpolating Between Mean- and Covariance-only Metrics

An appealing feature of the 2-Wasserstein distance for Gaussian measures (eq. 5.6) is its de-

composition into two terms that respectively depend on the mean and covariance. We reasoned

that it would be useful to isolate the relative contributions of these two terms. Thus, we con-

sidered the following generalization of the 2-Wasserstein distance parameterized by a scalar,
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Figure 5.3: Interpolating between mean- and covariance-only metrics with the 2-Wasserstein distance.

0 ≤ 𝛼 ≤ 2:

W𝛼

2 (𝑃𝑖, 𝑃 𝑗 ) =
(
𝛼 ∥𝝁𝑖 − 𝝁 𝑗 ∥2 + (2 − 𝛼) min

𝑼∈O(𝑛)
∥𝚺1/2

𝑖
− 𝚺1/2

𝑗
𝑼 ∥2𝐹

)1/2 (5.7)

where 𝑃𝑖, 𝑃 𝑗 are distributions with means 𝝁𝑖, 𝝁 𝑗 and covariances 𝚺𝑖, 𝚺 𝑗 . In section D.5 we show

that this defines a metric and, by extension, a shape metric when plugged into Equation 5.5.

We can use 𝛼 to interpolate between a Euclidean metric on the mean responses and a metric

on covariances known as the Bures metric (Bhatia et al., 2019). When 𝛼 = 1 and the distributions

are Gaussian, we recover the 2-Wasserstein distance. Thus, by sweeping 𝛼 , we can utilize a

spectrum of stochastic shape metrics ranging from a distance that isolates differences in trial-

average geometry (𝛼 = 2) to a distance that isolates differences in noise covariance geometry (𝛼 =

0). Figure 5.3 shows that distances along this spectrum can all be understood as generalizations of

the usual “earth mover” interpretation ofWasserstein distance—the covariance-insensitive metric

(𝛼 = 2) only penalizes transport due to differences in the mean while the mean-insensitive metric

(𝛼 = 0) only penalizes transport due to differences in the orientation and scale of covariance.

Simulation results in Supp. Figure D.1 provide additional intuition for the behavior of these shape

distances as 𝛼 is adjusted between 0 to 2.
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Figure 5.4: Toy Dataset. (A) 16 out of 99 “toy networks” with different correlation structure (horizontal
axis) and covariance scale (vertical axis). Colors indicate distributions conditioned on different network
inputs (as in Fig. 5.1B). (B) Same as A, with random rotations applied in neural activation space. These
rotated representations are used in subsequent panels. (C) 2D embedding of networks in stochastic shape
space (𝛼 = 1 ground metric, G = O). Numbered points correspond to labeled representations in panel
B. Colormap indicates ground truth covariance parameters. (D) Same as C, but with 𝛼 = 2 (covariance-
insensitive). (E) Same as C, but with 𝛼 = 0 (mean-insensitive).

5.4 Results and Applications

5.4.1 Toy Dataset

We begin by building intuition on a synthetic dataset in 𝑛 = 2 dimensions with𝑀 = 5 inputs.

Each response distribution was chosen to be Gaussian, and the mean responses were spaced lin-

early along the identity line. We independently varied the scale and correlation of the covariance,

producing a 2D space of “toy networks.” Figure 5.4A shows a sub-sampled 4 × 4 grid of toy net-

works. To demonstrate that stochastic shape metrics are invariant to nuisance transformations,

we applied a random rotation to each network’s activation space (Fig. 5.4B). The remaining pan-

els show analyses for 99 randomly rotated toy networks spaced over a 11×9 grid (11 correlations

and 9 scales).

Because the mean neural responses were constructed to be identical (up to rotation) across

networks, existingmeasures of representational dissimilarity (CKA, RSA, CCA, etc.) all fail to cap-

ture the underlying structure of this toy dataset (Fig. D.2). In contrast, stochastic shape distances
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can elegantly recover the 2D space of networks we constructed. In particular, we computed the

99×99 pairwise distance matrix between all networks (2-Wasserstein ground metric and rotation

invariance, G = O) and then performing multi-dimensional scaling (MDS; Borg and Groenen,

2005) to obtain a 2D embedding. This reveals a 2D grid of networks that maps onto our con-

structed arrangement (Fig. 5.4C). Again, since the toy networks have equivalent geometries on

average, a deterministic metric obtained by setting 𝛼 = 2 in eq. 5.7 (covariance-insensitive metric)

fails to recover this structure (Fig. 5.4D). Setting 𝛼 = 0 in eq. 5.7 (mean-insensitive stochastic met-

ric) also fails to recover a sensible 2D embedding (Fig. 5.4E), since covariance ellipses of opposite

correlation can be aligned by a 90◦ rotation. Thus, we are only able to fully distinguish the toy

networks in Figure 5.4A by taking both the mean and covariance into account when computing

shape distances.

In Fig. D.3 we show that using energy distance (eq. 5.4, 𝑞 = 1) as the ground metric produces

a similar result. Similar to Fig. 5.4C, MDS visualizations reveal the expected 2D manifold of toy

networks. Indeed, these alternative distances correlate—but do not coincide exactly—with the

distances shown in Figure 5.4 that were computed with a Wasserstein ground metric (Fig. D.3D).

5.4.2 Biological Data

Quantifying representational similarity is common in visual neuroscience (Kriegeskorte et al.,

2008b; Shi et al., 2019). To our knowledge, past work has only quantified similarity in the geom-

etry of trial-averaged responses and has not explored how the population geometry of noise

varies across animals or brain regions (e.g. how the scale and shape of the response covariance

changes). We leveraged stochastic shape metrics to perform a preliminary study on primary vi-

sual cortical recordings (VISp) from 𝐾 = 31 mice in the Allen Brain Observatory.1 The results

we present below suggest: (a) across-animal variability in covariance geometry is comparable in

magnitude to variability in trial-average geometry, (b) across-animal distances in covariance and
1See subsection D.2.2 for full details. Data are available at: observatory.brain-map.org/visualcoding/
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Figure 5.5: (A) In an example mouse VISp, neuronal responses form different means and covariances
for six grating orientations. (B) In an example mouse VISp, neuronal responses form different means
and covariances for six different natural scenes. (C) Covariance distances dominate differences between
recording sessions for artificial grating stimuli, but not for natural scenes. (D) Averaged distance (across
sessions) between mean responses for natural scenes is larger compared to for gratings. (E) Observations
in (C) generally hold for individual pairs of recording sessions.

trial-average geometry are not redundant statistics as they are only weakly correlated, and (c)

the relative contributions of mean and covariance geometry to inter-animal shape distances are

stimulus-dependent. Together, these results suggest that neural response distributions contain

nontrivial geometric structure in their higher-order moments, and that stochastic shape metrics

can help dissect this structure.

We studied population responses (evoked spike counts, see Appendix D.2.2) to two stimulus

sets: a set of 6 static oriented grating stimuli and a set of 119 natural scene images. Figure 5.5A

shows neural responses from one animal to the oriented gratings within a principal component

subspace (top), and the isolated mean and covariance geometries (bottom). Figure 5.5B simi-

larly summarizes neural responses to six different natural scenes. In both cases, the scale and

orientation of covariance within the first two PCs varies across stimuli. Furthermore, the scale

of trial-to-trial variance was comparable to across-condition variance in the response means.

These observations can be made individually within each animal, but a stochastic shape metric
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(2-Wasserstein ground metric, and rotation invariance G = O) enables us to quantify differences

in covariance geometry across animals. We observed that the overall shape distance between two

animals reflected a mixture of differences in trial-average and covariance geometry. By leverag-

ing Equation 5.7, we observed that mean-insensitive (𝛼 = 0) and covariance-insensitive (𝛼 = 2)

distances between animals have similar magnitudes and are weakly correlated (Fig. 5.5C-E).

Interestingly, the ratio of these two distances was reversed across the two stimulus sets—

differences in covariance geometry across animals were larger relative to differences in average

for oriented gratings, while the opposite was true for natural scenes (Fig. 5.5C-E). Later we will

show an intriguingly similar trend when comparing representations between trained and un-

trained deep networks.

Figure 5.6: (A) Dissimilarity matrices with varying 𝛼 (top) and corresponding 2D embeddings (bottom)
for 1800 VAEs trained on dSprites. Six different VAE objectives (color hue) were used, each with six pos-
sible regularization strengths (tint) repeated over 50 random seeds. (B) Untrained networks were farther
apart in mean-insensitive distance (𝛼 = 0) while trained networks were largely separated by covariance-
insensitive distance (𝛼 = 2). (C) 𝑘NNprediction of a network’s random seed. (D) Predicting reconstruction
loss using 𝑘NN regression. (E) 𝑘NN prediction accuracy of VAE objective and regularization strength (hi
vs lo) for metrics with different 𝛼 (color scale). (F) Regression performance predicting factor disentangle-
ment scores (see Apdx. D.2.3 for details).
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5.4.3 Variational autoencoders and latent factor disentanglement

Variational autoencoders (VAEs; Kingma and Welling, 2019) are a well-known class of deep

generative models that map inputs, 𝒛 ∈ Z (e.g. images), onto conditional latent distributions,

𝐹 (· | 𝒛), which are typically parameterized as Gaussian. Thus, for each high-dimensional in-

put 𝒛𝑖 , the encoder network produces a distribution N(𝝁𝑖, 𝚺𝑖) in a relatively low-dimensional

latent space (“bottleneck layer”). Because of this, VAEs are a popular tool for unsupervised,

nonlinear dimensionality reduction (Batty et al., 2019; Goffinet et al., 2021; Higgins et al., 2021;

Seninge et al., 2021). However, the vast majority of papers only visualize and analyze the means,

{𝝁1, . . . , 𝝁𝑀 }, and ignore the covariances, {𝚺1, . . . , 𝚺𝑀 }, generated by these models. Stochastic

shape metrics enable us to compare both the mean and covariance structure learned by different

VAEs. Such comparisons can help us understand howmodeling choices impact learned represen-

tations (Locatello et al., 2019) and how reproducible or identifiable learned representations are in

practice (Khemakhem et al., 2020).

We studied a collection of 1800 trained networks 2 spanning six variants of the VAE framework

at six regularization strengths and 50 random seeds (Locatello et al., 2019). Networks were trained

on a synthetic image dataset called dSprites (Matthey et al., 2017), which is a well-established

benchmark within the VAE disentanglement literature. Each image has a set of ground truth

latent factors which Locatello et al. (2019) used to compute various disentanglement scores for

all networks.

We computed stochastic shape distances between over 1.6 million network pairs, demonstrat-

ing the scalability of our framework. We computed rotation-invariant distances (G = O) for the

generalized Wasserstein ground metric (𝛼 = 0, 0.5, 1, 1.5, 2 in equation 5.7; Fig. 5.6A) and for en-

ergy distance (𝑞 = 1 in equation 5.4; Fig. D.6A, Apdx. D.2.3.3). In all cases, different VAE variants

visibly clustered together in different regions of the stochastic shape space (Fig. 5.6B, Fig. D.6B).
2Released by Locatello et al. (2019) at https://github.com/google-research/disentanglement_lib
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Interestingly, the covariance-insensitive (𝛼 = 2) shape distance tended to be larger than themean-

insensitive (𝛼 = 0) shape distance (Fig. 5.6B), in agreement with the biological data on natural

images (Fig. 5.5C, bottom). Even more interestingly, this relationship was reversed in untrained

VAEs (Fig. 5.6B), similar to the biological data on artificial gratings (Fig. 5.5B, top). We trained

several hundred VAEs on MNIST and CIFAR-10 to confirm these results persisted across more

complex datasets (Fig. D.8; Apdx. D.2.3). Overall, this suggests that the ratio of 𝛼 = 0 and 𝛼 = 2

shape distances may be a useful summary statistic of representational complexity. We leave a

detailed investigation of this to future work.

Since stochastic shape distances define proper metric spaces without triangle inequality vi-

olations, we can identify the 𝑘-nearest neighbors (𝑘NN) of each network within this space, and

use these neighborhoods to perform nonparametric classification and regression (Cover andHart,

1967). This simple approach was sufficient to predict most characteristics of a network, includ-

ing its random seed (Fig. 5.6C), average training reconstruction loss (Fig. 5.6D), its variant of the

VAE objective including regularization strength (Fig. 5.6E), and various disentanglement scores

(Fig. 5.6F). Detailed procedures for these analyses are provided in Appendix D.2.3. Notably, many

of these predictions about network identity (Fig. 5.6E) were more accurate for the novel stochas-

tic shape metrics (0 ≤ 𝛼 < 2), compared to existing shape metrics (𝛼 = 2, deterministic metric

on the mean responses; Williams et al. 2021). Similarly, many disentanglement score predictions

(Fig. 5.6F) improved when considering both covariance and means together (0 < 𝛼 < 2).

The fact that we can often infer a network’s random seed from its position in stochastic shape

space suggests that VAE features may have limited interpretability on this dataset. These limita-

tions appear to apply both to the mean (𝛼 = 2) and the covariance (𝛼 = 0) representational ge-

ometries, as well as to intermediate interpolations. Future work that aims to use VAEs to identify

interpretable structure within scientific data may find it useful to repeat this analysis to quantify

the consistency of the learned representations across different optimization runs or different VAE

architectures. Future work that aims to assess the identifiability of VAE representations may find
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Figure 5.7: (A) Left, Patch-Gaussian augmented images for different patch width,𝑊 , and train-time noise
level, 𝜎 . Right, MDS embedded activation vectors from Patch-Gaussian trained networks. Colors corre-
spond to a different images, points correspond to independent samples, 𝜏 = 0.1. (B) Distance matrices
(left) and low-dimensional MDS embedding (right) of networks for different shape distances parameter-
ized by 𝛼 , and different levels of Gaussian corruption at test time, 𝜏 .

it useful to use stochastic shape metrics to perform similar analyses.

5.4.4 Effects of Patch-Gaussian data augmentation on artificial deep

networks

Despite the success of artificial neural networks on vision tasks, they are still susceptible to

small input perturbations (Hendrycks and Dietterich, 2019). A simple and popular approach to

induce robustness in deep networks is Patch-Gaussian augmentation (Lopes et al., 2019), which

adds Gaussian noise drawn from N(0, 𝜎2) to random image patches of width𝑊 during training

(Fig. 5.7A, left column). At test time, network robustness is assessed with images with spatially

uniform noise drawn from N(0, 𝜏2). Importantly, the magnitude of noise at test time, 𝜏 , may be

distinct from noise magnitude during training, 𝜎 . From Fig. 5.7A (right column), we see that using

Patch-Gaussian augmentation (second-fourth rows) qualitatively leads to more robust hidden

layer representations on noisy data compared to networks trained without it (first row). While

Patch-Gaussian augmentation is empirically successful (for quantitative details, see Lopes et al.,
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2019), how𝑊 and 𝜎 change hidden layer representations to confer robustness remains poorly

understood.

To investigate, we trained a collection of 339 ResNet-18 networks (He et al., 2016) on CIFAR-

10 (Krizhevsky et al., 2009), sweeping over 16 values of𝑊 , 7 values of 𝜎 , and 3 random seeds (see

subsection D.2.4 for details). While the architecture is deterministic, we can consider it to be a

stochastic mapping by absorbing the random Gaussian perturbation—parameterized by 𝜏—into

the first layer of the network and allowing the stochasticity to percolate through the network.

Representations from a fully connected layer following the final average pooling layer were used

for this analysis. We computed stochastic shape distances across all 57,291 pairs of networks

across six values of 𝜏 and three shape metrics parameterized by 𝛼 ∈ {0, 1, 2} defining the ground

metric in Equation 5.7.

Sweeping across 𝛼 and 𝜏 revealed a rich set of relationships across these networks (Fig. 5.7B

and Fig. D.10). While a complete investigation is beyond the scope of this paper, several points

are worthy of mention. First, the mean-insensitive (𝛼 = 0, top row) and covariance-insensitive

(𝛼 = 2, bottom row) metrics produce clearly distinct MDS embeddings. Thus, the new notions of

stochastic representational geometry developed in this paper (corresponding to 𝛼 = 0) provide

new information to existing distance measures (corresponding to 𝛼 = 2). Second, the arrange-

ment of networks in stochastic shape space reflects both𝑊 and 𝜎 , sometimes in a 2D grid layout

that maps nicely onto the hyperparameter sweep (e.g. 𝛼 = 0 and 𝜏 = 0.01). Networks with the

same hyperparameters but different random seeds tend to be close together in shape space. Third,

the test-time noise, 𝜏 , also intricately impacts the structure revealed by all metrics. Finally, em-

beddings based on 2-Wasserstein metric (𝛼 = 1) qualitatively resemble embeddings based on the

covariance-insensitive metric (𝛼 = 2) rather than the mean-insensitive metric (𝛼 = 0).
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5.5 Discussion and Relation to Prior Work

We have proposed stochastic shape metrics as a novel framework to quantify representational

dissimilarity across networks that respond probabilistically to fixed inputs. Very few prior works

have investigated this issue. To our knowledge, methods within the deep learning literature

like CKA (Kornblith et al., 2019) have been exclusively applied to deterministic networks. Of

course, the broader concept of measuring distances between probability distributions appears

frequently. For example, to quantify distance between two distributions over natural images,

Fréchet inception distance (FID; Heusel et al., 2017) computes the 2-Wasserstein distance within

a hidden layer representation space. While FID utilizes similar concepts to our work, it addresses

a very different problem—i.e., how to compare two stimulus sets within the deterministic feature

space of a single neural network, rather than how to compare the feature spaces of two stochastic

networks over a single stimulus set.

A select number of reports in neuroscience, particularly within the fMRI literature, have ad-

dressed how measurement noise impacts RSA (an approach very similar to CKA). Diedrichsen

et al. (2020) discuss how measurement noise induces positive bias in RSA distances, and pro-

pose approaches to correct for this bias. Similarly, Cai et al. (2016) propose a Bayesian approach

to RSA that performs well in low signal-to-noise regimes. These papers essentially aim to de-

velop methods that are robust to noise, while we were motivated to directly quantify differences

in noise scale and geometric structure across networks. It is also common to use Mahalanobis

distances weighted by inverse noise covariance to compute intra-network representation dis-

tances (Walther et al., 2016). This procedure does not appear to quantify differences in noise

structure between networks, which we verified on a simple “toy dataset” (compare Fig. 5.4C to

Supp. Fig. D.2). Furthermore, the Mahalanobis variant of RSA typically only accounts for a single,

stimulus-independent noise covariance. In contrast, stochastic shape metrics account for noise

statistics that change across stimuli.
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While our primary contribution is to develop a new theoretical framework, several aspects of

our experiments are noteworthy. Applying supervised learning methods (e.g. 𝑘-nearest neigh-

bors) to study representational geometry is rare within the literature, and is only rigorously justi-

fied by our proof that stochastic shape metrics satisfy the triangle inequality. We also performed

representational analysis across thousands of networks, which exceeds many other papers and

matches the scale of experiments in Williams et al. (2021), despite our approach requiring novel

and more computationally demanding algorithms.

Overall, our work meaningfully broadens the toolbox of representational geometry to quan-

tify stochastic neural responses. The strengths and limitations of our work are similar to other

approaches within this toolbox. A limitation in neurobiological recordings is that we only observe

a subset of the total neurons in each network. Shi et al. (2019) document the effect of subsampling

neurons on representational geometry. Intuitively, when the number of recorded neurons is large

relative to the representational complexity, geometric features are not badly distorted (Kriegesko-

rte and Diedrichsen, 2016; Trautmann et al., 2019). We show that our results are not qualitatively

affected by subsampling neurons in Supp. Fig. D.5. Another limitation is that representational

geometry does not directly shed light on the algorithmic principles of neural computation (Ma-

heswaranathan et al., 2019). Despite these challenges, representational dissimilarity measures

are one of the few quantitative tools available to compare activations across large collections of

complex, black-box models, and will be a mainstay of artificial and biological network analysis

for the foreseeable future.

In practical applications, we found that stochastic shape metrics can be used as targeted di-

agnostic tool—e.g. for quantifying the sensitivity of learned representations in VAEs to arbitrary

parameters like the random seed (Section 5.4.3)—or as a flexible exploratory analysis tool—e.g. in

revealing different low-dimensional visualizations (Section 5.4.4) or identifying conditions under

which the mean or covariance of neural responses dominates representational similarity (Sec-

tion 5.4.2).
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Our work demonstrates that large-scale, systematic analyses of stochastic representational

geometry is possible and may shed light on a variety of application areas, including neurobio-

logical noise correlations (Section 5.4.2), deep feature learning (Section 5.4.3), and robustness to

noise in deep networks (Section 5.4.4).
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6 | Discussion

6.1 Adaptive Coding Efficiency in Neural Populations

Efficient coding has been foundational in the exploration of neural coding since its inception

(Attneave, 1954; Barlow, 1961). It has led to the creation of numerous influential theories of neural

coding, achieved by deriving the best ways to communicate information regarding unchanging

stimulus distributions (Ganguli and Simoncelli, 2014). Nonetheless, natural environments are

perpetually in flux, and this is mirrored in the adaptive and dynamic nature of sensory codes in

the brain. Furthermore, while some normative studies focus on adaptive coding efficiency from a

single neuron standpoint (e.g. Młynarski and Hermundstad, 2021), our theoretical understanding

of population-level adaptive coding remains in its infancy. In this dissertation, we construct

normative theories that interpret adaptive population coding through the lens of gain control,

a mechanism with which a neuron adjusts its input-output sensitivity. We show that joint gain

control, without synaptic plasticity, may orchestrate efficient neural population adaptation under

dynamic sensory environments. Our approach offers a richer and more nuanced understanding

of the adaptive processes in neural computation, and contributes a complementary viewpoint to

the existing research on adaptive synaptic plasticity.

Specifically, Chapters 2 and 3 introduce a framework for adaptive statistical whitening. Us-

ing a novel overcomplete matrix factorization of the whitening transform, we devise an online

whitening algorithm that directly maps onto a biologically plausible recurrent neural circuit with
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primary neurons and gain-modulating interneurons. We further expand on this framework by

integrating adaptive gain control with existing, seemingly disparate normative theories of adap-

tation relying on synaptic plasticity (Lipshutz et al., 2023; Pehlevan and Chklovskii, 2015) into

a unified multi-timescale mechanistic model of adaptive whitening. This new model modifies

gains and synapses at different rates, thereby enabling the network to effectively adapt to chang-

ing sensory statistics, while enhancing the robustness of the adaptation to an array of statistical

contexts. Finally, in Chapter 4, we show that related ideas of adaptive gain control propagating

through recurrent network circuitry can effectively explain the entire set of observed adaptation

effects in V1 population adaptation data.

There remain open questions to be explored in future studies. In contemporary machine

learning research, self-supervised learning methods are increasingly using decorrelation trans-

formations like whitening to prevent representational collapse (Bardes et al., 2022; Ermolov et al.,

2021; Hua et al., 2021; Zbontar et al., 2021). In a similar vein, it would be interesting to under-

stand the effectiveness of stacked whitening layers on learning. Transformations such as batch

normalization layers in deep neural networks have proven effective during train and test time for

a variety of tasks (e.g. Krizhevsky et al., 2009). The decorrelation properties obtained by introduc-

ing unsupervised, onlinewhitening layers in place of batch normalization layers in a networkmay

prove useful in representation learning. Furthermore, while whitening has been predominantly

focused on offline neural network training, there is a growing interest in devising adaptive (run-

time) versions. Models proposed in this dissertation could potentially allow a network to adapt

to changes in input statistics dynamically, requiring minimal alterations to the existing network

(e.g. Ballé et al., 2020; Duong et al., 2023b; Hu et al., 2022; Mohan et al., 2021).

In the context of neuroscience, our framework poses intriguing predictions and opens up

exciting avenues for future exploration in the study of neural population adaptation. Firstly, one

of the core predictions that our framework presents is the stability of between-neuron synaptic

connectivity, denoted as W, through the process of adaptation. To evaluate this prediction, future
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studies could investigate changes in synaptic connectivity patterns under varying conditions of

neuronal adaptation, enabling us to understand how stable these connections are.

Secondly, our normative objective points towards the central role of gain control in popula-

tion adaptation, whether that be via gain-modulating interneurons within a circuit (Chapters 2,3),

or within the primary neurons themselves (Chapter 4). An intriguing direction of research could

focus on seeking empirical evidence for this postulated stimulus-dependent gain control in either

cell type. This could potentially be achieved by examining changes in neuron membrane conduc-

tance during adaptation, which may be mediated by fluctuations in slow hyperpolarizing Ca2+-

and Na+-induced K+ currents, as suggested by Sanchez-Vives et al. (2000).

Lastly, despite significant strides in uncovering the circuits involved in sensory adaptation

(Wanner and Friedrich, 2020), the precise structure of functional recurrent connectivity in adapt-

ing circuits remains unknown. In Chapters 2 and 3, we derive networks with symmetric feed-

forward and feedback weights between primary and interneurons. This architectural prediction

can be validated using anatomical measurements in networks known to compute whitening. For

instance, neurons in the zebrafish olfactory bulb are known to adaptively whiten their responses

(Friedrich andWanner, 2021). It has been shown that subsets of excitatory and inhibitory neurons

in this area have reciprocal connections (Friedrich and Wiechert, 2014). Future work can exam-

ine these reciprocally-connected neurons during adaptation directly, while validating whether

the interneuron gains adapt according to our theory.

Moreover in Chapter 4, we discuss how different variations of W can give rise to qualitatively

similar V1 population adaptation effects as those shown in our main findings (Appendix C.1).

However, not all forms of W lead to identical outcomes. Indeed, by analyzing the responses be-

fore and after adaptation, we can gain valuable insights into the functional recurrent connectivity

between neurons. Conducting adaptation experiments using a wider array of probabilistic stimu-

lus ensembles, 𝑝 (s), could provide further constraints for solving this complex functional inverse

problem. In summary, the insights and predictions offered by our framework open up avenues
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of research in understanding the role and mechanisms of synaptic connectivity and gain control

in adaptation.

6.2 Stochastic Shape Metrics

The last part of this dissertation derives and presents stochastic shape metrics as an effective

framework for comparing and quantifying the representational dissimilarity across networks that

produce stochastic responses to fixed inputs. However, as with any new statistical tool, several

research directions warrant exploration to further refine and apply this approach.

While ourmethod operates in “feature space” (i.e. in the neural response domain), othermeth-

ods in the literature, such as Centered Kernel Alignment (Kornblith et al., 2019) and Representa-

tional Similarity Analysis (Kriegeskorte and Diedrichsen, 2019), deal with comparing stimulus ×

stimulus representational similarity matrices. These methods have the benefit of being agnostic

to the number of neurons in each dataset being compared, so long as they each have the same

number of presented stimuli. While Williams et al. (2021) show that these kernel-based methods

can be viewed as a special case of shape metrics, they still only deal with deterministic responses.

Future research might seek to investigate potential extensions these techniques in the context of

stochastic networks.

Previous methods have considered noise in representational geometry comparisons as well,

but have treated noise as a nuisance variable. For example, the impact of measurement noise

on RSA, particularly within the realm of human functional brain imaging literature, has been

investigated. These studies predominantly aim to develop noise-robust methodologies, whereas

our work is motivated by the goal to quantify differences in noise scale and structure across

networks. However, there of course exists measurement noise in the neural recordings we are

interested in as well, whichmay impact the estimation of each response shape. Future work could

thus attempt to reconcile these two approaches, perhaps leading to a hybrid methodology that is

105



not only robust to noise but can also quantify its impact. Moreover, despite being powerful tools,

representational dissimilarity measures do not directly shed light on the underlying algorithmic

principles of neural computation. Consequently, future research should strive to connect these

measures with theoretical foundations of neural computation.

While we demonstrated that our results are not qualitatively affected by subsampling neu-

rons, there is a need for studies documenting the effect of subsampling neurons on representa-

tional geometry in more depth. Additionally, researchers might explore how these effects can be

minimized or compensated for to yield more accurate and reliable results. Our work also opens

the door for applying supervised learning methods to the study of representational geometry, an

approach that has seldom been explored in the literature. The computational implications and

benefits of this approach could be an intriguing avenue for future research.

Taken together, the development of stochastic shape metrics adds a powerful tool to the tool-

box for the analysis of representational geometry, allowing for the quantification of stochastic

neural population responses.

6.2.1 Concluding remarks

This dissertation proposes new theories of neural population adaptation and new neural pop-

ulation statistical data analysis tools. First, we study adaptive coding efficiency in sensory pop-

ulations with an emphasis on gain control as a key mechanism. Our models provide a new

perspective on how dynamic sensory codes in the brain respond to fluctuating environmental

statistics, offering insight into the complementary roles of synaptic plasticity and gain control

in adaptation. Second, we introduce stochastic shape metrics, a general approach to comparing

noisy representational geometry across different neural networks. We show that this framework

has the potential to improve our understanding of how trial variability impacts neural coding in

different networks. In sum, this work lays the foundation for future research on understanding

dynamic neural sensory population codes and population geometry.
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A | Adaptive Whitening with

Overcomplete Gain Control

A.1 Optimal Solution to Symmetric Whitening Objective

In this section, we prove that the optimal solution to the optimization problem in equation 2.2

is given by r𝑡 = C−1/2
𝑠𝑠 s𝑡 for 𝑡 = 1, . . . ,𝑇 (we treat the case that 𝑇 < ∞).

We first recall Von Neumann’s trace inequality (see, e.g., Carlsson, 2021, Theorem 3.1).

Lemma A.1 (Von Neumann’s trace inequality). Suppose A,B ∈ R𝑛×𝑚 with 𝑛 ⩽ 𝑚. Let 𝜎𝐴1 ⩾ · · · ⩾

𝜎𝐴𝑛 ⩾ 0 and 𝜎𝐵1 ⩾ · · · ⩾ 𝜎𝐵𝑛 ⩾ 0 denote the respective singular values of A and B. Then

Tr(AB⊤) ⩽
𝑛∑︁
𝑖=1

𝜎𝐴𝑖 𝜎
𝐵
𝑖 .

Furthermore, equality holds if and only if A and B share left and right singular vectors.

We can now proceed with the proof of our result. We first concatenate the inputs and out-

puts into data matrices X = [s1, . . . , s𝑇 ] ∈ R𝑁×𝑇 and Y = [r1, . . . , r𝑇 ] ∈ R𝑁×𝑇 . We can write

equation 2.2 as follows:

min
Y
∥X − Y∥2𝐹 subject to YY⊤ = 𝑇 I𝑁 .
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Expanding, substituting in with the constraint YY⊤ = 𝑇 I𝑁 and dropping terms that do not depend

on Y results in the objective

max
Y

Tr(XY⊤) subject to YY⊤ = 𝑇 I𝑁 .

By Von Neumann’s trace inequality, the trace is maximized when the singular vectors of Y are

aligned with the singular vectors of X. In particular, if the SVD of X is given by X = U𝑥S𝑥V⊤𝑥 , then

the optimalY is given byY =
√
𝑇U𝑥V⊤𝑥 , which is preciselyC−1/2

𝑠𝑠 X, whereC𝑠𝑠 := 1
𝑇

XX⊤ = U𝑥S2
𝑥U⊤𝑥 .

A.2 Proof of Proposition 2.1

Proof of Proposition 2.1. Suppose Equation 2.1 holds. Then, for 𝑖 = 1, . . . , 𝐾 ,

⟨(w⊤𝑖 r𝑡 )2⟩𝑡 = ⟨w⊤𝑖 r𝑡r⊤𝑡 w𝑖⟩𝑡 = w⊤𝑖 w𝑖 = 1.

Therefore, Equation 2.4 holds.

Now suppose Equation 2.4 holds. Let v ∈ R𝑁 be an arbitrary unit vector. Then vv⊤ ∈ S𝑁 and

by Equation 2.3, there exist 𝑔1, . . . , 𝑔𝐾 ∈ R such that

vv⊤ = 𝑔1w1w⊤1 + · · · + 𝑔𝐾w𝐾w⊤𝐾 . (A.1)

We have

v⊤⟨r𝑡r⊤𝑡 ⟩𝑡v = Tr(vv⊤⟨r𝑡r⊤𝑡 ⟩𝑡 ) =
𝐾∑︁
𝑖=1

𝑔𝑖 Tr(w𝑖w⊤𝑖 ⟨r𝑡r⊤𝑡 ⟩𝑡 ) =
𝐾∑︁
𝑖=1

𝑔𝑖 Tr(w𝑖w⊤𝑖 ) = Tr(vv⊤) = 1. (A.2)

The first equality is a property of the trace operator. The second and fourth equalities follow from

Equation A.1 and the linearity of the trace operator. The third equality follows from Equation 2.4,

the cyclic property of the trace, and the fact that each w𝑖 is a unit vector. The final equality holds
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because v is a unit vector. Since Equation A.2 holds for every unit vector v ∈ R𝑁 , Equation 2.1

holds. □

A.3 Frame Factorizations of Symmetric Matrices

A.3.1 Analytic solution for the optimal gains

Recall that the optimal solution of the symmetric objective in Equation 2.5 is given by r𝑡 =

C−1/2
𝑠𝑠 s𝑡 for 𝑡 = 1, 2, . . . . In our neural circuit with interneurons and gain control, the outputs of

the primary neurons at equilibrium is (given in Equation 2.8, but repeated here for clarity),

r̄𝑡 =
[
I𝑁 +W diag (g)W⊤

]−1 s𝑡 ,

where W ∈ R𝑁×𝐾 is overcomplete, arbitrary (provided Equation 2.3 holds), and fixed; and ele-

ments of g ∈ R𝐾 can be interpreted as learnable scalar gains. The circuit performs symmetric

whitening when the gains g satisfy the relation

I𝑁 +W diag (g)W⊤ = C1/2
𝑠𝑠 . (A.3)

It is informative to contrast this with conventional approaches to symmetric whitening, which

rely on eigendecompositions,

V diag (𝝀)1/2 V⊤ = C1/2
𝑠𝑠 ,

where V ∈ R𝑁×𝑁 and 𝝀 are the eigenvectors and eigenvalues of C𝑠𝑠 , respectively. Note that in this

eigenvector formulation, both vector quantities (columns of V) and scalar quantities (elements of

𝝀) need to be learned, whereas in our formulation (Equation A.3), only scalars need to be learned
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(elements of g).

When 𝐾 ≥ 𝑁 (𝑁 + 1)/2, we can explicitly solve for the optimal gains g∗ (derived in the next

subsection):

g∗ =
[ (

W⊤W
)◦2]† [w⊤1 C1/2

𝑠𝑠 w1 − 1, . . . ,w⊤𝐾C1/2
𝑠𝑠 w𝐾 − 1

]⊤
. (A.4)

A.3.2 Isolating g embedded in a diagonal matrix

In the upcoming subsection, our variable of interest, g, is embedded along the diagonal of a

matrix, then wedged between two fixed matrices, i.e. A1 diag (g) A2. We employ the following

identity to isolate g,

diag (A1 diag (g) A2) =
(
A1 ◦ A⊤2

)
g, (A.5)

where, on the left-hand-side, the inner diag (·) forms a diagonal matrix from a vector, the outer

diag (·) returns the diagonal of a matrix as a vector, and ◦ is the element-wise Hadamard product.

A.3.3 Deriving optimal gains

Let C ∈ S𝑁 , where S𝑁 is the set of symmetric 𝑁 × 𝑁 matrices. Suppose g ∈ R𝐾 is such that

the following holds:

W diag (g)W⊤ = C (A.6)

where W ∈ R𝑁×𝐾 is some fixed, arbitrary, frame with 𝐾 ≥ 𝑁 (𝑁+1)
2 (i.e. a representation that is

O(𝑁 2) overcomplete). To solve for g, we multiply both sides of Equation A.6 from the left and
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right by W⊤ and W, respectively, then take the diagonal1 of the resultant matrices,

diag
(
W⊤W diag (g)W⊤W

)
= diag

(
W⊤CW

)
. (A.7)

Finally, employing the identity in Equation A.5 yields

(W⊤W)◦2g = diag
(
W⊤CW

)
, (A.8)

g =
[
(W⊤W)◦2

]† diag
(
W⊤CW

)
, (A.9)

where (·)◦2 denotes element-wise squaring, (W⊤W)◦2 is positive semidefinite by the Schur prod-

uct theorem and (·)† denotes the Moore-Penrose pseudoinverse. Thus, any 𝑁 × 𝑁 symmetric

matrix, can be encoded as a vector, g, with respect to an arbitrary fixed frame, W, by solving a

standard linear system of 𝐾 equations of the form Ag = b. Importantly, when 𝐾 =
𝑁 (𝑁+1)

2 and

the columns of W are not collinear, we have empirically found the matrix on the LHS, (W⊤W)◦2,

to be positive definite, so the vector g is uniquely defined.

Without loss of generality, assume that the columns of W are unit-norm (otherwise, we can

always normalize them by absorbing their lengths into the elements of g). Furthermore, assume

without loss of generality that C ∈ S𝑁++, the set of all symmetric positive definite matrices (e.g.

covariance, precision, PSD square roots, etc.). When C is a covariance matrix, then diag (W⊤CW)

can be interpreted as a vector of projected variances of C along each axis spanned by W. There-

fore, Equation A.8 states that the vector g is linearly related to the vector of projected variances

via the element-wise squared frame Gramian, (W⊤W)◦2.
1Similar to commonly-used matrix libraries, the diag (·) operator here is overloaded and can map a vector to a

matrix or vice versa.
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A.4 Saddle Point Property

In this section, we prove the following minimax property (for the case 𝑡 = 1, . . . ,𝑇 with 𝑇

finite):

min
{r𝑡 }

max
g
⟨ℓ (s𝑡 , r𝑡 , g)⟩𝑡 = max

g
min
{r𝑡 }
⟨ℓ (s𝑡 , r𝑡 , g)⟩𝑡 . (A.10)

The proof relies on the following minimax property for a function that satisfies the saddle point

property (Boyd and Vandenberghe, 2004, section 5.4).

Theorem A.2. Let 𝑉 ⊆ R𝑛 ,𝑊 ⊆ R𝑚 and 𝑓 : 𝑉 ×𝑊 → R. Suppose 𝑓 satisfies the saddle point

property; that is, there exists (a∗, b∗) ∈ 𝑉 ×𝑊 such that

𝑓 (a∗, b) ⩽ 𝑓 (a∗, b∗) ⩽ 𝑓 (a, b∗), for all (a, b) ∈ 𝑉 ×𝑊 .

Then

min
a∈𝑉

max
b∈𝑊

𝑓 (a, b) = max
b∈𝑊

min
a∈𝑉

𝑓 (a, b) = 𝑓 (a∗, b∗).

In view of Theorem A.2, it suffices to show there exists (r∗1, . . . , r∗𝑇 , g∗) such that

ℓ (r∗1, . . . , r∗𝑇 , g) ⩽ ℓ (r∗1, . . . , r∗𝑇 , g∗) ⩽ ℓ (r1, . . . , r𝑇 , g∗), for all r1, . . . , r𝑇 ∈ R𝑁 and g ∈ R𝐾 .

(A.11)

Define r∗𝑡 := C−1/2
𝑠𝑠 s𝑡 for all 𝑡 = 1, . . . ,𝑇 and define g∗ as in equation A.4 so that equation A.3 holds.

Then, for all g ∈ R𝐾 ,

ℓ (r∗1, . . . , r∗𝑇 , g) =
1
𝑇

𝑇∑︁
𝑡=1
∥s𝑡 − r∗𝑡 ∥22.
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Therefore, the first inequality in equation A.11 holds (in fact it is an equality for all g). Next, we

have

ℓ (r1, . . . , r𝑇 , g∗) =
1
𝑇

𝑇∑︁
𝑡=1
∥s𝑡 − r𝑡 ∥22 +

1
𝑇

𝑇∑︁
𝑡=1

Tr
[
Wdiag(g∗)W⊤(r𝑡r⊤𝑡 − I𝑁 )

]
=

1
𝑇

𝑇∑︁
𝑡=1
(s⊤𝑡 s𝑡 − 2s⊤𝑡 r𝑡 ) +

1
𝑇

𝑇∑︁
𝑡=1

Tr
[
(I𝑁 +Wdiag(g∗)W⊤) (r𝑡r⊤𝑡 − I𝑁 )

]
=

1
𝑇

𝑇∑︁
𝑡=1
(s⊤𝑡 s𝑡 − 2s⊤𝑡 r𝑡 ) +

1
𝑇

𝑇∑︁
𝑡=1

Tr
[
C1/2
𝑠𝑠 (r𝑡r⊤𝑡 − I𝑁 )

]
Since C1/2

𝑠𝑠 is positive definite, ℓ (r1, . . . , r𝑇 , g∗) is strictly convex in (r1, . . . , r𝑇 ) with its unique

minimum obtained at r𝑡 = C−1/2
𝑠𝑠 s𝑡 for all 𝑡 = 1, . . . ,𝑇 (to see this, differentiate with respect to

r1, . . . , r𝑇 , set the derivatives equal to zero and solve for r1, . . . , r𝑇 ). This establishes the second

inequality in equation A.11 holds. Therefore, by Theorem A.2, equation A.10 holds.

A.5 Weighted Average Update Rule for Gains

The update for g in Equation 2.10 can be generalized to allow for a weighted average over

past samples. In particular, the general update is given by

g← g + 𝜂
(

1
𝑍

𝑡∑︁
𝑠=1

𝛾 𝑡−𝑠z◦2𝑠 − 1

)
,

where 𝛾 ∈ [0, 1] determines the decay rate and 𝑍 := 1 + 𝛾 + · · · + 𝛾 𝑡−1 is a normalizing factor.
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A.6 Batched and Offline Algorithms for Whitening with

RNNs via Gain Modulation

In addition to the fully-online algorithm provided in the main text (Algorithm 1), we also

provide two variants below. In many applications, streaming inputs arrive in batches rather than

one at a time (e.g. video streaming frames). Similarly for conventional offline stochastic gradient

descent training, data is sampled in batches. Algorithm 3 would be one way to accomplish this

in our framework, where the main difference between the fully online version is taking the mean

across samples in the batch to yield average gain update Δg term. Furthermore, in the fully offline

setting when the covariance of the inputs, C𝑠𝑠 is known, Algorithm 4 presents a way to whiten

the covariance directly.
Algorithm 3: Batched symmetric

whitening
1: Input: Data matrix X ∈ R𝑁×𝑇 (centered)

2: Initialize: W ∈ R𝑁×𝐾 ; g ∈ R𝐾 ; 𝜂; batch size 𝐵

3: while not converged do

4: X𝐵 ← sample_batch(X, 𝐵)

5: Y𝐵 ← [I𝑁 +W diag (g)W⊤]−1X𝐵

6: Z𝐵 ←W⊤Y𝐵

7: Δg← 1
𝑇
diag(Z𝐵Z⊤

𝐵
) − 1

8: g← g + 𝜂 mean(Δg, axis=1)

9: end while

Algorithm 4: Offline symmetric

whitening
1: Input: Input covariance C𝑠𝑠

2: Initialize: W ∈ R𝑁×𝐾 ; g ∈ R𝐾 ; 𝜂

3: while not converged do

4: M← [I𝑁 +W diag (g)W⊤]−1

5: C𝑟𝑟 ← MC𝑠𝑠M

6: Δg← diag (W⊤C𝑟𝑟W) − 1

7: g← g + 𝜂Δg

8: end while
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A.7 Normalizing Ill-conditioned Inputs with

Non-negative Constrained Gains

A.7.1 Quantifying whitening error

Whitening with non-negative gains does not, in general, produce an output with identity

covariance matrix; therefore, quantifying algorithm performance with the error defined in the

main text would not be informative. Because this extension shares similarities with ideas of reg-

ularized whitening, in which principal axes whose eigenvalues are below a certain threshold are

unaffected by the whitening transform, we quantify algorithmic performance using thresholded

Spectral Error,

Spectral Error :=
1
𝑁

𝑁∑︁
𝑖

max(𝜆𝑖 − 1, 0)2,

where 𝜆𝑖 is the 𝑖th eigenvalue of C𝑟𝑟 . Here, as in the main text, we set the threshold to 1. Figure A.1

shows that this network reduces spectral error. Importantly, the converged solution depends on

the initial choice of frame (see next subsection).

A.7.2 Geometric intuition behind thresholded whitening with

non-negative gains

In general, the modified objective with rectified gains (Equation 2.14) does not statistically

whiten the inputs s1, s2, . . . , but rather adapts the non-negative gains 𝑔1, . . . , 𝑔𝐾 to ensure that the

variances of the outputs r1, r2, . . . in the directions spanned by the frame vectors {w1, . . . ,w𝐾 }

are bounded above by unity (Figure A.2). This one-sided normalization carries interesting im-

plications for how and when the circuit statistically whitens its outputs, which can be compared
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Figure A.1: Whitening ill-conditioned inputs with non-negative gains. A) An equi-angular frame (red,
blue, green; see Sec. 2.5.2) whitening ill-conditioned inputs. B) Gains as algorithm progresses, using up-
dates with either rectified or unrectified constraints. C) Spectral Error (see text).

with experimental observations. For instance, the circuit performs symmetric whitening if and

only if there are non-negative gains such that Equation A.3 holds (see, e.g., the top right example

in Figure A.2), which corresponds to cases such that the matrix C1/2
𝑠𝑠 is an element of the following

cone (with its vertex translated by I𝑁 ):{
I𝑁 +

𝐾∑︁
𝑖=1

𝑔𝑖w𝑖w⊤𝑖 : g ∈ R𝐾+

}
.

On the other hand, if the variance of an input projection is less than unity — i.e., w⊤𝑖 C𝑠𝑠w𝑖 ⩽ 1

for some 𝑖 — then the corresponding gain 𝑔𝑖 remains zero. When this is true for all 𝑖 = 1, . . . , 𝐾 ,

the gains all remain zero and the circuit output is equal to its input (see, e.g., the bottom middle

panel of Figure A.2).
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Figure A.2: Geometric intuition of whitening with/without inequality constraint. Whitening efficacy us-
ing non-negative gains depends on W and C𝑠𝑠 . For 𝑁 = 2 and 𝐾 = 3, examples of covariance matrices C𝑟𝑟
(red ellipses) corresponding to optimal solutions r of objective 2.12, for varying input covariance matrices
C𝑠𝑠 (black ellipses) and frames W (spanning axes denoted by gray lines). Unit circles, which correspond
to the identity matrix target covariance, are shown with dashed lines. Each row corresponds to a different
frame W and each column corresponds to a different input covariance C𝑠𝑠 .

A.8 Whitening Spatially Local Neighborhoods

A.8.1 Spatially local whitening in 1D

For an 𝑁 -dimensional input, we consider a network that whitens spatially local neighbor-

hoods of size𝑀 < 𝑁 . To this end, we can construct 𝑁 filters of the form

w𝑖 = e𝑖, 𝑖 = 1, . . . , 𝑁

and𝑀 (𝑁 − 𝑀+1
2 ) filters of the form

w𝑖 𝑗 =
e𝑖 + e 𝑗√

2
, 𝑖, 𝑗 = 1, . . . , 𝑁 , 1 ⩽ |𝑖 − 𝑗 | ⩽ 𝑀.

The total number of filters is (𝑀 + 1) (𝑁 − 𝑀
2 ), so for fixed𝑀 the number of filters scales linearly

in 𝑁 rather than quadratically.
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We simulated a network comprising 𝑁 = 10 primary neurons, and a convolutional weight

matrix connecting each interneuron to spatial neighborhoods of three primary neurons. Given

input data with covariance C𝑠𝑠 illustrated in Figure A.3A (left panel), this modified network suc-

ceeded to statistically whiten local neighborhoods of size of primary 3 neurons (right panel).

Notably, the eigenspectrum (Figure A.3B) after local whitening is much closer to being equalized.

Furthermore, while the global whitening solution produced a flat spectrum as expected, the local

whitening network did not amplify the axis with very low-magnitude eigenvalues (Figure A.3B

right panel).

Figure A.3: Statistically adapting local neighborhoods of neurons. A) Ĉ𝑠𝑠 denotes correlation matrix,
which are shown here for display purposes only, to facilitate comparisons. Network with 10-dimensional
input correlation (left) 10-dimensional output correlation matrix after global whitening (middle); and out-
put correlation matrix after statistically whitening local neighborhoods of size 3. The output correlation
matrix of the locally adapted circuit has block-identity structure along the diagonal. B) Corresponding
eigenspectra of covariance matrices of unwhitened (left), global whitened (middle), and locally whitened
(right) network outputs. The y-axis limits of the middle and right columns are the same, but different
than the left column. The black dashed line denotes unity.

A.8.2 Filter bank construction in 2D

Here, we describe one way of constructing a set of convolutional weights for overlapping

spatial neighborhoods (e.g. image patches) of neurons. Given an 𝑛 ×𝑚 input and overlapping
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neighborhoods of size ℎ × 𝑤 to be statistically whitened, the samples are therefore matrices

𝑋 ∈ R𝑛×𝑚 . In this case, filters w ∈ R1×𝑛×𝑚 can be indexed by pairs of pixels that are in the same

patch:

((𝑖, 𝑗), (𝑘, ℓ)), 1 ⩽ 𝑖 ⩽ 𝑛, 1 ⩽ 𝑗 ⩽ 𝑚, 0 ⩽ |𝑖 − 𝑘 | ⩽ ℎ, 0 ⩽ | 𝑗 − ℓ | ⩽ 𝑤

We can then construct the filters as,

w(𝑖, 𝑗),(𝑘,ℓ) (𝑋 ) =


𝑥𝑖, 𝑗 if (𝑖, 𝑗) = (𝑘, ℓ),

𝑥𝑖, 𝑗+𝑥𝑘,ℓ√
2

if (𝑖, 𝑗) ≠ (𝑘, ℓ).

In this case there are

𝑛𝑚 +𝑤ℎ
[
(𝑛 −𝑤) (𝑚 − ℎ) + (𝑛 −𝑤) (ℎ + 1)

2
+ (𝑚 − ℎ) (𝑤 + 1)

2
+ (ℎ + 1) (𝑤 + 1)

2

]
such filters, so the number of filters required scales linearly with 𝑛𝑚 rather than quadratically.

A.9 Additional Applications

A.9.1 Preventing representational collapse in online principal

subspace learning

Here, similar to Lipshutz et al. (2023), we show how whitening can prevent representational

collapse using the analytically tractable example of online principal subspace learning. Recent

approaches to self-supervised learning have used decorrelation transforms such as whitening to

prevent collapse during training (e.g. Zbontar et al., 2021). Future architectures may benefit from

online, adaptive whitening to allow for continual learning and test-time adaptation.
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Consider a primary neuron whose pre-synaptic input at time 𝑡 is u𝑡 ∈ R𝐷 , and corresponding

post-synaptic input is 𝑠𝑡 := v⊤u𝑡 , where v ∈ R𝐷 are the synaptic weights connecting the pre-

synaptic inputs to the neuron. An online variant of power iteration algorithm learns the top

principal component of the inputs by updating the vector v as follows:

v← v + 𝜁
(
𝑠𝑡u𝑡 − 𝑠2

𝑡 v
)

v← 1
∥v∥v

where 𝜁 > 0 is small.

Next, consider a population of 2 ≤ 𝑁 ≤ 𝐷 primary neurons with outputs r𝑡 ∈ R𝑁 and

feedforward synaptic weight vectors v1, . . . , v𝑁 ∈ R𝐷 connecting the pre-synaptic inputs u𝑡 to

the 𝑁 neurons. Running 𝑁 parallel instances of the power iteration algorithm defined above

without a decorrelation process results in representational collapse, because each synaptic weight

vector v𝑖 converges to the top principal component (Figure A.4, orange). We demonstrate that

our whitening algorithm via gain modulation readily solves this problem. Here, it is important

that the whitening happen on a faster timescale than the principal subspace learning, to avoid

collapse (see Lipshutz et al., 2023, for details).

For this simulation, we set 𝐷 = 3, 𝑁 = 2 and randomly sample i.i.d. pre-synaptic inputs

u𝑡 ∼ N(0, diag(5, 2, 1)). We randomly initialize two vectors v1, v2 ∈ R3 with i.i.d. Gaussian

entries. At each time step 𝑡 , we project pre-synaptic inputs to form the post-synaptic primary

neuron inputs, s𝑡 :=
[
v⊤1 u𝑡 , v⊤2 u𝑡

]⊤, forming the input to Algorithm 1. Let r𝑡 be the primary

neuron steady-state output; that is, r𝑡 = (I𝑁 +W diag (g)W⊤)−1 s𝑡 (Equation 2.8). For 𝑖 = 1, 2,

we update v𝑖 according to the above-defined update rules, with 𝜁 = 10−3. We update the gains g

according to Algorithm 1 with 𝜂 = 10𝜁 . To measure the online subspace learning performance,
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we define

Subspace error :=
V

(
V⊤V

)−1 V⊤ − diag ( [1, 1, 0])
2

Frob
, V := [v1, v2] ∈ R3×2

Figure A.4 (blue) shows that our adaptive whitening algorithmwith gain modulation successfully

facilitates subspace learning and prevents representational collapse.

Figure A.4: Adaptive symmetric whitening with gain modulation prevents representational collapse dur-
ing online principal subspace learning. Without whitening, subspace error stabilizes at a non-zero value,
indicating that the network has converged to a collapsed representation. Shaded curves are median and
[25%, 75%] quantiles over 50 random intializations.

A.9.2 Generalized adaptive covariance transformations

Our framework for adaptive whitening via gain modulation can easily be generalized to adap-

tively transform a signal with some initial covariancematrix to onewith any target covariance (i.e.

not just the identity matrix). This demonstrates that our adaptive gain modulation framework

has implications beyond statistical whitening. This could, for example, allow online systems to

stably maintain some initial/target (non-white) output covariance under changing input statistics

(i.e. covariance homeostasis, Benucci et al., 2013; Westrick et al., 2016). The key insight, similar

to the main text, is that a full-rank covariance matrix has 𝐾𝑁 degrees of freedom, and therefore
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marginal measurements along𝐾𝑁 distinct axes is necessary and sufficient to represent the matrix

(Karl et al., 1994).

Let Ctarget be some arbitrary target covariance matrix. Then the general objective is

min
{r𝑡 }
⟨∥s𝑡 − r𝑡 ∥22⟩𝑡 s.t. ⟨r𝑡r⊤𝑡 ⟩𝑡 = Ctarget. (A.12)

Following the same logic as in the main text, the Lagrangian becomes

max
g

min
{r𝑡 }
⟨ℓ (s𝑡 , r𝑡 , g)⟩𝑡 , (A.13)

where ℓ (s, r, g) := ∥s − r∥22 +
𝐾∑︁
𝑖=1

𝑔𝑖
{
(w⊤𝑖 r)2 − 𝜎2

𝑖

}
,

where𝜎2
𝑖 = w⊤𝑖 Ctargetw𝑖 is themarginal variance along the axis spanned byw𝑖 . WhenCtarget = I𝑁 ,

then 𝜎2
𝑖 = 1 for all 𝑖 , and this reduces to our original overcomplete whitening objective (Equa-

tion 2.5). The only difference in the recursive algorithm optimizing this generalized objective is

the gain update rule,

𝑔𝑖 ← 𝑔𝑖 +
𝜂

2
∇𝑔𝑖 ℓ (s𝑡 , r̄𝑡 , g)

= 𝑔𝑖 + 𝜂
(
𝑧2
𝑖,𝑡 − 𝜎2

𝑖

)
. (A.14)

We can interpret this formulation as each interneuron having a pre-determined target input vari-

ance (perhaps learned over long time-scales), and adjusting its gains to modulate the joint re-

sponses of the primary neurons until its input variance matches the target.
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B | Adaptive Whitening with Fast Gain

Modulation and Slow Synaptic

Plasticity

B.1 Separation of Timescales for Gain and Synaptic

Weight Updates

In this section, we consider an algorithm where we directly optimize the objective in equa-

tion 3.3. In particular, for each context 𝑐 , we first optimize over the gains g and then take a

gradient descent step with respect to W.

We first compute the gains using the formula for the optimal gains derived in (Duong et al.,

2023c, equation 18):

g =
[
(W⊤W)◦2

]† diag (
W⊤C1/2

𝑠𝑠 (𝑐)W −W⊤W
)
.

We then update the synaptic weights by taking the following gradient descent step:

Δw𝑖 = Es∼𝑝 (s|𝑐)
[
𝜂𝑤 (rr⊤w𝑖𝑔𝑖 −w𝑖𝑔𝑖)

]
= 𝜂𝑤

(
M(W, g)−1C𝑠𝑠 (𝑐)M(W, g)−1 − I𝑁

)
w𝑖𝑔𝑖,
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where M(W, g) := 𝛼I𝑁 +Wdiag(g)W⊤. Combining these updates yields Algorithm 5, which takes

context-dependent covariance matrices C𝑠𝑠 (𝑐) as its input.

Algorithm 5: Adaptive Whitening via Synaptic Plasticity and Gain Modulation
1: Input: Covariance matrices C𝑠𝑠 (1),C𝑠𝑠 (2), . . .
2: Initialize: W ∈ R𝑁×𝐾 ; 𝜂𝑤 > 0
3: for 𝑐 = 1, 2, . . . do
4: g←

[
(W⊤W)◦2

]† diag (
W⊤C1/2

𝑠𝑠 (𝑐)W −W⊤W
)

5: G← diag(g)
6: W←W + 𝜂𝑤

(
(WGW⊤)−1 C𝑠𝑠 (𝑐) (WGW⊤)−1 WG −WG

)
7: end for

B.2 Adaptive Whitening of Natural Images

Figure B.1: Control experiment accompanying Sec. 3.6.2. A) W𝑇 learned from natural image patches.
B) Basis vectors from A displayed as line plots, compared to the 1D DCT, and principal components of
E𝑐∼𝑝 (𝑐) [C𝑠𝑠 (𝑐)]. C) Control condition. W𝑇 learned from spectrally-matched image patches with random
eigenvectors.

In this section, we elaborate on the converged structure ofW𝑇 using natural image patches. To

better visualize the relationship between the learned columns of W and sinusoidal basis functions
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(e.g. DCT), we focus on 1-dimensional image patches (rows of pixels). The results are similar with

2D image patches.

It is well known that eigenvectors of natural images are well-approximated by sinusoidal basis

functions (e.g. the DCT; Ahmed et al., 1974; Bull and Zhang, 2021). Using the same images from

the main text (van Hateren and van der Schaaf, 1998), we generated 56 contexts by sampling 16×1

pixel patches from separate images, with 2E4 samples each. We train Algorithm 5 with 𝐾 = 𝑁 =

16, 𝜂𝑤 = 5E−2, and random W0 ∈ 𝑂 (16) on a training set of X of the images, presented uniformly

at random 𝑇 = 1E5 times. Fig B.1A,B shows that W𝑇 approximates the principal components

of the aggregated context-dependent covariance, E𝑐∼𝑝 (𝑐) [C𝑠𝑠 (𝑐)], which are closely aligned with

the DCT. To show that this structure is inherent in the spatial statistics of natural images, we

generated control contexts, C𝑠𝑠 (𝑐), by forming covariance matrices with matching eigenspectra,

but each with random and distinct eigenvectors. This destroys the structure induced by natural

image statistics. Consequently, the learned vectors in W𝑇 are no longer sinusoidal (Fig B.1C). As

a result, whitening error with W𝑇 is much higher on the training set, with 0.3± 0.02 error (mean

± standard error over 10 random initializations; Eq. 3.6) on natural image contexts and 2.7±0.1 on

the control contexts. While for the natural images, a basis approximating the DCT was sufficient

to adaptively whiten all contexts in the ensemble, this is not the case for the generated control

contexts.

Finally, we find that as𝐾 increases from𝐾 = 1 to𝐾 = 16, the basis vectors in W𝑇 progressively

learn higher frequency components of the DCT (Fig. B.2). This is a sensible solution, due to the

ℓ2 reconstruction error of our objective, and the 1/𝑓 spectral content of natural image statistics.

With more flexibility, as𝐾 increases past 𝑁 (i.e. the overcomplete regime), the network continues

to improve its whitening error (Fig. B.3A) by learning a basis, W𝑇 , that can account for within-

context information that is insufficiently captured by the DCT (Fig. B.3B). Taken together, our

model successfully learns a basis W𝑇 that exploits the spatial structure present in natural images.
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Figure B.2: As 𝐾 increases, columns of W progressively learn higher frequency components of the DCT.

B.3 Modifications for Increased Biological Realism

In this section, we modify Algorithm 1 to be more biologically realistic.

B.3.1 Enforcing unit norm basis vectors

In our algorithm, there is no constraint on the magnitude of the column vectors of W. We can

enforce a unit norm (here measured using the Euclidean norm) constraint by adding Lagrange

multipliers to the objective in equation 3.3:

min
W∈R𝑁×𝐾

max
m∈R𝐾

E𝑐∼𝑝 (𝑐)

[
min
g∈R𝐾
Es∼𝑝 (s|𝑐) [𝑔 (W, g, r, s)]

]
, (B.1)

where

𝑔(W, g, r, s) = ℓ (W, g, r, s) +
𝐾∑︁
𝑖=1

𝑚𝑖 (∥w𝑖 ∥2 − 1).
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Figure B.3: A) Error on training and test set as a function of 𝐾 . B) In the overcomplete regime, the
network converges to a W𝑇 that helps to improve error compared to the the 𝐾 ≤ 𝑁 regime.

Taking partial derivatives with respect to w𝑖 and m𝑖 results in the updates:

Δw𝑖 = 𝜂𝑤 (𝑛𝑖r − (𝑔𝑖 +𝑚𝑖)w𝑖)

Δ𝑚𝑖 = ∥w𝑖 ∥2 − 1.

Furthermore, since the weights are constrained to have unit norm, we can replace ∥w𝑖 ∥2 with 1

in the gain update:

Δ𝑔𝑖 = 𝜂𝑔 (𝑧2
𝑖 − 1).
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B.3.2 Decoupling the feedforward and feedback weights

We replace the primary neuron to interneuron weight matrix W⊤ (resp. interneuron to pri-

mary neuron weight matrix −W) with W𝑟𝑛 (resp. −W𝑛𝑟 ). In this case, the update rules are

W𝑟𝑛 ←W𝑟𝑛 + 𝜂𝑤
(
n𝑡r⊤𝑡 − diag(g +m)W𝑟𝑛

)
W𝑛𝑟 ←W𝑛𝑟 + 𝜂𝑤

(
r𝑡n⊤𝑡 −W𝑛𝑟diag(g +m)

)
.

Let W𝑟𝑛,𝑡 and W𝑛𝑟,𝑡 denote the values of the weights W𝑟𝑛 and W𝑛𝑟 , respectively, after 𝑡 = 0, 1, . . .

iterates. Then for all 𝑡 = 0, 1, . . . ,

W⊤𝑟𝑛,𝑡 −W𝑛𝑟,𝑡 =
(
W⊤𝑟𝑛,0 −W𝑛𝑟,0

)
(I𝑁 − 𝜂𝑤diag(g +m))𝑡 .

Thus, if 𝑔𝑖 +𝑚𝑖 ∈ (0, 2𝜂−1
𝑤 ) for all 𝑖 (e.g., by enforcing non-negative 𝑔𝑖,𝑚𝑖 and choosing 𝜂𝑤 > 0

sufficiently small), then the difference decays exponentially in 𝑡 and the feedforward and feedback

weights are asymptotically symmetric.

B.3.3 Sign-constraining the synaptic weights and gains

The synaptic weight matrix W and gains vector g are not sign-constrained in Algorithm 1,

which is not consistent with biological evidence. We can modify the algorithm to enforce the sign

constraints by rectifying the weights and gains at each step. Here [·]+ denote the elementwise

rectification operation. This results in the updates

g←
[
g + 𝜂𝑔 (z ◦ z − 1)

]
+

W𝑟𝑛 ←
[
W𝑟𝑛 + 𝜂𝑤

(
n𝑡r⊤𝑡 − diag(g +m)W𝑟𝑛

) ]
+

W𝑛𝑟 ←
[
W𝑛𝑟 + 𝜂𝑤

(
r𝑡n⊤𝑡 −W𝑛𝑟diag(g +m)

) ]
+ .
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B.3.4 Online algorithm with improved biological realism

Combining these modifications yields our more biologically realistic multi-timescale online

algorithm, Algorithm 6.

Algorithm 6: Biologically realistic multi-timescale adaptive whitening
1: Input: s1, s2, · · · ∈ R𝑁
2: Initialize: W𝑛𝑟 ∈ R𝑁×𝐾 ; W𝑟𝑛 ∈ R𝐾×𝑁 ; m, g ∈ R𝐾 ; 𝜂𝑟 , 𝜂𝑚 > 0; 𝜂𝑔 ≫ 𝜂𝑤 > 0
3: for 𝑡 = 1, 2, . . . do
4: r𝑡 ← 0
5: while not converged do
6: z𝑡 ←W𝑟𝑛r𝑡
7: n𝑡 ← g ◦ z𝑡
8: r𝑡 ← r𝑡 + 𝜂𝑟 (s𝑡 −W𝑛𝑟n𝑡 − 𝛼r𝑡 )
9: end while
10: m← [m + 𝜂𝑚 (diag(W𝑟𝑛W𝑛𝑟 ) − 1)]+
11: g←

[
g + 𝜂𝑔 (z𝑡 ◦ z𝑡 − 1)

]
+

12: W𝑟𝑛 ←
[
W𝑟𝑛 + 𝜂𝑤

(
n𝑡r⊤𝑡 − diag(g +m)W𝑟𝑛

) ]
+

13: W𝑛𝑟 ←
[
W𝑛𝑟 + 𝜂𝑤

(
r𝑡n⊤𝑡 −W𝑛𝑟diag(g +m)

) ]
+

14: end for
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C | Propagating Single Neuron Gains

Through Recurrent Circuitry

C.1 Details on Model Recurrent Connectivity Matrix

C.1.1 Initializing the recurrent connectivity matrix

We restrict W ∈ R𝑁×𝑁 to the space of circularly symmetric (i.e. convolutional) positive def-

inite matrices. In our model, the recurrent weight kernel forming the convolutional matrix is

(net) positive everywhere, with higher probability between similarly tuned excitatory neurons

than between dissimilarly tuned neurons (Ko et al., 2011; Lee et al., 2016). The kernel we use is

a Gaussian (10◦ FWHM) summed with a uniform density. To prevent recurrence from diverg-

ing (Eq. 4.3), the operator norm of W (i.e. the max eigenvalue) must be less than 1. We fixed

∥W∥Op = 0.8 for all recurrent weight matrices in this study.

C.1.2 Recurrent synaptic connectivity influences adaptation effects

The structure of the recurrent weightmatrixW greatly impacts the adaptive changes in neural

responses. Specifically, we find that, with our recurrent model and objective (Eq. 4.3 and Eq. 4.4),

weak net excitatory inputs from dissimilarly tuned neurons is needed to capture the observed

effects in data. This recurrent composition is line with broad, untuned excitatatory signal ampli-
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fication contributing to overall background activity in cortical circuits (Reinhold et al., 2015). For

reference, we reproduce a subset of the post-adaptation tuning curves from the main text here in

Fig. C.1A.

Figure C.1B shows response curves from an example model using a convolutional W derived

from the Mexican hat weight kernel, which is an excitatory Gaussian (10◦ FWHM) minus a wider

Gaussian (60◦ FWHM) (Carandini and Ringach, 1997; Quiroga et al., 2016; Teich and Qian, 2010).

We re-scaled the weight matrix to have operator norm of 0.8. The responses in Fig. C.1B here are

from a model minimizing ℓ2 error between the data and model adapted responses after a hyper-

parameter sweep (𝛼 = 3E-4, 𝛾 = 2E-3). In contrast to the recurrent weight matrix we use in the

main text (described above), the Mexican hat kernel has recurrent net excitation from neurons

with similar tuning, and net inhibition from neurons with dissimilar tuning. A model with this

recurrent weight kernel is unable to capture the effects of response maxima, minima, and ampli-

tudes, and produces tuning curve attraction rather than repulsion from the adapter Fig. C.2A-D.

Taken together, this suggests that broad, untuned weak recurrent excitation is necessary for our

model to capture the wide array of post-adaptation effects found in this dataset.

Figure C.1: Data (dashed) vs model (solid) with different forms of W. Dashed lines (identical in left and
right panels) are observed post-adaptation response curves for a subset of the population. Left Model
from main text, using a convolutional W with recurrent net excitation from similarly tuned neurons,
and broad/untuned net excitation from dissimilarly tuned neurons. Right Simulated post-adaptation
responses from a model with W comprising recurrent net excitation from similarly tuned neurons, and
net inhibition from dissimilarly tuned neurons.
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Figure C.2: All panels are the same as Fig. 4.3 in the main text, but blue is now a model with W set to
a convolutional matrix with a Mexican hat kernel. Notably, this model cannot reproduce the adaptive
maxima, minima, and amplitude effects observed in data. Furthermore, the tuning curves are no longer
repelled from the adapter (panel D), but are instead attracted toward it.

C.2 Objective Ablation

Here, we assess the contribution of each term of the objective (Equation 4.4) to explain the

adaptation effects found in data.

C.2.1 Gain homeostasis confers representation stability with

adaptation

Fig. C.3 shows the impact of removing the gain homeostasis term from Eq 4.4. Gain home-

ostasis prevents the network from drastically re-configuring its representation after adaptation,

and allows the network to maintain a stable representation of the stimulus ensemble (compare

orange to green).

C.2.2 contributions of each term to adaptation

We assess the importance of the three terms in the objective (Eq. 4.4) and show that they are all

jointly necessary to produce the effects shown in main text. Figure C.4 shows the adapted model

responses using Eq. 4.4 to adapt in red. Without the gain homeostasis term (i.e. 𝛾 = 0, green), the
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Figure C.3: Gain homeostasis induces stability across statistical contexts. Histograms are bootstrap
samples (1000 repeats) of the average stimulus reconstruction error under the uniform stimulus ensemble
without adaptation, after adaptation with gain homeostasis, and after adaptation without gain home-
ostasis.

gains radically change after adapting to the biased stimulus ensemble. This produces higher re-

sponses in neurons tuned for orientations along the flank (far from the adapter at zero degrees),

and completely fails to reproduce any of the adaptation effects observed in data. Without the

activity penalty (i.e. 𝛼 = 0, blue), the model’s responses are equivalent to one with no adapta-

tion. Finally, without the ℓ2 reconstruction penalty (first term of objective; purple), the maxima

and minima undershoot what is observed in data; however, the model does reasonably well at

capturing the shifts in tuning preference and response amplitude. The reconstruction term of the

objective encourages the network to maintain a high fidelity representation of the stimulus after

adaptation. This ablation finding suggests that the shifts in tuning preference observed in many

previous studies (Clifford et al., 2007) may arise from adaptive sensory information-preserving

properties of the system. Taken together, each component of the objective works in concert to

yield the adaptation response phenomena seen in the data.
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Figure C.4: Each term in the objective (Equation 4.4) is necessary to account for the full array of adapta-
tion effects observed in data.

C.3 Analytic Solution to the Adaptation Objective

From Eq. 4.3, the steady state response of a network is given by

r∗(s, g) = [I −W]−1 (g ◦ f (s))

r∗(s, g) = M (g ◦ f (s)) (C.1)

where W ≺ I, and M := [I −W]−1 is a matrix capturing the effect of leak and lateral recurrence

in the network. The feedforward and recurrent weights of our model are assumed to be fixed

through adaptation. We can isolate g using the identity diag (a) b = diag (b) a, for two vectors a

and b, to get:

M (g ◦ f (s)) = M diag (f (s)) g

≡ H(s)g,
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where we define H : R𝑁 ↦→ R𝑁×𝑁 as a linear operator that maps s to a matrix usingM and f (s).

In the main text, the loss functional (Eq. 4.4) omitted dependence on the decoder D for clarity.

The full objective is

L(𝑝 (s), g,D) = Es∼𝑝 (s)

∥ s − D⊤H(s)g ∥22︸                ︷︷                ︸
reconstruction

+𝛼 ∥ H(s)g ∥22︸       ︷︷       ︸
activation

 + 𝛾 ∥ g − g0 ∥22︸       ︷︷       ︸
homeostatic gain

+𝛿 ∥ D ∥2F︸ ︷︷ ︸
decoder

, (C.2)

where 𝛿 is a hyperparameter controlling the decoder weights D. The results in the main text have

𝛿 set to zero, and our findings do not qualitatively change with small deviations away fro 𝛿 = 0.

This objective is bi-convex in D and g (i.e. convex when one of the two variables is held fixed).

Indeed, with g fixed, the loss simply becomes an ℓ2-regularized least-squares problem in D. One

can show that the linear decoder regularization term, 𝛿 , is equivalent to assuming noisy outputs

with additive isotropic Gaussian noise. We solve for each optimization variable in alternation

until they reach convergence. As our stimulus ensemble comprises a discrete set of 𝐾 stimuli, we

can write our objective explicitly as a weighted summation,

L(g) = 1
2

𝐾∑︁
𝑘=1

𝑝 (s𝑘)
{
∥ s𝑘 − D⊤H(s𝑘)g𝑠 ∥22 +𝛼 ∥ H(s𝑘)g ∥22

}
+ 𝛾 ∥ g − g0 ∥22 . (C.3)

Computing ∇Lg = 0, and isolating for g yields a linear system of equations,[∑︁
𝑘

𝑝 (s𝑘)
{
H(s𝑘)⊤

(
DD⊤ + 𝛼I

)
H(s𝑘)

}
+ 𝛾I

]
g =

[∑︁
𝑘

𝑝 (s𝑘)
{
H(s𝑘)⊤Dŝ𝑘

}]
+ 𝛾g0. (C.4)

This is in the form of Ag = b and can therefore be solved exactly. A similar derivation can be

done for the optimal D. To initialize g0 and D, we alternated optimization between D and g (using

the control context stimulus ensemble) until convergence using co-ordinate descent.
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C.4 Alternative Models

C.4.1 Eqivalent circuit with adaptive recurrent gain

Here, we explore an alternative network parameterization which has identical steady-state

behavior as the network we have selected for our model: consequently, adaptation under our

training procedure will have identical behavior at a network level for both parameterizations.

The dynamics of our network, replicated from Equation 4.2 for clarity, are given by

𝑑r(s, g)
𝑑𝑡

= −r +Wr + g ◦ f (s),

= [−I +W]r + g ◦ f (s), (C.5)

where we denote both the leak term,−Ir, and the recurrent weight term, Wr, as the recurrent

drive. As an alternative to this parameterization, consider instead multiplicatively scaling each

neuron’s recurrent drive with g ∈ R𝑁+ ,

𝑑r(s, g)
𝑑𝑡

= g−1 ◦ [−I +W]r + f (s), (C.6)

where g−1 = [1/𝑔1, 1/𝑔2, ..., 1/𝑔𝑁 ]⊤. Intuitively, Equation C.6 states that an increase in each neu-

ron’s 𝑔𝑖 attenuates its recurrent drive. Gain changes in this model adjust the overall sensitivity to

recurrent (including self-recurrence, i.e. leak) drive. To solve for this new network’s steady-state,

r∗(s, g), we set Equation C.6 to zero and solve,
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g−1 ◦ [I −W] (r∗(s, g)) = f (s) (C.7)

r∗(s, g) =
[
diag

(
g−1) [I −W]

]−1 f (s) (C.8)

r∗(s, g) = [I −W]−1 (g ◦ f (s)) ,

which is the same as our steady-state equation given by Equation 4.3 in the main text. Therefore,

our original formulation of multiplicatively scaling the network’s feedforward drive is mathemat-

ically equivalent to inversely scaling (attenuating) its recurrent drive. This means that upscaling

gain on feedforward inputs is equivalent to downscaling net inhibition on each neuron.

C.4.2 Eqivalent circuit with two-layer feedforward architecture

The overall action of the network at steady-state (Equation 4.3) is to mix the gain-modulated

feedforward responses, g ◦ f (s), by a linear transformation dependent on the recurrent circuitry

[I−W]−1. The steady-state response of this recurrent network is equivalent to a two-layer feedfor-

ward network with gain modulation after the first layer. This means that viewing the steady-state

responses alone, as is frequently done in neurophysiological adaptation experiments (Weber et al.,

2019), it is impossible to tell whether the system was exclusively feedforward or recurrent. This

is well-known (Dayan and Abbott, 2005) and is a fundamental result in signal processing theory

of linear feedback systems. Our model can be interpreted as a cascade of transformations, propa-

gating adaptive response changes downstream (Dhruv and Carandini, 2014; Kohn and Movshon,

2003).

C.4.3 Relationship to divisive normalization

Divisive normalization is a canonical computation reported across species, sensory modali-

ties, and brain areas (Carandini and Heeger, 2012; Duong et al., 2019). Our model is linear and
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not divisive. Writing the steady-state for the 𝑖th neuron explicitly (omitting g to reduce clutter)

yields

𝑟𝑖 = 𝑓𝑖 (s) +
𝑁∑︁
𝑗=1
𝑤 𝑗𝑟 𝑗

𝑟𝑖 = 𝑓𝑖 (s) +
∑︁
𝑗≠𝑖

𝑤 𝑗𝑟 𝑗 +𝑤𝑖𝑟𝑖

(1 −𝑤𝑖)𝑟𝑖 = 𝑓𝑖 (s) +
∑︁
𝑗≠𝑖

𝑤 𝑗𝑟 𝑗

𝑟𝑖 =
1

1 −𝑤𝑖

[∑︁
𝑗

𝑓 𝑗 (s) +
∑︁
𝑗≠𝑖

𝑤 𝑗𝑟 𝑗

]
.

Thus, there is no nonlinear interaction between 𝑟𝑖 and other neurons in the population.
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D | Stochastic Shape Metrics

D.1 Supplementary Figures
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Figure D.1: Simulated example showing how varying the 𝛼 parameter inW𝛼

2 induces different rotational
alignments between neural representations (G = O). (A) Two stimulated stochastic representations for
three stimulus inputs. Colors represent different input conditions (𝑀 = 3), hollow points represent sam-
pled representations from the first network and filled points represent sampled representations from the
second network. The example is constructed so that no rotation can simultaneously align both the means
and covariances. (B) If the stochastic metric only takes means into account (𝛼 = 2), after rotating one
of the representations by 90◦, two sets of representational means completely overlap, and the distance
becomes 0. If the stochastic metric only takes covariances into account (𝛼 = 0), the optimal alignment
between the two sets of covariances is either 0◦ or 180◦, and after this rotation, distance between repre-
sentations again is 0. (C) When both 𝛼 = 0 and 𝛼 = 2, distance between the two representations is 0, so
the lower bound for the distance for 𝛼 in the range between 0 and 2 is also 0. We computed the stochastic
metric within this range of 𝛼 , and the final distance is generally above the lower bound. (D) Optimal
rotation between the two representations at different values of 𝛼 .
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Figure D.2: Associated with Figure 5.4 from the main text. Embeddings of “toy dataset” networks (see
Fig. 5.4A-B) visualized by multi-dimensional scaling of existing dissimilarity measures. Each point rep-
resents a network, the color scheme is the same as in Fig. 5.4C. All methods fail to recover a reasonable
embedding which captures representational differences (compare with stochastic shape metric embed-
dings in Fig. 5.4C and Supp. Fig. D.3C). Starting from the left, the first two plots use representational
similarity analysis (RSA; Kriegeskorte et al. 2008a) with two forms of correlation distance (Spearman and
Pearson) applied to Euclidean representational similarity matrices. The next two plots use Mahalanobis
distance re-weighted by the noise covariance (Walther et al., 2016) rather than Euclidean distance. The
final plot shows an embedding by centered kernel alignment with a linear filter (Kornblith et al., 2019).

Figure D.3: Associated with Figure 5.4 from the main text. Stochastic shape metrics with energy distance
also recover the “ground truth” structure of synthetic “toy data”. (A) Matrix of estimated pairwise dis-
tances computed with E1 ground metric on the synthetic data shown in Fig. 5.4A. (B) Matrix of pairwise
distances after quadratic metric repair (see subsection D.6.3) was performed to correct for minor trian-
gle inequality violations. (C) Multidimensional scaling embedding of the distance matrix in panel B into
2D Euclidean space. Compare with Fig. 5.4C. (D) Linear correlation between stochastic shape distances
with energy distance ground metric (i.e. off-diagonal entries of panel B) and 2-Wasserstein ground met-
ric (i.e. off-diagonal entries of Fig. 5.4B). Red dashed line denotes the best linear model according to a
least-squares criterion.
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Figure D.4: Associated with Figure 5.5 from the main text. Drifted gratings (4 drifting directions, 75
repeats each) were presented in a different set of experimental sessions. Like (artificial) static gratings,
representational distances across sessions for drifted gratings are dominated by covariance differences.
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FigureD.5: Weuse a simulation to explore how the size of the neural population recording affects our con-
clusions about representational distances. In particular, does the ratio of mean-insensitive to covariance-
insensitive across-animal distances (𝛼 = 0 vs. 𝛼 = 2) change when we sub-sample neurons? For this
simulation, we chose two mice that have 102 and 110 neurons recorded from their respective VISps. We
randomly sample a subset of 𝑛 neurons among these recorded neurons (𝑛 = 10, 30, 50, 70, 90, 100), and
computed representational distance (𝛼 = 0, 1, 2) using only the subset. For panel A and B, we sampled the
neurons without replacement, and for panel C and D, we sample with replacement (bootstrapping). We
observe that for all tested 𝛼 , representational distance increases with the number of neurons within the
subset. This is expected because distances will generically increase with the dimension (e.g. the Euclidean
distance between two random vectors in a high dimensions will tend to be large, relative to low dimen-
sions). However, the ratio of 𝛼 = 0 and 𝛼 = 2 shape distances is preserved when subsampling neurons (all
lines are trending upward as a function of 𝛼). Error bars capture how the computed distances vary across
15 random draws of 𝑛 neurons from the recorded population.
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Figure D.6: Associated with VAE analyses (Figure 5.6) in the main text. (A) Dissimilarity matrices
measured for 1800 dSprites-trained VAEs from Locatello et al. (2019) using generalized interpolated 2-
Wasserstein (Equation 5.7) with varying 𝛼 (first five columns), and using energy distance (Equation 5.4)
with 64 samples for each unique input (right-most column). Row/column ordering of each matrix is the
same as in Figure 5.6. (B) 2D embeddings corresponding to distance matrices in (A). Colors are the same
as in Figure 5.6. We aligned to the left-most panel using Procrustes analysis, allowing for scaling and
rotations/reflections. (C) Re-scalingW𝛼

2 distances and energy distances such that they lie between [0, 1]
reveals that the distribution of energy distances agrees best withW𝛼=1.0

2 (middle column). (D) Predicting
objective and regularization strength using distance matrices in (A). (E) Predicting disentanglement scores
using distance matrices in (A). See Supp. D.2.3 for more details.
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Figure D.7: Associated with VAE analyses (Figure 5.6) in the main text. Distortion induced by multidi-
mensional scaling of 1800×1800 dissimilarity matrices with varying embedding dimensionality. Different
shading represents (10th-90th) and (25th-75th) percentiles. See Supp. D.2.3 for details.

Figure D.8: Associated with VAE analyses (Figure 5.6) in the main text. We initialized 350 𝛽-VAEs and
trained them onMNIST (left) and CIFAR-10 (right) with different values of 𝛽 in the loss function. Training
led to inter-network distances being dominated by covariance-insensitive (𝛼 = 2) dissimilarity, in agree-
ment with Figure 5.6B of the main text. See Supp. D.2.3 for training details.
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Figure D.9: Distance matrices for different values of 𝛼 and 𝜏 .

Figure D.10: Two dimensional embedding of the distance matrices in Fig. D.9 for different values of 𝛼
(row) and 𝜏 (column).
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D.2 Supplemental Methods

D.2.1 Code and reproducibility

Additional analysis and source code will be located at github.com/ahwillia/netrep.

D.2.2 Allen Brain Observatory Data

D.2.2.1 Data pre-processing.

In each recording session, gratings (6 orientations) and natural scenes (119 images) were pre-

sented to one mouse, and between 19 to 110 neurons in VISp were recorded by extracellular

microelectrode arrays (Neuropixels Visual Coding dataset). Each neuron’s response to an image

was measured as the sum of action potentials (spikes) emitted within a 250 millisecond time win-

dow (the duration of the stimulus presentation in this dataset). To compare how similar a single

set of stimuli were represented across sessions, we Gaussian-approximated the data recorded for

each stimulus. Then for each stimulus class (gratings and scenes), we compared between two sets

of Gaussians (one per stimulus).

Our metrics compared between sets of Gaussians that have the same dimensionality, so we

performed PCA to equalize dimensionality across all sessions. We concatenated data recorded for

different images within a single stimulus class, and extracted the first 19 principal components

in replacement of the total number of recorded neurons for further analysis. On average, the

extracted 19 principal components explained 83% of the data variance in response to gratings,

and 76% of the variance to natural scenes.
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D.2.2.2 Estimating response mean and covariance.

To compare between two neural representations, our stochastic metrics take two sets of Gaus-

sian means and covariances as inputs, where each of which is estimated from the principal com-

ponents (PCs) extracted from the data.

In each session, a stimulus (either a grating or a scene) was presented over 50 repeats. The

number of repeats is large compared to conventional neuroscience experiments, but it is still

small compared to the total number of recorded neurons (e.g. 110 neurons in one session), or the

total number of PCs, which introduces challenges to covariance estimation. For the mean of each

stimulus representation, we used the sample mean from the PCs. When number of samples is rel-

atively small, sample covariance has one known bias: it tends to over-estimate large eigenvalues,

and under-estimate small eigenvalues of the population covariance. One standard and effective

fix in the literature is to use a shrinkage estimator (𝑆∗) – a linear interpolation between an identity

matrix (𝐼 ) and the sample covariance (𝑆) (e.g. (Ledoit and Wolf, 2004; Tong et al., 2018)):

𝑆∗ = 𝛾𝐼 + (1 − 𝛾)𝑆. (D.1)

This interpolation reduces the eigenvalue bias by balancing between eigenvalues of the sample

covariance (overly skewed eigenvalue spectrum), and that of the identity matrix (flat eigenvalue

spectrum). 𝛾 of the shrinkage covariance estimator was chosen using cross-validation. To obtain

the cross-validation training set, we randomly sample half of the epochs from each data trial, and

for test set, we used the remaining half.
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D.2.3 Variational autoencoders and latent factor disentanglement

(Supplement to subsection 5.4.3)

D.2.3.1 VAE objectives and architectures used in this study

Because conventional VAE encoders output a latent Gaussian conditional mean and covari-

ance, this makes them an ideal framework with which to apply stochastic shape metrics. In

particular, the interpolated Wasserstein distance (equation 5.7) is exact in this case. We used a

set of 1800 VAEs trained on dSprites from the extensive study by Locatello et al. (2019). These

include six variants of the VAE objective (𝛽 , Factor, 𝛽-TC, DIP-I, DIP-II, Annealed), each with six

different levels of regularization strength and 50 repetitions at different random seeds. The di-

mensionality of the latent representation, from which we obtained activations used in this study,

was 10D. We refer the reader to their supplemental document for more details about each archi-

tecture and training scheme. The authors provided metadata associated with each network such

as training hyperparameters as well as factor disentanglement scores (see below).

In addition to the VAEs trained on dSprites, we trained 350 𝛽 VAEs onMNIST and CIFAR-10.

To remain consistent with the study by Locatello et al. (2019), we trained 𝛽-VAEs at 6-8 different

levels of regularization strength (1 ≤ 𝛽 ≤ 16) and 50 random initialization seeds. We used the

standard VAE symmetric encoder-decoder architecture with 𝐿 layers (𝐿 = 3 for MNIST and 𝐿 = 4

for CIFAR-10), each with 64 4×4 convolutional filters with stride 2, followed by a fully-connected

layer with 256 hidden units and ReLU activations. The latent representations of these networks

were diagonal Gaussians, and were 10D (MNIST) or 50D (CIFAR-10). The final 2D convolution-

transpose layer of the decoder used a sigmoid nolinearity to ensure outputs were between [0, 1].

We zero-padded the height andwidth ofMNIST images from 28×28→ 32×32. Model training

used batch sizes of 64 images, and up to 1000 training epochs. We used the Adam optimizer with

1E-4 learning rate and model checkpoints at each epoch. Models used in this study were from
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checkpoints corresponding to the lowest validation loss during training. Latent activations used

for shape metric analysis in this study were obtained using a held-out test set of 3500 images.

D.2.3.2 W𝛼=0
2 vs.W𝛼=2

2 before and after training

Fig. 5.6B of the main text shows that, prior to training, VAEs are primarily separated by

mean-insensitive distance (W𝛼

2 , 𝛼 = 0, equation 5.7), whereas after training they are separated

by covariance-insensitive distance (𝛼 = 2). We sought to confirm whether this effect persisted

across different datasets using VAEs trained on MNIST and CIFAR-10 (described above). Supp-

Fig. D.8 shows that pairwise networkW𝛼

2 distances before and after training indeed exhibit this

effect on these more complex datasets. We reproduced these effects using both default PyTorch

weight initialization and Kaiming weight initialization.

D.2.3.3 Computing energy distance between trained VAEs

In addition to measuring interpolated Wasserstein distances (equation 5.7), we also repeated

our analyses using energy distance (equation 5.4). Rather than requiring computing means and

covariances, this method operates directly on samples. Since VAE latents are parameterized as

Gaussian, we generated data by randomly sampling from the Gaussian defined by the model’s

conditional mean and covariance for a given input. We sampled 64 samples for 2048 images

and computed pairwise energy distances between all 1800 networks in the (Locatello et al., 2019)

dSprites dataset (SuppFig. D.6). Interestingly, the energy dissimilarity matrix was qualitatively

different than all of theW𝛼

2 dissimilarity matrices (SuppFig. D.6A). The geometry of the em-

bedded points was accordingly different than embeddings derived fromW𝛼

2 distances (Supp-

Fig. D.6B).

The energy dissimilarity matrix seemed to correlate with those derived fromW𝛼

2 distances

(SuppFig. D.6C). We noted, however, that after re-scaling the dissimilarity matrices such that they

lie between [0, 1], the distribution of pairwise energy distances was most in line with interpolated
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Wasserstein distances when 𝛼 = 1 (SuppFig. D.6C middle panel).

We repeated the classification and disentanglement 𝑘NN analyses done in the main text using

neighborhoods defined by energy distance (SuppFig. D.6D,E). Inmost cases, using energy distance

performed as well as, but sometimes worse thanW𝛼=2
2 , the covariance-insensitive Wasserstein

metric. It is possible that computing energy distance using a higher number of samples per image

than 64 would improve estimates and downstream regression/classification performance. In gen-

eral it would be interesting to examine the effects of sample size and empirical energy distance

estimate convergence. We leave a deeper investigation into this for future work.

D.2.3.4 Low-dimensional projections

To determine a reasonable embedding dimensionality for 𝐾 networks, we performed the fol-

lowing analysis. Given a symmetric 𝐾 × 𝐾 distance matrix 𝐷 , with elements 𝑑 (𝑖, 𝑗), we used

multidimensional scaling to embed 𝐾 networks into a low M-dimensional space. Networks in

this embedded space can be encoded by a new, Euclidean distance matrix �̃� with elements 𝑑 (𝑖, 𝑗).

For each element on the upper-triangle of these matrices, we computed a distortion ratio,

Δ(𝑖, 𝑗) = 𝑑 (𝑖, 𝑗)/𝑑 (𝑖, 𝑗) (D.2)

Distortion(𝑖, 𝑗) = max(Δ(𝑖, 𝑗), 1/Δ(𝑖, 𝑗)) . (D.3)

By sweeping embedding dimensionality M from 1-20, we determined that using an MDS embed-

ding dimensionality of M=15 produced reasonably minimal distortions (SuppFig. D.7) for all the

distance matrices. After embedding the networks into 15D, we then performed principal compo-

nents analysis to obtain the scatterplots in Fig. 5.6A and SuppFig. D.6. In the main text, we used

orthogonal Procrustes to align the principal components of each subpanel to the left-most panel.

For SuppFig. D.6B, we again aligned all panels to the left-most panel using Procrustes analysis,

but allowed for re-scaling in order to compensate for energy distances being on an arbitrary scale
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compared withW𝛼

2 distances.

D.2.3.5 VAE disentanglement metrics

For each of the 1800 VAEs trained on dSprites, Locatello et al. (2019) computed a large array

of factor disentanglement scores proposed by previous studies. The scores abbreviated in Fig. 5.6F

are listed below, using the same naming convention as in the work of Locatello et al. (2019). We

refer the reader to their supplement for more details on each of these scores.

A 𝛽-VAE eval accuracy

B Disentanglement, Informativeness, Completeness (DCI) disentanglement

C DCI completeness

D DCI informativeness

E Factor VAE eval accuracy

F Logistic regression mean test accuracy

G Boosted trees mean test accuracy

H Discrete mutual information gap (MIG)

I Modularity score

J Explicitness test score

K Separated Attribute Predictability (SAP) score

L Gaussian total correlation

M Gaussian Wasserstein correlation

N Gaussian Wasserstein normalized correlation

O Mutual information score

D.2.3.6 𝑘-nearest neighbors analyses

Because the stochastic metrics used in this study satisfy the triangle inequality, this permit-

ted non-parametric analyses using 𝑘-nearest neighbors (𝑘NN) to determine whether network
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similarity carried information about model hyper-parameters and task performance. We used

scikit-learn’s KNeighborsClassifier and KNeighborsRegressor for classification and regres-

sion analyses, respectively. We withheld a test set and performed 6-fold cross-validation on the

remaining data to determine 𝑘 , the number of neighbors to use for classification/regression. We

reported final performance using the average score on the held-out test set.

For classification analyses, we trained models to decode random initial seed (1/50 chance,

Fig. 5.6C), and model objective along with regularization strength (6 objective × 6 regularization

strengths in the Locatello study, i.e. 1/36 chance, Fig. 5.6E). In terms of regression analyses,

we trained models to predict training reconstruction loss Fig. 5.6D and disentanglement scores

Fig. 5.6F and reported average 𝑅2 on the held-out test set.

D.2.4 Additional Details for Patch-Gaussian Augmentation

Experiments

D.2.4.1 Training and architecture details

We use the ResNet-18 architecture (He et al., 2016) where an intermediate fully-connected

layer of dimension 100 is added after the final average pooling layer, followed by a linear read-

out layer. All analyses were done on the representations produced of this intermediate fully-

connected layer.

Following standard practice, images were randomly cropped, followed by a random horizon-

tal flip. A modified version of the Patch-Gaussian augmentation was applied, where the entire

noisy patch is constrained to reside in the image. Lastly, we subtract off the per-channel mean

and divide by the per-channel standard deviation. For the Patch-Gaussian augmentation, we

swept over 16 values of patch width,𝑊 ∈ {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32} and 7

different values of noise scale, 𝜎 ∈ {0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1.}, leading to 17 × 6 = 112 possible

(𝑊,𝜎) combinations. For each (𝑊,𝜎) pair, we trained 3 networks, each with a different random
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seed, leading to 16 × 7 × 3 = 336 networks. As a baseline, we also trained networks with no

Patch-Gaussian augmentation over three random seeds, giving us 339 total networks.

We used stochastic gradient descent with a momentum of 0.9, batch size of 128 and weight

decay of 1E-4. Networks were trained for 200 epochs where the learning rate was initially set to

0.1 and halved every 60 epochs.

D.2.5 Visualization of Hidden Layer Representations

To visualize the effect of Patch-Gaussian hyper-parameters on hidden layer representations

as shown in Fig. 5.7A, we randomly selected one image from each of the 10 classes, e.g. 𝑧1, . . . , 𝑧10.

For each image 𝑖—and a given value of 𝜏—we drew 100 samples from N(𝑧𝑖, 𝜏) and collected the

hidden layer representations, leading to 1,000 points total. Mutli-dimensional scaling was then

applied to embed the representations into two dimensions.

D.2.5.1 Stochastic Shape Metric Computation

2,000 images were used for computing the stochastic shape metric. To estimate the condi-

tional mean and covariance for each image, 1,000 samples were first drawn from N(𝑧𝑖, 𝜏). The

conditional mean was estimated via a Monte Carlo estimator. The conditional covariance was

computed by first computing the Monte Carlo estimator and then adding 0.0001 to the diagonal

to ensure the covariance is well-conditioned.

To visualize the metric shape induced by the stochastic shape metric, multi-dimensional scal-

ing was used to embed the networks into 20 dimensions. Principal component analysis was then

done to linearly project the MDS embeddings onto the top 2 principal components.

We used three different values for the interpolated Wasserstein distance, 𝛼 ∈ {0, 1, 2} and 6

values for the magnitude of the input perturbation, 𝜏 ∈ {0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. All distance

matrices are shown in Fig. D.9. The corresponding two-dimensional embedding are shown in

Fig. D.10.
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D.3 Proof of Proposition 5.1

We first prove two lemmas, from which the main proposition immediately follows.

Lemma D.1. If G is a group of isometries on a metric space (𝑑1, 𝑆) then

𝑑 (𝑥,𝑦) = min
𝑻∈G

𝑑1(𝑥, 𝑻 (𝑦)) (D.4)

is a pseudometric which can be used to define a metric over equivalence classes [𝑥] = {𝑦 | 𝑦 ∼ 𝑥}

where the equivalence relation is defined as:

𝑥 ∼ 𝑦 ⇐⇒ ∃ 𝑻 ∈ G such that 𝑥 = 𝑻 (𝑦) (D.5)

Proof. This proof is more or less reproduced from Williams et al. (2021), and similar arguments

can be found elsewhere within the statistical shape analysis literature.

The equivalence relation in Equation D.5 is self-evident. This simply states that 𝑑 (𝑥,𝑦) = 0 if

and only if 𝑥 = 𝑻 (𝑦) for some alignment transformation 𝑻 ∈ G. Then we define our equivalence

relation as: 𝑥 ∼ 𝑦 if and only if 𝑑 (𝑥,𝑦) = 0. In other words, although 𝑑 technically only defines

a pseudometric on 𝑆 , it is easily associated to a proper metric on a set of equivalence classes, i.e.

the quotient space (𝑆/∼). See Howes (1995) for more background details (page 27, in particular).

Now we prove that 𝑑 is symmetric. Let 𝑻𝑥𝑦 denote the optimal transformation from 𝑌 to 𝑋 .

That is, 𝑻𝑥𝑦 = arg min𝑻∈G 𝑑1(𝑥, 𝑻 (𝑦)) and 𝑻𝑦𝑥 = arg min𝑻∈G 𝑑1(𝑦, 𝑻 (𝑥)). Then, using the fact that

𝑑1 is symmetric and that G defines a group of isometries, we have

𝑑 (𝑥,𝑦) = 𝑑1(𝑥, 𝑻𝑥𝑦 (𝑦)) = 𝑑1(𝑻𝑥𝑦 (𝑦), 𝑥) = 𝑑1(𝑦, 𝑻−1
𝑥𝑦 (𝑥))) ≤ 𝑑1(𝑦, 𝑻𝑦𝑥 (𝑥))) = 𝑑 (𝑦, 𝑥)
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but also

𝑑 (𝑦, 𝑥) = 𝑑1(𝑦, 𝑻𝑦𝑥 (𝑥)) = 𝑑1(𝑻𝑦𝑥 (𝑥), 𝑦) = 𝑑1(𝑥, 𝑻−1
𝑦𝑥 (𝑦))) ≤ 𝑑1(𝑥, 𝑻𝑥𝑦 (𝑦))) = 𝑑 (𝑥,𝑦).

The only way for both inequalities to hold is for 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥). Also, we see that 𝑻𝑥𝑦 = 𝑻−1
𝑦𝑥 ,

which we will exploit below.

It remains to prove the triangle inequality. This is done as follows:

𝑑 (𝑥,𝑦) = 𝑑1(𝑥, 𝑻𝑥𝑦 (𝑦)) (D.6)

≤ 𝑑1(𝑥, 𝑻𝑥𝑧 (𝑻𝑧𝑦 (𝑦))) (D.7)

≤ 𝑑1(𝑥, 𝑻𝑥𝑧 (𝑧)) + 𝑑1(𝑻𝑥𝑧 (𝑧), 𝑻𝑥𝑧 (𝑻𝑧𝑦 (𝑦))) (D.8)

= 𝑑1(𝑥, 𝑻𝑥𝑧 (𝑧)) + 𝑑1(𝑍, 𝑻𝑧𝑦 (𝑦)) (D.9)

= 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧,𝑦) (D.10)

The first inequality follows from replacing the optimal alignment, 𝑻𝑥𝑦 , with a sub-optimal align-

ment, given by function composition 𝑻𝑥𝑧 ◦ 𝑻𝑧𝑦 . (Recall that G is a group and so is closed under

function compositions.) The second inequality follows from the triangle inequality on 𝑑1, after

choosing 𝑻𝑥𝑧 (𝑧) as the midpoint. The penultimate step follows from 𝑻−1
𝑥𝑧 being an isometry on 𝑑1

and since 𝑻𝑥𝑧 ∈ G, we have 𝑻−1
𝑥𝑧 ∈ G by the group properties of G.

□

Lemma D.2. Let (𝑑2, 𝑆2) be a metric space, let 𝑓 (·) and 𝑔(·) be functions mappingZ ↦→ 𝑆2, and let

𝑄 be a probability distribution supported onZ. Then,

𝑑1(𝑓 , 𝑔) =
(
E
𝑧∼𝑄

𝑑2
2 (𝑓 (𝑧), 𝑔(𝑧))

)1/2
(D.11)

is a metric over the set of functions mappingZ ↦→ 𝑆2.
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Proof. Since 𝑑2 is a metric, we have 𝑑2(𝑥,𝑦) > 0 if 𝑥 ≠ 𝑦. Recall our assumption that the support

of 𝑄 equalsZ. Thus, if there exists a 𝑧 ∈ Z for which 𝑓 (𝑧) ≠ 𝑔(𝑧), the expectation will evaluate

to a positive number and we have 𝑑1(𝑓 , 𝑔) > 0. So we conclude 𝑑1(𝑓 , 𝑔) = 0 if and only if 𝑓 and 𝑔

define the exact same mapping fromZ ↦→ 𝑆2.

It is also obvious that 𝑑1(𝑓 , 𝑔) = 𝑑1(𝑔, 𝑓 ), due to the symmetry of 𝑑2. Thus, it only remains to

prove the triangle inequality.

Fix any function ℎ : Z ↦→ 𝑆 . Due to the triangle inequality on 𝑑2, we have:

𝑑1(𝑓 , 𝑔) =
(
E
𝑧∼𝑄

𝑑2
2 (𝑓 (𝑧), 𝑔(𝑧))

)1/2
≤

(
E
𝑧∼𝑄

(
𝑑2(𝑓 (𝑧), ℎ(𝑧)) + 𝑑2(ℎ(𝑧), 𝑔(𝑧))

)2
)1/2

(D.12)

Now let 𝑋 = 𝑑2(𝑓 (𝑧), ℎ(𝑧)) and 𝑌 = 𝑑2(ℎ(𝑧), 𝑔(𝑧)). Note that 𝑧 is a random variable (sam-

pled from 𝑄), and so 𝑋 and 𝑌 are also random variables. We now recall two elementary facts:

∥𝑋 ∥2= (E[𝑋 2])1/2 defines a norm over random variables, and ∥𝑋 + 𝑌 ∥2 ≤ ∥𝑋 ∥2 + ∥𝑌 ∥2 for any

two random variables (Minkowski’s inequality). Our definitions of 𝑋 and 𝑌 imply that the right

hand side of Equation D.12 can be re-written as ∥𝑋 + 𝑌 ∥2. And we can therefore conclude the

proof since:

𝑑1(𝑓 , 𝑔) ≤ ∥𝑋 + 𝑌 ∥2 ≤ ∥𝑋 ∥2 + ∥𝑌 ∥2 = 𝑑1(𝑓 , ℎ) + 𝑑1(ℎ,𝑔) . (D.13)

□

Main proof. Let us restate and then prove Theorem 5.1. We want to show that the following:

𝑑 (𝐹𝑖, 𝐹 𝑗 ) = min
𝑻∈G

(
E
𝒛∼𝑄

[
D2

(
𝐹
𝜙𝑖
𝑖
(· | 𝒛), 𝐹𝜙 𝑗

𝑗
(· | 𝒛) ◦ 𝑻−1

)] )1/2
(D.14)

is a pseudometric over stochastic networks—i.e, a pseudometric over functions 𝐹 that map inputs

𝒛 ∈ Z onto probability distributions. Recall that 𝐹𝜙 (· | 𝒛) is a shorthand notation for 𝐹 (𝜙−1(·) | 𝒛)

where 𝜙−1 is the pre-image of 𝜙 .

Our key assumptions are that D(·, ·) is a metric over probability distributions and that G is
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a group of isometry transformations with respect to this metric—i.e., for any pair of probability

distributions 𝐹 and 𝐺 , we have that:

D(𝐹,𝐺) = D(𝐹 ◦ 𝑻−1,𝐺 ◦ 𝑻−1) (D.15)

for any 𝑻 ∈ G. It is well-known that the Wasserstein distance (Villani, 2009) and energy dis-

tance (Sejdinovic et al., 2013; Székely and Rizzo, 2017) are probability metrics. Further, it is easy

to show that orthogonal pushforward transformations are isometries for both metrics. For exam-

ple, we have for the 2-Wasserstein distance that:

W2
2 (𝑃,𝑄) = inf E ∥𝑋 − 𝑌 ∥2 = inf E ∥𝑻𝑋 − 𝑻𝑌 ∥2 =W2

2 (𝑃 ◦ 𝑻−1, 𝑄 ◦ 𝑻−1) (D.16)

for any orthogonal transformation 𝑻 . Thus, for our purposes we can think of G as being any

subgroup of the orthogonal group.

Now that we have reminded ourselves of the main proposition, let us turn to the proof.

Proof. Let us define:

𝑑1(𝐹𝜙𝑖 , 𝐹
𝜙

𝑗
) =

(
E
𝒛∼𝑄

[
D2

(
𝐹
𝜙

𝑖
(· | 𝒛), 𝐹𝜙

𝑗
(· | 𝒛)

)] )1/2
. (D.17)

Plugging this into Equation D.14, we have:

𝑑 (𝐹𝑖, 𝐹 𝑗 ) = min
𝑻∈G

𝑑1(𝐹𝜙𝑖 , 𝐹
𝜙

𝑗
◦ 𝑻−1). (D.18)

Theorem D.2 tells us that 𝑑1 is a metric. Thus, Theorem D.1 applies to Equation D.18. This

permits us to conclude that 𝑑 is a pseudometric and defines a metric over sets of equivalent

neural representations, as claimed. □
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D.4 Practical Estimation of Stochastic Shape Metrics

In both biological and artificial networks, we do not have parametric forms for the conditional

distributions over neural population responses. Instead, we can only draw samples from these

distributions—e.g., by feeding an input into an artificial network and performing a stochastic

forward pass, or by recording evoked spike counts to a sensory stimulus in biological data. We

consider a simple experimental setup: we are given 𝐾 stochastic neural networks {𝐹1, . . . , 𝐹𝐾 },𝑀

network inputs or conditions {𝒛1, . . . , 𝒛𝑀 }, and 𝐿 repeated observations or measurements of the

neural responses to each input. For example, in an artificial network that ingests image data, 𝑀

would denote the number of images in a test set and 𝐿 denotes the number of samples per image.

Let 𝒙 (𝑘𝑚)
ℓ
∈ R𝑛 to denote sample ℓ , from network 𝑘 , to condition𝑚. That is,

𝒙 (𝑘𝑚)
ℓ
∼ 𝐹𝜙

𝑘
(𝒙 | 𝒛𝑚) i.i.d. for (ℓ,𝑚, 𝑘) ∈ {1, . . . , 𝐿} × {1, . . . , 𝑀} × {1, . . . , 𝐾}. (D.19)

D.4.1 Metrics based on 2-Wasserstein distance and Gaussian

assumption

Our main assumption in this section is that distributions over neural activations are mul-

tivariate Gaussians. That is, for each stochastic network and every input 𝒛 ∈ Z, we have

𝐹
𝜙

𝑖
(𝒛) = N(𝝁𝑖 (𝒛), 𝚺𝑖 (𝒛)), where 𝝁𝑖 : Z ↦→ R𝑛 and 𝚺𝑖 : Z ↦→ S𝑛×𝑛 . If 𝑻 : R𝑛 ↦→ R𝑛 is a linear

pushforward map, then the pushforward measure is still Gaussian and is defined by

𝐹
𝜙

𝑗
(𝒛) ◦ 𝑻−1 = N(𝑻𝝁 𝑗 (𝒛), 𝑻𝚺 𝑗 (𝒛)𝑻⊤).

The 2Wasserstein distance between twomultivariate Gaussian distributions has awell known

159



closed form expression (Peyré and Cuturi, 2019, Remark 2.31):

W2
(
N(𝝁𝑖, 𝚺𝑖),N(𝝁 𝑗 , 𝚺 𝑗 )

)
=

(
∥𝝁𝑖 − 𝝁 𝑗 ∥2 + B(𝚺𝑖, 𝚺 𝑗 )2

)1/2 (D.20)

where B(·, ·) is the Bures metric between positive definite matrices. Typically one sees the Bures

metric defined as:

B(𝚺𝑖, 𝚺 𝑗 ) =
(

Tr[𝚺𝑖] + Tr[𝚺 𝑗 ] − 2 Tr[𝚺1/2
𝑖

𝚺 𝑗𝚺
1/2
𝑖
]1/2

)1/2
. (D.21)

If we use this expression, minimizing B(𝚺𝑖, 𝑻𝚺 𝑗𝑻⊤) over nuisance transformations 𝑻 ∈ G is not

straightforward.1 However, an equivalent formulation of the Bures metric is:

B(𝚺𝑖, 𝚺 𝑗 ) = min
𝑼
∥𝚺1/2

𝑖
− 𝚺1/2

𝑗
𝑼 ∥𝐹 (D.22)

where the minimization is over 𝑼 ∈ O(𝑛). The equivalence between Eqs. D.21,D.22 is already

established in the literature (see Theorem 1 of Bhatia et al. 2019). For the sake of completeness

we have included a proof in subsection D.6.4.

Recall that we are given sampled neural responses {𝒙 (𝑘𝑚)
ℓ
}𝐾,𝑀,𝐿
𝑘,𝑚,ℓ

as specified in Equation D.19.

Using these, we can estimate the mean and covariance of each distribution:

𝝁𝑘 (𝒛𝑚) =
1
𝐿

∑︁
ℓ

𝒙 (𝑘𝑚)
ℓ

and �̂�𝑘 (𝒛𝑚) =
1
𝐿

∑︁
ℓ

𝒙 (𝑘𝑚)
ℓ

𝒙 (𝑘𝑚)⊤
ℓ

− 𝝁𝑘 (𝒛𝑚)𝝁𝑘 (𝒛𝑚)⊤. (D.23)

Here, we’ve used the typical maximum likelihood estimators. However, any consistent estimator

will suffice.
1Although there are certain tricks one can exploit to compute the gradient (Newton-Schulz iterations), the con-

straint that 𝑻 ∈ G is non-trivial. When G is a continuous manifold (e.g. the orthogonal or special orthogonal group),
one can resort to manifold optimization algorithms. These algorithms are somewhat cumbersome but nonetheless
a plausible approach. However, even this would not cover the case where G is a discrete set (e.g., the permutation
group).
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The proposition below summarizes the main result of this section. Using this proposition, we

produce an estimate of the distance between two stochastic networks by alternatingminimization

(i.e. block coordinate descent) over 𝑻 , 𝑼1, . . . , 𝑼𝑀 . Each parameter update can often be solved

exactly. For example, we typically consider the case of orthogonal nuisance transformations, i.e.

G = O(𝑛), in which case all parameter updates correspond to solving an orthogonal Procrustes

problem (Gower and Dijksterhuis, 2004). Further, the minimizations over {𝑼1, . . . , 𝑼𝑀 } can be

done in parallel.

Proposition D.3. If 𝐹𝜙
𝑖
(𝒛) and 𝐹𝜙

𝑗
(𝒛) are both Gaussian for all 𝒛 ∈ Z, then:

𝑑 (𝐹𝑖, 𝐹 𝑗 ) = min
𝑻 ,𝑼1,...,𝑼𝑀

(
1
𝑀

𝑀∑︁
𝑚=1
∥𝝁𝑖 (𝒛𝑚) − 𝑻𝝁 𝑗 (𝒛𝑚)∥2 + ∥�̂�𝑖 (𝒛𝑚)1/2 − 𝑻 �̂� 𝑗 (𝒛𝑚)1/2𝑼𝑚∥2𝐹

)1/2

is a consistent estimator of a stochastic shape distance (eq. 5.5) with the 2-Wasserstein distance used

as the “ground metric.” The minimization in the above equation is performed over 𝑻 ∈ G and

𝑼𝑚 ∈ O(𝑛) for all𝑚 ∈ {1, . . . , 𝑀}.

Proof. Plugging Eqs. D.20,D.22 into our definition of stochastic distance (eq. 5.5 from Theo-

rem 5.1), we have:

𝑑 (𝐹𝑖, 𝐹 𝑗 ) = min
𝑻

(
E
𝒛∼𝑄
∥𝝁𝑖 (𝒛) − 𝑻𝝁 𝑗 (𝒛)∥2 +min

𝑼
∥𝚺𝑖 (𝒛)1/2 − 𝑻𝚺 𝑗 (𝒛)1/2𝑻⊤𝑼 ∥2𝐹

)1/2
. (D.24)

Given 𝑀 i.i.d. samples 𝒛𝑚 ∼ 𝑄 for 𝑚 ∈ {1, . . . , 𝑀}, we can estimate the expectation with an

empirical average:

min
𝑻

(
1
𝑀

𝑀∑︁
𝑚=1
∥𝝁𝑖 (𝒛𝑚) − 𝑻𝝁 𝑗 (𝒛𝑚)∥2 +min

𝑼𝑚
∥𝚺𝑖 (𝒛𝑚)1/2 − 𝑻𝚺 𝑗 (𝒛𝑚)1/2𝑻⊤𝑼𝑚∥2𝐹

)1/2
(D.25)

Next, we pull out the minimization over each 𝑼𝑚 ∈ O(𝑛) outside the sum. Additionally, since

G is a group of isometries on R𝑛 , we know that G is a subgroup of the orthogonal group. Thus,
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every 𝑻 ∈ G is an orthogonal matrix, so 𝑻⊤𝑼𝑚 is also an orthogonal matrix. Thus we introduce a

change of variables 𝑼𝑚 = 𝑻⊤𝑼𝑚 and minimize over 𝑼𝑚 ∈ O(𝑛), as this attains the same minimum

value. In summary, we have:

min
𝑻 ,𝑼1,...,𝑼𝑀

(
1
𝑀

𝑀∑︁
𝑚=1
∥𝝁𝑖 (𝒛𝑚) − 𝑻𝝁 𝑗 (𝒛𝑚)∥2 + ∥𝚺𝑖 (𝒛𝑚)1/2 − 𝑻𝚺 𝑗 (𝒛𝑚)1/2𝑼𝑚∥2𝐹

)1/2
. (D.26)

The only remaining step is to replace every 𝝁 (𝒛) and 𝚺(𝒛) with some consistent estimator, such

as the empirical mean and covariance (see eq. D.23). In the limit as𝑀 →∞ and 𝐿 →∞, we have

convergence to the true distance due to the law of large numbers. □

D.4.1.1 Algorithmic complexity and computational considerations

To compute distances using the 2 Wasserstein ground metric between two Gaussian dis-

tributed stochastic network representations (Eq. 5.6), we used closed form updates of the orthog-

onal procrustes problem (Gower and Dijksterhuis, 2004) for 𝑻 ∈ O and {𝑼𝑚}𝑀𝑚=1 in alternation,

using 𝑆 iterations. Importantly, 𝑻 and each 𝑼𝑚 can be solved exactly at each alternation (described

above). For 𝐾 stochastic networks, we must consider O(𝐾2) total pairwise comparisons.

Computing the optimal 𝑻 at each step involves aligning two stochastic representations, each

comprising a stacked matrix of𝑀 𝑛-dimensional means and𝑀 𝑛×𝑛 covariances using Procrustes

alignment (Gower and Dijksterhuis, 2004). This involves a matrix multiplication and singular

value decomposition with O(𝑀𝑛3) combined complexity, assuming 𝑛 < 𝑀 . Similarly, at each

step, computing the Bures metric requires solving for𝑀 𝑛×𝑛 orthogonal matrices, {𝑼𝑚}𝑀𝑚=1, with

total complexity O(𝑀𝑛3). Thus, the total algorithmic worst-case time complexity is O(𝐾2𝑆𝑀𝑛3).

Notably, this computation is highly parallelizable over the 𝐾2 pairwise comparisons. For the

VAE and patch-Gaussian results in the main text (Figures 5.6 and 5.7), we distributed the dis-

tance matrix calculation by distributing pairwise comparisons over single CPU cores, with each

comparison taking a few seconds to complete.
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D.4.2 Metrics based on Energy distance

This section outlines an alternative measure of stochastic representational distance that does

not require any parametric assumption (e.g. Gaussian) on stochastic neural responses. We use

energy distance, E𝑞 defined in Equation 5.4, as the ground metric appearing in Theorem 5.1. As

explained in the main text, this distance has favorable estimation properties in high dimensional

spaces relative to the Wasserstein distances. It remains an open problem to develop estimation

procedures for Wasserstein-based stochastic shape distances without the assumption of Gaus-

sianity.

To compute the stochastic shape distance, we need to solve the following optimization prob-

lem:

argmin
𝑻∈G

E
𝒛∼𝑄

[
E2
𝑞

(
𝐹
𝜙

𝑖
(𝒛), 𝐹𝜙

𝑗
(𝒛) ◦ 𝑻−1

)]
(D.27)

Note that we have squared the expression occurring in the main proposition – i.e., we have

dropped the (·)1/2 operation—as this does not effect the optimal alignment transformation.

First, let’s focus on the innermost term of Equation D.27. Let 𝑋𝑖, 𝑋 ′𝑖 ∼ 𝐹
𝜙

𝑖
(· | 𝒛)

and 𝑋 𝑗 , 𝑋 ′𝑗 ∼ 𝐹
𝜙

𝑗
(· | 𝒛), independently and treating the input 𝒛 as fixed for now. Now, since G is a

group of isometries with respect to the Euclidean norm, we have:

E2
𝑞 (𝐹

𝜙

𝑖
(· | 𝒛), 𝐹𝜙

𝑗
(· | 𝒛) ◦ 𝑻−1) = E∥𝑋𝑖 − 𝑻𝑋 𝑗 ∥𝑞 − 1

2E∥𝑋𝑖 − 𝑋
′
𝑖 ∥𝑞 − 1

2E∥𝑻𝑋 𝑗 − 𝑻𝑋
′
𝑗 ∥𝑞

= E∥𝑋𝑖 − 𝑻𝑋 𝑗 ∥𝑞 − 1
2E∥𝑋𝑖 − 𝑋

′
𝑖 ∥𝑞 − 1

2E∥𝑋 𝑗 − 𝑋
′
𝑗 ∥𝑞

The final two terms are constant with respect to 𝑻 , so we can drop them from the objective

function without effecting the result. Thus, Equation D.27 can be simplified to:

argmin
𝑻∈G

E
𝒛∼𝑄

[
E∥𝑋𝑖 − 𝑻𝑋 𝑗 ∥𝑞

]
(D.28)
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Here, the outer expectation is over network inputs 𝒛 and the inner expectation is over conditional

distributions, 𝑋𝑖 ∼ 𝐹𝜙𝑖 (· | 𝒛) and 𝑋 𝑗 ∼ 𝐹
𝜙

𝑗
(· | 𝒛).

Recall again that we are given sampled responses {𝒙 (𝑘𝑚)
ℓ
}𝐾,𝑀,𝐿
𝑘,𝑚,ℓ

as specified in Equation D.19.

To construct a consistent estimator, we evoke the law of large numbers to replace the expectations

with empirical averages. Equation D.28 becomes:

argmin
𝑻∈G

1
𝑀𝐿2

𝑀∑︁
𝑚=1

𝐿∑︁
ℓ=1

𝐿∑︁
𝑝=1
∥𝒙 (𝑖𝑚)

ℓ
− 𝑻𝒙 ( 𝑗𝑚)𝑝 ∥𝑞 (D.29)

When 𝑞 = 2, the optimal 𝑻 ∈ G can often be identified efficiently—e.g., by solving a Procrustes

problem when G = O (Gower and Dijksterhuis, 2004) or a linear assignment problem when

G = P (Burkard et al., 2012). However, when 𝑞 = 2 the stochastic shape distance only de-

pends on the mean and is insensitive to higher-order moments of the neural response (see sub-

section D.6.1) In the more interesting case where 𝑞 ≠ 2, we can use iteratively re-weighted least

squares (Kuhn, 1973) to identify the solution.2 Details of this well-known algorithm are provided

in subsection D.6.2.

Now, let 𝑻 ∗ ∈ G be the solution to Equation D.29. Using this it is straightforward to estimate

the desired stochastic shape distance. Our estimate of 𝑑 (𝐹𝑖, 𝐹 𝑗 ) is:

1
𝑚

∑︁
𝑚

(
1
𝐿2

∑︁
ℓ,𝑝

∥𝒙 (𝑖𝑚)
ℓ
− 𝑻 ∗𝒙 ( 𝑗𝑚)𝑝 ∥𝑞 − 1

𝐿(𝐿−1)

∑︁
ℓ>𝑝

∥𝒙 (𝑖𝑚)
ℓ
− 𝒙 (𝑖𝑚)𝑝 ∥𝑞 − 1

𝐿(𝐿−1)

∑︁
ℓ>𝑝

∥𝒙 ( 𝑗𝑚)
ℓ
− 𝒙 ( 𝑗𝑚)𝑝 ∥𝑞

)
where the sums over ℓ > 𝑝 are over all 𝐿(𝐿 − 1)/2 pairwise combinations between 𝐿 sampled

activations. Each of the three terms in the expression above is a consistent (though not unbiased)

estimator of its corresponding term in definition of energy distance (eq. 5.4). However, if the

final two terms above are over-estimated in magnitude and the first term is under-estimated, the
2One could alternatively consider using manifold optimization methods when G is a continuous manifold. How-

ever, these methods are somewhat cumbersome and aren’t easy to extend to the case where G is a discrete set, such
as the set of all permutations.
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overall estimate of 𝑑 (𝐹𝑖, 𝐹 𝑗 ) may be negative. This violates perhaps the most important property

of a metric space that distances should be nonnegative. Triangle inequality violations are also

possible.

We propose a simple fix using basic ideas from the literature on metric repair (Brickell et al.,

2008). Given a collection of 𝐾 networks, we use the procedure above to compute an estimate of

the 𝐾 × 𝐾 distance matrix 𝑫 where 𝑫𝑖 𝑗 ≈ 𝑑 (𝐹𝑖, 𝐹 𝑗 ). We then find the matrix 𝑫∗ that is closest to

our estimate 𝑫 according a quadratic loss, and which satisfies all the axioms of a metric space.

This amounts to solving a quadratic program, as detailed in subsection D.6.3.

D.5 Interpolated 2-Wasserstein Metrics

D.5.1 Proof thatW𝛼

2 is a metric

We start by proving a well-known and basic lemma, which states that the ℓ𝑝 norm of a col-

lection of metrics also defines a metric.

Lemma D.4. Let 𝑑1, . . . , 𝑑𝑛 be a collection of metrics on a set S. Then, for any 𝑝 > 1,

𝑑 (𝑥,𝑦) = 𝑝
√︁
𝑑1(𝑥,𝑦)𝑝 + . . . + 𝑑𝑛 (𝑥,𝑦)𝑝 (D.30)

is a metric on S.

Proof. It is obvious that 𝑑 (𝑥,𝑦) = 0 if and only if 𝑑1(𝑥,𝑦) = . . . = 𝑑𝑛 (𝑥,𝑦) = 0 and that 𝑑 (𝑥,𝑦) =

𝑑 (𝑦, 𝑥). So it is only non-trivial to prove the triangle inequality.

Let 𝒅 (𝑥,𝑦) denote the vector in R𝑛 holding each distance. That is:

𝒅 (𝑥,𝑦) =


𝑑1(𝑥,𝑦)

...

𝑑𝑛 (𝑥,𝑦)


(D.31)
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The triangle inequality now follows from:

𝑑 (𝑥,𝑦) = 𝑝
√︁
𝑑1(𝑥,𝑦)𝑝 + . . . + 𝑑𝑛 (𝑥,𝑦)𝑝 = ∥𝒅 (𝑥,𝑦)∥𝑝 (D.32)

≤ ∥𝒅 (𝑥,𝑚) + 𝒅 (𝑚,𝑦)∥𝑝 (D.33)

≤ ∥𝒅 (𝑥,𝑚)∥𝑝 + ∥𝒅 (𝑚,𝑦)∥𝑝 (D.34)

= 𝑑 (𝑥,𝑚) + 𝑑 (𝑚,𝑦) (D.35)

for all 𝑥 ∈ S, 𝑦 ∈ S, and 𝑚 ∈ S. The first inequality follows from the triangle inequality on

each 𝑑1, . . . , 𝑑𝑛 and then from ∥ · ∥𝑝 being a monotonically increasing function of each vector

coordinate. The second inequality follows from the sub-additivity property of all norms. □

This lemma provides further perspective on the closed form expression we gave in sub-

section D.4.1 for the 2-Wasserstein distance between Gaussian distributions. In particular, if

𝑃𝑖 = N(𝝁𝑖, 𝚺𝑖) and 𝑃 𝑗 = N(𝝁 𝑗 , 𝚺 𝑗 ), we saw in Equation D.20 that:

W2
(
𝑃𝑖, 𝑃 𝑗

)
=

(
𝑑2
𝝁 (𝝁𝑖, 𝝁 𝑗 ) + 𝑑2

𝚺
(𝚺𝑖, 𝚺 𝑗 )

)1/2 (D.36)

where𝑑2
𝝁 is the squared Euclidean distance between the means and𝑑2

𝚺
is the squared Bures metric

between the covariances. Thus, the 2-Wasserstein distance between Gaussians can be intuitively

thought of as the ℓ2 norm of this pair of metrics.

It is trivial to verify that all the properties of a metric are preserved the distance is multiplied

a scalar 𝛼 > 0. That is, if 𝑔 is a metric, then 𝑑 (𝑥,𝑦) = 𝛼𝑔(𝑥,𝑦) is also a metric. Combining this

with Theorem D.4 it is obvious that,

W𝛼

2
(
𝑃𝑖, 𝑃 𝑗

)
=

(
𝛼 · 𝑑2

𝝁 (𝝁𝑖, 𝝁 𝑗 ) + (2 − 𝛼) · 𝑑2
𝚺
(𝚺𝑖, 𝚺 𝑗 )

)1/2 (D.37)

which is simply a re-statement of Equation 5.7, is a metric for any 0 < 𝛼 < 2.
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D.5.2 Lower Bound on Interpolated Shape Distances

We now derive a simple lower bound on stochastic shape distances whenW𝛼

2 is used as the

ground metric. Let 𝑑2
𝛼 denote the squared shape distance of interest, for any chosen 0 ≤ 𝛼 ≤ 2.

We have:

𝑑2
𝛼 (𝐹𝑖, 𝐹 𝑗 ) = min

𝑻∈G
E𝒛

[
(W𝛼

2 )2
(
𝐹
𝜙

𝑖
(· | 𝒛), 𝐹𝜙

𝑗
(· | 𝒛) ◦ 𝑻−1) ]

= min
𝑻∈G
E𝒛

[
𝛼 · 𝑑2

𝝁 (𝝁𝑖 (𝒛), 𝑻𝝁 𝑗 (𝒛)) + (2 − 𝛼) · 𝑑2
𝚺
(𝚺𝑖 (𝒛), 𝑻𝚺 𝑗 (𝒛)𝑻⊤)

]
≥ 𝛼 · min

𝑻𝝁∈G
E𝒛

[
𝑑2
𝝁 (𝝁𝑖 (𝒛), 𝑻𝝁𝝁 𝑗 (𝒛))

]
+ (2 − 𝛼) · min

𝑻𝚺∈G
E𝒛

[
𝑑2
𝚺
(𝚺𝑖 (𝒛), 𝑻𝚺𝚺 𝑗 (𝒛)𝑻⊤𝚺 )

]
The inequality here follows from the linearity of expectation and then from separatelyminimizing

the two terms. The inequality is tight if the optimal value of 𝑻𝝁 equals the optimal value of 𝑻𝚺.

Furthermore, the two minimized terms in the final expression are proportional to the squared

shape distance when 𝛼 = 2 and 𝛼 = 0, respectively:

min
𝑻∈G
E𝒛

[
𝑑2
𝝁 (𝝁𝑖 (𝒛), 𝑻𝝁 𝑗 (𝒛))

]
=

1
2
· 𝑑2

𝛼=2(𝐹𝑖, 𝐹 𝑗 ) (D.38)

min
𝑻∈G
E𝒛

[
𝑑2
𝚺
(𝚺𝑖 (𝒛), 𝑻𝚺𝚺 𝑗 (𝒛)𝑻⊤𝚺 )

]
=

1
2
· 𝑑2

𝛼=0(𝐹𝑖, 𝐹 𝑗 ) (D.39)

Thus, in summary we have:

𝑑2
𝛼 (𝐹𝑖, 𝐹 𝑗 ) ≥

𝛼

2
· 𝑑2

𝛼=2(𝐹𝑖, 𝐹 𝑗 ) +
2 − 𝛼

2
· 𝑑2

𝛼=0(𝐹𝑖, 𝐹 𝑗 ) (D.40)

⇒ 𝑑𝛼 (𝐹𝑖, 𝐹 𝑗 ) ≥
√︂
𝛼

2
· 𝑑2

𝛼=2(𝐹𝑖, 𝐹 𝑗 ) +
2 − 𝛼

2
· 𝑑2

𝛼=0(𝐹𝑖, 𝐹 𝑗 ) (D.41)
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D.5.3 Interpretation ofW𝛼

2 when Gaussian assumption is violated

When neural responses are Gaussian-distributed, thenW𝛼

2 can be interpreted as a natural

extension of 2-Wasserstein distance (see Figure 5.3). What if neural responses are not Gaussian-

distributed? Concretely, consider two distributions 𝑃𝑖 and 𝑃 𝑗 , which are not necessarily Gaussian.

We can still define the first two moments (mean and covariance) of these distributions:

𝝁𝑖 = E𝒙∼𝑃𝑖 [𝒙] and 𝚺𝑖 = E𝒙∼𝑃𝑖 [(𝒙 − 𝝁𝑖) (𝒙 − 𝝁𝑖)⊤] . (D.42)

Using these, we can still computeW𝛼

2 (𝑃𝑖, 𝑃 𝑗 ) as before.

However, it is no longer the case that this calculation will coincide with the 2-Wasserstein

distance between 𝑃𝑖 and 𝑃 𝑗 . Because of this, we can no longer conceptualizeW𝛼

2 as the amount

of energy taken to transport 𝑃𝑖 onto 𝑃 𝑗 with the parameter 𝛼 differentially weighting the cost of

transporting mass due to mismatches in the mean and covariance.

On the other hand,W𝛼

2 may still be a reasonable ground metric in many practical circum-

stances. In particular, it is obvious thatW𝛼

2 (𝑃𝑖, 𝑃 𝑗 ) = 0 if and only if the mean and covariance

of these distributions match. Thus, it is a pseudometric over all probability distributions and a

metric on equivalence classes defined by the equivalence relation 𝑃𝑖 ∼ 𝑃 𝑗 if and only if 𝝁𝑖 = 𝝁 𝑗

and 𝚺𝑖 = 𝚺 𝑗 . From this, it is easy to show that the stochastic shape metric (eq. 5.5) based on this

ground metric also satisfies the metric space axioms, including the triangle inequality.

In high-dimensional datasets, it is often challenging to estimate and interpret the higher-order

statistical moments of a distribution. In the setting of comparing stochastic neural representa-

tions, one could argue that it is reasonable to settle for a ground metric that is insensitive to these

higher-order moments. From this perspective,W𝛼

2 belongs to a larger family of ground metrics

that can be expressed:

D(𝑃𝑖, 𝑃 𝑗 ) = (𝑑2
𝝁 (𝝁𝑖, 𝝁 𝑗 ) + 𝑑2

𝚺
(𝚺𝑖, 𝚺 𝑗 ))1/2 (D.43)
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for some chosen metric on the means, 𝑑𝝁 , and another chosen metric on the covariances, 𝑑𝚺.

Again, no assumption onwhether 𝑃𝑖 and 𝑃 𝑗 being Gaussian is strictly necessary. Amore thorough

exploration of these alternative ground metrics is a potential direction of future research.

D.6 Miscellaneous Theory and Background

D.6.1 Energy distance as a trial-averaged shape metric when 𝑞 = 2

Performing representational dissimilarity analysis on trial average activity measurements is

already common practice in neuroscience. Here, we show that this approach arises as a special

case of the stochastic shape distances explored in this manuscript. When 𝑞 = 2, the energy

distance is given by:

E2(𝑃,𝑄) = (E∥𝑋 − 𝑌 ∥2 − 1
2E∥𝑋 − 𝑋

′∥2 − 1
2E∥𝑌 − 𝑌

′∥2)1/2 (D.44)

Since 𝑋 and 𝑋 ′ are independent and identically distributed random variables, we have:

1
2E∥𝑋 − 𝑋

′∥2 = 1
2E[𝑋

⊤𝑋 ] + 1
2E[𝑋

′⊤𝑋 ′] − E[𝑋⊤𝑋 ′] (D.45)

= E[𝑋⊤𝑋 ] − E[𝑋⊤𝑋 ′] (D.46)

= E[𝑋⊤𝑋 ] − E[𝑋 ]⊤E[𝑋 ] (D.47)

Likewise,
1
2E∥𝑌 − 𝑌

′∥2 = E[𝑌⊤𝑌 ] − E[𝑌 ]⊤E[𝑌 ] . (D.48)
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Plugging these expressions into Equation D.44 and simplifying we see that:

E2(𝑃,𝑄) = (E∥𝑋 − 𝑌 ∥2 − E[𝑋⊤𝑋 ] + E[𝑋 ]⊤E[𝑋 ] − E[𝑌⊤𝑌 ] + E[𝑌 ]⊤E[𝑌 ])1/2

= (�����E[𝑋⊤𝑋 ] +�����
E[𝑌⊤𝑌 ] − 2E[𝑋⊤𝑌 ]

−�����E[𝑋⊤𝑋 ] + E[𝑋 ]⊤E[𝑋 ] −�����
E[𝑌⊤𝑌 ] + E[𝑌 ]⊤E[𝑌 ])1/2

= (E[𝑋 ]⊤E[𝑋 ] + E[𝑌 ]⊤E[𝑌 ] − 2E[𝑋⊤𝑌 ])1/2

= (∥E[𝑋 ] − E[𝑌 ] ∥2)1/2

= ∥E[𝑋 ] − E[𝑌 ] ∥

To summarize, we have shown that the 𝑞 = 2 energy distance between a distribution 𝑃 and

𝑄 is equal to the Euclidean distance between the mean of 𝑃 and the mean of 𝑄 . If we use this

energy distance as the ground metric,D, in Theorem 5.1 to construct a stochastic shape distance,

we are essentially calculating a deterministic shape distance3 on the mean response patterns.

D.6.2 Iteratively Reweighted Least Sqares

Fix𝑞 to be a value on the open interval (0, 2) and consider the following optimization problem:

min
𝑻∈G

{
𝑓 (𝑻 ) =

𝑁∑︁
𝑖=1
∥𝒚𝑖 − 𝑻𝒙𝑖 ∥𝑞

}
(D.49)

It is easy to see that Equation D.29 is an instance of this problem for a particular choice of vectors

𝒙𝑖 ∈ R𝑛 and 𝒚𝑖 ∈ R𝑛 .

Our key assumption will be that we can efficiently solve the following weighted least squares

problem:

min
𝑻∈G

𝑁∑︁
𝑖=1

𝑤𝑖 ∥𝒚𝑖 − 𝑻𝒙𝑖 ∥2 (D.50)

3Specifically, see the distances covered under Proposition 1 in Williams et al. (2021).

170



for any choice of weightings,𝑤1, . . . ,𝑤𝑁 . Again, this is possible when G is the orthogonal group

(Procrustes problem) or the permutation group (linear assignment).

Iteratively re-weighted least squares algorithms are a family of methods that are encompassed

by the even larger family of majorize-minimization algorithms (Lange, 2016). The specificmethod

we deploy can be viewed as an extension toWeiszfeld’s algorithm (Kuhn, 1973). Our starting point

is to recognize that the function 𝑠 ↦→ 𝑠𝑞/2 is concave for 0 < 𝑞 < 2 and 𝑠 ≥ 0. Thus, we can derive

an upper bound using the first-order Taylor expansion:

(𝑠 + 𝛿)𝑞/2 ≤ 𝑠𝑞/2 + 𝛿
(
d
d𝑠
𝑠𝑞/2

)
= 𝑠𝑞/2 + 𝑞

2

(
𝛿

𝑠 (1−𝑞/2)

)
, (D.51)

for any 𝛿 such that 𝑠 + 𝛿 ≥ 0.

We will now use this fact to derive an upper bound on the objective function in Equation D.49.

Let 𝑻 (𝑡) ∈ G represent our estimate of the optimal 𝑻 ∈ G after 𝑡 iterations of our algorithm, and

let 𝑻 ∈ G denote any feasible transformation. Then, for 𝑖 ∈ {1, . . . , 𝑁 }, define:

𝑠
(𝑡)
𝑖

= ∥𝒚𝑖 − 𝑻 (𝑡)𝒙𝑖 ∥2 (D.52)

𝛿
(𝑡)
𝑖

= ∥𝒚𝑖 − 𝑻𝒙𝑖 ∥2 − 𝑠 (𝑡)𝑖 (D.53)

Notice that these definitions imply 𝑠 (𝑡)
𝑖
+ 𝛿 (𝑡)

𝑖
≥ 0. Now, plugging into Equation D.51, we have:

(
𝑠
(𝑡)
𝑖
+ 𝛿 (𝑡)

𝑖

)𝑞/2
= ∥𝒚𝑖 − 𝑻𝒙𝑖 ∥𝑞 ≤

(
𝑠
(𝑡)
𝑖

)𝑞/2
+ 𝑞

2
©«

𝛿
(𝑡)
𝑖(

𝑠
(𝑡)
𝑖

) (1−𝑞/2) ª®®¬ (D.54)

This is an upper bound for each term in the sum of the original objective function. Therefore,
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plugging in the definitions of 𝑠 (𝑡)
𝑖

and 𝛿 (𝑡)
𝑖
, we have:

𝑓 (𝑻 ) =
𝑁∑︁
𝑖=1
∥𝒚𝑖 − 𝑻𝒙𝑖 ∥𝑞 ≤

𝑁∑︁
𝑖=1

(
∥𝒚𝑖 − 𝑻 (𝑡)𝒙𝑖 ∥2

)𝑞/2
+ 𝑞

2

(
∥𝒚𝑖 − 𝑻𝒙𝑖 ∥2 − 𝑠 (𝑡)𝑖(
∥𝒚𝑖 − 𝑻 (𝑡)𝒙𝑖 ∥2

) (1−𝑞/2) ) (D.55)

=

𝑁∑︁
𝑖=1
∥𝒚𝑖 − 𝑻 (𝑡)𝒙𝑖 ∥𝑞 +

𝑞

2

(
∥𝒚𝑖 − 𝑻𝒙𝑖 ∥2 − ∥𝒚𝑖 − 𝑻 (𝑡)𝒙𝑖 ∥2

∥𝒚𝑖 − 𝑻 (𝑡)𝒙𝑖 ∥2−𝑞

)
(D.56)

≜ 𝑄 (𝑻 | 𝑻 (𝑡)) (D.57)

Here, we view 𝑄 (𝑻 | 𝑻 (𝑡)) as a function of 𝑻—i.e. 𝑻 (𝑡) is fixed. The calculations above show that

𝑄 (𝑻 | 𝑻 (𝑡)) provides an upper bound on the objective function for any 𝑻 ∈ G. Furthermore, it is

easy to check that 𝑓 (𝑻 (𝑡)) = 𝑄 (𝑻 (𝑡) | 𝑻 (𝑡))—i.e., the upper bound is tight at 𝑻 = 𝑻 (𝑡) .

We now have all the necessary ingredients to derive an algorithm. We start by initializing

𝑻 (1) ∈ G by some method. Then we compute {𝑻 (2), 𝑻 (3), . . .} iteratively according to:

𝑻 (𝑡+1) = argmin
𝑻∈G

𝑄 (𝑻 | 𝑻 (𝑡)) = argmin
𝑻∈G

𝑁∑︁
𝑖=1

∥𝒚𝑖 − 𝑻𝒙𝑖 ∥2

∥𝒚𝑖 − 𝑻 (𝑡)𝒙𝑖 ∥2−𝑞
. (D.58)

The last equality here follows from dropping terms from Equation D.56 that are constant.4 In-

tuitively, at each step we are minimizing a surrogate function 𝑄 (𝑻 | 𝑻 (𝑡)) that upper bounds the

true objective function. This surrogate function is easy to optimize since the minimization is a

special case of Equation D.50 with weightings:

𝑤𝑖 =
1

∥𝒚𝑖 − 𝑻 (𝑡)𝒙𝑖 ∥2−𝑞
(D.59)

Furthermore, because we showed that the upper bound is tight at 𝑻 = 𝑻 (𝑡) , we have:

𝑓 (𝑻 (𝑡+1)) ≤ 𝑄 (𝑻 (𝑡+1) | 𝑻 (𝑡)) = min
𝑻∈G

𝑄 (𝑻 | 𝑻 (𝑡)) ≤ 𝑄 (𝑻 (𝑡) | 𝑻 (𝑡)) = 𝑓 (𝑻 (𝑡)) (D.60)

4It is important to understand that we are treating 𝑻 (𝑡 ) as a constant. Only terms that depend on 𝑻 matter for the
minimization. We also further simplified by rescaling 𝑄 (𝑻 | 𝑻 (𝑡 ) ) by a factor of 2/𝑞, which doesn’t affect the value
at which the minimum is attained.
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which shows that the the objective function never increases as the algorithm progresses.

D.6.3 Quadratic Metric Repair

We are given a symmetric estimate of a distance matrix 𝑫 ∈ R𝐾×𝐾 , which may contain neg-

ative entries and triangle inequality violations. Let 𝒅 ∈ R𝐾 (𝐾−1)/2 be a vector holding the upper

triangular entries of 𝑫 , excluding the diagonal. Then, consider the following optimization prob-

lem:
minimize

𝒙
∥𝒙 − 𝒅∥2

subject to 𝑥𝑖 ≥ 0, ∀𝑖 ∈ {1, . . . , 𝐾 (𝐾 − 1)/2}

𝑥𝑖 + 𝑥 𝑗 − 𝑥𝑘 ≥ 0, ∀(𝑖, 𝑗, 𝑘) ∈ T𝐾

where T𝐾 is the set of 3
(𝐾

3
)
directed triples of indices corresponding to a triangle inequality con-

straint. This is a quadratic program—i.e., a convex optimization problem with a quadratic objec-

tive and linear inequality constraints. To solve this problem, we use the open-source and highly

optimized OSQP solver (Stellato et al., 2020). The number of inequality constraints grows cubi-

cally as 𝐾 increases, so finding an exact solution may be computationally expensive for analyses

of large collections of stochastic neural networks.

D.6.4 Reformulating the Bures metric

Here we will prove that Eqs. D.21,D.22 are equivalent. A similar statement is proved in The-

orem 1 of Bhatia et al. (2019). Our proof relies on the following lemma.

Lemma D.5. Let 𝑿 ∈ R𝑛×𝑛 be a matrix with singular value decomposition 𝑿 = 𝑼𝑺𝑽⊤. Then

𝑽𝑼⊤ = (𝑿⊤𝑿 )−1/2𝑿⊤.

Proof. This follows from the construction of the singular value decomposition. First, recognize

that 𝑿 can be written as the product of an orthogonal 𝑸 and symmetric positive semidefinite
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matrix, 𝑷 , as follows:

𝑿 = 𝑿 (𝑿⊤𝑿 )−1/2︸          ︷︷          ︸
=𝑸

(𝑿⊤𝑿 )1/2︸      ︷︷      ︸
=𝑷

(D.61)

It is easy to check that𝑸⊤𝑸 = 𝑸𝑸⊤ = 𝑰 . Now, since 𝑷 is positive semidefinite, we have 𝑷 = 𝑽𝑺𝑽⊤

for some orthogonal matrix 𝑽 and nonnegative diagonal matrix 𝑺 . Defining 𝑼 = 𝑸𝑽 , we arrive

at the SVD of 𝑿 = 𝑸𝑷 = 𝑼𝑺𝑽⊤. Now we can see that:

𝑼 = 𝑸𝑽 = 𝑿 (𝑿⊤𝑿 )−1/2𝑽 ⇒ 𝑼𝑽⊤ = 𝑿 (𝑿⊤𝑿 )−1/2 (D.62)

Taking the transpose of this we prove the lemma. □

Now we proceed to prove the main result.

Proposition D.6. Let 𝑨 and 𝑩 be two positive definite matrices. Then

min
𝑸∈O
∥𝑨1/2 − 𝑸𝑩1/2∥2𝐹 = Tr[𝑨 + 𝑩 − 2(𝑨1/2𝑩𝑨1/2)1/2] (D.63)

Proof. The minimization over 𝑸 is an instance of the well-known orthogonal procrustes prob-

lem (Gower and Dijksterhuis, 2004). This has a closed form solution. Specifically, denoting the

singular value decomposition of 𝑩1/2𝑨1/2 as 𝑼𝑺𝑽⊤, we have:

𝑸∗ = arg min
𝑸∈O

∥𝑨1/2 − 𝑸𝑩1/2∥2𝐹 = 𝑽𝑼⊤ (D.64)

Now, by Theorem D.5 above, we have:

𝑽𝑼⊤ = ((𝑩1/2𝑨1/2)⊤(𝑩1/2𝑨1/2))−1/2(𝑩1/2𝑨1/2)⊤ = (𝑨1/2𝑩𝑨1/2)−1/2𝑨1/2𝑩1/2 (D.65)
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Plugging this into the original problem, we have:

∥𝑨1/2 − 𝑸∗𝑩1/2∥2𝐹 = Tr[𝑨 + 𝑩 − 2𝑨1/2𝑸∗𝑩1/2] (D.66)

= Tr[𝑨 + 𝑩 − 2𝑨1/2(𝑨1/2𝑩𝑨1/2)−1/2𝑨1/2𝑩] (D.67)

Due to the cyclic trace property, this becomes:

Tr[𝑨 + 𝑩 − 2(𝑨1/2𝑩𝑨1/2)−1/2𝑨1/2𝑩𝑨1/2] = Tr[𝑨 + 𝑩 − 2(𝑨1/2𝑩𝑨1/2)1/2] (D.68)

as claimed. □

175



E | Notation

Let non-boldface letters (e.g. 𝑁 , 𝛾 ) denote scalar constants. For 𝑁 ⩾ 2, let 𝐾𝑁 := 𝑁 (𝑁 + 1)/2.

Let R𝑁 denote 𝑁 -dimensional Euclidean space equipped with the Euclidean norm, denoted ∥ · ∥2.

Let R𝑁+ denote the non-negative orthant in R𝑁 . Given 𝐾 ⩾ 2, let R𝑁×𝐾 denote the set of 𝑁 × 𝐾

real-valued matrices. Let S𝑁 denote the set of 𝑁 × 𝑁 symmetric matrices and let S𝑁++ denote the

set of 𝑁 × 𝑁 symmetric positive definite matrices.

Matrices are denoted using bold uppercase letters (e.g., M) and vectors are denoted using bold

lowercase letters (e.g., v). Given a matrix M, 𝑀𝑖 𝑗 denotes the entry of M located at the 𝑖th row

and 𝑗 th column. Let 1 = [1, . . . , 1]⊤ denote the 𝑁 -dimensional vector of ones. Let I𝑁 denote the

𝑁 × 𝑁 identity matrix.

Given vectors v,w ∈ R𝑁 , define their Hadamard product by v ◦w := (𝑣1𝑤1, . . . , 𝑣𝑁𝑤𝑁 ) ∈ R𝑁 .

Define v◦2 := (𝑣2
1, . . . , 𝑣

2
𝑁
) ∈ R𝑁 .

Let ⟨·⟩𝑡 denote expectation over 𝑡 = 1, 2, . . . .

The diag (·) operator, similar to numpy.diag() or MATLAB’s diag(), can either: 1) map a

vector in R𝐾 to the diagonal of a 𝐾 × 𝐾 matrix of zeros; or 2) map the diagonal entries of a

𝐾 ×𝐾 matrix to a vector in R𝐾 . The specific operation being used should be clear by context. For

example, given a vector v ∈ R𝐾 , define diag(v) to be the𝐾×𝐾 diagonal matrix whose (𝑖, 𝑖)th entry

is equal to 𝑣𝑖 , for 𝑖 = 1, . . . , 𝐾 . Alternatively, given a square matrix M ∈ R𝐾×𝐾 , define diag(M) to

be the 𝐾-dimensional vector whose 𝑖th entry is equal to𝑀𝑖𝑖 , for 𝑖 = 1, . . . , 𝐾 .
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