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The visual world is richly adorned with texture, which can serve to delineate important elements of natural scenes. In anesthetized
macaque monkeys, selectivity for the statistical features of natural texture is weak in V1, but substantial in V2, suggesting that
neuronal activity in V2 might directly support texture perception. To test this, we investigated the relation between single cell activity
inmacaqueV1 andV2 and simultaneouslymeasured behavioral judgments of texture.We generated stimuli along a continuumbetween
naturalistic texture and phase-randomized noise and trained two macaque monkeys to judge whether a sample texture more closely
resembled one or the other extreme. Analysis of responses revealed that individual V1 and V2 neurons carried much less information
about texture naturalness than behavioral reports. However, the sensitivity of V2 neurons, especially those preferring naturalistic tex-
tures, was significantly closer to that of behavior comparedwithV1. Thefiring of bothV1 andV2neurons predicted perceptual choices in
response to repeated presentations of the same ambiguous stimulus in one monkey, despite low individual neural sensitivity. However,
neither population predicted choice in the secondmonkey. We conclude that neural responses supporting texture perception likely con-
tinue to develop downstream ofV2. Further, combinedwith neural data recordedwhile the same twomonkeys performed an orientation
discrimination task, our results demonstrate that choice-correlated neural activity in early sensory cortex is unstable across observers
and tasks, untethered from neuronal sensitivity, and therefore unlikely to directly reflect the formation of perceptual decisions.
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Significance Statement

As visual signals propagate along the cortical hierarchy, they encode increasingly complex aspects of the sensory environment
and likely have a more direct relationship with perceptual experience. We replicate and extend previous results from anes-
thetized monkeys differentiating the selectivity of neurons along the first step in cortical vision from area V1 to V2. However,
our results further complicate efforts to establish neural signatures that reveal the relationship between perception and the
neuronal activity of sensory populations. We find that choice-correlated activity in V1 and V2 is unstable across different
observers and tasks, and also untethered from neuronal sensitivity and other features of nonsensory response modulation.

Introduction
As signals propagate along the visual hierarchy, individual neu-
rons represent increasingly complex aspects of the visual envi-
ronment. In principle, these later representations are better
suited to support complex perceptual tasks than the simpler rep-
resentations that precede them, and may thus have a more direct
relationship with perceptual experience. This relationship is best
assessed through the simultaneous recording of neural responses

and behavioral reports of perceptual decisions (Newsome et al.,
1989; Parker and Newsome, 1998). In many areas of the brain,
the activity of individual neurons approaches or even exceeds
the perceptual sensitivity of the subject and, moreover, predicts
behavioral choices even on trials where the visual stimulus is
ambiguous (Britten et al., 1992; Prince et al., 2000; Uka and
DeAngelis, 2006; Nienborg and Cumming, 2006, 2014). Such
results have been taken as evidence of an area’s participation in
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the formation of a perceptual decision, regardless of the exact ori-
gin of choice-correlated activity (Cumming and Nienborg, 2016).
Whether sensory noise is fed forward to causally influence down-
stream areas that integrate evidence into a decision (Shadlen
et al., 1996), or whether choice-related activity is fed back from
decision circuits to sensory areas to support hierarchical proba-
bilistic inference (Nienborg and Cumming, 2009; Haefner
et al., 2016), most explanations of choice-related activity suggest
it is a reflection of the decision-making process.

A particularly successful application of this approach has been
in the investigation of the neural representation of binocular dis-
parity. Both the primary (V1) and secondary (V2) visual cortex
are sensitive to visual disparities, but there is a clear shift from
absolute to relative disparity sensitivity in V2 compared with
V1, more closely aligning with perception (Thomas et al., 2002).
Nienborg and Cumming (2006) further demonstrated that V2
neurons are more sensitive to disparity than V1 neurons, and pre-
dict behavioral choices in response to ambiguous stimuli, while V1
neurons do not. We wondered whether a similar V1-V2 distinc-
tion might exist in the representation of visual form. We previ-
ously found that V1 and V2 neurons can be distinguished based
on their responses to naturalistic texture stimuli nearly as well as
based on their sensitivity to relative disparity (Thomas et al.,
2002; Freeman et al., 2013). Further, multiple observations provide
indirect evidence for a relationship between the response of pop-
ulations of V2 neurons and the perception of naturalistic textures
(Freeman and Simoncelli, 2011; Freeman et al., 2013; Ziemba et al.,
2016; Ziemba and Simoncelli, 2021). Despite being recorded under
anesthesia, V2 responses, but not V1 responses, predicted human
psychophysical performance on a naturalistic texture discrimina-
tion task (Freeman et al., 2013). Here, we directly test the strength
of this link between V2 responses and the perception of naturalis-
tic image structure bymeasuring neuronal and behavioral sensitiv-
ity simultaneously in the same observers.

We found that V2 neurons were substantially more sensitive
to naturalistic image structure than V1 neurons, confirming our
previous results in anesthetized animals (Freeman et al., 2013;
Ziemba et al., 2018, 2019). However, average sensitivity in both
V1 and V2 was far from behavior. Correspondingly, we found
inconsistent evidence for a relationship between neuronal
responses and behavioral choice in either V1 or V2. When com-
pared with previous data collected from the same two monkeys
performing an orientation discrimination task, we found that
choice-correlated neural activity was unstable across tasks and
observers, and untethered from both neuronal sensitivity and sig-
natures of nonsensory modulation. Our results provide further
evidence for the functional differentiation of V1 and V2 in the
neural representation of naturalistic image structure, but suggest
that further elaboration of these signals in downstream areas may
more directly support perception of these visual features
(Movshon and Simoncelli, 2014; Okazawa et al., 2015;
Okazawa et al., 2017). Finally, we conclude more broadly that
the presence of choice-correlated activity in the sensory cortex
is unlikely to be a universal indicator of a neural population’s par-
ticipation in the formation of a perceptual decision.

Materials and Methods
Observers and physiology. Two male macaque monkeys (one

M.mulatta and oneM. nemestrina) were subjects in this study. Both ani-
mals were previously trained to perform an orientation discrimination
task, and neuronal responses recorded fromV1 and V2 during task beha-
vior have been previously published (Goris et al., 2017). Here, both ani-
mals were retrained to perform a naturalistic texture discrimination task.

Experimental procedures conformed to the National Institutes of Health
Guide for the care and use of laboratory animals and were approved by
the New York University Animal Welfare Committee. Under general
anesthesia, the animals were implanted with a titanium head post and
recording chamber (Adams et al., 2007, 2011). Extracellular recordings
were made with dura-penetrating glass-coated tungsten microelectrodes
(Alpha Omega), advanced mechanically into the brain.We distinguished
V1 fromV2 on the basis of depth from the cortical surface and changes in
the receptive field location of the recorded units. We made recordings
from every unit with a spike waveform that rose sufficiently above noise
to be isolated, and only included recordings in the final analysis that
maintained sufficient isolation throughout the session. While the mon-
key fixated a central fixation spot, we first used a drifting sinusoidal grat-
ing stimulus to map each isolated unit’s receptive field and determine
where to position the stimulus center in the main experiment. Across
our population, receptive fields were centered at eccentricities ranging
from 2° to 6° from the center of gaze. Thereafter, we ran an initial char-
acterization of the sensitivity of each neuron to naturalistic image
structure.

Stimulus synthesis, presentation, and tuning. We generated syn-
thetic, naturalistic texture images—matched for the spectral (second-
order) and higher-order statistics of original natural images—using the
procedure developed by Portilla and Simoncelli (2000). We generated
spectrally matched noise stimuli—matched only to the spectral statistics
of original natural images—as well as stimuli lying between these and the
naturalistic textures, as described by Freeman et al. (2013). For each
texture naturalness level, we generated synthetic images at a size of
512 × 2048 pixels, and displayed different samples of texture by changing
the center of a 4° raised cosine aperture. To determine the tuning of each
recorded neuron, we presented a random sequence of different samples
of naturalistic and spectrally matched noise stimuli from five different
families. We used the 5 texture families that demonstrated the strongest
average naturalistic texture modulation in area V2 in a previous study in
anesthetized monkeys (Freeman et al., 2013). Each image was presented
for 100ms with 100ms of intervening mean luminance. We computed
the discriminability between the average firing rate across samples of nat-
uralistic stimuli and spectrally matched noise for each of the 5 families.
We then selected the family for which naturalistic and spectrally matched
noise were most discriminable for use in the texture discrimination task.

To generate spectrally matched naturalistc textures, we examined a
database of 500 natural texture images (Freeman et al., 2013). We com-
puted the average distance between the power spectra across all pairs.
Considering the 50 pairs with most similar spectra, we chose the 5 that
appeared the most visually distinct. We then computed the average power
spectrum between each pair and imposed this average spectrum on each
member of the pair. We then measured the statistics of these spectrally
matched naturalistic textures, and used the texture synthesis procedure
to generate new samples from each family. We then performed a tuning
experiment with these images using the procedure described above.

Behavioral task. Subjects were seated in a darkened room in front of
a gamma-corrected CRTmonitor (iiyama HM204DTA) with their heads
stabilized. Eye position was recorded with a high-speed, high-precision
eye tracking system (EyeLink 1000). We presented visual stimuli at a
viewing distance of 57 cm, a spatial resolution of 1280 × 960 pixels, and
a refresh rate of 120Hz. Stimuli were presented on an Apple
Macintosh computer using custom software for stimulus presentation,
data acquisition, and experiment sequencing and timing.

Each trial in the discrimination task began when subjects fixated a
small white point (0.2° diameter) at the center of the screen (Fig. 3A).
After 250ms, two choice targets appeared, one on each side of the
fixation point (just above the horizontal meridian, at 3.5° eccentricity).
The choice targets were samples of naturalistic and spectrally matched
noise presented in a 2° aperture. The particular samples and the assign-
ment of choice targets to the left or right of fixation were fixed within a
session but randomly varied across sessions. After a 500ms delay, the tar-
get stimulus appeared. The stimulus was a sample of texture of interme-
diate naturalness presented within a 4° aperture. The target stimulus
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remained on for 500ms. When the stimulus disappeared, the fixation point
also turned black, indicating the start of the response period. Subjects judged
whether the target was more similar to naturalistic or spectrally matched
noise by making a saccade to one of the choice targets. If the monkeys
made a saccade to the correct choice target, they received a liquid reward.
Responses to ambiguous stimuli were rewarded randomly.

We varied naturalness over a range from fully naturalistic (natural-
ness = 1) to fully phase-randomized (naturalness = 0). Stimuli were pre-
sented in pseudorandom order. On each trial, naturalistic texture stimuli
were drawn from 36 different possible samples within each naturalness
condition. New samples were generated for each texture family once a
week to prevent the animal from memorizing individual samples.
However, on a subset of tasks in the ambiguous condition where natural-
ness = 0.5, we overrepresented a single sample to measure behavioral and
neuronal covariability without the added variance from the presentation
of different samples. Trials in which the subject did not maintain fixation
within 0.6° of the fixation point were aborted. Data are reported from
every session for which at least 100 trials were completed (230 in monkey
1, 222 in monkey 2).

We compared results from the texture discrimination task with pre-
viously published data where the same two monkeys performed an ori-
entation discrimination task (Goris et al., 2017). Both monkeys were
trained and then recorded from during the orientation discrimination
task, and subsequently introduced to, trained on, and recorded from
during the texture discrimination task. The logic and timing of the ori-
entation discrimination task were identical to the texture discrimination
task (Fig. 7C). In the orientation discrimination task, the choice targets
were white lines (0.3° wide, 2.0° long) rotated −22.5° and 22.5° away
from the discrimination boundary (which changed each session accord-
ing to the preference of the recorded neuron). The target was a drifting
grating and subjects judged the orientation of the stimulus relative to
the discrimination boundary by making a saccade to one of the choice
targets. See Goris et al. (2017) for further details.

Analysis of behavioral responses. We measured an observer’s sensi-
tivity to the presence of naturalistic image structure by fitting the rela-
tionship between stimulus naturalness (ranging between 0 and 1) and
probability of naturalistic choice with a psychometric function consisting
of a lapse rate and a cumulative Gaussian function, consistent with the
methods of Goris et al. (2017). We defined the decision criterion and
sensitivity as the mean and reciprocal of the standard deviation of the
underlying Gaussian, respectively. We optimized the three parameters
of the behavioral model (lapse rate, criterion, and sensitivity) by maxi-
mizing their likelihood over each session’s data. Lapses were rare in
most sessions, indicating both observers nearly always used the stimulus
to inform their responses (Fig. 3C,D). To ensure this, we excluded a small
number of sessions in which the lapse rate exceeded 15% from further
analyses (7 out of 230 in monkey 1, 21 out of 222 in monkey 2).

Analysis of neuronal responses. We analyzed neural data within ses-
sions where sufficient spike isolation was maintained throughout the
entire session (153 out of 223 in monkey 1, 177 out of 201 in monkey 2).
We summarized each neuron’s stimulus response with the number of
spikes observed in a 500ms window following response onset. For each
cell, we determined the latency from stimulus presentation to response
onset by maximizing the stimulus-associated response variance (Smith
et al., 2005). We calculated a modulation index by dividing the difference
in response to naturalistic and noise stimuli by the sum.We calculated dis-
crimination sensitivity between pairs of spectrally matched naturalistic
textures by taking the area under the ROC as neural discrimination perfor-
mance and converting this value to d′.

We estimated neuronal discrimination capabilities by fitting the rela-
tionship between stimulus naturalness and probability of “naturalistic”
choice for an ideal observer with a cumulative Gaussian function. The
ideal observer’s choices were obtained by applying a deterministic deci-
sion criterion to the responses of each neuron. To minimize bias in the
ideal observer’s choices, the criterion was set to the median response
to the ambiguous, 0.5 naturalness stimulus. We defined neuronal sensi-
tivity as the reciprocal of the standard deviation of the cumulative

Gaussian. We analyzed data from all neurons regardless of the level of
sensitivity, but applied a threshold to sensitivity values below 0.1 (6%
of all neurons).

For each cell, we computed choice probability for the ambiguous sti-
mulus and the neighboring stimulus conditions. As described previously
(Britten et al., 1996), choice probability is calculated by performing an
ROC analysis on the choice-conditioned neuronal responses to repeated
presentations of a single stimulus. We classified a choice probability esti-
mate as statistically significant if it fell outside of the central 95% of the
expected null distribution, computed from 1000 randomly permuted
data sets (Britten et al., 1996). The responses of many recorded neurons
had very low sensitivity, rendering the sign of their choice probability
(i.e., above or below 0.5) relatively uncertain. To remain consistent across
different analyses, we determined the sign of choice probability estimates
based on the slope of a logistic regression analysis between the spike
counts of individual neurons and an animal’s choices across different sti-
mulus naturalness conditions (and excluding the ambiguous stimulus
condition). The slope of this function reflects the strength and sign of
each neuron’s tuning. To directly compare the relationship between
spike counts and behavior in the presence and absence of variation in
stimulus naturalness, we performed the same logistic regression analysis
on spike counts only from the 0.5 naturalness condition. For compari-
sons across tasks, we performed the same analysis on previously collected
data from the same two monkeys during an orientation discrimination
task from Goris et al. (2017). In accordance with our approach to analyz-
ing the texture discrimination data, we did not exclude any neurons from
the dataset on the basis of weak orientation selectivity (monkey 1: 118;
monkey 2: 116).

We computed average peristimulus time histograms by counting
spikes in 1ms windows for individual neurons, smoothing with a causal
exponential filter with a time constant of 10ms, and averaging across all
neurons. To examine the dynamics of naturalness selectivity, we computed
the variance of the average firing rate in response to each naturalness level.
This differs from previously used measures that compare only the
responses to naturalistic and noise images (Freeman et al., 2013; Ziemba
et al., 2018, 2019). We found similar results when examining the temporal
evolution of those measures, though they were noisier because fewer trials
are included in their calculation. To compute the dynamics of choice prob-
ability we calculated the estimated choice probability for individual neu-
rons within 100ms centered time windows each shifted by 10ms before
averaging together these values across the population.

Code and data accessibility. The data supporting the findings of this
study, as well as the code used for analysis and figure generation are avail-
able in a public repository (https://doi.org/10.17605/OSF.IO/W3F7S).

Results
Neuronal sensitivity to naturalistic visual structure in awake
monkey V1 and V2
To study the neural basis of perception of naturalistic image
structure, we created a set of model-based synthetic texture sti-
muli that have been well studied in perceptual and neurophysio-
logical research (Portilla and Simoncelli, 2000; Balas et al., 2009;
Freeman and Simoncelli, 2011; Freeman et al., 2013; Okazawa
et al., 2015; Ziemba et al., 2016; Okazawa et al., 2017; Ziemba
et al., 2018, 2019; Herrera-Esposito et al., 2021a; Ziemba and
Simoncelli, 2021; Lieber et al., 2023; Lee et al., 2024). The model
measures the marginal and joint statistics across the outputs of a
simulated population of V1 simple and complex cells, in response
to a photographic image of a natural texture (Fig. 1A; Portilla and
Simoncelli, 2000). The same statistics are then measured from an
input image of Gaussian white noise and iteratively adjusted until
they match the statistics from the original image. If only the
second-order, or spectral, statistics from the original image are
imposed, then the result is what we refer to as a “noise” image.
If additional higher-order joint statistics across the output of
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V1-filters are matched to the original, then the resulting “natural-
istic” texture image often more closely resembles the original
image (Fig. 1A; Portilla and Simoncelli, 2000). Starting the synth-
esis from a different input white-noise image results in different
samples of statistically matched texture. When the response over
many samples is averaged, V1 neurons respond with similar
firing rates to naturalistic and noise images, whereas V2 neurons
generally respond with higher firing rates to naturalistic images
(Freeman et al., 2013; Ziemba et al., 2018, 2019). These experi-
mental observations were obtained from anesthetized macaque
monkeys, and here we sought to test whether this distinction
between V1 and V2 selectivity persists under conditions where
subjects are awake and behaving.

We installed a recording chamber with access to both V1 and
V2 in two macaque monkeys trained to perform a texture discri-
mination task. During each recording session, we lowered an
electrode into the visual cortex and isolated a single unit in either
V1 or V2. We hand-mapped receptive fields to determine the
receptive field center while the monkey fixated on a central
spot. For the subsequent measurements, the animal maintained
fixation while several naturalistic and noise textures were
shown, centered on the receptive field and presented within an
aperture 4 deg in diameter. We presented multiple samples of
naturalistic and spectrally matched noise images from 5 different
texture families, each presented for 100ms and separated by
100ms of gray screen (Fig. 1B). We calculated a modulation
index by dividing the difference in response to naturalistic
and noise stimuli by the sum. This index captures the strength
of preference for naturalistic images for each texture family
(Fig. 1B, bottom).

Examining the average modulation index over all 5 texture
families for the entire population of recorded neurons, we found
a similar pattern to that observed in anesthetized macaque cortex

(Fig. 1C ). Specifically, there was little overall preference in the V1
population for naturalistic or spectrally matched noise stimuli
and the average modulation index was near zero. In contrast,
V2 neurons were mostly driven to higher firing rates by natural-
istic stimuli, leading to more positive modulation indices. This
pattern was consistent across both monkeys (monkey 1 V1:
mean = 0.00, n=137; monkey 1 V2: mean = 0.08, n=250; monkey
2 V1: mean = 0.02, n= 143; monkey 2 V2: mean = 0.09, n=192).

Unlike the average modulation index across textures in the
original report recorded in anesthetized animals (Freeman et al.,
2013), V1 neurons were significantly shifted toward positive values
(P= 0.012; t-test on signed modulation; mean = 0.01, n= 280;
Fig. 1C, left). However, here we used only the 5 texture families
that yielded the highest average modulation index in V2 from
the set of 15 in the original study. Since the average modulation
for each texture family was correlated across V1 and V2, the aver-
age modulation index in anesthetized V1 for these 5 textures was
also significantly shifted toward positive values (P=0.006; t-test on
signed modulation; mean = 0.03, n=102). There was no signifi-
cant difference between average modulation index recorded previ-
ously from anesthetizedV1 and here from awakeV1 (P=0.1; t-test
on signedmodulation). However, the modulation index in V2 was
larger in the anesthetized monkey (mean = 0.22, n=103) com-
pared with awake V2 recordings made here (P< 0.001; t-test;
mean = 0.09, n= 442; Fig. 1C, right). This may in part reflect
regression to the mean, as the stimuli used here were chosen on
the basis of the high V2 modulation index in the anesthetized
experiments. Importantly, in both anesthetized and awake mon-
keys, V2 neurons had a significantly higher modulation index
compared with those in V1 (P< 0.001; t-test).

We selected the texture family that evoked the most discri-
minable responses between naturalistic and noise stimuli for
the subsequent behavioral task, regardless of whether the neuron

Figure 1. Tuning to “naturalness” in V1 and V2 of awake monkeys. A, Schematic of texture synthesis procedure. An original black and white photograph is decomposed into the responses of a
population of V1-like filters tuned to different orientations and spatial frequencies. Both the linear responses, and their squared energy, are computed, representing simple and complex cells,
respectively. The second stage computes local correlations across the V1 responses tuned to different orientations, spatial frequencies, and positions and spatially averages them. To produce a
synthetic texture, the model analyzes an image of Gaussian white noise and iteratively adjusts it to more exactly match the statistics of the original image. If the image is matched for the full set
of correlations, then we refer to it as a “naturalistic texture,” and if only matched for statistics capturing the spectral (second-order) content of the original image, we refer to it as “spectrally
matched noise.” B, Mean responses of an example V2 neuron to multiple samples of naturalistic (dark blue) and noise (light blue) images from 5 different texture families (top). Modulation index
computed from these responses for 5 texture families (middle). C, Distribution of modulation index values for a population of V1 (left) and V2 (right) neurons recorded from two awake, fixating
macaque monkeys. Downward arrows indicate distribution mean, μ.
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preferred naturalistic or noise stimuli (for example, the second
texture family in Fig. 1B). Previous work indicates that neuronal
sensitivity along the discrimination axis, rather than overall firing
rate, best predicts the strength of choice-correlated activity (Krug
et al., 2016). Therefore, we chose the texture family (out of the 5)
most likely to reveal a relationship between the responses of the
particular neuron under study and the subject’s behavior in the
discrimination task.

We focus on the question of how well a given sensory neuron
can support discrimination on the basis of the strength of higher-
order image statistics. This task most strongly differentiates V2
from V1 neurons (Freeman et al., 2013; Movshon and
Simoncelli, 2014; Ziemba et al., 2019; Lieber et al., 2023). A
related, but distinct, question is how well a neuron can support
discrimination of different sets of higher-order statistics—a
task that is perhaps more relevant to natural vision (Ziemba
et al., 2016; Ziemba and Simoncelli, 2021; Herrera-Esposito
et al., 2021b). However, we expect these different capacities might
be related. Although many naturally occurring visual textures
can be well-discriminated on the basis of spectral statistics alone
(Ziemba et al., 2016; Herrera-Esposito et al., 2021a, 2021b), nat-
uralistic textures with identical spectral statistics can still be easily
discriminated on the basis of their higher-order statistics
(Fig. 2A). To examine the relation between neuronal detection
and discrimination capabilities, we presented a subset of V1
and V2 neurons with samples from 5 pairs of texture families
that differed in their higher-order statistics but were exactly
matched for their spectral statistics (Fig. 2A). We computed
the discrimination sensitivity between each pair and found that
average neuronal sensitivity was higher in V2 compared with
V1 (Fig. 2B; P= 0.0013, t-test). Moreover, the magnitude of the
average modulation index of these V2 neurons (Fig. 1C ) pre-
dicted the strength of discrimination sensitivity between natural-
istic textures (Fig. 2C; r= 0.55, P= 0.002, Spearman correlation;

for V1: r = 0.09, P= 0.75). Together, these results suggest that
higher-order image statistics may be a useful cue for challenging
texture discrimination tasks, and that neuronal detection and
discrimination abilities for these statistics are correlated within
area V2, but not in area V1.

Naturalistic texture discrimination
In each recording session, after examining the tuning and deter-
mining the texture family yielding the highest sensitivity for the
recorded neuron, we trained monkeys to perform a texture dis-
crimination task where they judged the “naturalness” of a periph-
erally presented patch of texture (Fig. 3A). On each trial, after the
animal attained stable fixation, we presented two choice targets to
the left and right of fixation in the upper visual field. One choice
target was a naturalistic texture matched to an original natural
photograph for the joint statistics of the outputs of differently
tuned V1-like filters (Portilla and Simoncelli, 2000). The other
choice target was spectrally matched noise, lacking the higher-
order statistics of the naturalistic texture. 500ms after choice
target onset, we presented a target stimulus centered on the
receptive field of the simultaneously recorded single unit in V1
or V2.We generated the target stimulus by synthesizing interme-
diate textures whose statistics were linearly interpolated between
the naturalistic and spectrally matched noise endpoints (Fig. 3B;
Freeman et al., 2013; Vacher et al., 2020). When no higher-order
statistics were included in the synthesis (naturalness = 0) the
stimulus was spectrally matched noise, and when the higher-
order statistics were fully imposed (naturalness = 1) the stimulus
resembled naturalistic texture. Stimuli with different levels of
naturalness were synthesized using the same image seed, and
this seed was randomized across trials so any particular spatial
feature provided no cue for completing the task. Only discrimi-
nation of the higher-order statistics themselves allowed for
high performance. The monkey indicated whether the target
was more naturalistic or noise-like by making an eye movement
to one of the choice targets following stimulus offset after 500ms.
Target stimuli above 0.5 naturalness were rewarded for a saccade
to the naturalistic choice target, and those below 0.5 naturalness
were rewarded for a saccade to the noise target.

Both subjects performed the task well. When the target had a
naturalness value of 0 or 1, performancewas nearly perfect, and pro-
gressively declined as naturalness approached the experimenter-
induced decision boundary at 0.5 (Fig. 3C,D). We fit the animals’
behavioral data for each session with a model in which choices
arise from comparing a learned decision criterion to a noisy esti-
mate of naturalness, with occasional “lapse” trials. Sensitivity, the
slope of the resulting psychometric function at the fitted decision
criterion, corresponds to the reciprocal of the fitted noise stan-
dard deviation. Both subjects had similar high sensitivity and
little bias, despite having to learn the 0.5 naturalness boundary
for each family (Fig. 3C,D).

Comparing neuronal and perceptual sensitivity for
naturalistic visual structure
Tuning for naturalness was, on average, modest in both V1 and
V2. We assigned single units from each area according to their
preference for naturalistic or spectrally matched noise images
(see methods), and examined the average responses to all stimuli
for each group. The groups were of similar size in V1, but in V2
there were more than twice the number of naturalistic preferring
neurons (Fig. 4A). These naturalistic preferring V2 neurons on
average fired ∼15 impulses per second more for naturalistic
stimuli compared with noise. This response differential was

Figure 2. Neuronal sensitivity to the higher-order statistics of natural textures predicts nat-
uralistic texture discrimination A, Example samples from pairs of texture families that have
been matched to each other for their spectral statistics but differ in their higher-order sta-
tistics. Images in each column share spectral statistics. B, Distributions of the average discri-
mination sensitivity across the 5 texture family pairs for V1 (left) and V2 (right). Downward
arrows indicate distribution mean, μ. C, Average neuronal discrimination sensitivity plotted
against modulation index between naturalistic and noise textures for V1 and V2 neurons.
Naturalistic-preferring V2 neurons have higher discrimination sensitivity (r= 0.6, P=
0.008; V1: r=−0.5, P= 0.45, Spearman correlation). V2 neurons that prefer noise also
tend to have higher discrimination sensitivity (r=−0.55, P= 0.07; V1: r=−0.02, P= 0.97).
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∼8 impulses per second for noise-preferring V2 neurons, and
was ∼6 in V1 neurons regardless of preference.

Although both subjects learned to perform the task well and
showed consistent sensitivity across sessions, the sensitivity of
single neurons to naturalness varied widely. To estimate neuro-
nal sensitivity, we performed an ideal observer analysis on the
distribution of spike counts to different levels of naturalness.
We applied a decision criterion at the median spike count elicited
by stimuli at 0.5 naturalness, and took any response above this
criterion as a neuronal “decision” to report natural.When plotted
as a function of stimulus naturalness, the proportion of natural
responses traces out a neurometric function (Fig. 4B,C). The
slope of this function serves as a measure of the sensitivity of
the neuron to changes in naturalness, and can be directly

compared to sensitivity measured from the psychometric func-
tion. Examining the most sensitive neurons demonstrates that
on occasion neuronal sensitivity approached that of the animal’s
choices, especially in V2 (Fig. 4B). However, more typically, the
sensitivity of the monkey far exceeded that of single neurons in
both V1 and V2 (Fig. 4C ).

Both subjects showed a similar pattern in the relationship
between neuronal and behavioral sensitivity. Sensitivity in
V2 was significantly closer to behavior than in V1 (Fig. 4D;
P < 0.001, Wilcoxon rank sum test). On average, V1 neurons
were 18 times less sensitive than the animal’s behavior while
V2 neurons were about 10 times less sensitive than behavior.
In V1, there was no difference between neurons that preferred
naturalistic to those that preferred noise (median = 17.0 versus

Figure 3. Naturalistic texture discrimination task. A, After the subject acquired fixation for 250 ms, two choice targets appeared (one noise and one naturalistic). After another 500 ms, a
stimulus was presented in the neuron’s receptive field (blue circle). Subjects judged whether the statistics of this stimulus were closer to noise or naturalistic texture. After a 500 ms presentation,
the stimulus disappeared and the subject communicated their decision with a saccade toward one of the two choice targets. Rewards were given for correct answers, defined relative to
naturalness value of 0.5, with stimuli at this boundary rewarded randomly. B, Example stimuli along naturalness axis, for one texture family. C, Behavioral performance of monkey 1 over
many sessions. Left, average psychometric performance across all sessions. The points represent measured behavior. The line represents a fit of the signal detection theory model of behavior.
Right top, distribution of guess rate over all sessions. Middle, distribution of criterion bias over all sessions. Bottom, distribution of sensitivity over all sessions (defined as the reciprocal of the
standard deviation of the fitted noise). D, Same as (C ) but for monkey 2.

Figure 4. Comparison of neural and behavioral sensitivity. A, Average naturalness tuning for populations of V1 (green) and V2 (blue) neurons preferring natural (dark) or noise (light) textures,
plotted separately for monkey 1 (top) and monkey 2 (bottom). B, Neurometric and psychometric functions obtained for sessions yielding the closest match between neuronal and behavioral
sensitivity for V1 (top) and V2 (bottom) . Black line represents the signal detection theory model fit to behavioral responses. Colored symbols represent ideal observer analysis applied to the
responses of single neurons. Neuronal sensitivity was obtained by fitting the signal detection theory model to these neurometric data. C, Neurometric and psychometric functions recorded from
sessions yielding ratios of neuronal to behavioral sensitivity that were more typical of the V1 (top) and V2 (bottom) populations. D, Distribution of the ratio between single neuron and behavioral
sensitivity. Upright distributions represent naturalistic-preferring neurons, and upside down distributions represent noise-preferring neurons. Ordinate axes in each panel indicate proportion
across the entire population, and downward arrows indicate the median ratio for naturalistic- (filled) and noise-preferring (empty) neurons. In both monkeys, V2 neurons (bottom) were
significantly closer to the sensitivity of behavior than V1 neurons (top), and naturalistic-preferring neurons in V2 were significantly closer to the sensitivity of behavior than noise-preferring
neurons. There was no difference between naturalistic- and noise-preferring neurons in V1.
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20.4; P= 0.93, Wilcoxon rank sum test). However, in V2 in both
monkeys, neurons that preferred naturalistic images had sensi-
tivity significantly closer to behavior (median = 7.4 versus 17.1;
P < 0.001,Wilcoxon rank sum test). Although we have previously
hypothesized that V2 neurons may play a role in the perception
of naturalistic texture (Freeman et al., 2013), this 7-fold differ-
ence between behavioral and neuronal sensitivity is substantially
larger than in many studies that have compared behavior with a
potential neural correlate (Britten et al., 1992; Nienborg and
Cumming, 2006, 2014; Goris et al., 2017). However, unlike
most of these studies, we had limited ability to optimize the tex-
ture discrimination task to the particular selectivity of the
recorded neuron because of the complexity of the space of possi-
ble naturalistic textures. A previous study that recorded popula-
tions of V1 and V4 units while monkeys performed a fixed
orientation discrimination task found average behavioral to neu-
ronal sensitivity ratios greater than 20 (Jasper et al., 2019). In
contrast, when a monkey performs an orientation task adjusted
to the preference of a recorded V1 neuron, average behavioral
to neuron sensitivity ratios are close to one (Nienborg and
Cumming, 2014; Goris et al., 2017). This comparison suggests
that if we performed a more comprehensive characterization of
the naturalistic texture selectivity of V2 neurons and optimized
the task stimuli accordingly, neuronal sensitivity might be
much closer to behavior.

Inconsistent choice-correlated activity across subjects in
V1 and V2
We wondered whether we could find evidence for the potential
participation of our recorded population in the formation of
perceptual decisions about naturalistic texture despite the discre-
pancy between neuronal and perceptual sensitivity. In particular,
we wondered whether the increased sensitivity of V2 neurons
would manifest in a greater tendency to predict perceptual deci-
sions on a trial-by-trial basis. To examine this, we computed the
“choice probability” for the responses of each neuron to the
ambiguous, 0.5 naturalness condition (Fig. 5A; Britten et al.,
1996). This quantity corresponds to the probability that a neuron

fires more spikes preceding a behavioral decision associated with
its preferred stimulus. A choice probability of 0.5 indicates that a
neuron’s response contains no information about choice and a
value of 1 indicates perfect prediction of choice.

The two monkeys differed in the pattern of their choice-
correlated activity. In monkey 1, there were many neurons
with strong choice-correlated activity (Fig. 5A) and the mean
choice-probability in both V1 and V2 was significantly larger
than 0.5 (Fig. 5B, left). However, we found no evidence that
mean choice probability differed from 0.5 in monkey 2 in either
V1 or V2 (Fig. 5B, right). While the inconsistency between the
two monkeys is not unprecedented, we were surprised to find lit-
tle difference in the strength of choice-correlated activity in V1
and V2, given the very weak neuronal sensitivity to texture nat-
uralness in V1 neurons compared with V2. To examine the con-
sistency of this choice-correlated activity, we also calculated the
average choice probability for the two stimulus conditions adja-
cent to the ambiguous, 0.5 naturalness condition. For monkey 1,
we found no significant correlation in choice probability across
conditions in V1 (r= 0.12; P= 0.38), but we found a significant
relationship in V2 (r= 0.28; P= 0.007; Fig. 5C). Despite this,
choice probability was still significantly larger than 0.5 in V1
for neighboring conditions (mean = 0.055; P= 0.001; t-test).
For monkey 2, we found no significant correlation in either V1
(r= 0.11; P= 0.34) or V2 (r= 0.09; P= 0.38). However, choice
probability was actually significantly larger than 0.5 exclusively
when computed from the adjacent conditions of V1 in monkey
2 (mean = 0.54, P < 0.001; t-test). In summary, choice-correlated
activity was a stable and consistent feature of neural responses
only in V2 of monkey 1.

The stimuli in our texture discrimination task differ from
most previous experiments for which significant choice-
correlated activity has been observed. While most studies use
dynamic, noisy stimuli, we presented a single, static sample of
texture for 500ms during each trial (but see Kosai et al., 2014).
Our previous results indicate that differences in statistically
matched texture samples account for a substantial amount of
neuronal variability in V1 and V2 (Ziemba et al., 2016). To

Figure 5. Choice probability for naturalistic texture discrimination. A, Mean responses from an example V2 neuron conditioned on whether the monkey chose “naturalistic” or “noise” on a
given trial (top). Distribution of responses when naturalness = 0.5 conditioned on the behavioral choice (bottom). B, Distribution of choice probability for naturalness = 0.5 for V1 (top) and V2
(bottom) neurons recorded from monkey 1 (left) and Monkey 2 (right). Filled bars represent neurons with choice probability significantly different from 0.5 as determined by permutation test.
Mean choice probability in V1 and V2 was significantly larger than 0.5 in monkey 1 (P< 0.05; t-test), but not monkey 2 (P> 0.05; t-test). C, Mean choice probability for the two stimulus
conditions flanking naturalness = 0.5, plotted against choice probability for naturalness = 0.5 for V1 (top) and V2 (bottom) neurons recorded from monkey 1 (left) and monkey 2 (right).
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examine whether texture sample variability might drive our
choice probability observations, we presented different texture
samples multiple times over the course of a session. We calcu-
lated a grand choice probability value by combining neural
responses across multiple presentations of the same texture sam-
ple that led to different behavioral responses. The results of this
analysis were similar to our observations without taking different
samples into account for both monkey 1 (V1: Mean = 0.54, P=
0.003, t-test; V2: Mean = 0.53, P= 0.04), and monkey 2 (V1:
Mean = 0.50, P= 0.81, t-test; V2: Mean = 0.52, P= 0.04).

We wondered whether more sensitive neurons might have a
stronger association with choice. We found little evidence for
any such consistent relationship in our data. In monkey 1,
more sensitive V1 neurons tended to also exhibit lower choice
probability (r=−0.26, p= 0.048, Spearman correlation; Fig. 6,
top left). While this pattern is opposed to that most often
observed, it mirrors results from this monkey performing an -
orientation discrimination task (Goris et al., 2017). Data from
V1 of monkey 2 trended in the opposite direction (r= 0.22, p=
0.059, Spearman correlation; Fig. 6, top right). However, there
was little evidence for these relationships when examining noise-
or naturalistic-preferring neurons independently (all p > 0.09).
Furthermore, there was no evidence for a relationship between
neuronal sensitivity and choice probability in V2 of either mon-
key (monkey 1: r =−0.024, p= 0.8; monkey 2: r =−.009, p= 0.93).

Inconsistent choice-correlated activity across tasks in V1 and V2
Given the complex relationship between neuronal sensitivity and
choice-correlated activity, we developed a more nuanced way of
examining this relationship to facilitate comparisons across sub-
jects and different tasks (Zaidel et al., 2017). Combining the logic
of choice probability with the power of logistic regression instead
of ROC analysis, we applied the same method to quantify the
strength of both sensitivity and choice-correlated activity. For
each neuron we used logistic regression to predict the choice of
the animal based on the observed spike count on each trial.
First, we found the slope coefficient when estimating the model

across stimulus conditions (but excluding the ambiguous 0.5
naturalness condition; Fig. 7A, left). Given the lawful behavioral
performance, this across-condition slope essentially measures
how strongly changes in stimulus naturalness affect the response
of a neuron and the behavioral response of the animal. The sign
of the slope indicates whether higher naturalness tends to
increase or decrease responses, and the magnitude indicates the
strength of the relationship between spikes and behavior.
Second, we independently fitted the slope coefficient when esti-
mating the model using only responses elicited by the ambiguous
0.5 naturalness stimulus condition (Fig. 7A, right). This within-
condition slope estimates how changes in the response of the
neuron predict behavioral responses without variation in stimu-
lus naturalness—analogous to choice probability. Like the across-
condition slope, the sign of the slope indicates whether a beha-
vioral choice for naturalness tends to increase or decrease
responses, and the magnitude indicates the strength of this
relationship.

If these neurons informed perceptual choices or were involved
in the perceptual inference process, then we would expect the
sign of the relationship between the neural and behavioral
response to remain the same in both the presence and absence
of stimulus variation (as with the example neuron in Fig. 7A).
This would mean that if we plot the across-condition slope
against the within-condition slope we should expect most neu-
rons to fall in quadrants one and three. We tested for this
expected pattern of choice-correlated activity by examining the
within-condition slope multiplied by the sign of the across-
condition slope. This quantity will be above zero if the within-
and across-condition slopes generally match in their sign. We
found evidence for this expected pattern in monkey 1 (Fig. 7B,
left; V1/V2 mean = 0.12, P= 0.005, t-test; V1 mean = 0.15, P=
0.02; V2 mean = 0.10, P= 0.08), but not monkey 2 (Fig. 7B, right;
V1/V2 mean = 0.03, P= 0.31, t-test; V1 mean = 0.02, P= 0.77; V2
mean = 0.04, P= 0.26). However the difference between the two
monkeys did not quite reach conventional statistical significance
(P= 0.09, t-test). We also found a significant correlation between
within- and across-condition slopes in monkey 1 (V1/V2 r =
0.20, P= 0.01; V1 r= 0.25, P= 0.07; V2 r= 0.18, P= 0.07), but
not monkey 2 (V1/V2 r= 0.11, P= 0.15; V1 r= 0.11, P= 0.33;
V2 r= 0.10, P= 0.34).

Given these apparent differences in the pattern of choice-
correlated activity across monkeys, we wondered whether these
patterns might at least be a stable feature across time and results
from different tasks in these animals. Both monkeys previously
participated in experiments where they discriminated the orien-
tation of a drifting grating while we recorded single unit activity
in V1 and V2 (Fig. 7C; Goris et al., 2017). The orientation discri-
mination task followed an identical logic and temporal structure.
Choice targets were white lines oriented 45° apart. The orienta-
tion midway between the two choice targets communicated the
discrimination bound, and we rewarded monkeys for making a
saccade to the target whose orientation most closely matched
the stimulus orientation. This task structure allowed us to
move the discrimination bound to an orientation that matched
the steepest part of a recorded neuron’s orientation tuning curve
in addition to optimizing the stimulus diameter, spatial fre-
quency, and drift rate to elicit the largest response. As in the tex-
ture discrimination task, we presented the ambiguous orientation
at the discrimination bound twice as often as other stimuli. This
allowed us to perform the same logistic regression analysis on
these data — computing the across-condition and within-
condition slope and comparing them.

Figure 6. Relationship between neuronal sensitivity and choice-correlated activity. Choice
probability for the naturalness = 0.5 condition against the signed neuronal sensitivity of V1
(top) and V2 (bottom) neurons recorded from monkey 1 (left) and monkey 2 (right). Negative
sign indicates a higher firing rate associated with low naturalness stimuli. Red lines indicate
the best fitting linear relationship for positively or negatively signed neurons.
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The results examined in this way match our original observa-
tions using choice probability (Goris et al., 2017), but are strik-
ingly different than the results from the texture discrimination
task in monkey 1 (Fig. 7D, left). First, across-condition slopes
were much higher for orientation than for texture, which is to
be expected given our ability to optimize the task for the neuron’s
tuning in the orientation discrimination task. More importantly,
the within-condition slope multiplied by the sign of the across-
condition slope was significantly negative (Fig. 7D, left; V1/V2
mean =−0.44, P < 0.001, t-test; V1 mean =−0.44, P= 0.008; V2
mean =−0.43, P < 0.001), and the correlation between within
and across condition slopes was negative (r=−0.26, P= 0.004;
V1 r=−0.22, P= 0.08; V2 r=−0.36, P= 0.009). The within-
condition slope multiplied by the sign of the across-condition
slope was significantly different for monkey 1 during the orienta-
tion discrimination task compared with the texture discrimina-
tion task (P < 0.001, t-test). However, as in the texture
discrimination task, there was no evidence for choice-correlated
activity inmonkey 2 in either the average within-condition slopes
(Fig. 7D, right; V1/V2 mean = 0.01, P= 0.87, t-test; V1 mean =
−0.03, P= 0.74; V2 mean = 0.15, P= 0.33) or the correlation
between across- and within-condition slopes (r= 0.08, P= 0.37;
V1 r= 0.01, P= 0.94; V2 r= 0.34, P= 0.09).

We were struck by this complex pattern of results. In the tex-
ture task, despite much higher neuronal sensitivity in V2, there

was no tendency for choice-correlated activity to be stronger
than in V1. Further, in the orientation task, neuronal sensitivity
was much higher than in the texture task, but choice-correlated
was either similarly low or systematically misaligned with stimu-
lus preference compared with activity in the texture task. This
pattern of inconsistency across observers within the same task
and across tasks in the same observer suggests that the presence
of choice-correlated activity is not a reliable indicator of the par-
ticipation of a neural population in the perceptual inference pro-
cess (Goris et al., 2017; Zaidel et al., 2017; Yu and Gu, 2018; Jasper
et al., 2019; Zhao et al., 2020; Krishna et al., 2021; Quinn et al.,
2021; Lange et al., 2023; Levi et al., 2023). Instead, a significant
portion of choice-correlated activity may arise from feedback
to sensory areas reflecting a mixture of factors not necessarily
related to decision formation (Goris et al., 2017; Quinn et al.,
2021; Laamerad et al., 2024).

Dynamics of neuronal responses in V1 and V2
We wondered whether an analysis of the temporal evolution of
responses might reveal the origin of texture selective and choice-
correlated activity in V1 and V2. We first examined the temporal
form of the average firing rate across our population of V1 and V2
neurons (Fig. 8A). In both areas, there was a prominent initial
transient in firing rate following stimulus onset. The transient
amplitude was preserved across different naturalness conditions,

Figure 7. Trial-by-trial relationship between behavioral choice and neural activity. A, The choices of the monkey plotted against responses of an example V2 neuron for all conditions where
naturalness ≠ 0.5 (left), and when naturalness = 0.5 (right). The diameter of each symbol indicates the number of responses of that magnitude observed. Lines represent the fit of a logistic
regression analysis performed separately across (left, solid) and within (right, dashed) stimulus conditions. B, The slope of the logistic regression analysis performed across conditions plotted
against the analysis performed within conditions for monkey 1 (left) and monkey 2 (right). Insets show example across (solid) and within (dashed) fits within quadrants 2–4. Green symbols
represent V1 and blue symbols represent V2 neurons. Symbol outlined in black indicates example neuron shown in (A). C, Previously reported orientation discrimination task. D, Slope of logistic
regression across vs within conditions (as in (B)) for the orientation discrimination task (same two monkeys).

Ziemba, Goris, et al. • Neuronal and behavioral responses to texture J. Neurosci., October 16, 2024 • 44(42):e0349242024 • 9



indicating that this initial portion of the response contained little
stimulus selectivity. To quantify the dynamics of population selec-
tivity, we computed the variance of the average firing rate across
conditions, yielding a measure of the stimulus induced variance.

The dynamics of this selectivity measure differed markedly in
V1 and V2 (Fig. 8B). For monkey 1, The stimulus-induced vari-
ance was weak in V1 and developed only gradually, peaking over
400ms after stimulus onset (Fig. 8B, left). For monkey 2, this
measure in V1 peaked earlier but then decayed (Fig. 8B, right).
In contrast, for both monkeys, variance in V2 rose rapidly
(within 100ms) to a higher level than in V1, and this was largely
maintained throughout the stimulus period. These differences
between V1 and V2 were specific to naturalistic texture stimuli.
When we examined the time course of orientation-induced
variance, there was no prominent difference in either overall
selectivity or the dynamics of selectivity between V1 and V2
(Fig. 8B, dashed lines). However, even in V2, the orientation-
induced variance was more than an order of magnitude larger
than that induced by varying naturalness.

Interestingly, although selectivity for naturalness peaked ear-
lier in V2 than in V1, the peak was quite delayed with respect to
response onset (Fig. 8B). This reflected the presence of a mostly
non-selective transient response in the population firing rate
(Fig. 8A). This pattern differed from that seen for orientation,
which reached a peak value 20–30ms earlier than for naturalness

in both areas (Fig. 8B, insets). Thus, while orientation informa-
tion appears immediately in the firing rate of individual neurons,
the first spikes in V2 don’t appear to carry information about the
naturalness of the stimulus.

Given the differences in the dynamics of selectivity between
V1 and V2, we wondered whether the dynamics of choice-related
activity would also differ between the two areas. We computed
choice probability within 100ms windows shifted by 10ms for
each individual neuron and then averaged the result. In monkey
2, choice probability was maintained around 0.5 throughout the
trial in both V1 and V2. However, we found that choice-related
activity was generally weak but evolved over a somewhat different
time course in V1 and V2 of monkey 1 (Fig. 8C, left). In V1,
choice probability was near chance for the first 300ms following
response onset, then began to rise and peaked just before stimu-
lus offset at 500ms. This temporal profile resembled the lack of
early selectivity in V1, as well as the delayed onset of choice-
correlated activity in both V1 and V2 observed in monkey 1 per-
forming the orientation discrimination task (Goris et al., 2017).
However, in V2, choice probability grew to be larger than 0.5
soon after response onset, peaking at about 150ms post-stimulus
and remaining roughly constant thereafter. This matches the ear-
lier onset of choice-correlated activity observed in V2 compared
with V1 for orientation discrimination (Goris et al., 2017), but
without the delayed onset expected for a feedback signal.

Figure 8. Dynamics of neuronal sensitivity and choice-correlated activity. A, Average response dynamics in V1 (top) and V2 (bottom) for monkey 1 (left) and monkey 2 (right). The stimulus
ordering was reversed for noise-preferring neurons before averaging, so that the lightest line in each panel represents responses to the preferred stimulus. The stimulus was presented from 0 to
500 ms. B, The variance of the average response over stimulus conditions in the texture discrimination task (solid lines) and the orientation discrimination task (dashed lines). Traces are plotted
with a minimum value of 1 ips2. Insets expand the time window 50–110 ms after response onset and show all response variance values divided by the maximum value reached within the 500 ms
stimulus window. C, Dynamics of choice probability. We computed choice probability in 100 ms windows and plot the mean ± standard error in the shaded region.
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Dissociation of anticipatory signals and choice-correlated
activity across subjects and tasks
The sequence and timing of events in both the orientation and tex-
ture discrimination tasks were identical across all trials, meaning
that stimulus onset was always predictable (Fig. 3A, Figure 7C).
Some neurons anticipated the appearance of the stimulus in their
receptive field through a gradual increase in their firing rate during
the fixation period leading up to stimulus onset (Fig. 9A). Given
the lack of external events during this period, this anticipatory sig-
nal must be internally generated. When these monkeys performed
the orientation discrimination task, these anticipatory signals
seemed to be related to choice-correlated activity (Goris et al.,
2017). Both anticipatory and choice-related signals were present
in neural activity recorded from monkey 1, but absent in monkey
2, suggesting a possible shared origin in feedback to visual cortex
(Goris et al., 2017). However, we found that anticipatory signals
were similarly unstable but unrelated to the changes in choice-
correlated activity we observed across tasks.

There was significant anticipatory activity in the responses of
neurons recorded from monkey 2 during the texture discrimina-
tion task, but no such activity during orientation discrimination
(Fig. 9A, bottom; Goris et al., 2017). In contrast, anticipatory sig-
nals were similar between the two tasks in monkey 1 (Goris et al.,
2017). Activity in both areas in both monkeys dropped about 100
ms after the onset of the choice targets, likely due to suppressive
effects of stimuli far outside the receptive field (Bair et al., 2003).
Soon after returning to baseline, neural activity from monkey 1
began to rapidly rise in anticipation of the stimulus, whereas
the onset of this anticipatory activity was about 100ms delayed
inmonkey 2 (Fig. 9A, bottom). This difference somewhat mirrors
the general delay in responses to texture stimuli in monkey 2 rel-
ative to monkey 1 (Fig. 8).

To quantify anticipatory signals, we computed an expectancy
index as the difference in response between the first (baseline)
and second half (pre-onset) of the fixation period and divided
by the sum (Fig. 9A). This index ranges between -1 and 1 with
positive values indicating an increased response in anticipation
of the stimulus. For both animals and areas, the expectancy index

was significantly positive (Fig. 9B; monkey 1 V1 median = 0.25,
p < 0.001; monkey 1 V2 median = 0.39, p < 0.001; monkey 2
V1 median = 0.08, p < 0.001; monkey 2 V2 median = 0.15,
p < 0.001, Wilcoxon signed rank test). The expectancy index
was significantly larger in V2 compared with V1 in monkey 1
(p= 0.002, Wilcoxon rank sum test), and marginally larger in
monkey 2 (p=0.08, Wilcoxon rank sum test). Most interestingly,
the expectancy index computed here for monkey 2 during the tex-
ture discrimination task was significantly larger than that found
for the orientation discrimination task in both V1 (p< 0.001)
and V2 (p=0.004, Wilcoxon rank sum test; Goris et al., 2017).

Based on the previous orientation discrimination experiments,
we suggested a link between choice-related activity and expectancy
signals in visual cortex (Goris et al., 2017). However, when we col-
lected neural data from these same animals retrained to perform a
texture discrimination task, this link was broken. The sign of
choice-related activity flipped in monkey 1, but the presence and
strength of anticipatory signals remained largely unchanged. In
contrast, data from monkey 2 showed no choice-related activity
in either task, but significant anticipatory activity developed only
in the texture discrimination task. At the single neuron level, there
was a trend for neurons with stronger expectancy index to have
higher choice probability in monkey 1 (Fig. 9C; across all neurons:
r=0.15, p= 0.06; V1: r=0.41, p= 0.001; V2: r=0.05, p=0.6), but
no evidence for such a trend in monkey 2 (across all neurons:
r=−0.05, p= 0.47; V1: r=−0.04, p=0.75; V2: r=−0.07, p=
0.46). This pattern is similar to that observed during the orienta-
tion experiments but with an opposite sign and a stronger relation-
ship in V1 compared with V2 in monkey 1 (Goris et al., 2017).
Thus, nonsensory, modulatory inputs are likely to be the common
origin of both choice-related and anticipatory signals in visual cor-
tex, but their presence and relationship can be decoupled and
inconsistent across different tasks and observers.

Discussion
Our experiments reveal functional differences between V1 and
V2 neurons during the performance of a naturalistic texture

Figure 9. Analysis of anticipatory signals in V1 and V2. A, Top, Response dynamics in anticipation of stimulus onset for two example neurons, recorded from monkey 1 (left, V2) and monkey 2
(right, V1). Peristimulus time histograms were created by averaging spike trains convolved with an exponential filter (tau = 10 ms). Bottom, Mean response dynamics in anticipation of stimulus
onset for a population of V1 (green) and V2 (blue) neurons, recorded from monkey 1 (left) and monkey 2 (right). Before averaging, responses of each neuron were z-scored by their response in
the baseline period. Filled bars represent the baseline and pre-onset intervals used to compute the expectancy index. B, Distribution of the expectancy index for a population of V1 (green) and V2
neurons (blue), recorded from monkey 1 (left) and monkey 2 (right). C, Choice probability for naturalness = 0.5 plotted against expectancy index for a population of V1 (top) and V2 (bottom)
neurons, recorded from monkey 1(left) and monkey 2 (right).
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discrimination task, but also highlight the limitations of neural
signatures previously considered to reflect the participation of
a neural population in perceptual decisions. We found greater
sensitivity in V2 neurons for the higher-order structure present
in natural texture images, replicating our previous findings
recorded under anesthesia (Freeman et al., 2013; Ziemba et al.,
2016, 2019). We further show that despite the increased sensitiv-
ity from V1 to V2, V2 neurons are still less sensitive than beha-
vior on average. This finding indicates that although sensitivity to
naturalistic image structure first emerges in V2, it is likely further
consolidated downstream (Arcizet et al., 2008; Rust and Dicarlo,
2010; Okazawa et al., 2015, 2017). V4 neurons are selective for
the higher-order statistics present in our naturalistic stimuli
(Okazawa et al., 2015), and a direct comparison suggests this
selectivity is greater than for V2 neurons (Okazawa et al.,
2017). Human neuroimaging results also suggest that areas
downstream of V2, contain similar or increased sensitivity to
complex image structure (Movshon and Simoncelli, 2014;
Kohler et al., 2016; Henderson et al., 2023).

We observed a markedly different temporal emergence of
sensitivity to naturalistic statistics compared with our previous
work. This may reflect the effect of anesthesia on subcortical
and cortical responses (Alitto et al., 2011; Jazayeri et al., 2012).
In anesthetized recordings there was a gradual increase in
responses to a stimulus and no initial transient (Freeman et al.,
2013), potentially reflecting slower dynamics within individual
neurons or more variability in the response latency across neu-
rons (Jazayeri et al., 2012). Sensitivity to naturalistic statistics
was also present at response onset and gradually developed
over the course of tens of milliseconds under anesthesia
(Freeman et al., 2013). Here, there was a significant delay in
the onset of naturalistic sensitivity. This observation, along
with previous findings that the onset of surround-enhanced
sensitivity is delayed (Ziemba et al., 2018), suggests that intracor-
tical processing within V2 (or potentially feedback from higher
areas) plays a significant role in establishing selectivity for natu-
ralistic image structure. The dynamics we report here also differ
from the previously reported fast onset of “shape selectivity”
recorded in awake V2 (Hegdé and Van Essen, 2004). However,
this form of selectivity does not diverge markedly from that in
V1, and so may be inherited (Hegdé and Van Essen, 2007).
Along these lines, the dynamics of naturalistic sensitivity differ
strikingly from the emergence of orientation selectivity (Goris
et al., 2017), a property known to be influenced largely by linear
filtering of feedforward inputs (Priebe and Ferster, 2012; Goris
et al., 2015). In contrast, a functional account of naturalistic sen-
sitivity requires two stages of processing in V2 (analogous to
models of complex cells in V1), and the slow emergence of selec-
tivity may reflect the dynamics of this computation (Freeman
et al., 2013).

Although we found higher sensitivity for V2 neurons com-
pared with V1, average sensitivity in V2 neurons was still far
from behavioral performance. Many studies have found a tight
correspondence between neuronal and behavioral thresholds
(Britten et al., 1992; Prince et al., 2000; Nienborg and
Cumming, 2006; Uka and DeAngelis, 2006; Nienborg and
Cumming, 2014), more clearly indicating a role for the responses
of a particular brain area in supporting a particular perceptual
behavior. However, each of these studies, as well as our own ori-
entation discrimination experiment, involved tailoring the target
stimulus and discrimination bound to the tuning preference of
each individual neuron. This procedure gives the single neuron
the best chance to match behavioral performance. We currently

do not have a detailed understanding of the space of naturalistic
statistics and therefore cannot perform comprehensive tuning
experiments along meaningful axes of selectivity (but see
Okazawa et al., 2015 for an example of adaptively searching the
parameter space). Instead, we are limited to characterizing the
differential response for a predefined set of texture families (for
which the animal has been previously trained) and performing
subsequent behavioral experiments using the most discriminable
texture family for the recorded neuron.

The naturalistic sensitivity of V2 neurons is comparable to
previous studies that have not optimized stimuli to the tuning
preferences of recorded neurons (Purushothaman and Bradley,
2005; Gu et al., 2007, 2008; Shiozaki et al., 2012; Jasper et al.,
2019). Average neuronal sensitivity in these studies can range
from 3 to 20 times less sensitive than behavior. Most studies
observe a pattern of wide distribution over neuronal sensitivity,
with the most sensitive neurons approaching or overtaking beha-
vioral sensitivity. This is consistent with our results in V2.
However, V1 neuronal sensitivity was very weak and the most
sensitive neuron was still two times less sensitive than behavior.

Many studies, both those that optimize stimuli for single neu-
rons and those that don’t, have found significant choice-related
activity. However, the interpretation of this observation has
grown murkier over the last decade. It was initially suggested
that response noise in sensory neurons causally affected the
downstream decision process, manifesting as correlations
between single sensory neurons and behavior (Britten et al.,
1996; Shadlen et al., 1996; Parker and Newsome, 1998; Pitkow
et al., 2015). Recent results have instead posited a feedback origin
of such correlations, whereby the outcome of a perceptual deci-
sion is relayed to early sensory neurons (Nienborg and
Cumming, 2009; Nienborg et al., 2012; Bondy et al., 2018). The
temporal emergence of choice probability has been important
in disentangling contributions from feedforward versus feedback
sources. Here we report two different temporal profiles of
choice-related activity in V1 and V2 of one monkey. The dynam-
ics of choice-related signals in V2 are similar to many previous
reports in the literature, which show an early onset of significant
choice probability that remains roughly constant throughout the
stimulus period (Britten et al., 1996). Even recent theoretical
work that posits a strong feedback component for choice proba-
bilities finds that this flat temporal choice probability profile
reflects an early feedforward contribution to perceptual decisions
(Wimmer et al., 2015; Haefner et al., 2016). Dynamics in V1 are
less consistent with previous observations, and strongly suggest a
feedback origin (Nienborg and Cumming, 2009).

As signals propagate along the cortical hierarchy, they encode
increasingly complex aspects of the sensory environment and
likely have a more direct relationship with perceptual experience.
Visual neuroscience has been very successful in developing
experimental methods that illuminate the first part of this state-
ment. This has taken the form of characterizing the emergence
of novel stimulus selectivities along the hierarchy (as replicated
here) and of stimulus-response models that predict neural
responses to arbitrary stimuli. However, we (as a field) have
struggled to develop rigorous and robust experimental proce-
dures that uncover the relationship between neuronal activity
and perception. There have been some notable successes. For
example, direct electrical micro-stimulation of sensory cortex
can bias perceptual reports, suggesting that the stimulated neu-
rons inform perceptual experience (Salzman et al., 1990; Yu
and Gu, 2018). But this causal approach is limited in scope as
it requires a coarse-scale organization of stimulus preference to
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perturb neural population activity on the “natural” manifold
(Jazayeri and Afraz, 2017). Correlational approaches that charac-
terize the relationship between neuronal and perceptual variabil-
ity are more broadly applicable, but these studies have yielded
inconsistent results. In some studies, the structure of choice-
correlated activity is in line with simple feedforward hypotheses
about the contribution of neural activity to perceptual decisions,
meaning that suitably tuned neurons exhibit the strongest asso-
ciation with behavior (Britten et al., 1996; Dodd et al., 2001;
Nienborg and Cumming, 2006; Gu et al., 2008; Smolyanskaya
et al., 2015). However, other studies did not find such structure
(Jasper et al., 2019; Zhao et al., 2020; Levi et al., 2023), or found
substantial unexplained differences across subjects (Goris et al.,
2017; Jasper et al., 2019; Lange et al., 2023).

Variability in sensory cortex reflects a complex mixture of
decision-related activity (the signal we seek to isolate) and other
signals that are not related to perception or the decision-making
process per se, but are difficult to control and vary across subjects
and tasks. Examples include stimulus expectation (Goris et al.,
2017), action planning (Laamerad et al., 2024), feature-based
attention (Quinn et al., 2021), and choice and reward history
(Lueckmann et al., 2018; Jasper et al., 2019). So for the moment,
we do not know how to create conditions under which an empir-
ical measurement will reliably distinguish the neurons that con-
tribute to perception.
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