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Abstract

Internal representations are not uniquely identifiable from perceptual measure-
ments: different representations can generate identical perceptual predictions, and
similar representations may predict dissimilar percepts. Here, we generalize a
previous method (“Eigendistortions” — Berardino et al., 2017) to enable compar-
ison of models based on their metric tensors, which can be verified perceptually.
Metric tensors characterize sensitivity to stimulus perturbations, reflecting both
the geometric and stochastic properties of the representation, and providing an
explicit prediction of perceptual discriminability. Brute force comparison of model-
predicted metric tensors would require estimation of human perceptual thresholds
along an infeasibly large set of stimulus directions. To circumvent this “perceptual
curse of dimensionality”, we compute and measure discrimination capabilities for
a small set of most-informative perturbations, reducing the measurement cost from
thousands of hours (a conservative estimate) to a single trial. We show that this
single measurement, made for a variety of different test stimuli, is sufficient to
differentiate models, select models that better match human perception, or generate
new models that combine the advantages of existing models. We demonstrate
the power of this method in comparison of (1) two models for trichromatic color
representation, with differing internal noise; and (2) two autoencoders trained with
different regularizers.

1 Introduction

Stimulus discriminability is the most reliable, widely-used, and well-understood measurement of
perception. Discriminability is believed to reflect the degree of change in neural responses induced
by small stimulus perturbations [1} 2} [3]], and methods for estimating perceptual discrimination are
highly refined and efficient. In this paper, we propose an efficient method to compare neural models
based on their ability to account for human perceptual discriminability.
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Figure 1: Existing model comparison methods do not reflect similarity of perceptual discriminability predictions.
A. Responses of three stochastic neural representations (Rep. 1, Rep. 2, Rep. 3). Each plot depicts two neurons’
stochastic responses (black points), and mean responses (magenta) for a family of stimuli parameterized by a
one-dimensional parameter. Rep. 1 and Rep. 2 produce identical perceptual discriminability along the stimulus
axis, even though their mean responses are quite different. Rep. 1 and Rep. 3 have the same mean responses, but
their predicted perceptual discriminabilities along the stimulus axis are very different. Second row: discretely
sampled neural representations, illustrating mean and covariance of responses to selected stimuli. Third row:
predicted perceptual discriminability for each representation, along the stimulus axis. B. Comparisons of Rep.1
and Rep.2 yield large dissimilarity scores for a set of comparison models. C. Comparisons of Rep. 1 and Rep. 3
yield small dissimilarity scores for all model. Included models are: (1) CCA with mean squared correlation
coefficient; (2) CCA with mean correlation coefficient; (3) linear CKA; (4) projection-weighted CCA projected
using the first representation’s weights; (5) projection-weighted CCA using the second representation’s weights;
(6) linear CKA prime distance; (7) stochastic shape metric using only mean responses (equivalently, Procrustes
shape metric on mean responses); (8) stochastic shape metric using both mean and covariances; and (9) stochastic
shape metric using only covariances. For all CCA-related metrics, we subtract the standard metric from one to
estimate dissimilarity. The first 7 methods were summarized in Ding et al. 2021, and the last 3 metrics were
summarized in [4].



Many existing methods for model comparison assess the similarity between neural representations
of stimuli [5} 16} [7, 18, 9, [10]]. This approach is grounded in the belief that models that have similar
stimulus representations are similar. However, similarity identified by such methods may not translate
into similarity between the models’ perceptual predictions. In Figure[I} we show representations of 3
models, each describing stochastic responses of two neurons to a one-dimensional stimulus (Fig. [T)A).
The first two representations are very different both visually and according to several quantitative
metrics (Fig. [TJA), but they share the same perceptual discriminability predictions. Conversely, the
first and third representations are visually similar and are judged as highly similar by current metrics
(Fig. [T[C), but their predicted perceptual discriminabilities significantly differ. To resolve this issue, we
summarize a model’s predicted discriminability using a metric tensor, a positive semi-definite matrix
that characterizes the model’s sensitivity to stimulus perturbations, and propose to compare models
by their ability to predict human perceptual discriminability. Characterizing human discriminability
for a high-dimensional stimulus (e.g., an image) requires measuring thresholds over a huge number
of dimensions, and would need thousands of hours of human subject time. Our method circumvents
this “perceptual curse of dimensionality” by requiring human judgements only along the stimulus
perturbation dimensions that best differentiate the two models being compared.

In summary, this article makes the following contributions:

* We propose an efficient method to compare the predicted perceptual discriminabilities of
two models based on their metric tensors.

* We apply the comparison method to two neural models for human color perception. We
used the comparison results to synthesize a hybrid model that outperforms both existing
models on predicting human chromatic discrimination [[L1]].

* We apply the method to two neural network architectures (autoencoders trained with L1 or
L2 regularizers), and showed that the former better matches human perception.

2 Methods

2.1 Computing metric tensors for deterministic and stochastic neural models

Metric tensors for deterministic representations. Suppose an image s consists of p pixels (s € R% 0.
A deterministic neural encoding model maps the image s to » neurons’ mean response rates R" .
Existing comparison methods typically examine neural representations for a discrete set of images
{sr},. (like the middle panels in Fig. EI) We take a slightly different approach by assuming that the
model smoothly and differentiably varies with the stimulus, and we examine the differential change
of the model predictions due to stimulus perturbations.

We use € € RP to denote a perturbation to image s. ||€|| is assumed small, so that when the image is
perturbed, the neural response change can be linearly approximated (via Taylor expansion) as the
derivative of u(s) along the e direction, which we denote as d(s). de(s) can be expressed as a
matrix product (a linear computation) between the Jacobian of the neural response, J,, (s), and the
perturbation €: de(s) = J,,(s)e. Further, we assume that perceptual discriminability pe(s) captures
the Lo norm of the neural response change, which has been supported by empirical evidence (|1 2]):

pe(s) = [[de(s)ll2 = /€T Mu(s)e, and M,,(s) = Ju(s) " Ju(s). )]

Here, M, (s) is a metric tensor. Itis a p x p matrix that is symmetric and positive definite (assuming
it is full-rank for now), and it determines the model’s discriminability prediction along arbitrary
perturbation direction € to image s. M, (s) completely summarizes the distance structure of the neural
representation around pt(s). Geometrically, M, (s) transforms the equi-length image perturbations €
(a p-dimensional ball) into a p-dimensional ellipsoid. The predicted discriminability is the largest
along the largest eigenvalue direction of M, (s) (the major axis of the ellipsoid) [12]. Because neural
encoding models are generally nonlinear, for two distinct reference images s; and so, M,,(s1) and
M,,(s2) are generally different.

Metric tensors for stochastic representations. A stochastic representation v maps an image s to an
n-dimensional neural response distribution P(r | s). We assume that v is differentiable in the sense
that a well-defined Jacobian for the log of the density function P(r | s) exists, which we denote



as Jiog (). Fisher information is the stochastic analog of the metric tensor M, (s), and can be
expressed as the expectation of a quadratic form of the Jacobian (see S2):

My(8) = E [Jiogu(s) " Jrogu(s)] - @)

Fisher information has been used to summarize discriminability in recent perceptual literature
[13L 14 1150 (164 (17, [18]. Computing Fisher information is generally non-trivial for arbitrary distri-
butions, and experimentally, neural response distributions are rarely verified beyond the first two
moments. In practice, a lower bound on Fisher information [[19] can be used to summarize perceptual
discriminability [20) 3]]. This lower bound computation only involves the first two moments of the
neural response distribution P(r | s). We use M, (s) to denote Fisher lower bound, or the metric
tensor of interest for stochastic neural models. To be consistent with the notations for deterministic
models, we use pu(s) to denote the mean neural response as a function of stimulus, and X(s) as the
response covariance matrix, and perceptual discriminability can be expressed analogously to that of

Equation [T}
pe(s) =1/ €T M, (s)e; and M, (s) = J,(s) "2(s) " Tu(s). 3)

Notice that in addition to the Jacobian of the mean neural response, the metric tensor for stochastic
neural models also depends on the response covariance matrix.

Perceptual discriminability and thresholds. To compare between two neural models f; (s) and f(s),
we can compare their metric tensor predictions M;(s) and M(s). We can apply metric tensor
comparison to deterministic or stochastic models, or a mixture of the two, so the method is more
flexible than existing model comparison methods. For simplicity of visualization, as well as being
consistent with the perceptual literature, in the rest of the paper, we examine the threshold matrix
T¢(s), the inverse of discriminability:

Tf(S) = Mf(s)il. @

Like M¢(s), T¢(s) is also symmetric and positive definite (it is also a metric tensor). Expressing
results in terms of thresholds T (s) has the advantage that the values share the same units as the
stimuli, and can be visualized in the stimulus space.

2.2 Comparing metric tensors at a single reference image

Different neural models f; and f> generally make different metric tensor predictions (77 (s) and
T5(s)) at a reference image. To assess which of the two model predictions is more similar to human
perceptual thresholds measured at s, denoted as T}, (s), a direct approach would be to compare matrix
distance for the pair {7} (s), Th(s)}, and the pair {T5(s), Th(s)} using some matrix distance measure
[21] (e.g. Frobenius norm). The model prediction that is closer in distance to human perceptual
thresholds is the preferred model. Empirical estimation of human perceptual thresholds T}, (s) is
infeasible in a high-dimensional space. Suppose human thresholds T}, (s) have dimensionality r
(r < p), and suppose the sampling noise is bounded (and assuming i.i.d. sub-Gaussian samples of €),
stable recovery of T}, (s) takes an order of pr samples [22} 23]]. If an image s consists of 100 x 100
pixels, and T}, (s) is assumed to have rank 30 (a conservative estimate), measuring threshold along
each e perturbation takes around 2 minutes, and the total amount of time to recover Ty, (s) is in
the order of 10,000 hours per human subject. The direct approach of model comparison is not
experimentally feasible, so we introduce an alternative model comparison method, which is much
more efficient, and requires as little as a a single trial to distinguish between two metric tensor
predictions.

Full-rank metric tensor comparisons. We first make an observation that making perceptual threshold
measurements using some image perturbations are more informative to distinguish between metric
tensors than the others. Examine Figure 2JA, measuring the human perceptual threshold along
perturbation €5 would not distinguish between the two models, because the two models’ predictions
along ep are identical. On the other hand, the two metric tensors make very different predictions
along perturbation € 4. To efficiently sample human perceptual thresholds to distinguish between
model-predicted metric tensors, we need to find image perturbations that the metric tensors make the
most distinct predictions.

To do so, we find an € that maximizes the ratio between the two metric tensor predictions. Because
one model’s prediction can be much larger in amplitude than the other, and we want to find the metric
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Figure 2: Model comparison using metric tensors. A. Locally, a neural model transforms a circle of equi-
distance perturbations of a reference image s to a two-dimensional ellipse. Different models generally predict
different ellipses (hence different metric tensors). Not all perturbation directions are equally informative to
distinguish the two metric tensors. For this example, The two tensors predict distinct thresholds along image
perturbation € 4, but identical thresholds along image perturbation eg. B. We compute (see text) perturbations
that maximally distinguish between the two metric tensors’ threshold predictions. To compare the models to
human perceptual discriminability, we only need to measure perceptual discriminability along the two chosen
perturbation directions. C. Perceptual experiment for model selection. An observer is asked which of the two
perturbed images is more similar to the reference. If perceptual threshold is larger along €; (as compared to
€2), model 1 wins, and vice versa. D. Simulated human metric tensors in a two-dimensional stimulus space at
uniformly sampled references. E. We simulated two models with different metric tensor predictions at different
references in the two-dimensional image space. The color of an ellipse indicates the winning model for that
reference image. Overall, model 1 makes metric tensor predictions more similar to human discriminability, but
model 2 out-performed model 1 in some region of the stimulus space.

tensor that is more similar to human perceptual thresholds in shape (or similar in terms of relative
thresholds in different directions). To eliminate the effect of predicted metric tensor size (see S4), we
seek a pair of image perturbations €; and €2, such that €; maximizes the ratio between the metric
tensor predictions, and € maximizes the inverse of the ratio:

€' Ti(s)e €' Th(s)e
€' Th(s)e e'Ti(s)e|”
To find the €; and the €- is to solve two generalized eigenvalue problems, which have well-known
closed-form solutions: €; is the eigenvector that corresponds to the largest eigenvalue of matrix
Ty (s)~'Ty(s); symmetrically, €5 is the eigenvector that corresponds to the largest eigenvalue of
Ty (s) 1Tz (s). We assumed both matrix 7 and T are full-rank for now, so we can compute their
inverse, and later on we consider the case when either matrix (or both) are rank-deficient. In the first
panel of Figure[2B, we illustrate the optimal pair of image perturbations chosen for two simulated
metric tensors.

€1(s) = arg max [ €2(s) = arg max [ )

Once a pair of image perturbations is chosen, we need to make human perceptual measurements
along these perturbations. One advantage of our method is that to choose a winning model, we
do not need to measure the absolute perceptual thresholds along the two perturbation directions,
but we only to assess the relative thresholds — which of the two perturbations is more perceptually
salient? For example, in the second panel of Figure 2B, if perceptual threshold measured using
perturbation €; is greater than that using €, then we conclude that model 1 is closer to predicting
the human thresholds than model 2. We use ¢;(s) to indicate perceptual threshold measured along
€;, and to experimentally distinguish between the two models, we only need to determine whether
t1(s) > ta(s), or ta(s) > t1(s), and equality only occurs when the two metric tensors are identical
up to a scale factor.



During a model-selection experiment (Figure [2IC), an observer is presented with a reference image s,
together with two perturbed versions of the image (s + €1) and (s + €3). The observer judges which
of the two perturbations is more noticeable. We use > to indicate model preference, and the model
comparison can be summarized as:

if 1 (S) > tQ(S), fi = f5 at s, (6)
if tQ(S) >t (S), fo = f; at s. (7)

Notice that larger perceptual threshold (or smaller perceptual discriminability) means the image
perturbation is less noticeable.

Rank-deficient metric tensor comparisons. A metric tensor can be rank-deficient when the number of
linearly independent neurons is less than the number of image pixels. In this section, we conduct
analyses analogous to the full-rank case, but using model-predicted discriminability Mg (s) instead
of threshold T (s), because M;(s) can be directly derived from a neural model, and is no longer
assumed invertible. We introduced two different approaches to extend our model comparison method
to rank-deficient metric tensors, and we will use each of the approaches in one of our applications.

In the first approach, we reduce the stimulus dimensionality via a map § = g(s), and S can be either
linear (e.g. cropping an image) or nonlinear (e.g. only examine perceptual discrimination by varying
image contrast). We assume that neurons take inputs from the transformed stimulus S, and map into
the response space via f[g(s)], and the corresponding metric tensor M¢(8) (for the computation from
the transformed input space), relates to the metric tensor My (8) for the neural computation from the
original stimulus space via:

Mig(s) = Jg(S)TMf(é)Jg(S)a ®)
and Jg(s) is the Jacobian for the image transform g(s) (see S5 for details).

In the second approach, we modified our objective functions (Equation 5] to accommodate the rank
deficiency in M;(s). Intuitively, we search for an image perturbation that maximizes the numerator
computation within the denominator metric tensor’s null space. We use V; to denote the nullspace of
M;(s), and the modified objective functions can be expressed as:

€; = argmax e’ My(s)e €, = argmax e’ M;(s)e. 9)
ecV €€V

This approach is conceptually similar to Equation 5] and see S6 for more computational details.

2.3 Comparing metric tensors using multiple reference images

Comparing metric tensors using a single reference image is informative. But to achieve a more general
understanding of how each model captures human perceptual representations, we may compare metric
tensors measured using multiple (or a large set of) reference images {s; }}"_;. To select between two
models across multiple reference image, we first compare model-predicted metric tensors for each
reference sy. Let 17, (sy;) be an indicator function which is 1 when T;(s) is the winning metric tensor
at s, and 0 otherwise. We further use ¢ [T}] to denote the sum of the indicators for the i*" model
across all references. The winning model satisfies:

f; >~ fj if ¢ [T’z] >c [T]} s (10)
st [T =) 1n(sk). (11)
k=1

Using our model comparison method, we not only obtain a winning model, but also obtain a lot
of additional information about human representation through the comparison. For example, in
Figure 2DE, we compared between two neural models using uniformly sampled references in a
two-dimensional image space. Comparing model-predicted metric tensors across references to
simulated human perceptual measurements, we observe that one model better captures perceptual
discriminability in a certain part of the image space, while the other model better predicts the rest of
the space. The fusion of these models, can possibly yield an improved model of human perceptual
discriminability for the entire image space.
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Figure 3: A toy example. A. A reference color (a neutral gray) was perturbed along six different directions, and
the equi-distance perturbations form a circle in the 2D chromatic space. B. Two simulated models, as well as
human perception, transform the circle of stimulus perturbation into three different two-dimensional ellipses in
the 2D chromatic space. C. We choose two efficient perturbation directions to determine which model better
matches human perceptual thresholds around the reference. D. A perceptual experiment can be conducted to
compare relative thresholds along the two efficient perturbation directions, determining which model is best
aligned with human perception.

3 Application

3.1 Simple color discrimination example

We first examine a toy example in color discrimination. Within an equi-luminant two-dimensional
color space (also called xy space, or chromatic space), we choose a reference color — a neutral gray,
and showed six equi-distance perturbations of the reference (Fig. B]A). All equi-distance perturbations
form a circle in the two-dimensional chromatic space. We simulated two models that make distinct
chromatic discriminability predictions. Both models’ predictions transform the circle of equi-distance
perturbation to ellipses, but the two models predict ellipses that differ in their major and minor axes.
Human perceptual thresholds measured around the reference image also exhibit an elliptical shape
(Fig. [3B). To examine which model’s threshold predictions are closer to those of humans, we found
two effective image perturbation directions using the method described in the previous section (Fig.
[IC). With the effective perturbation directions, we can conduct a human experiment to test the relative
perceptual thresholds along the two directions. If perturbation 1 in Fig. 3D is viewed as less obvious
compared to perturbation 2, then model 1 is the winning model, and vice versa.

3.2 Application 1: Comparing neural encoding model for chromaticity

Here, we examine a more realistic perceptual example to illustrate how our method differentiates
between models, selects the one that better matches human perceptual discriminability, and can aid
generating improved neural encoding models. A chromaticity diagram describes a two-dimensional
color space that varies in hue and saturation (with fixed luminance, and restricted to human range
of visibility). MacAdam measured two-dimensional perceptual thresholds within the chromaticity
diagram (Figure @A, [11]), a heroic effort requiring 25,000 experimental trials for each observer. A
recently proposed neural encoding model [[17] provides a reasonable prediction of the seemingly
intricate chromatic threshold patterns (Fig. 4B). In the proposed model, three cone types (L, M,
and S cones) linearly respond to incoming light, and each cone’s linear output is paired with a
noise model. The noise model can either be independent Poisson-distributed [17], motivated by
photon noise in the incoming light, or it can be independent Gaussian-distributed, motivated by noise
properties of cone photoreceptor responses (Figure ABC, see S7 for computational details).

To select between these two noise models, we applied our model comparison method at each reference
color, and found two optimal perturbation directions per reference color. If we were to perform model
selection on a new human observer, only 25 trials (approximately 3 minutes of experimental time) are
required to differentiate between the two models. Thus, our model comparison method offers a means
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Figure 4: Comparing neural encoding models for chromatic thresholds. A. Experimentally measured chromatic
thresholds by MacAdam [11]. The two-dimensional ellipses illustrate the measured threshold, which are
super-imposed on the translucent chromatic diagram in the XY color space. B. Predicted chromatic thresholds
using linear cone model combined with independent Poisson noise [17]. C. Predicted thresholds using linear
cone model combined with independent Gaussian noise. D. Model comparison. We illustrated the two optimal
comparison directions for the model pair at each reference, and the color of the ellipse underneath illustrates the
winning model at that reference. E. Predicted chromatic thresholds using the compound noise model. F. The
compound model improves upon both the Poisson and the Gaussian model in terms of Euclidean matrix distance
(see S8 for computational details).

to bridge the gap between the high-dimensional representations examined by the neuroscience and
machine learning communities, and the low (often one-) dimensional measurement methodologies of
the perception community.

The predicted chromatic metric tensors using both models reasonably resemble the chromatic thresh-
olds measured by MacAdam. But closer inspection reveals that the Poisson noise model tends to
mis-predict metric tensor orientations in the green-yellow region, and the Gaussian noise model tends
to mis-predict the orientations in the purple-red region. This suggests that a compound model can
potentially outperform each noise model alone. To this end, we propose the following noise model
(for the i cone type):

0i =0 + cy/Hi, (12)
where o is a constant (corresponds to Gaussian noise), and c¢ is a non-negative scalar (corresponds to
Poisson-like noise). We find that this compound model out-performed both existing noise models,
and we illustrate the compound model and the comparison of model performance in Fig. fE and iF.

3.3 Application 2: Comparing autoencoders trained with ., or L, regularizers

In this application, we trained two autoencoders with a single hidden layer. The weights of the first
auto-encoder were trained with an L1 regularizer (to encourage sparsity), and the weights of the
second auto-encoder were trained with an L2 regularizer (to encourage smoothness between weights).
The auto-encoders were trained on MNIST, and the reconstruction errors of the autoencoders were
qualitatively similar: 1.7e-2 for L1 and 1.2e-2 for L2 on average across all images. After training
using stochastic gradient descent on the weights and biases, we computed the Jacobian of the hidden
layer representation for a reference image, which was then used to compute the metric tensor. Because
of the regularizers, metric tensors derived from the models are generally low rank, so we used Eq. (9)
as objective to find the optimized image perturbation directions for each reference.

For each of the 200 MNIST images (references), we found two most efficient perturbations to
distinguish between the two auto-encoders’ predicted perceptual discriminability. Notice that in
the previous application, the model-predicted discriminability at one reference image is a two-
dimensional ellipse, and in this application, the predicted discriminability is a high-dimensional
ellipsoid. Using the experimental method described in Fig. |3} we tested relative discriminability
of the two model-derived perturbations for 200 MNIST digit images. We find that the L1-trained
autoencoder is better aligned with human perception for most images: The participants selected L1
model as preferred model for 78% (participant 1), and 80% (participant 2). In Fig. [5| we demonstrate
the perceptual experiments using two reference images as examples.
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Figure 5: Comparing metric tensors of autoencoders trained using L1 or L2 regularizer. First, we demonstrate
two reconstruction examples, one trained with L1 regularizer, and the other trained with L2 regularizer. The
reconstruction errors across the two types of models are qualitatively similar. Then we demonstrate two sets of
perceptual experiments, which involves a reference image, and two image perturbations. The perturbation on the
left to the reference image seem more perceptually salient to participants, indicating that the autoencoder trained
with L1 regularizer better captures human perceptual discriminability for this image.

4 Discussion

We have proposed a novel methodology for comparing two models in terms of their perceptual
discriminability predictions. The method is flexible — it can be applied to either deterministic or
stochastic models, or a mixture of two. It is also extremely efficient — for a given reference stimulus,
a human experiment testing a single pair of perturbed stimuli is sufficient to determine which of two
models best accounts for human discriminability around that reference.

Our model comparison method is a generalization of the “Eigen-distortion” method [12]], which
generates image perturbation that maximizes (or minimizes) a single model’s predicted perceptual
discriminability. Beradino et al. find the minimal/maximal solutions of the Rayleigh quotient problem,
whereas our method finds the minimal/maximal solutions of generalized Rayleigh quotients. The
eigendistortions can be used to provide an indirect comparison of models (see [12]), but note that
two models can be identical in their maximal/minimal perturbation directions [12]], but still be
distinguishable using our method.

Our method is based on perturbations that maximize/minimize the ratio between two metric tensor
predictions. Alternatively, the problem can be formulated using other contrastive objectives, such
as maximizing the difference between the two metric tensor predictions. The difference objective
can also be solved with closed-form solutions (see S9). But unlike the ratio objective, for which
re-scaling one metric tensor does not change the optimal image perturbation directions, the difference
objective (and resuting perturbation directions) is affected by re-rescaling.

Our method can be generalized to compare more than two models simultaneously, while maintaining
its advantages in terms of experimental efficiency. Instead of comparing the ratio of two metric
tensor predictions, we can compare the ratio between a metric tensor’s prediction, and the average
of all models’ metric tensor predictions, and the problem remains equivalent to a generalized
eigenvalue problem (see S10). We’ve not yet tested and validated this generalized method, but it
offers the possibility of additionalincreases in the efficiency of comparing model predictions to human
perception.
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