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Abstract

The perception of sensory attributes is often quantified through measurements of discrim-
inability (an observers’ ability to detect small changes in stimulus), as well as direct judge-
ments of appearance or intensity. Despite their ubiquity, the relationship between these
two measurements is controversial and unresolved. Here, we propose a framework in which
they both arise from the properties of a common internal representation. Specifically, we
assume that direct measurements of stimulus intensity (e.g., through rating scales) reflect
the mean value of an internal representation, whereas measurements of discriminability
reflect the ratio of the derivative of mean value to the internal noise amplitude, as cap-
tured by the measure of Fisher Information. Combination of the two measurements allows
unique identification of internal representation properties. As a central example, we show
that Weber’s Law of perceptual discriminability can co-exist with Stevens’ observations of
power-law scaling of perceptual intensity ratings (for all exponents), if one assumes an in-
ternal representation with noise amplitude proportional to the mean. We extend this result
by incorporating a more general physiology-inspired model for noise and a discrimination
form that extends beyond Weber’s range, and show that the combination allows accurate
prediction of intensity ratings across a variety of sensory modalities and attributes. Our
framework unifies two major perceptual measurements, and provides a potential neural
interpretation for the underlying representations.
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As we step outdoors on a blistering summer’s day, we are able to immediately sense the
heat. And just as readily, we can sense the cooling relief of a soft breeze. Gauging the
absolute strength of sensations and changes in sensations (discriminability) are fundamental
to our daily lives. These two types of judgements have also shaped the foundations of our
knowledge in sensory perception.

Our perceptual capabilities arise from the properties of internal neural representation.
Measurements of discriminability of numerous stimulus attributes and sensory modalities
have sculpted our understanding of underlying sensory representation. For example, in
the late 1800’s, Fechner proposed that our sensitivity to small stimulus changes reflected a
corresponding magnitude change in some internal representation [1]. By the 1950s, signal
detection theory was formulated to capture stochastic internal representations (e.g. [2, 3|),
as an extension to Fechner’s implicit assumption that representations are deterministic. In
addition to stimulus discrimination, humans and animals are also able to make absolute
judgements of stimulus intensities [4-8|. But the experimental methods by which this can
be quantified are more controversial [9, 10|, and the resulting measurements have proven
difficult to link to measurements of discrimination [11-14].

Consider, as a well-known example, the case of Weber’s Law. For many sensory attributes,
thresholds for reliable discrimination scale proportionally with stimulus intensity (i.e. sensi-
tivity scales inversely with intensity). A simple and broadly accepted explanation, consistent
with Fechner’s theory, is that these attributes are internally represented on a logarithmic
scale. But in the 1950s, Stevens and others found that human ratings of perceived inten-
sity of a variety of sensory attributes follows a power law, with exponents ranging from
strongly compressive to strongly expansive |15, 16]. Stevens presented this as a direct refu-
tation of Fechner’s logarithmic hypothesis [11], but offered no means of reconciling the two.
Subsequent explanations have generally proposed either that intensity and discrimination
judgements do not arise from a common internal representation [17-20], or that the two
perceptual tasks involve different nonlinear cognitive transforms [21].

Here, we develop a simple but general framework for interpreting and unifying perceptual
discrimination and intensity judgements. Specifically, we use a simplified form of Fisher
Information to quantify the relationship between noisy internal representation and discrim-
inability. In the case of Weber’s Law, we show that this leads to a family of internal
representations with different noise properties, each consistent with Weber’s Law discrim-
inability, but only one of which is consistent with power law intensity percepts. Moreover,
we demonstrate the generalizability of our framework on a set of perceptual attributes
drawn from diverse sensory modalities. By incorporating a more realistic physiological
noise model, our framework unifies discrimination and intensity measurements beyond the
range over which Weber’s Law or Stevens’ power law hold.
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Results

What is the relationship between measurements of perceptual discriminability and the in-
ternal representations from which they arise? Intuitively, a change in stimulus value (e.g.
contrast of an image) leads to a corresponding change in an observer’s internal response.
Noticing a stimulus change depends on whether the internal response change is larger than
that expected from stochastic variability (“noise”) of those responses. This conceptualiza-
tion, based on Fechner’s original proposals [1| and formalized in the development of Signal
Detection Theory in the middle of the 20th century, has provided an enormously successful
quantitative framework for analyzing and interpreting perceptual data [2, 3, 22|. Despite
this success, the relationship between observers’ discriminability and their corresponding
internal stimulus representation is indirect. Furthermore, most uses of signal detection
theory have been restricted to assuming internal responses are corrupted by noise that is
additive, independent and Gaussian.

A more explicit relationship between discriminability and internal representation may be
expressed using Fisher Information (FI), which quantifies the precision with which a signal
is represented in noisy measurements. Specifically, given the conditional probability of
noisy internal responses to a stimulus, p(r|s), Fisher information provides a measure of the
precision (inverse variance) with which that stimulus can be recovered. Fisher information
is widely used in engineering, to compute the minimum achievable error in recovering signals
from measurements (known as the “Cramer-Rao” bound). In perceptual neuroscience, it
has been used to describe the precision of sensory attributes represented by noisy neural
responses, [23-25|, and as a bound on discrimination thresholds [26-28|. Fisher Information
is quite general — it can be used with any type of measurement distribution, including multi-
modal, discrete, and multi-dimensional responses — although only a subset of cases yield an
analytic closed-form expression.

Interpreting Weber’s Law using Fisher Information

Fisher Information is generally used to characterize decoding errors based on specification
of an encoder, but here we are interested in the reverse: to constrain properties of an en-
coder (internal representation) using external measurements of perceptual discriminability.
Consider the well-known case of Weber’s Law, in which discriminability of a stimulus at-
tribute is inversely proportional to the value of the attribute: §(s) oc 1/s. What internal
representation, p(r|s), underlies this behavior? The answer is not unique, and although a
complete solution is not readily expressed, a set of simple examples can be deduced and
verified.

As a first example, suppose the internal representation is a nonlinear function of the stimu-
lus, u(s) (often referred to as a “transducer function”), contaminated by additive Gaussian
noise with variance o2 [3, 29, 30|. In this case, the square root of FI is §(s) = |u/(s)|/o (see
Methods). This reflects Fechner’s hypothesis that sensitivity to small changes in stimulus is
determined by the derivative of the transducer. If discriminability follows Weber’s law, the
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response function can be deduced via integration as p(s) o< log(s) + ¢, with ¢ an arbitrary
constant. This logarithmic model of internal representation, due to Fechner |1, 5|, is the
most well-known explanation of Weber’s Law.

As an alternative, a number of authors have proposed that Weber’s Law arises from rep-
resentations in which noise amplitude grows in proportion to stimulus strength (sometimes
called “multiplicative noise”) |3, 31-36]. A simple example of this is an internal represen-
tation whose mean p(s) is proportional to the stimulus s, and contaminated by Gaussian
noise with standard deviation proportional to s. Again, computing FI yields d(s) o 1/s,
consistent with Weber’s Law (see Methods). In contrast to the previous case with additive
noise, for which the effect arose from the nonlinear transducer, discriminability in this case
arises entirely from the inhomogeneity of the noise.

Finally, consider a third case, inspired by neurobiology. The variability in neural spike
counts is often approximated as Poisson-distributed (e.g. [37-39]). Despite the discrete
nature of these integer measurements, F1 is still applicable. In this case, the variance of the
noise is equal to the mean response, and Weber’s Law discrimability arises from a transducer
function u(s) o [log(s) + ¢]? (see Methods).

These three different examples, illustrated in Fig. 1, demonstrate that the behavioral ob-
servation of Weber’s Law does not uniquely specify an internal representation (see also [36,
40, 41]). In fact, they are just three members of an infinite family of possible solutions.
To make this non-identifiability problem more explicit, note that for all three examples,
discriminability shares a common form:

5(s) = . (1)

This expression, which we refer to as Fisher Discriminability, is easier to compute than FI
(since it relies only on the first two moments of the response distribution), and provides a
lower bound on the square-root of Fisher information [42] (see Methods). For all three of
the examples above, this lower bound is exact. The Fisher Discriminability elucidates the
identifiability problem: To explain any measured pattern of discriminability d(s), one can
choose an arbitrary mean internal response pu(s) that increases monotonically and continu-
ously, and pair it with an internal noise variability o(s) = |/(s)]/d(s). How can we resolve
this ambiguity?

A unified interpretation of power-law intensity percepts and Weber’s Law

The ambiguity introduced in the previous section can be resolved through the use of addi-
tional measurements (or assumptions) regarding the mean or variance of internal represen-
tations, or the relationship between the two. We start with the first of these, by interpreting
perceptual magnitude ratings as providing a direct measurement of p(s) [40, 43|. In a rat-
ing experiment, observers are asked to report perceived stimulus intensities by selecting a
number from a rating scale (e.g. [7, 15, 16]). Suppose that these ratings reflect the internal
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Figure 1: Three different example internal representations, each consistent with We-
ber’s law. Each upper panel shows a stimulus-conditional response distribution, p(r|s)
(gray, brightness proportional to conditional probability), the mean response, u(s) (red
line), and three examples of response standard deviation (orange vertical lines indicate
a range of one standard deviation around the mean). A Mean response proportional to
log(s) + ¢, contaminated with additive Gaussian noise. B Mean response proportional to
s, with “multiplicative” Gaussian noise (standard deviation proportional to s). C Mean
response proportional to log?(s + ¢), with Poisson (integer) response distribution. The
bottom panel indicates the discrimination threshold (left) and the sensitivity (right), that
arise from the calculation of Fisher Information for all three representations.
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response,  (up to an arbitrary scale factor that depends on the numerical scale), and that
averaging over many trials provides an estimate of the mean internal representation, p(s).

Using stimulus magnitude ratings, Stevens and others (e.g. [15, 44, 45|) found that per-
ceived intensity of many different stimulus attributes is well-approximated by a power law,
wu(s) o< s*. The exponent o was found to vary widely across stimulus attributes ranging
from strongly compressive (e.g., & = 0.33 for brightness of a small visual target) to strongly
expansive (e.g., a = 3.5 for electric shock to fingertips). For stimulus attributes obey-
ing Weber’s Law, Stevens interpreted this as direct evidence against Fechner’s logarithmic
transducer [11], but left the relationship between the power law ratings and Weber’s Law
discriminability unresolved. Over the intervening decades, magnitude rating measurements
have generally been interpreted as arising from aspects of internal representation different
from those underlying discriminability (e.g. [12, 17, 20, 46|), or dismissed altogether |9, 13].

The framework of Fisher Discriminability offers a potential unification of power-law intensity

percepts and Weber’s Law discriminability. Assuming Fisher Discriminability |‘;’ ((Ss))l x 1/s,
and substituting a power-law for u(s), we arrive at a simple constraint on the noise of the

internal representation (Figure 2A, see Methods):

o(s) o p(s). (2)

That is, the internal standard deviation should be proportional to the mean, and thus
should grow according to the same power law. This result provides a generalization of
the multiplicative noise case of the previous section (Figure 1), allowing the co-existence
of Weber’s Law discriminability and a power-law percept for all exponents « (Figure 2B).
An additional prediction of this result is that the standard deviation of perceptual ratings
should also grow proportionally to the mean rating, consistent with findings of a number
of studies (e.g. [10, 47, 48]). Greene and Luce, for example, showed that when observers
were asked to rate 1000 Hz tone loudness, their coefficient of variations (standard deviation
divided by the mean) in the ratings are near-constant for a large range of intensities [47].

Connecting percept to discrimination for generalized intensity variables

The previous section provided a consistent unification of three relationships: Weber’s Law
for discriminability, a power-law behavior for intensity ratings, and proportionality of mean
and standard deviation in internal noise. In this section, we consider deviations from these
relationships, and show that these deviations remain consistent under our framework.

Consider first the internal noise. The Poisson description of neural noise implies a variance
proportional to the mean spike count. Although this relationship holds for modest response
levels, recent measurements in sensory cortex show substantial deviations at higher response
levels. In particular, at modest to high firing rates, spiking variance in individual neurons
is generally super-Poisson, growing approximately as the square of mean response [49-51],
consistent with the proportional noise assumption of the previous section. A quadratic
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Figure 2: Unifying perceptual measures of Weber’s Law discriminability and power-
law magnitude ratings. A. Using Fisher Discriminability, perceptual sensitivity and
perceptual magnitudes can be combined to constrain an internal representation. In the
particular case of Weber’s Law, and power-law intensity ratings, this yields an internal
representation with noise variance proportional to squared mean. B. This pattern of
proportional internal noise serves to unify Weber’s Law and power-law magnitudes for
any exponent «, allowing for transducer functions that are expansive (a > 1, upper
panel), linear (v = 1, middle), or compressive (a < 1, lower). Blue dashed lines indicate
an examplef pair of stimuli that are equally discriminable in all three cases, as can be seen
qualitatively from the overlap of their corresponding measurement distributions (shown
along left vertical edge of each plot, in shaded blue).
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Figure 3: Generalization beyond the Weber range. A. Quadratic mean-variance relationship
for a modulated Poisson model of sensory neurons |50, 51|. Behavior is Poisson-like at low
intensities (0%(s) ~ u(s)), and super-Poisson at higher intensities (02(s) ~ u?(s)), with
parameter g determining the response level of the transition between the two. B. Using
Fisher Discriminability, we can combine a generalized form of Weber sensitivity with
the mean-variance relationship in panel A to generate numerical predictions of perceived
stimulus intensity u(s).

model captures the behavior over the extended range [49, 50

o(s)* = p(s) + g*u(s)*, 3)

with g2 a non-negative constant that governs the transition from the Poisson range (smaller
1) to the super-Poisson range (larger p). For sensory attributes that are represented with
the combined activity of many such neurons, the sum of their responses also has a variance
that is quadratic in the mean, and the effective ¢ may be derived from the corresponding
values of the underlying individual neurons (see Supplement).

Perceptually, both Weber’s Law for discrimination and the power-law for perceptual magni-
tudes have been found to fail, especially at low intensities (e.g. |7, 52]). A generalized form
of Weber’s Law has been proposed to capture discrimination data over broader intensity
ranges:

3(s) = w/(s +d)”, (4)
where d is an additive constant that governs discriminability at low intensities, the exponent

B determines how discrimination deviates from Weber’s law at high intensities, and w is
a non-negative scaling factor. Weber’s Law corresponds to the special case of d = 0 and

B=1.

To test the generalization of our unified framework, we combined the modulated Poisson
noise model (Eq. 3) with fitted versions of this generalized form of Weber’s Law (Eq. 4), and
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used Fisher Discriminability to generate predictions of p(s) (Figure 3B). We then compared
these predictions to averaged perceptual intensity ratings. These predictions rely on the
choice of three parameters: g that determines the transition from Poisson to super-Poisson
noise, an integration constant ¢ (see Methods), and a final scale factor that adjusts the
predictions to the rating scale range.

We examined predictions for five different stimulus attributes, for which both discrimination
and rating scale data are available over a large range of stimulus intensities. Figure 4 shows
results for: 1) sucrose concentration (or “sweetness” perception, [53, 54|); 2) sodium chloride
concentrarion (or “saltiness” perception, [53, 54]); 3) intensity of auditory white noise [55,
56]; 4) intensity of 1000 Hz pure tone (auditory loudness, |56, 57]); and 5) sinusoidal visual
contrast [45, 58|.

The discrimination curves vary substantially across these stimulus attributes, but all are
well-fit by the generalized Weber functional form (blue curves, Figure 4). In all cases, the
rating scale data are well-predicted by combining the discriminability fit with the noise
model of Eq. (3) (red curves). Moreover, we find that reducing to simpler noise models
(additive, multiplicative, or Poisson) yields substantially worse predictions for most cases.
Note that the latter two models are special cases of Eq. (3), corresponding to the limit of
large g and zero g, respectively.

Discussion

Absolute judgement and discriminability are amongst the most important and widely as-
sessed characteristics of perception [59, 60|, but the relationship between the two has proven
elusive. We’ve proposed a framework that relates these characteristics to two fundamental
properties of internal representation — a nonlinear “transducer” mapping and the strength
of internal noise. Our proposal is simple, and relies on two primary assumptions: 1) dis-
criminability reflects the ratio of the derivative of the transducer and the internal noise
standard deviation (Eq. 1), a simplified form (and lower bound) of Fisher information; and
2) absolute judgements (specifically, those obtained through average ratings of stimulus in-
tensity) reflect the value of the transducer. This combination allows a unified interpretation
in which percept and discriminability reflect a single underlying representation, providing
a potential link to physiology.

To develop and test this framework, we’ve focused on attributes that obey Weber’s Law, and
its modest generalizations. Despite its ubiquity, the relationship between Weber’s Law and
underlying representation has been contentious. In the late 19th century, Fechner proposed
that perceptual intensities correspond to integrated discriminability 1], and in particular
predicted that Weber’s Law discriminability implied a logarithmic internal representation.
Using rating scales as a form of measurement, Stevens instead reported that many sensory
variables appeared to obey a power-law, with exponents differing substantially for different
attributes [11]|. Stevens interpreted this as a refutation of Fechner’s logarithmic transducer.
In order to explain the discrepancy between Fechner and Stevens’ proposals, a number
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Figure 4: Predicting perceived intensity from discriminability for five different sensory
attributes. For each attribute, we fit a three-parameter generalized form of Weber’s
Law (Eq. 4, blue curves, optimal parameters as indicated) to measured discrimination
thresholds (black points). We set this equal to the Fisher Discriminability relationship of
Eq. (1), and combined this with the mean-variance relationship of the modulated Poisson
noise model (Eq. 3) in order to generate predictions of 1(s). The predictions (red curves)
depend on the choice of g in the noise model, as well as an additive integration constant
and overall multiplicative scale factor, all three of which are adjusted to best fit average
perceptual rating scale measurements (black points). The three smaller graphs at bottom
of each panel depict predictions of u(s) for alternative noise models: constant standard
deviation, standard deviation proportjpnal to mean, and variance proportional to mean.
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of authors suggest that perceptual intensities and discrimination reflect different stages of
processing, bridged by an additional nonlinear transform. Specifically, [17] proposes a type
of sensory adaptation, [18] reflects additional sensory processing, and [21] incorporates an
additional cognitive process. Our framework offers a parsimonious resolution of these dis-
crepancies, by postulating that perceptual intensity and discriminability arise from different
combinations of the mean and variance of a common representation.

It is worth noting that while Fechner’s integration hypothesis is inconsistent with Stevens’
power law measurements, it appears to be consistent with many types of super-threshold
comparison of stimulus differences. Specifically, experimental procedures involving many
suprathreshold comparative judgements (e.g. maximum likelihood difference scaling, cat-
egorical scales and bisection [16, 36, 53, 61]) seem to reflect integration of local discrim-
inability, whereas experimental procedures that require absolute judgements (e.g. rating
scales [16, 45, 62]) seem to reflect the mean of internal representation, which is only equal
to integrated discriminability when noise variability is constant.

This subtle distinction between comparative and absolute judgement is at the heart of
multiple debates in perceptual literature. For example, it arises in discussions of whether
perceptual noise is additive or multiplicative in visual contrast (e.g. [36, 40, 63]|). We
have proposed that mean and variance of internal representations can be identified through
the combination of absolute and discriminative judgements, because the two measurements
reflect different aspects of the representation. On the other hand, if super-threshold com-
parative judgements reflect integrated local discriminability, they do not provide additional
constraints on internal representation, and combining such measurements does not resolve
the identifiability issue. This gives, for example, a consistent interpretation of the analysis
in [36], which shares the logic of our approach in seeking an additional measurement to re-
solve non-identifiability of discrimination measurements, but reaches a different conclusion
regarding consistency of additive noise.

Our examination of the particular combination of Weber’s Law discriminability with power-
law intensity percepts led to the conclusion that the amplitude of internal noise in these
cases should vary in proportion to the mean response. While such “multiplicative noise”
has been proposed previously as an explanation for Weber’s Law [3, 31-33], it has generally
been proposed in the context of a linear transducer (as in Fig. 1). In our framework, we find
that this form of proportional noise is sufficient to unify Weber’s and Stevens’ observations
for power-law transducers, regardless of exponent.

Moreover, this form of proportional noise offers a potential interpretation in terms of un-
derlying physiology of neural responses. We considered, in particular, recently proposed
“modulated Poisson” models for neural response which yields noise whose variance grows
as a second-order polynomial of the mean response. The noise of the summed response over
a population of such neurons would have the same structure (see Appendix A). At high lev-
els of response, this allows a unification of Weber’s Law and Stevens’ power law. At lower
levels, it produces systematic deviations that lead to consistent predictions of ratings for a
number of examples (Fig. 4). Recent generalizations of the modulated Poisson model may
allow further refinement of the perceptual predictions [64]. For example, at very low levels
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of response, sensory neurons exhibit spontaneous levels of activity that are independent of
stimulus drive [30], suggesting that inclusion of an additive constant in Eq. 3 could provide
predictions of perceptual detection thresholds [65].

We’ve restricted our examples to perceptual intensity attributes that obey Weber’s Law,
but the proposed framework is more general. In particular, the bound on Fisher information
holds for any noisy representation, and has, for example, been applied to representation of
sensory variables in the responses of populations of tuned neurons |23, 25, 26]. In some cases,
these attributes exhibit Weber’s Law behavior, which may be attributed to heterogeneous
arrangements of neural tuning curves rather than noise properties of individual neurons. For
example, neurons in area MT that are selective for different speeds have tuning curves that
are (approximately) shifted on a logarithmic speed axis [66]. In this case, an independent
response noise model yields Fisher Information consistent with Weber’s Law [67-71|. More
generally, changes in a stimulus attribute may cause changes in both the amplitude and the
pattern of neuronal responses, which, when coupled with properties of internal noise, yield
predictions of discriminability through Fisher Information. Specifically, the abstract inter-
nal representation that we have assumed for each perceptual attribute corresponds to the
projection of high-dimensional noisy neuronal responses onto a decision axis for perceptual
judgements (e.g. |49, 72, 73|). Although discrimination judgements for an attribute s are
generally insufficient to uniquely constrain underlying high-dimensional neuronal responses,
the one-dimensional projection of these responses provides an abstract but useful form for
unifying the perceptual measurements.

Our framework enables the unification of two fundamental forms of perceptual measurement
— absolute judgement and discrimination — with respect to a common internal representa-
tion. However, the study of perception is diverse and mature, with numerous additional
perceptual measurements [74| whose connection to this framework might be explored. The
descriptive framework outlined here also raises fundamental questions about the origin of
this relationship between internal representation mean and noise. The forms of both noise
and transducer may well be constrained by their construction from biological elements, but
may also be adapted to satisfy normative goals of efficient transmission of environmental
information under constraints of finite coding resources |70, 75, 76|. Exploration of these
relationships provides an enticing direction for future investigation.
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Methods

Fisher information

Fisher Information provides a measure of the precision with which stimuli are encoded in
noisy measurements |[1]. In statistics and engineering communities, it is often used in the
context of the Cramer-Rao bound, which states an upper bound on the precision (inverse
variance) attainable by an unbiased estimator [2|. It was first proposed as a means of
quantifying perceptual discrimination by Paradiso [3], and further elaborated for neural
populations by Seung and Sompolinsky [4]. In this context, the square root of Fisher
information provides a bound on perceptual precision (discriminability) [5|, and may be
viewed as a generalization of “d-prime”, the traditional metric of signal detection used in
psychophysical studies [6].

For a stimulus attribute s, the Fisher Information is derived from a stochastic model of
responses, p(r|s), and the Fisher bound on discriminability may be written as:

s] . (5)

The expression captures the relative change in measurement distribution when the stimulus
is perturbed. This definition relies only on the differentiability of the measurement dis-
tribution with respect to s and some modest regularity conditions [2|, but does not make
assumptions regarding the form of the response density. Moreover, both s and r can be
vector-valued, but for our purposes in this article, we assume a one-dimensional stimu-
lus attribute, and thus the internal representation r that is relevant to the discrimination
experiment is also effectively one-dimensional.

5(5) = |E <8logp(rs)>2

Os

The three examples shown in Figure 1 are each consistent with Weber’s Law discriminability,
but differ markedly in their response distributions: a fixed-variance Gaussian density (“ad-
ditive noise”), a variable-variance Gaussian density (“multiplicative noise”), and a discrete
Poisson distribution. Below, we derive each of these.

Additive noise. Assume the internal representation has mean response p(s), and is con-
taminated with additive Gaussian noise of fixed variance:

p(rs) = (ov2m) "t exp[—(r — u(s))*/(20°)].

Substituting into Eq. (5) and simplifying yields d(s) = |u/(s)|/o. Weber’s Law states
that §(s) o 1/s, and thus we require a transducer such that |u/(s)| o< 1/s. If we assume
monotonicity, the transducer is uniquely determined (up to a proportionality factor) via
integration: u(s) o log(s) + c.
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Multiplicative noise. Assume a representation with identity transducer pu(s) = s and
Gaussian noise such that the amplitude scales with the mean, o(s) = /as:

p(r|s) = (V2mas) ™ exp[—(r — u(s))*/(2as?)].

Substituting into Eq. (5) and simplifying again yields Weber’s Law: §(s) = (1/2 + 1/a)/s.

Poisson noise. Assume the internal response r is an (integer) spike count, drawn from
an inhomogeneous Poisson process with rate p(s), a widely-used statistical description of
neuronal spiking variability. Then

In this case, 0(s) = |p/(s)/|\/i(s). If §(s) follows Weber’s law, we can again derive the form
of of the transducer: ju(s) o [log(s) + ¢]? for some constant c.

Fisher discriminability

In general, Fisher information for arbitrary distributions can be difficult to compute and
often cannot be expressed in closed form. But for arbitrary distributions, a lower bound for
the square-root of Fisher information, which we term “Fisher discriminability”, is readily
computed and interpreted, because it depends only on the mean and variance of the distri-
bution. Specifically, we define Fisher discriminability as d(s) = |¢/(s)|/o(s). Its role as a
lower bound can be derived using a modified form of Cauchy-Schwartz inequality:

[ [ 9(2) f()pay (. y)dwdy]?
J 9(z)?ps(z)dz

/ F)?py(y)dy >

We then make the following substitutions:
2 dlogp(r|s)
F)pyy)dy = [ =5~ p(rls)dr

/g(w)ngc(m)da: = / [r— ,u(s)]zp(r\s)dr.
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The left-hand side of Eq. (6) is the Fisher information, and the bound arises after simplifi-
cation of the right-hand side:

Ip(s) >

[F = m(s)] 2252 )ar
f[ w(s) P plrls)d

2

3

{J[T - 6p IS dr
a(s)2 (8)
A& [ rolrls)dr — p(s)E [ p(r]s)dr)’

Fisher discriminabiliity generalizes to a multi-dimensional response vector (eg., a neural
population), by replacing the inverse variance with the Fisher information matrix, and
projecting this onto the gradient of the log likelihood [7]. The derivation of the full bound
for the multi-dimensional case (both stimuli and responses) may be found in [8].

In the three examples of Fig. 1, the lower bound is exact: Fisher discriminability is equal
to the square-root of Fisher information. An equivalent expression for Fisher discriminabil-
ity has also been obtained by assuming a minimal-variance unbiased linear decoder [9].
Compared to our interpretion as a lower bound, this interpretation has the advantage of
being an exact expression, but the disadvantage of relying on restrictive assumptions about
decoding.

Internal representations consistent with Weber’s law and Stevens’ Power law

Using Fisher discriminability and assuming monotonicity of p(s), Weber’s law can be ex-
pressed as: % o 1. Because both u(s) and o(s) are functions of s, neither is uniquely
constrained by the discriminability. To identify p(s) and o(s), we must combine Weber’s
law with some other measurement that constrains p(s), o(s), or some other combination of
the two. In this paper, we analyzed one example measurement — magnitude ratings, which
we assume provides a direct measurement of u(s). For many intensity variables, magnitude
ratings follow a power-law s®. Assuming pu(s) < s, we can substitute the derivative of the
power-form p(s) into Eq. (1), which yields o(s) o< s*. That is, Weber’s Law results when
both u(s) and o(s) follow a power law with the same exponent, «. Note that this result
holds for all exponents.

Data Fitting

To examine the validity of our framework beyond Weber’s range, we assume an internal
representation that has a mean-variance relationship consistent with a modulated Poisson
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distribution [10]:
o(s)® = u(s) + g*n(s)*. (9)
We combined this mean-variance constraint with a generalized form of Weber’s Law [11]:

w

6(s) = W’

(10)

in which d is an additive constant that can be either positive or negative, [ is a non-negative
exponent, and w is a non-negative scaling factor.

We analyzed five stimulus domains in the main text and make prediction of perceptual
intensities (rating measurements) in two steps. First, we fit Eq. (10), optimizing parameters
{d, B,w} to minimize squared error of the measured inverse discrimination (thresholds).
Then, we combined the fitted discriminability model with the mean-variance relationship
of Eq. (9) to generate rating predictions. In this second step, we optimize three parameters
(by minimizing squared error with the log-transformed rating data). The first is g, which
governs the transition from Poisson to super-Poisson noise behavior (large g indicates an
early transition). The second parameter is ¢, an integration constant that arises from solving
the differential equation (Fisher discriminability) for pu(s) (see below). The last parameter
is a scale factor, which adjusts the predicted intensity values to the numerical range used
in the associated rating experiment.

The transducer pu(s) is obtained by solving the differential equation that arises from equating
the Fisher discriminability of Eq. (1) with the generalized form of Weber’s law of Eq. (10):

1 (s) w (11)

The solution is a hyperbolic function:

s—d) Plw(d—s)+c(s —d)P
M(s)—sinh2{g( 9) [2(;;_1))—’_( 4) ]}/92. (12)

Note that an overall scaling (proportionality) factor is needed to fit this functional form of
wu(s) to rating data.

For comparison, we computed rating predictions from three other noise models: additive
Gaussian noise, Poisson noise, and a generalized form of multiplicative noise. The fitting
procedures for these three noise models are detailed below.

Additive Gaussian noise. As for modulated Poisson model, we first fit the generalized
Weber’s law to discrimination data, and lock the parameters {d,3,w}. Then we solve
a differential equation arising from equating Fisher discriminability with the generalized
Weber’s Law:

- (13)
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and solve for p(s). The solution for u(s) in this case also has a closed form:

wo(s —d)=P
(s = T (14)

The integration constant ¢ and overall scaling factor are estimated by fitting the expression
for p(s) to the rating data (minimizing the squared error between logarithmically trans-
formed rating data and the function).

Poisson noise. Following a similar procedure for the case of additive Gaussian noise, we
find a closed-form solution for p(s) using Poisson noise and Fisher discriminability:

s —d)"?Plw(d — s —1)c(s — d)P)?
o= U9+ (0 s~ ) )

Again, the integration constant ¢ and an overall scaling factor are optimized to fit the rating
data.

Generalized multiplicative noise. Here, we assume a noise mean-variance relationship
o(s)? = g*u(s)?, which is the choice that enables the co-existance of Weber’s law and
Stevens’ power law. As in previous cases, we plug this into the expression for Fisher
discriminability to obtain a prediction for pu(s):

— )(1-8)
gw(s —d) ]c.

— (16)

p(s) = exp [

Note that, as for the full noise model of Eq. (9), fitting involves estimation of three param-
eters: the noise parameter g, an integration constant ¢, and a scaling factor.
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A. Connecting noise parameters estimated for perception and for
neuronal responses

In this section, we analyze how parameter g of the modulated Poisson noise model, when
estimated from perceptual data, can be related to noise properties of underlying individual
neurons.

In the modulated Poisson model [1], each neuron’s response is captured by a Poisson dis-
tribution parameterized by p;(s):

pils)rie )
'I“Z‘!

p(rils) = (S.1)
Unlike a standard Poisson model, p;(s) is also a random variable that is constructed as
a product of two components: p;(s) = fi(s)G. The function f;(s) captures the stimulus-
dependent input drive, and G is a random variable, with mean E(G) = 1 that represents a
multiplicative modulator, that capture the combined effects of noisy feedback or recurrent
inputs.

Because neuronal responses fluctuate due to both the modulator and the Poisson spiking
process, they are more variable than those arising from a Poisson model. Indeed, we can
partition response variance into two additive components, one from the input-drive, which
follows a Poisson description (variance proportional to the mean), and the other from the
modulator:

o(rils)? = ils) + oZpi(s)® (S.2)
For further analysis, we assume the modulator distribution is the same for all neurons.
Conditioning on a single modulator G, all neurons share a single modulator variance, aé.

This assumption is reasonably consistent with data analyzed from neuronal population in
LGN, V1, V2, and MT [1].

The relationship between mean and variance in a single modulated-Poisson spiking neuron
may be tied to the assumed mean-variance relationship for intensity perception in the main
text. For simplicity of analysis, we assume independent responses so that the variance of a
population is the sum of variance in individual cells:

N
Z (rils) Z i(s) + o0& Z wi(s). (S.3)
7
We further assume that perception is the consequence of summing this set of neuronal
responses. Because the population is assumed independent, percept, p,(s), corresponds to
the sum of individual mean response rate: f,(s) = ZZN pi(s). Perceptual variance, %, is
the sum of individual response variance va o(ri|s)%. So we can re-write the mean-variance
relationship assumed for perceptual noise in the main text as:

> o (rils)? Zuz +9g° Z,Uz ] (S-4)

i
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Now we can find a connection between perceptual noise parameter g (in equ. S.4), and the
noise parameter in individual neurons o¢ (in equ. S.3). These two parameters are generally
different, because summing the squared mean responses is generally different from the square
of the sum (right hand side of equ. S.3 and equ. S.4).

Suppose perception is the consequence of a homogeneous neuronal population’s response.
Within this population, each neuron shares the same response to a stimulus s, and p;(s) =
11(s). When the population has N number of neurons, 327 1;(s)> = Nu(s)?. For perceptual
noise, (va ws)? = N?u(s)2. As a consequence, the perceptual noise parameter g relates to
the neuronal noise parameter og via g = oG/ V/'N.

In general, when neuronal responses are assumed independent, the perceptually estimated
noise parameter g is a lower bound for neuronal noise parameter og. The perceptual noise
parameter exactly matches the neuronal parameter when perception is the consequence
of a single neuron’s response. In general, the lower bound is tighter when the neuronal
population sparsely responds to a stimulus, i.e. most neurons do not respond to the stimulus.
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