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Abstract

The perception of sensory attributes is often quantified through measurements of sensitivity (the1

ability to detect small stimulus changes), as well as through direct judgements of appearance or2

intensity. Despite their ubiquity, the relationship between these two measurements remains contro-3

versial and unresolved. Here, we propose a framework in which they arise from different aspects4

of a common representation. Specifically, we assume that judgements of stimulus intensity (e.g.,5

as measured through rating scales) reflect the mean value of an internal representation, and sen-6

sitivity reflects a combination of mean value and noise properties, as quantified by the statistical7

measure of Fisher Information. Unique identification of these internal representation properties can8

be achieved by combining measurements of sensitivity and judgments of intensity. As a central9

example, we show that Weber’s law of perceptual sensitivity can co-exist with Stevens’ power-law10

scaling of intensity ratings (for all exponents), when the noise amplitude increases in proportion11

to the representational mean. We then extend this result beyond the Weber’s law range by incor-12

porating a more general and physiology-inspired form of noise, and show that the combination of13

noise properties and sensitivity measurements accurately predicts intensity ratings across a variety14

of sensory modalities and attributes. Our framework unifies two primary perceptual measurements15

– thresholds for sensitivity and rating scales for intensity – and provides a neural interpretation for16

the underlying representation.17
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Significance Statement20

Perceptual measurements of sensitivity to stimulus changes and stimulus appearance (in-21

tensity) are ubiquitous in the study of perception. However, the relationship between these22

two seemingly disparate measurements remains unclear. Proposals for unification have been23

made for over 60 years, but they generally lack support from perceptual or physiological24

measurements. Here, we provide a framework that offers a unified interpretation of per-25

ceptual sensitivity and intensity measurements, and we demonstrate its consistency with26

experimental measurements across multiple perceptual domains.27
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Introduction28

On a blistering summer’s day, we sense the heat. And just as readily, we sense the cooling29

relief from the onset of a soft breeze. Our ability to gauge the absolute strength of sensations,30

as well as our sensitivity to changes in their strength, are ubiquitous and automatic. These31

two judgements have also shaped the foundations of our knowledge of sensory perception.32

Perceptual capabilities arise from our internal representations of sensory inputs. Measure-33

ments of sensitivity to changes in these inputs have sculpted our understanding of sensory34

representations across different domains. For example, in the late 1800’s, Fechner proposed35

that sensitivity to a small change in a stimulus is proportional to the resulting change in36

the internal representation of that stimulus [1]. By the 1950s, Signal Detection theory was37

formulated to describe this in terms of stochastic internal representations (e.g. [2, 3]), gener-38

alizing beyond Fechner’s implicit assumption that stimuli are represented deterministically.39

In addition to sensitivity to stimulus changes, humans and animals can also make absolute40

judgements of stimulus intensities [4–8]. But the experimental methods by which this can41

be quantified are more controversial [9, 10], and the measurements have proven difficult to42

relate to sensitivity measurements [11–14].43

Consider the well-known example of Weber’s law, which states that perceptual thresholds for44

reliable stimulus discrimination scale proportionally with stimulus intensity (equivalently,45

sensitivity scales inversely with intensity). Weber’s law holds for an impressive variety46

of stimulus attributes. Fechner’s broadly accepted explanation is that sensitivity reflects47

the change in an internal representation that arises from a small change in the stimulus48

(specifically, it reflects the derivative of the function that maps stimulus intensity to repre-49

sentation). For Weber’s law, this implies a logarithmic internal representation. The search50

for physiological evidence supporting Fechner’s proposal has been ongoing for more than51

a century, but remains inconclusive (e.g. [4, 15]). In the 1950s, Stevens and others found52

that human ratings of perceived intensity of a variety of sensory attributes (proposed as an53

alternative measure of internal representation) follows a power law, with exponents rang-54

ing from strongly compressive to strongly expansive [16, 17]. Stevens presented this as a55

direct refutation of Fechner’s logarithmic hypothesis [11], but offered no means of recon-56

ciling the two. Subsequent explanations have generally proposed either that intensity and57

sensitivity judgements arise from different perceptual representations [18–21], or that the58

two perceptual tasks involve different nonlinear cognitive transformatins [22, 23].59

Here, we generalize Fechner’s solution, developing a framework to interpret and unify per-60

ceptual sensitivity and intensity judgements of continuous sensory attributes. Specifically,61

we use a simplified form of Fisher Information to generalize classical Signal Detection the-62

ory, and use this to quantify the relationship between perceptual sensitivity and the noisy63

internal representation. We show that a family of internal representations with markedly64

different noise properties are all consistent with Weber’s law, but only one form is also65

consistent with power law intensity percepts. Finally, by incorporating a noise model that66

is compatible with physiology, we demonstrate that the framework can unify sensitivity and67
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intensity measurements beyond the regime over which Weber’s law and Stevens’ power law68

hold, and for a diverse set of sensory attributes.69

Results70

What is the relationship between perceptual sensitivity, and the internal representations71

from which it arises? Intuitively, a change in stimulus value (e.g. contrast of an image)72

leads to a change in internal response. When the change in internal response is larger73

than the noise variability in that response, we are able to detect the stimulus change.74

This conceptualization, based on Fechner’s original proposals [1] and formalized in the75

development of Signal Detection theory in the middle of the 20th century, has provided76

a successful quantitative framework to analyze and interpret perceptual data [2, 3, 24].77

Despite this success, Signal Detection theory formulations are usually not explicit about the78

transformation of stimuli to internal representations, and most examples in the literature79

assume that internal responses are corrupted by noise that is additive, independent and80

Gaussian.81

A more explicit relationship between sensitivity and internal representation may be ex-82

pressed using a statistical tool known as Fisher Information (FI). Specifically, the noisy83

internal responses (r) to a stimulus (s) are described by a conditional probability p(r|s),84

and Fisher Information is defined in terms of a second-order expansion of this probability:85

F (s) = E
[
(∂ log p(r|s)/∂s)2

]
. This quantity specifies the precision with which the stimulus86

can be recovered from the noisy responses, and
√
F (s) provides a measure of sensitivity to87

stimulus changes (see Methods). Fisher Information is quite general: it can be used with88

any continuous stimulus attribute, and any type of response distribution (including multi-89

modal, discrete, and multi-dimensional responses), although only a subset of cases yield90

an analytic closed-form expression. In engineering, it is used to compute the minimum91

achievable error in recovering signals from noisy measurements (known as the “Cramér-Rao92

bound”). In perceptual neuroscience, it has been used to describe the precision of sen-93

sory attributes represented by noisy neural responses [25–27], and to provide a bound on94

discrimination thresholds [28–30].95

Interpreting Weber’s law using Fisher Information96

Typically, Fisher Information is used to characterize decoding errors based on specification97

of an encoder. Here, we are interested in the reverse: we want to constrain properties98

of an internal representation (an encoder) based on external measurements of perceptual99

sensitivity (decoder errors). Consider Weber’s law, in which perceptual sensitivity of a100

stimulus attribute is inversely proportional to the value of the attribute. If we assume101

obervers achieve the bound expressed by the Fisher Information, this implies that
√
F (s) ∝102

1/s. What internal representation, p(r|s), underlies this observation? The answer is not103
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unique. Although the complete family of solutions is not readily expressed, we can deduce104

and verify a set of three illustrative examples (Fig. 1).105

First, Weber’s law can arise from a non-linear internal representational mean µ(s) (often106

referred to as a “transducer function”). If we assume that µ(s) is contaminated by additive107

Gaussian noise with variance σ2 [3, 31, 32]: p(r|s) ∼ N [µ(s), σ], then
√
F (s) = |µ′(s)|/σ (see108

Methods). Thus, sensitivity to small stimulus perturbations is proportional to the derivative109

of the representational mean. Notice that this is a differential version of the standard110

measure of ‘d-prime’ in Signal Detection theory, which is used to quantify discriminability111

of two discrete stimuli (see Supplement). Under these conditions, sensitivity follows Weber’s112

law if the transducer is µ(s) ∝ log(s) + c, with c an arbitrary constant (Fig. 1A illustrates113

a case when c = 0, also see Methods). This logarithmic model of internal representation,114

due to Fechner [1, 5], is the most well-known explanation of Weber’s law.115

Alternatively, a number of authors proposed that Weber’s law arises from representations in116

which noise amplitude grows in proportion to stimulus strength (sometimes called “multi-117

plicative noise”) [3, 33–38]. Suppose representational mean µ(s) is proportional to stimulus118

strength (s), and is contaminated by Gaussian noise with standard deviation also propor-119

tional to s: p(r|s) ∼ N [s, s2]. The square root of FI for this representation again yields120 √
F (s) ∝ 1/s, consistent with Weber’s law (see Methods). Note that unlike the previous121

case (in which Weber’s law arose from the nonlinear transducer), sensitivity in this case122

arises entirely from the stimulus-dependence of the noise variance (Fig. 1B).123

Now consider a third case, inspired by neurobiology. Assume the stimulus is internally124

represented through neural spike counts that are Poisson-distributed with rate µ(s) (e.g.125

[39–41]). Despite the discrete nature of the spike count responses, FI may still be computed,126

and provides a bound on sensitivity. In this case, noise variance is equal to the mean127

response, and sensitivity is
√
F (s) = |µ′(s)|/

√
µ(s), which gives rise to Weber’s law for128

a transducer function µ(s) ∝ [log(s) + c]2, where c is an integration constant (Fig. 1C,129

see Methods). Here, sensitivity reflects the combined signal-dependence of transducer and130

noise.131

These three different examples demonstrate that an observation of Weber’s law sensitivity132

does not uniquely constrain an internal representation (see also [42–45]). In fact, these are133

three members of an infinite family of representations p(r|s) whose Fisher Information is134

consistent with Weber’s law. To make this non-identifiability problem more explicit, we135

introduce a simpler quantity which we dub Fisher Sensitivity, defined as:136

D(s) =
|µ′(s)|
σ(s)

. (1)

In general, Fisher Sensitivity provides a lower bound on the square root of FI [46] (see137

Methods), and is easier to compute, since it relies only on the first two moments of the138

response distribution. Its expression as a ratio of the change in response mean to standard139

deviation also provides an explicit connection to the “d-prime” measure used to quantify140

discriminability in Signal Detection theory (see Methods). For all three of the examples141

in the preceding paragraphs, this lower bound is exact (i.e., Fisher Sensitivity is identical142
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to the square root of FI). But Fisher Sensitivity offers a direct and intuitive extension of143

the non-identifiability problem beyond these examples: To explain any measured pattern144

of sensitivity D(s), one can choose an arbitrary mean internal response µ(s) that increases145

monotonically and continuously, and pair it with an internal noise with variability σ(s) =146

|µ′(s)|/D(s). How can we resolve this ambiguity?147

Unified interpretation of power-law intensity percepts and Weber’s law148

sensitivity149

The ambiguity described in the previous section can be resolved through additional mea-150

surements (or assumptions) of the mean or variance of internal representations, or the151

relationship between the two. In this section, we interpret perceptual magnitude ratings152

as a direct measurement of the representational mean, µ(s) [42, 47]. In a rating experi-153

ment, observers are asked to report perceived stimulus intensities by selecting a number154

from a rating scale (e.g. [7, 16, 17]). Suppose that these ratings reflect the observers’ inter-155

nal response r (up to an arbitrary scale factor that depends on the numerical scale), and156

that averaging over many trials of r (drawn from p(r|s)) provides an estimate of the mean157

response, µ(s).158

Using magnitude ratings, Stevens and others (e.g. [16, 48, 49]) showed that perceived in-159

tensity of many stimulus attributes can be well-approximated by a power law, µ(s) ∝ sα.160

The exponent α was found to vary widely across stimulus attributes ranging from strongly161

compressive (e.g., α = 0.33 for brightness of a small visual target) to strongly expansive162

(e.g., α = 3.5 for electric shock to fingertips). For stimulus attributes obeying Weber’s163

law, Stevens’ power law observations were interpreted as direct evidence against Fechner’s164

hypothesis of logarithmic transducers [11]. But the relationship of power law ratings to We-165

ber’s law sensitivity was left unresolved. Over the intervening decades, magnitude rating166

measurements have generally been interpreted as arising from aspects of internal representa-167

tion that are different from those underlying sensitivity (e.g. [12, 18, 21, 50]), or sometimes,168

measurements of magnitude ratings were dismissed altogether [9, 13].169

Fisher Sensitivity offers a potential unification of power-law intensity percepts and Weber’s170

law sensitivity. First, we assume the observer whose discrimination behavior matches We-171

ber’s law does so by optimally decoding an internal representation, achieving the Fisher172

Sensitivity: D(s) = |µ′(s)|
σ(s) ∝ 1/s. Substituting a power function, µ(s) = sα, and solving for173

σ(s) yields (Fig. 2A, see Methods):174

σ(s) ∝ sα. (2)

Thus, the standard deviation of the internal representation is proportional to its mean.175

This result holds for all values of α, and does not assume Gaussian internal noise, thus176

providing a generalization of the multiplicative noise example from the previous section177

(Fig. 1). Under these conditions, Weber’s law sensitivity can co-exist with a power-law178

intensity percept for any exponent (Fig. 2B).179
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Figure 1: Three different internal representations, each consistent with Weber’s law.
Each panel on the left shows a stimulus-conditional response distribution, p(r|s)
(grayscale image, brightness proportional to conditional probability), the mean response
µ(s) (red line), and response distributions for two example stimuli (blue, plotted verti-
cally) . A. Mean response proportional to log(s), contaminated with additive Gaussian
noise, with constant standard deviation, σ(s) = σ. B. Mean response proportional to
s, with “multiplicative” Gaussian noise (standard deviation σ(s) is also proportional
to s). C. Mean response proportional to [log(s) + c]2 with Poisson (integer) response
distribution, for which σ(s) =

√
µ(s). The panels on the right indicate the perceptual

discrimination threshold (top) and the sensitivity (bottom) that arise from the calculation
of Fisher Information, which are identical for all three representations.
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Figure 2: Unification of power-law intensity and Weber’s law sensitivity measurements.
A. Using Fisher Sensitivity, perceptual sensitivity and intensity measurements can be
combined to constrain the noise properties of an internal representation. In the particular
case of Weber’s law, and power-law intensity ratings, this yields an internal representa-
tion with noise standard deviation proportional to mean response. B. This pattern of
proportional internal noise serves to unify Weber’s law and power-law magnitudes for any
exponent α, allowing for transducer functions that are expansive (α > 1, upper panel),
linear (α = 1, middle), or compressive (α < 1, lower). Blue dashed lines indicate an
example pair of stimuli that are equally discriminable in all three cases, as can be seen
qualitatively from the overlap of their corresponding response distributions (shown along
left vertical edge of each plot, in shaded blue).
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Connecting perceived intensity and discrimination of generalized intensity180

variables181

The previous section provided a unification of three idealized relationships: Weber’s law182

for sensitivity, a power-law behavior for intensity ratings, and proportionality of mean and183

standard deviation of the internal representation. In this section, we consider generalizations184

beyond these relationships, and show that these can remain consistent under our framework.185

Consider first the internal noise. Poisson neural noise implies a variance proportional to186

the mean spike count, a relationship that holds empirically for relatively low response levels187

[51]. At modest to high firing rates, spike count variance in individual neurons is generally188

super-Poisson, growing approximately as the square of mean response [51–53], consistent189

with the proportional noise assumption of the previous section. A modulated Poisson model190

has variance with both linear and quadratic terms, and can capture the relationship of spike191

count variance to mean response over the extended range [51, 52]:192

σ2(s) = µ(s) + g2µ2(s), (3)

where the constant g governs the transition from the Poisson range (smaller µ(s)) to the193

super-Poisson range (larger µ(s)) (Fig. 3A).194

Perceptually, both Weber’s law for sensitivity and the power-law for perceptual magnitudes195

are known to fail, especially at low intensities (e.g. [7, 54]). A generalized form of Weber’s196

law (e.g. [55]) has been proposed to capture sensitivity data over broader range of intensity:197

198

D(s) = w/(s+ d)β, (4)

where d is a constant that governs sensitivity at low intensities, the exponent β determines199

deviation from Weber’s law at high intensities, and w is a non-negative scaling factor.200

Weber’s law corresponds to the special case of d = 0 and β = 1.201

To test the generalization of our unified framework, we used Fisher Sensitivity to combine202

the modulated Poisson noise model (Eq. (3)) with fitted versions of this generalized form of203

Weber’s law (Eq. (4)), and to generate predictions of µ(s) (illustrated in Fig. 3B). We then204

compared these predictions to averaged perceptual intensity ratings. The predictions rely205

on the choice of three parameters: g that determines the transition from Poisson to super-206

Poisson noise, an integration constant c, and a scale factor that accounts for the range of the207

rating scale used in the experiment (see Methods). We examined predictions for five different208

stimulus attributes, for which both sensitivity and rating scale data (averaged across trials)209

are available over a large range of stimulus intensities. Fig. 4 shows results for: 1) sucrose210

concentration (or “sweetness” perception, [56, 57]); 2) sodium chloride concentration (or211

“saltiness” perception, [56, 57]); 3) intensity of auditory white noise [58, 59]; 4) intensity of212

1000 Hz pure tone (auditory loudness, [59, 60]); and 5) sinusoidal visual contrast [49, 55].213

The sensitivity curves vary substantially across these stimulus attributes, but all are well-fit214

by the generalized Weber functional form (blue curves, first row of Fig. 4). In all cases,215

the rating scale data are well-predicted by combining the sensitivity fit with the modulated216
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Figure 3: Generalization beyond the Weber range. A. Quadratic mean-variance relationship
for a modulated Poisson model of sensory neurons [51, 53]. Behavior is Poisson-like at
low intensities (i.e., when µ(s) is much less than 1/g2, then σ2(s) ∼ µ(s)), and super-
Poisson at higher intensities (when µ(s) is much greater than 1/g2, then σ2(s) ∼ µ2(s)),
with parameter g determining the response level at which the transition occurs. B.
Using Fisher Sensitivity, a generalized form of Weber sensitivity can be combined with
the mean-variance relationship in panel A to generate numerical predictions of perceived
stimulus intensity µ(s) (see examples in Fig. 4).
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Figure 4: Predictions of perceived intensity from sensitivity, for five different sensory
attributes. Top row: For each attribute, we fit a three-parameter generalized form of
Weber’s law (Eq. (4), blue curves) to measured discrimination thresholds (hollow points).
Optimal parameter values for each attribute are indicated. Bottom four rows: Fitted sen-
sitivity functions are equated to the Fisher Sensitivity relationship (Eq. (1)), assuming
one of four different mean-variance relationships (equations, left side), to generate predic-
tions of perceived intensity µ(s) (red curves). In addition to g, these predictions depend
on an additive integration constant c and overall multiplicative scale factor (see Meth-
ods). The modulated Poisson and multiplicative noise models also include a quadratic
coefficient parameter g, and the additive noise model includes noise variance parameter
σ2. All parameters are adjusted to best fit average perceptual rating scale measurements
(hollow points).
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Poisson noise model of Eq. (3) (red curves, second row, Fig. 4). Moreover, we find that217

reduction to simpler noise models (multiplicative, or Poisson) that are special cases of the218

full model provide worse predictions for many cases (rows 4 and 5, Fig. 4). Specifically,219

when g is small (as in the case of visual contrast), the modulated Poisson model behaves220

similarly to a standard Poisson model, but the multiplicative model fit is poor. When g221

is large (as in the case of tasting sodium chloride), the noise model behaves similarly to222

the multiplicative noise model, but the Poisson model fit is poor. Note that the standard223

Poisson model has one less parameter than the other models.224

The additive noise model is also worse than the modulated Poisson model, but generally225

outperforms the other two (Fig.4, row 3). In the five stimulus domains examined, we did not226

observe any systematic pattern of model parameters across stimulus categories (for either227

the sensitivity fit or the rating scale predictions). But examination of additional stimulus228

domains using this type of concurrent measurement may reveal such patterns.229

Discussion230

Stimulus magnitude and sensitivity are amongst the most widely assessed perceptual char-231

acteristics [61, 62], but the relationship between the two has proven elusive. In this article,232

we’ve proposed a framework that relates these characteristics to two fundamental properties233

of internal representation – a nonlinear “transducer” that expresses the mapping of stimulus234

magnitude to the mean internal representation, and the stimulus-dependent amplitude of235

internal noise. Our proposal relies on two assumptions that link perceptual measurements236

to these properties: (1) sensitivity (the inverse of the discrimination threshold) reflects a237

combination of the transducer and the noise amplitude, as expressed by Fisher Sensitiv-238

ity; and (2) absolute judgements (specifically, those obtained through average ratings of239

stimulus intensity) reflect the value of the transducer. This combination allows a unified240

interpretation in which intensity and sensitivity reflect a single underlying representation,241

providing a potential link to physiology.242

Our framework relies on several assumptions. First, we restrict ourselves to continous243

scalar stimulus domain, and an internal representation that is differentiable with respect to244

the stimulus (so that Fisher Information is well-defined). Throughout, we rely on Fisher245

Sensitivity, an intuitive and tractable lower bound on the square root of Fisher Information.246

The two are equivalent for the Weber’s law examples shown in Figs. 1 and 2, but not for247

the data fitting examples of Fig. 4 (in the Supplement, we provide an additional example in248

which the two quantities differ). We assume human perceptual sensitivity achieves (or is at249

least proportional to) the Fisher Sensitivity bound. More specifically, we assume that human250

responses in a perceptual discrimination task reflect optimal extraction of information from251

a noisy internal representation, as suggested by a number of studies linking physiology to252

perception (e.g., [63–67]). Finally, we assume that absolute intensity judgements reflect a253

transducer function that corresponds to the mean of the internal representation.254
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To develop and test our framework, we have focused on attributes that obey Weber’s law,255

and its modest generalizations. Despite its ubiquity, the relationship between Weber’s law256

and the underlying representation has been contentious. In the late 19th century, Fechner257

proposed that perceptual intensities correspond to integrated sensitivity [1], and in partic-258

ular predicted that Weber’s law sensitivity implied a logarithmic internal representation.259

Using rating scales as a form of measurement, Stevens instead reported that many sen-260

sory variables appeared to obey a power law, with exponents differing substantially for261

different attributes [11]. Stevens interpreted this as a refutation of Fechner’s logarithmic262

transducer. In order to explain the discrepancy between Fechner and Stevens’ proposals, a263

number of authors suggest that perceptual intensities and sensitivity reflect different stages264

of processing, bridged by an additional nonlinear transform. Specifically, [18] proposes a265

type of sensory adaptation, [19] reflects additional sensory processing, and [22] incorporates266

an additional cognitive process. Our framework offers a parsimonious resolution of these267

discrepancies, by postulating that perceptual intensity and sensitivity arise from different268

combinations of the mean and variance of a common internal representation.269

It is worth noting that while Fechner’s integration hypothesis is inconsistent with Stevens’270

power law measurements, it appears to be consistent with many supra-threshold intensity271

measurements. Specifically, experimental procedures involving supra-threshold compara-272

tive judgements (e.g. maximum likelihood difference scaling methods, categorical scales273

and bisection procedures [17, 38, 56, 68]) seem to reflect integration of sensitivity, whereas274

experimental procedures that require absolute judgements (e.g. rating scales [17, 49, 69])275

yield different functions that we’ve interpreted as reflecting the mean of internal repre-276

sentation. In the case of Weber’s law, the integrated sensitivity is logarithmic, consistent277

with Fechner’s interpretations, regardless of the underlying transducer-noise combination278

(e.g., Fig. 1)! Under this interpretation, our framework can provide a natural unification of279

Stevens’ power law magnitude ratings, Weber’s law sensitivity, and Fechner’s logarithmic280

supra-threshold distances (Fig. 5). Further empirical studies will be needed to verify or281

refute these relationships.282

This subtle distinction between comparative and absolute judgement is at the heart of283

multiple debates in perceptual literature. For example, it arises in discussions of whether284

perceptual noise is additive or multiplicative in visual contrast (e.g. [38, 42, 70]). We285

have proposed that mean and variance of internal representations can be identified through286

the combination of absolute and discriminative judgements, because the two measurements287

reflect different aspects of the representation. On the other hand, if supra-threshold com-288

parative judgements reflect integrated local sensitivity, they will not provide additional289

constraints on internal representation beyond threshold sensitivity measurements, and com-290

bining these two measurements cannot resolve the identifiability issue. This provides, for291

example, a consistent interpretation of the analysis in [38], which shares the logic of our292

approach in seeking an additional measurement to resolve non-identifiability of sensitivity293

measurements, but reaches a different conclusion regarding consistency of additive noise.294

Several other theoretical or experimental constraints have been proposed to resolve the295

identifiability issue, including imposing a common criterion between two discrimination296

tasks [70], connecting the response accuracy for the first and the second response in a four-297
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Figure 5: Extension of the Fisher Sensitivity framework to supra-threshold perceptual
distances. Weber’s law is consistent with Stevens’ power law (for any exponent, α)
as long as the standard deviation of the noise scales with the same exponent (left and
middle panels; see also Fig. 2B). In addition, under the assumption that perceived supra-
threshold distances correspond to integrated sensitivity, these will correspond to differ-
ences in logarithmically mapped stimuli, providing a modified interpretation of Fechner’s
law. Under these conditions, all three “laws” co-exist in a consistent framework, each
describing measurements that access different aspects of a common underlying represen-
tation.

alternative choice [30], and connecting discrimination to an identification task [45]. An298

open question is whether our framework can be extended to account for these more diverse299

perceptual scenarios.300

Our examination of the particular combination of Weber’s law sensitivity with power-law301

intensity percepts led to the conclusion that the standard deviation of internal noise in these302

cases should vary in proportion to the mean response. While such “multiplicative noise”303

has been previously proposed as an explanation for Weber’s law [3, 33–35], it has generally304

been described in the context of a linear transducer (as in Fig. 1). In our framework, we305

find that this form of noise (standard deviation proportional to the mean) is sufficient to306

unify Weber’s and Stevens’ observations for the complete family of power-law transducers,307

regardless of exponent. An additional prediction of this model is that the standard deviation308

of perceptual magnitude ratings should grow proportionally to the mean rating (consistent309

with Fig. 2B). This is consistent with findings of a number of previous studies (e.g. [10, 71,310

72]). For example, Green and Luce showed that when observers were asked to rate 1000311

Hz tone loudness, their coefficient of variations (standard deviation divided by the mean)312

in the ratings are near-constant for a wide range of intensities [71].313

The proportionality of the mean and standard deviation of a stimulus representation offers314

a potential interpretation in terms of underlying physiology of neural responses. We con-315

sidered, in particular, recently proposed “modulated Poisson” models for neural response316

which yields noise whose variance grows as a second-order polynomial of the mean response317

[51, 73]. The noise of the summed response over a population of such neurons would have318
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the same structure (see Supplement). At high levels of response, this allows a unification319

of Weber’s law and Stevens’ power law. At lower levels, it produces systematic deviations320

that lead to consistent predictions of ratings for a number of examples (Fig. 4). Recent321

generalizations of the modulated Poisson model may allow further refinement of the per-322

ceptual predictions [74]. For example, at very low levels of response, sensory neurons exhibit323

spontaneous levels of activity that are independent of stimulus drive [32], suggesting that in-324

clusion of an additive constant in Eq. (3) could improve predictions of perceptual detection325

thresholds [75].326

We’ve restricted our examples to perceptual intensity attributes that obey Weber’s law, but327

the proposed framework is more general. In particular, the Fisher Information bound holds328

for any noisy representation, and has, for example, been applied to representation of sensory329

variables in the responses of populations of tuned neurons [25, 27, 28]. In some cases, these330

attributes exhibit Weber’s law behavior, which may be attributed to the combination of331

heterogeneous arrangements of neural tuning curves along with noise properties of individ-332

ual neurons [76–78]. For example, neurons in area MT that are selective for different speeds333

have tuning curves that are (approximately) shifted on a logarithmic speed axis [79]. Under334

these conditions, an independent response noise model yields Fisher Information consis-335

tent with Weber’s law [80, 81]. More generally, changes in a stimulus attribute may cause336

changes in both the amplitude and the pattern of neuronal responses, which, when coupled337

with properties of internal noise, yield predictions of sensitivity through Fisher Information.338

Specifically, the abstract internal representation that we have assumed for each perceptual339

attribute corresponds to the projection of high-dimensional noisy neuronal responses onto340

a decision axis for perceptual judgements (e.g. [52, 82, 83]). Although discrimination341

judgements for a stimulus attribute are generally insufficient to uniquely constrain underly-342

ing high-dimensional neuronal responses, the one-dimensional projection of these responses343

provides an abstract but useful form for unifying the perceptual measurements.344

Our framework enables the unification of two fundamental forms of perceptual measurement345

– magnitude judgement and sensitivity – with respect to a common internal representation.346

However, the study of perception is diverse and mature, with numerous additional percep-347

tual measurements [84] whose connection to this framework could be explored. The de-348

scriptive framework outlined here also raises fundamental questions about the relationship349

between internal representation mean and noise. The forms of both noise and transducer350

may well be constrained by their construction from biological elements, but may also be351

co-adapted to satisfy normative goals of efficient transmission of environmental informa-352

tion under constraints of finite coding resources [85–87]. Exploration of these relationships353

provides an enticing direction for future investigation.354

Fisher Information355

For a stimulus attribute s, the Fisher Information (FI) is derived from the conditional356

distribution of responses given the stimulus, p(r|s), and expresses the relative change in357
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response distribution when the stimulus s is perturbed:358

F (s) = E
[
(∂ log p(r|s)/∂s)2

]
(5)

where the expectation is taken over the distribution p(r|s)[88]. Intuitively, Fisher informa-359

tion converts a description of the internal noisy representation, p(r|s), into a measure of the360

precision (inverse variance) with which the stimulus is represented [89]. The definition relies361

only on the differentiability of the response distribution with respect to s and some modest362

regularity conditions [89], but does not make assumptions regarding the form of the noisy363

response distribution. Either s or r can be vector-valued, but for our purposes in this arti-364

cle, we assume a one-dimensional stimulus attribute, and thus the internal representation365

r that is relevant to the discrimination experiment is also effectively one-dimensional.366

In statistics and engineering communities, FI is often used in the context of the “Cramér-367

Rao bound”, an upper bound on the precision (inverse variance) attainable by an unbiased368

estimator [89]. It was first proposed as a means of quantifying perceptual discrimination369

by Paradiso [28], and further elaborated for neural populations by Seung and Sompolinsky370

[25]. In this context, the square root of Fisher Information provides a bound on percep-371

tual precision (sensitivity) [29], and may be viewed as a generalization of “d-prime”, the372

traditional metric of signal detection used in psychophysical studies [3] (see Supplement).373

Three example representations yielding Weber’s law sensitivity374

The three example representations shown in Fig. 1 are each consistent with Weber’s Law,375

but differ markedly in their response distributions. Below, we derive each of these.376

Additive Gaussian noise. Assume the internal representation has mean response µ(s),377

and is contaminated with additive Gaussian noise of variance σ:378

p(r|s) = (
√

2π σ)−1 exp[−(r − µ(s))2/(2σ2)].

Substituting into Eq. (5) and simplifying yields
√
F (s) = |µ′(s)|/σ. Weber’s Law cor-379

responds to sensitivity proportional to 1/s, and thus we require a transducer such that380

|µ′(s)| ∝ 1/s. If we assume monotonicity, the transducer is uniquely determined (up to an381

integration constant and a proportionality factor) via integration: µ(s) ∝ log(s) + c.382

“Multiplicative” Gaussian noise. Assume a representation with identity transducer383

µ(s) = s and Gaussian noise such that the amplitude scales with the mean, σ(s) =
√
as:384

p(r|s) = (
√

2πa s)−1 exp[−(r − µ(s))2/(2as2)].

Substituting into Eq. (5) and simplifying again yields Weber’s Law:
√
F (s) = (

√
2 + 1/a)/s.385

Poisson noise. Assume the internal response r is an (integer) spike count, drawn from386

an inhomogeneous Poisson process with rate µ(s), a widely-used statistical description of387
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neuronal spiking variability. Then388

p(r|s) =
µ(s)r exp[−µ(s)]

r!
.

In this case,
√
F (s) = |µ′(s)/|

√
µ(s). Assuming Weber’s law, we can again derive the form389

of the transducer: µ(s) ∝ [log(s) + c]2 for some constant c.390

Fisher Sensitivity391

In general, Fisher Information can be difficult to compute and often cannot be expressed392

in closed form. A lower bound for the square-root of Fisher Information, which we term393

Fisher Sensitivity, is more easily computed and interpreted, because it depends only on the394

mean and variance of the distribution. Specifically, we define Fisher Sensitivity as:395

D(s) ≡ |µ′(s)|/σ(s).

Its role as a lower bound can be derived using the Cauchy-Schwartz inequality for continuous396

density p(x):397 ∫
f(x)2p(x) dx ≥

[∫
g(x)f(x)p(x) dx

]2∫
g(x)2p(x) dx

. (6)

Making the following substitutions:

f(x) =
∂ log p(r|s)

∂s
, g(x) = r − µ(s), p(x) = p(r|s), (7)

the left side of Eq. (6) is equal to the Fisher Information (defined in Eq. (5)), and the right
side is equal to the squared Fisher Sensitivity:

F (s) ≥

{∫
[r − µ(s)] ∂ log p(r|s)∂s p(r|s)dr

}2

∫
[r − µ(s)]2 p(r|s)dr

=

{∫
[r − µ(s)] ∂p(r|s)∂s dr

}2

σ(s)2

=

{
∂
∂s

∫
rp(r|s)dr − µ(s) ∂∂s

∫
p(r|s)dr

}2
σ(s)2

=
µ′(s)2

σ(s)2

= D2(s).

(8)

Fisher Sensitivity generalizes to multi-dimensional response vectors (e.g., a neural popula-398

tion), by replacing the inverse variance with the Fisher Information matrix, and projecting399

this onto the gradient of the mean response [90]. The derivation of the full bound for the400

multi-dimensional case (both stimuli and responses) may be found in [46].401
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In the examples of Fig. 1 and Fig. 2, the lower bound is exact: Fisher Sensitivity is equal to402

the square-root of Fisher Information. An equivalent expression for Fisher Sensitivity has403

also been derived by assuming a minimal-variance unbiased linear decoder [91]. Compared404

to our interpretation as a lower bound, this interpretation has the advantage of being405

an exact expression of Fisher Information, but the disadvantage of relying on restrictive406

decoding assumptions.407

Relationship of Fisher Sensitivity to Signal Detection theory408

In Signal Detection theory, discriminability between two stimulus levels s1 and s2 is typically409

summarized using the measure known as “d-prime”. To relate this to Fisher Sensitivity, we410

assume a simple form sometimes used in the perception literature:411

d′(s1, s2) =
µ(s2)− µ(s1)

σ(s)
, with s =

s1 + s2
2

. (9)

Assuming s1 and s2 are two values on a continuum, and that µ(s) is differentiable, we can
express the two internal responses using a first-order (linear) Taylor approximation:

µ(s1) ≈ µ(s) + (s1 − s)µ′(s), µ(s2) ≈ µ(s) + (s2 − s)µ′(s).

Substituting these into Eq. (9) gives:

d′(s1, s2) ≈
∆s µ′(s)

σ(s)
, with ∆s = s2 − s1

= ∆s D(s). (10)

That is, Fisher Sensitivity expresses the slope at which d-prime increases with stimulus412

separation. Setting d-prime equal to a criterion level d∗ and solving for the stimulus dis-413

crimination threshold gives:414

∆s ≈ d∗/D(s).

That is, discrimination thresholds are inversely proportional to Fisher Sensitivity. This415

relationship was used to fit the data for Fig. 4.416

Internal representations consistent with Weber’s law and Stevens’ Power law417

Using Fisher Sensitivity and assuming monotonicity of µ(s), Weber’s law can be expressed418

as: µ′(s)
σ(s) ∝

1
s . To identify µ(s) and σ(s), we combine Weber’s law with magnitude ratings,419

which we assume provide a direct measurement of µ(s). Assume the magnitude ratings420

follow a power law [16]. Then µ(s) ∝ sα, with derivative µ′(s) = αsα−1. Substituting into421

the equation for Weber’s law and solving gives σ(s) ∝ sα. That is, Weber’s law can arise422

when both µ(s) and σ(s) follow a power law with the same exponent, α. Note that this423

result holds for all exponents.424
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Data Fitting425

To examine the validity of our framework beyond Weber’s range, we analyzed five different426

sensory attributes (Fig. 4). For each, we first fit a generalized form of Weber’s Law [20] to427

perceptual sensitivity data:428

D(s) =
w

(s− d)β
, (11)

in which d is an unrestricted additive constant, β is a non-negative exponent, and w is a429

non-negative scaling factor. These three parameters were optimized to minimize squared430

error of the measured thresholds (inverse sensitivity).431

Next, we combined the fitted sensitivity model with a model of internal noise to generate432

a prediction for the mean percept, µ(s), which was then compared with rating measure-433

ments. This was carried out for four different noise models: modulated Poisson, additive,434

multiplicative, and Poisson (corresponding to bottom four rows of Fig. 4, respectively). We435

derive the corresponding expressions for µ(s) below.436

Modulated Poisson noise. Our primary predictions assume a modulated Poisson noise437

model [51] with mean-variance relationship:438

σ(s)2 = µ(s) + g2µ(s)2. (12)

The transducer µ(s) is obtained by solving the differential equation that arises by substi-439

tuting this variance expression into the Fisher Sensitivity of Eq. (1), and equating this with440

the generalized form of Weber’s law (Eq. (11)):441

µ′(s)√
µ(s) + g2µ(s)2

=
w

(s− d)β
(13)

The solution may be expressed in closed form:442

µ(s) = sinh2

(
g(s− d)−β[w(d− s) + c(s− d)β]

2(β − 1)

)/
g2. (14)

The parameters {d, β, w} are constrained to values obtained when fitting the sensitivity443

data, and three remaining parameters are adjusted to minimize squared error with the444

log-transformed rating data. The first is g, which governs the transition from Poisson to445

super-Poisson noise behavior (large g indicates an early transition). The second is c, an446

integration constant that arises from solving the differential equation for µ(s). The last447

parameter is an overall scale factor (not indicated), which rescales the predicted intensity448

values to the numerical range used in the associated rating experiment.449

Additive Gaussian noise. As for the full modulated Poisson model, we first fit the450

generalized Weber’s law to discrimination data, and locked the parameters {d, β, w}. Then451

we solve a differential equation arising from equating Fisher Sensitivity with the generalized452

Weber’s Law:453

µ′(s)

σ
=

w

(s− d)β
. (15)
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The solution for µ(s) in this case also has a closed form:454

µ(s) =
wσ(s− d)1−β

1− β
+ c (16)

The integration constant c, constant σ and an overall scaling factor are adjusted to fit µ(s)455

to the rating data (minimizing the squared error between logarithmically transformed rating456

data and the function).457

Poisson noise. Following a similar procedure for the case of additive Gaussian noise, we458

find a closed-form solution for µ(s) using Poisson noise and Fisher Sensitivity:459

µ(s) =
(s− d)−2β[w(d− s) + (β − 1)c(s− d)β]2

4(β − 1)2
(17)

Again, the integration constant c and overall scaling factor are optimized to fit the rating460

data.461

Generalized multiplicative noise. Here, we assume a noise mean-variance relationship462

σ(s)2 = g2µ(s)2, which is the choice that enables the co-existance of the classic form of463

Weber’s law and Stevens’ power law. As in previous cases, we substitute this into the464

expression for Fisher Sensitivity to obtain a prediction for µ(s):465

µ(s) = exp

[
gw(s− d)(1−β)

1− β

]
c. (18)

Note that, as for the full noise model of Eq. (12), comparison to the rating data involves466

estimation of three parameters: the noise parameter g, an integration constant c, and a467

scaling factor.468
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Appendices681

Fisher Sensitivity and Fisher Information for Gaussian responses682

Consider the general case of an internal representation with Gaussian noise having stimulus-683

dependent mean and variance:684

p(r|s) =
1

σ(s)
√

2π
e
− 1

2

[
r-µ(s)
σ(s)

]2
(S.1)

The Fisher Information of this representation can be computed as:

F (s) =
2σ′(s)2 + µ′(s)2

σ(s)2
. (S.2)

For some cases, this is equal to the squared Fisher Sensitivity. Specifically, for the constant-685

variance case (additive noise, top panel of Fig. 1), σ′(s) = 0, and F (s) = µ′(s)2/σ(s)2.686

Also, when σ(s) ∝ µ(s) (e.g., Fig. 2), then F (s) ∝ µ′(s)2/σ(s)2 . But in general, these two687

quantities are different.688

To examine how close Fisher Sensitivity is to the square-root of Fisher information in the689

Gaussian case, we can write the Gaussian standard deviation σ(s) as a function of the mean:690

σ(s) = h[µ(s)]. Then Eq. (S.2) can be re-expressed as the following:691

F (s) =
µ′(s)2

{
1 + 2h′[µ(s)]2

}
σ(s)2

. (S.3)

In general when h[·] is not a constant, if the standard deviation σ(s) = h[µ(s)] varies slowly692

as a function of the stimulus (or when h′[µ(s)] is small), the lower bound is relatively tight.693
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