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Abstract: Neuroscience has long been an important driver of progress in artificial intelligence (AI). We
propose that to accelerate progress in AI, we must invest in fundamental research in NeuroAI.

Over the coming decades, Artificial Intelligence (AI) will transform society and the world economy in
ways that are as profound as the computer revolution of the last half century, and likely at an even faster
pace. This AI revolution presents tremendous opportunities to unleash human creativity in the modern
economy. New developments in AI systems have the potential to enable workers to attain greater
productivity and relieve them from performing the most dangerous and menial jobs. But, to reach this
potential, we still require advances that will make AI more human-like in its capabilities. Historically,
neuroscience has been a key driver and source of inspiration for improvements in AI, particularly those
that made AI more proficient in areas that humans and other animals excel at, such as vision,
reward-based learning, interacting with the physical world, and language (Hassabis et al. 2017). It can still
play this role. To accelerate progress in AI and realize its vast potential, we must invest in fundamental
research in “NeuroAI”.

The seeds of the current AI revolution were planted decades ago, largely by researchers attempting to
understand how brains compute (McCulloch and Pitts 1943). Indeed, the earliest efforts to build an
“artificial brain” led to the invention of the modern “von Neumann computer architecture,” for which
John von Neumann explicitly drew upon the very limited knowledge of the brain available to him in the
1940s (Von Neumann 2012). The deep convolutional networks that catalyzed the recent revolution in
modern AI are built upon artificial neural networks (ANNs) directly inspired by the Nobel-prize winning
work of David Hubel and Torsten Wiesel on visual processing circuits in the cat (Hubel and Wiesel 1962;
LeCun and Bengio 1995). Similarly, the development of reinforcement learning (RL) drew a direct line of
inspiration from insights into animal behavior and neural activity during learning (Thorndike and Bruce
2017; Rescorla 1972; Schultz, Dayan, and Montague 1997). Now, decades later, applications of ANNs
and RL are coming so quickly that many observers assume that the long-elusive goal of human-level
intelligence—sometimes referred to as “artificial general intelligence”—is within our grasp. However, in
contrast to the optimism of those outside the field, many front-line AI researchers believe that major new
breakthroughs are needed before we can build artificial systems capable of doing all that a human, or even
a much simpler animal like a mouse, can do.

Although AI systems can easily defeat any human opponent in games such as chess (Campbell, Hoane,
and Hsu 2002) and Go (Silver et al. 2016), they are not robust and often struggle when faced with novel
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situations. Moreover, we have yet to build systems that can walk to the shelf, take down the chess set, set
up the pieces, and move them around during a game. Similarly, no machine can build a nest, forage for
berries, or care for young. Today’s AI systems cannot compete with the sensorimotor capabilities of a
four-year old child, or even simple animals. Many of the basic capacities required to navigate new
situations—capacities that animals have or acquire effortlessly—turn out to be deceptively challenging
for AI, in part because AI systems lack even the basic abilities to interact with an unpredictable world. A
growing number of AI researchers doubt that merely scaling up current approaches will overcome these
limitations. Given the need to achieve more natural intelligence in AI, it is quite likely that new
inspiration from naturally intelligent systems is needed (Sinz et al. 2019).

While many key AI advances, such as convolutional ANNs and RL were inspired by neuroscience, much
of the current research in machine learning is following its own path by building on previously-developed
approaches that were inspired by decades old findings in neuroscience, such as attention-based neural
networks which were loosely inspired by attention mechanisms in the brain (Itti, Koch, and Niebur 1998;
Larochelle and Hinton 2010; Xu et al. 2015). New influences from modern neuroscience exist, but they
are spearheaded by a minority of researchers. This represents a missed opportunity. Over the last decades,
through efforts such as the NIH BRAIN initiative and others, we have amassed an enormous amount of
knowledge about the brain. This has allowed us to learn a great deal about the anatomical and functional
structures that underpin natural intelligence. The emerging field of NeuroAI, at the intersection of
neuroscience and AI, is based on the premise that a better understanding of neural computation will
reveal basic ingredients of intelligence and catalyze the next revolution in AI, eventually leading to
artificial agents with capabilities that match and perhaps even surpass those of humans. We believe it
is the right time for a large-scale effort to identify and understand the principles of biological intelligence,
and abstract those for application in computer and robotic systems.

Although it is tempting to focus on the most characteristically human aspects of intelligent behavior, such
as abstract thought and reasoning, the basic ingredients of intelligence—adaptability, flexibility, and the
ability to make general inferences from sparse observations—are already present in some form in basic
sensorimotor circuits which have been evolving for hundreds of millions of years. As AI pioneer Hans
Moravec (Moravec 1988) put it, abstract thought “is a new trick, perhaps less than 100 thousand years
old….effective only because it is supported by this much older and much more powerful, though usually
unconscious, sensorimotor knowledge.” This is good news, because it means that the favored subjects of
neuroscience research—rats, mice and non-human primates—can serve as experimentally tractable
models of natural intelligence. If AI could match their deceptively simple perceptual and motor abilities,
the step to human-level intelligence would be considerably smaller. Thus, we believe that the NeuroAI
path will lead to necessary advances if we figure out the core capabilities that all animals possess in
embodied sensorimotor interaction with the world.

NeuroAI Grand Challenge: The Embodied Turing Test

In 1950, Alan Turing proposed the “imitation game” (Turing 1950) as a test of a machine’s ability to
exhibit intelligent behavior equivalent to, or indistinguishable from, that of a human. In that game, now



known as the Turing test, a human judge is asked to evaluate natural language conversations between a
real human and a machine trained to mimic human responses. Turing proposed that, in lieu of being able
to say concretely whether a machine could “think” (which he considered an impossible question to
answer), we could instead determine whether a machine’s conversational abilities were indistinguishable
from those of a human’s. Turing proposed that this was a reasonable replacement for the unanswerable
question, “can machines think”. Implicit in the Turing test was the belief that language represents the
pinnacle of human intelligence, and that a machine capable of conversation must surely be intelligent. To
some degree, Turing was right, but in another way he was wrong. While no AI system has passed the
Turing test, recent language systems trained purely on large text corpuses can engage in surprisingly
cogent conversations. In part their success reveals how easily we can be tricked into imputing
intelligence, agency and even consciousness to our interlocuteur (Sejnowski 2022). Another is that these
systems are still very poor at some reasoning tasks (Kosoy et al. 2022). Impressive though these recent
successes are, their failures also serve to highlight that Turing was ignoring the fact that there is far more
to intelligence than language ability. Many of the errors that current natural language processing systems
make illustrate a fundamental lack of semantics, causal reasoning and common-sense. Words only have
meaning for these models by virtue of their statistical co-occurrence, as opposed to their grounding in
real-world experiences, so even the most advanced language models, despite their increasing power,
continue to struggle with some basic aspects of physical common sense. Thus, the Turing test, as
originally formulated, does not probe the ability, shared with animals, to make sense of the physical world
in a flexible way. Moreover, this understanding is likely founded on our prodigious perceptual and motor
abilities, honed through countless generations of natural selection.

We therefore propose an expanded Turing test, one that includes advanced sensorimotor abilities. The
spirit of the original Turing test was to establish a simple qualitative standard against which our progress
toward building artificially intelligent machines can be judged. An expanded “embodied Turing test”
would benchmark and compare the interactions with the world of artificial systems versus humans and
other animals. Because each animal has its own unique set of abilities, each animal defines its own
embodied Turing test: An artificial beaver might be tested on its ability to build a dam, and an artificial
squirrel on its ability to jump through trees. Nonetheless, many core sensorimotor capabilities are shared
by almost all animals, and the ability of animals to rapidly evolve the sensorimotor skills needed to adapt
to new environments suggests that these core skills provide a solid foundation. Below we highlight a few
of these shared characteristics.

Interacting with the world. The defining feature of animals is their ability to move around and interact
with their environment in purposeful ways. Despite recent advances in optimal control, reinforcement
learning, and imitation learning, robotics is still far from achieving animal-level abilities in controlling
their bodies and manipulating objects, even in simulation. Of course, neuroscience can provide guidance
about the kinds of modular and hierarchical architectures that could be adapted to artificial systems to
give them these capabilities (Merel, Botvinick, and Wayne 2019). It can also provide us with design
principles like partial autonomy (how low-level modules in a hierarchy act semi-autonomously in the
absence of input from high-level modules) and amortized control (how movements generated at first by a
slow planning process are eventually transferred to a fast reflexive system). Understanding how specific
neural circuits participate in different tasks – like locomotion; fine-grained control of limbs, hands and



fingers; perception; and action selection – may provide a path for how such systems could be
implemented in robots, and could also inspire solutions for other forms of ‘intelligence’, including in
more cognitive realms. For example, we speculate that incorporating principles of circuitry for low-level
motor control could help provide a better basis for higher-level motor planning in AI systems.

Flexibility of animal behavior. Another goal is to develop AI systems that can engage a large repertoire
of flexible and diverse tasks in a manner that echoes the incredible range of behaviors that individual
animals can generate. Modern AI can easily learn to outperform humans at video games like Breakout
using nothing more than pixels on a screen and game scores (Mnih et al. 2015). However, these systems,
unlike human players, are brittle and highly sensitive to small perturbations: changing the rules of the
game slightly, or even a few pixels on the input, can lead to catastrophically poor performance (Huang et
al. 2017). This is because these systems learn a mapping from pixels to actions that need not involve an
understanding of the agents and objects in the game and the physics that governs them. Similarly, a
self-driving car does not inherently know about the danger of a crate falling off a truck in front of it,
unless it has literally seen examples of crates falling off trucks leading to bad outcomes. And even if it has
been trained on the dangers of falling crates, the system might consider an empty plastic bag being blown
out of the car in front of it as an obstacle to avoid at all cost rather than an irritant, again, because it
doesn’t actually understand what a plastic bag is or how unthreatening it is physically. This inability to
handle scenarios that have not appeared in the training data is a significant challenge to widespread
reliance on AI systems.

To be successful in an unpredictable and changing world, an agent must be flexible and master novel
situations by using its general knowledge about how such situations are likely to unfold. This is arguably
what animals do. Animals are born with most of the skills needed to thrive, or can rapidly acquire them
from limited experience, thanks to their strong foundation in real-world interaction, courtesy of evolution
and development (Zador 2019). Thus, it is clear that training from scratch for a specific task is not how
animals obtain their impressive skills; animals do not arrive into the world tabula rasa and then rely on
large labeled training sets to learn. Although machine learning has been pursuing approaches for
sidestepping this tabula rasa limitation, including self-supervised learning, transfer learning, continual
learning, meta learning, one-shot learning and imitation learning (Bommasani et al. 2021), none of these
approaches comes close to achieving the flexibility found in most animals. Thus, we argue that
understanding the neural circuit-level principles that provide the foundation for behavioral flexibility in
the real-world, even in simple animals, has the potential to greatly increase the flexibility and utility of AI
systems. Put another way, we can greatly accelerate our search for general-purpose circuits for real-world
interaction by taking advantage of the optimization process that evolution has already engaged in (Gupta
et al. 2021; Stöckl, Lang, and Maass 2022; Koulakov et al. 2022; Stanley et al. 2019; Pehlevan and
Chklovskii 2019).

Energy efficiency. One important challenge for modern AI – that our brains have overcome – is energy
efficiency. Training a neural network requires enormous amounts of energy. For example, training a large
language model such as GPT-3 requires over 1000 megawatts-hours, enough to power a small town for a
day (Patterson et al. 2021). The total amount of energy being used to train AI systems is large and
growing rapidly. Biological systems are, by contrast, much more energy efficient: The human brain uses



about 20 watts (Sokoloff 1960). The difference in energy requirement between brains and computers
derives from differences in information processing. First, at an algorithmic level, modern large-scale
ANNs, such as large language models (Brown et al. 2020), rely on very large feedforward architectures
with self-attention to process sequences over time (Vaswani et al. 2017), ignoring the potential power of
recurrence for processing sequential information. One reason for this is that currently we do not have
efficient mechanisms for credit assignment calculations in recurrent networks. In contrast, brains utilize
flexible recurrent architectures for dealing with sequences over time and apparently can solve the
temporal credit assignment problem with great efficiency--even more efficiently than the feedforward
credit assignment mechanisms used in current ANNs. If we could use the brain for guidance on how to
craft efficient training mechanisms for recurrent circuits then we could potentially increase our abilities in
processing sequential data while further increasing the energy efficiency of our systems. Second, at an
implementation level, biological neurons interact mainly by transmitting action potentials (spikes), an
asynchronous communication protocol. Like the interactions between conventional digital elements, the
output of a neuron can be viewed as a string of 0s and 1s; but unlike a digital computer, the energy cost of
a “1” (i.e. of a spike) is several orders of magnitude higher than that of a “0” (Attwell and Laughlin 2001).
Because biological circuits operate in a regime where spikes are sparse—even very active neurons rarely
exceed a duty cycle of 10%, and most operate at much lower rates—they are much more energy efficient1

(Lennie 2003).

In addition, other factors may contribute to the energy efficiency of biological networks. For example,
biological networks compute effectively even though some of the components are highly unreliable, or
“noisy”. Synaptic release—the means by which neurons communicate—can be so unreliable that only 1
out of every 10 messages is transmitted (Dobrunz and Stevens 1997). Circuits are organized so that spike
trains are also highly variable, a feature that may allow neural circuits to perform probabilistic inference,
a robust form of computation in the presence of uncertainty (Ma et al. 2006). Although there are on-going
efforts to exploit the potential of spiking networks (Davies et al. 2018; DeBole et al. 2019), to date no
“killer application” has emerged that these networks are able to execute with the energy efficiency of
biological circuits. Arguably, the major problem has been that current “neuromorphic chips” neither
replicate innate neural circuit functions, nor are they easy to train (Roy, Jaiswal, and Panda 2019). As
such, though they are more energy efficient, they are far less useful than their energy hungry digital
counterparts. Thus, we believe that obtaining greater energy efficiency in AI could come not only from
borrowing the idea of sparse spiking networks, but also by providing neuromorphic chips with innate
neural circuit functions and learning rules.

A roadmap for solving the embodied Turing test

How might artificial systems that pass the embodied Turing test be developed? One natural approach
would be to do so incrementally, guided by our evolutionary history. For example, almost all animals
engage in goal-directed locomotion; they move toward some stimuli (e.g. food sources) and away from

1 Assuming a temporal discretization of e.g. 1 msec, the duty cycle can be defined as the average number of spikes per second
divided by 1000, i.e. the number of “1”s out of 1000 possible positions. Thus, a neuron with an average firing rate of 100
spikes/second has a duty cycle of 10%, and a neuron with an average firing rate of 1 spike/second has a duty cycle of 0.1%



others (e.g. threats). Layered on top of these foundational abilities are more sophisticated skills, such the
ability to combine different streams of sensory information (e.g. visual and olfactory), to use this sensory
information to distinguish food sources and threats, to navigate to previous locations, to weigh possible
rewards and threats to achieve goals, and to interact with the world in precise ways in service of these
goals. Most of these—and many other—sophisticated abilities are found to some extent in even very
simple organisms, such as worms. In more complex animals, such as fish and mammals, these abilities are
elaborated and combined with new strategies to enable more powerful behavioral strategies.

This evolutionary perspective suggests a strategy for solving the embodied Turing test by breaking it
down into a series of incremental challenging ones that build on each other, and iteratively optimizing on
this series (Cisek and Hayden 2022). Moreover, organisms representing solutions to the lower and
intermediate challenges could include worms, flies, fish, rodents and primates, widely used systems in
neuroscience research. This would enable us to build on the vast amount of knowledge we have
accumulated about the circuitry and mechanisms underlying the behaviors of these model organisms.
Much of this research could be performed in silico, using virtual environments and virtual animals (Merel,
Botvinick, and Wayne 2019; Merel et al. 2019). To achieve the required level of behavioral flexibility, the
artificial systems that pass the embodied Turing test would be challenged with a constellation of
species-specific tests probing self-supervised learning, continual learning, transfer learning, meta
learning, and life-long memory. These challenges can be standardized to permit the quantification of
progress. Ultimately, successful virtual organisms could be adapted to the physical world with additional
efforts in robotics and deployed to solve real-world problems.

What we need

Achieving these goals will require significant resources and also contribution across many disciplines
beyond traditional AI and neuroscience, including psychology, engineering, linguistics, etc. More than
simply harnessing existing expertise in these fields, an imperative will be to train a new generation of AI
researchers who are equally at home in engineering/computational science and neuroscience. These
researchers will chart fundamentally new directions in AI research by drawing on decades of progress in
neuroscience. The greatest challenge will be in determining how to exploit the synergies and overlaps in
neuroscience, computational science and other relevant fields to advance our quest: identifying what
details of the brain’s circuitry, biophysics, and chemistry are important and what can be disregarded in the
application to AI. Hence, there is a critical need for researchers with suitable training across the different
fields to abstract neuroscience knowledge in a way that makes it applicable to computers and help design
experiments to generate new neurobiological insights with relevance to AI. The success of this research
program depends on the formation of a community of researchers with expertise in neuroscience and AI.
Moreover, explicit design of new training programs can ensure that the NeuroAI research community
reflects the demographics of society as a whole.

Second, we will need to create a shared platform capable of developing and testing these virtual agents.
One of the greatest technical challenges that we will face in creating an iterative, embodied Turing test
and evolving artificial organisms to solve it is the amount of computational power required. Currently,
training just one large neural network model on a single embodied task (e.g. control of a body in



3-dimensional space) can take days on specialized distributed hardware (Liu et al. 2021). For multiple
research groups to iteratively work together to optimize and evaluate a large number of agents over
multiple generations on increasingly complex embodied Turing tasks, a large investment in a shared
computational platform will be required. Much like a particle accelerator in physics or large telescope in
astronomy, this sort of large-scale shared resource will be essential for moving the brain-inspired AI
research agenda forward. It will require a major organizational effort, with government and ideally also
industry support, that has as its central goal scientific progress on animal and human-like intelligence.

Third, we will need to support fundamental theoretical and experimental research on neural
computation. We have learned a tremendous amount about the brain over the last decades, through the
efforts of the NIH, in no small measure due to the BRAIN Initiative, and other major funders, and we are
now reaching an understanding of the vast diversity of the brain’s individual cellular elements, neurons,
and how they function as parts of simple circuits. With these building blocks in place, we are poised to
shift our focus toward understanding how the brain functions as an integrated intelligent system. This will
require insight into how a hundred billion neurons of a thousand different types, each one communicating
with thousands of other neurons, with variable, adaptable connections, are wired together, and the
computational capabilities – the intelligence – that emerges. We must reverse engineer the brain to
abstract the underlying principles. Note that the development of virtual agents will itself greatly accelerate
this effort by allowing for direct comparisons between experiments in real and ‘in-silico’ animals, efforts
that will provide insights into the neural circuit-level attributes and mechanisms essential for robust
control, flexible behavior, energy efficiency, and intelligent behavior. Taking advantage of the powerful
synergies between neuroscience and AI will require program and infrastructure support to organize and
enable research across the disciplines at a large scale.

Fortunately, there is now bipartisan agreement in Washington, D.C., that investments into AI research are
essential to the technological future of the U.S. Community-wide efforts to bridge the fields of
neuroscience and AI will require robust investments from federal resources, as well as oversight of
project milestones, commercialization support, ethics and big bets on innovative ideas. There are
currently some lines of federal resourcing such as the NSF’s National Artificial Intelligence Research
Institutes explicitly dedicated to driving innovation and discovery in AI from neuroscience research, but
these are largely designed to support a traditional academic model with different groups investigating
different questions, rather than the creation of a centralized effort that could create something like the
embodied Turing test. Likewise, AI support grants are predominantly ancillary programs through the
NIH, NSF, DoD, and even the EPA – each of which have their own directives and goals. This leaves a
significant funding gap for technology development as an end in itself. The creation of overarching
directives either through existing entities, or as a stand-alone agency, to support NeuroAI and AI research
would drive this mission, solidifying the U.S. government as an international leader in AI R&D.

Conclusions

Despite the long history of neuroscience driving advances in AI and the tremendous potential for future
advances, most engineers and computational scientists in the field are unaware of the history and



opportunities. The influence of neuroscience on shaping the thinking of von Neumann, Turing and other
giants of computational theory are rarely mentioned in a typical computer science curriculum. Leading AI
conferences such as NeurIPS, which once served to showcase the latest advances in both computational
neuroscience and machine learning, now focus almost exclusively on the latter. Even some researchers
aware of the historical importance of neuroscience in shaping the field often argue that it has lost its
relevance. “Engineers don’t study birds to build better planes” is the usual refrain. But the analogy fails,
in part because pioneers of aviation did indeed study birds (Lilienthal 1911; Culick 2001), and some still
do (Shyy et al. 2008; Akos et al. 2010). Moreover, the analogy fails also at a more fundamental level: The
goal of modern aeronautical engineering is not to achieve “bird-level” flight, whereas a major goal of AI
is indeed to achieve (or exceed) “human-level” intelligence. Just as computers exceed humans in many
respects, such as the ability to compute prime numbers, so too do planes exceed birds in characteristics
such as speed, range and cargo capacity. But if the goal of aeronautical engineers were indeed to build a
machine with the “bird-level” ability to fly through dense forest foliage and alight gently on a branch,
they would be well-advised to pay very close attention to how birds do it. Similarly, if AI aims to achieve
animal-level common-sense sensorimotor intelligence, researchers would be well-advised to learn from
animals and the solutions they evolved to behave in an unpredictable world.
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